

RADIO TEST REPORT - REP069139

Type of assessment: Final product testing	
Applicant: Gridspertise S.r.l. Via Ombrone, 2 00198 Roma – Italy	
Product: Single-phase static electrical energy meter wit module	th G3 Hybrid PLC/RF communication
Model: GLOBYMGNG3	
FCC ID: 2BLES-GM0943	
Specifications: ◆ FCC 47 CFR Part 15 Subpart C, §15.247	
Date of issue: November 13, 2024	
P. Barbieri	
Tested by	Signature
O. Frau Reviewed by	Signature

This test report shall not be partially reproduced without the prior written consent of Nemko S.p.A. The phase of sampling of equipment under testis carried out by the customer. Results indicated in this report refer exclusively to the tested samples and apply to the sample as received. This Test Report, when bearing the Nemko name and logo is only valid when issued by a Nemko laboratory or by a laboratory having agreement with Nemko.

Doc. No. TRF002 Rev. 0 Date 2023-11-24

Lab locations

Company name	Nemko S.p.A.
Address	Via Del Carroccio, 4
City	Biassono
Province	MB
Postal code	20853
Country	Italy
Telephone	+39 039 220 12 01
Facsimile	+39 039 220 12 21
Website	www.nemko.com
Site number	FCC: 682159

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contain in this report are within Nemko S.p.A. ISO/IEC 17025 accreditation.

Copyright notification

Nemko S.p.A. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko S.p.A. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

Report reference ID: REP069139 Page 2 of 94

Table of Contents

Table of	Contents	3
Section 1	Report summary	4
1.1	Test specifications	4
1.2	Test methods	4
1.3	Exclusions	4
1.4	Statement of compliance	4
1.5	Test report revision history	4
Section 2	Engineering considerations	5
2.1	Modifications incorporated in the EUT for compliance	5
2.2	Technical judgment	5
2.3	Deviations from laboratory tests procedures	5
Section 3	Test conditions	(
3.1	Atmospheric conditions	6
3.2	Power supply range	e
Section 4	Measurement uncertainty	7
4.1	Uncertainty of measurement	
Section 5	Information provided by the applicant	8
5.1	Disclaimer	8
5.2	Applicant/Manufacture	8
5.3	EUT information	8
5.4	Radio technical information	8
5.5	EUT setup details	
Section 6	Summary of test results	12
6.1	Testing location	
6.2	Testing period	
6.3	Sample information	
6.4	FCC Part 15 Subpart A and C, general requirements test results	
6.5	FCC Part §15.247 test results for frequency hopping spread spectrum systems (FHSS)	
6.6	FCC Part §15.247 test results for digital transmission systems (DTS)	
Section 7	• •	
7.1	Test equipment list	
Section 8	Testing data	15
8.1	Variation of power source	
8.2	Number of frequencies	16
8.3	Antenna requirement	18
8.4	AC power line conducted emissions limits	
8.5	Frequency Hopping Systems requirements, 900 MHz operation	
8.6	Transmitter output power and e.i.r.p. requirements for FHSS 900 MHz	
8.7	Spurious (out-of-band) unwanted emissions	
Section 9	•	
9.1	EUT photos	
0.2	Catum photos	0.7

Section 1 Report summary

1.1 Test specifications

FCC 47 CFR Part 15, Subpart C, Clause 15.247 Operation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–585 MHz	FCC 47 CFR Part 15, Subpart C, Clause 15.247	Operation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–585 MHz
--	--	---

1.2 Test methods

558074 D01 15.247 Meas Guidance v05r02	Guidance for compliance measurements on digital transmission system, frequency hopping spread
(April 2, 2019)	spectrum system, and hybrid system devices operating under section 15.247 of the FCC rules.
662911 D01 Multiple Transmitter Output	Emissions Testing of Transmitters with Multiple Outputs in the Same Band
v02r01 (October 31, 2013)	
ANSI C63.10 v2020	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

1.3 Exclusions

None

1.4 Statement of compliance

In the configuration tested, the EUT was found compliant.

Testing was performed against all relevant requirements of the test standard except as noted in section 1.3 above. Results obtained indicate that the product under test complies In full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

1.5 Test report revision history

Table 1.5-1: Test report revision history

Revision #	Date of issue	Details of changes made to test report
REP069139	November 13, 2024	Original report issued

Report reference ID: REP069139 Page 4 of 94

Section 2 Engineering considerations

2.1 Modifications incorporated in the EUT for compliance There were no modifications performed to the EUT during this assessment. 2.2 Technical judgment None 2.3 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.

Section 3 Test conditions

3.1 Atmospheric conditions

Temperature	18 °C – 33 °C
Relative humidity	20 % – 70 %
Air pressure	86 kPa (860 mbar) – 106 kPa (1060 mbar)

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

The following instruments are used to monitor the environmental conditions:

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
Thermo-hygrometer	Testo	175-H2	20012380/305	2022-12	2024-12
Thermo-hygrometer	Testo	175-H2	38203337/703	2022-12	2024-12
Barometer	Castle	GPB 3300	072015	2024-04	2025-04

3.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.

Report reference ID: REP069139 Page 6 of 94

Section 4 Measurement uncertainty

4.1 Uncertainty of measurement

The measurement uncertainty was calculated for each test and quantity listed in this test report, according to CISPR 16-4-2, ETSI TR 100 028-1, ETSI TR 100 028-2 and other specific test standards and is documented in Nemko Spa working manuals WML1002 and WML0078.

The assessment of conformity for each test performed on the equipment is performed not taking into account the measurement uncertainty. The two following possible verdicts are stated in the report:

P (Pass) - The measured values of the equipment respect the specification limit at the points tested. The specific risk of false accept is up to 50% when the measured result is close to the limit.

F (Fail) - One or more measured values of the equipment do not respect the specification limit at the points tested. The specific risk of false reject is up to 50% when the measured result is close to the limit.

 $Hereafter\ Nemko's\ measurement\ uncertainties\ are\ reported:$

EUT	Туре	Test	Range	Measurement Uncertainty	Notes
		Frequency error	0.001 MHz ÷ 40 GHz	0.08 ppm	(1)
			0.009 MHz ÷ 30 MHz	1.1 dB	(1)
		Carrier power	30 MHz ÷ 18 GHz	1.5 dB	(1)
		RF Output Power	18 MHz ÷ 40 GHz	3.0 dB	(1)
			40 MHz ÷ 140 GHz	5.0 dB	(1)
		Adjacent channel power	1 MHz ÷ 18 GHz	1.4 dB	(1)
			0.009 MHz ÷ 18 GHz	3.0 dB	(1)
		Conducted spurious emissions	18 GHz ÷ 40 GHz	4.2 dB	(1)
			40 GHz ÷ 220 GHz	6.0 dB	(1)
		Intermodulation attenuation	1 MHz ÷ 18 GHz	2.2 dB	(1)
		Attack time – frequency behaviour	1 MHz ÷ 18 GHz	2.0 ms	(1)
		Attack time – power behaviour	1 MHz ÷ 18 GHz	2.5 ms	(1)
	Conducted	Release time – frequency behaviour	1 MHz ÷ 18 GHz	2.0 ms	(1)
		Release time – power behaviour	1 MHz ÷ 18 GHz	2.5 ms	(1)
Transmitter		Transient behaviour of the transmitter– Transient frequency behaviour	1 MHz ÷ 18 GHz	0.2 kHz	(1)
		Transient behaviour of the transmitter – Power level slope	1 MHz ÷ 18 GHz	9%	(1)
		Frequency deviation - Maximum permissible frequency deviation	0.001 MHz ÷ 18 GHz	1.3%	(1)
		Frequency deviation - Response of the transmitter to modulation frequencies above 3 kHz	0.001 MHz ÷ 18 GHz	0.5 dB	(1)
		Dwell time	-	3%	(1)
		Hopping Frequency Separation	0.01 MHz ÷ 18 GHz	1%	(1)
		Occupied Channel Bandwidth	0.01 MHz ÷ 18 GHz	2%	(1)
-		Modulation Bandwidth	0.01 MHz ÷ 18 GHz	2%	(1)
	Radiated		0.009 MHz ÷ 26.5 GHz	6.0 dB	(1)
		Radiated spurious emissions	26.5 GHz ÷ 66 GHz	8.0 dB	(1)
			66 GHz ÷ 220 GHz	10 dB	(1)
			10 kHz ÷ 26.5 GHz	6.0 dB	(1)
		Effective radiated power transmitter	26.5 GHz ÷ 66 GHz	8.0 dB	(1)
			66 GHz ÷ 220 GHz	10 dB	(1)

NOTES:

Report reference ID: REP069139 Page 7 of 94

⁽¹⁾ The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k = 2, which for a normal distribution corresponds to a coverage probability of approximately 95 %

Section 5 Information provided by the applicant

5.1 Disclaimer

This section contains information provided by the applicant and has been utilized to support the test plan. Inaccurate information provided by the applicant can affect the validity of the results contained within this test report. Nemko accepts no responsibility for the information contained within this section and the impact it may have on the test plan and resulting measurements.

5.2 Applicant/Manufacture

Applicant name	Gridspertise S.r.l.
Applicant address	Via Ombrone, 2
	00198 Roma – Italy
Manufacture name	Gridspertise S.r.l.
Manufacture address	Via Ombrone, 2
	00198 Roma – Italy

5.3 EUT information

Product	Single-phase static electrical energy meter with G3 Hybrid PLC/RF communication module	
Brand	gridspertise occelerating your electric future	
Model	GLOBYMGNG3	
Serial number	G3SPC0000688	
Power supply requirements	120 / 240 V~ 50 / 60 Hz	
Product description and theory of	The EUT is a single-phase static electrical energy meter with G3 Hybrid PLC/RF communication module. It's	
operation	provided of two configurations, one with an internal antenna and one with an external antenna. For the version	
	with external antenna the internal antenna is not removed by the EUT, but it's disabled by firmware command.	

5.4 Radio technical information

Category of Wideband Data	☐ Frequency Hopping Spread Spectrum (FHSS) equipment
Transmission equipment	Other types of Wideband Data Transmission equipment (e.g. DSSS, OFDM, etc.).
Frequency band	915 – 928 MHz
Frequency Min (MHz)	915.2 MHz
Frequency Max (MHz)	927.8 MHz
RF power Max (W), Conducted	0.468 W (26.7 dBm)
Field strength, dBμV/m @ 3 m	N/A
Measured BW (kHz), 99% OBW	117.2 kHz
Type of modulation	FSK
Emission classification	W7D
Transmitter spurious, dBμV/m @ 3 m	51.1 dBμV/m
Antenna information (see clause 8.3)	Elicoidal internal antenna: peak gain 1.90 dBi; external cabled antenna: peak gain 4.12 dBi.
Embedded Radio Module	

Report reference ID: REP069139 Page 8 of 94

5.5 EUT setup details

Operating conditions

5.5.1 Radio exercise details

The EUT has been tested in TX mode forced at a single frequency of in hopping mode with the following software:

Firmware version: 7.2.0

Transmitter state

Transmitter set in to continuous mode and in hopping mode.

Report reference ID: REP069139 Page 9 of 94

5.5.2 EUT setup configuration

Table 5.5-1: EUT interface ports

Description	Qty.
AC Mains	1

Table 5.5-2: Support equipment

Description	Brand name	Model, Part number, Serial number, Revision level
PC	Dell	Latitude 7480

Table 5.5-3: Inter-connection cables

Cable description	From	То	Length (m)
AC Mains	EUT	Mains	1.5

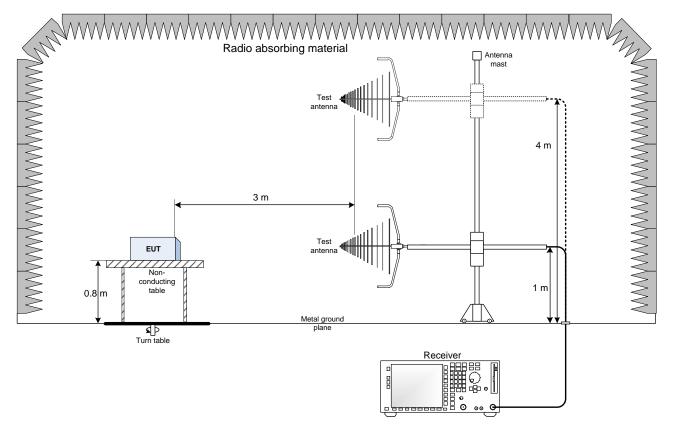


Figure 5.5-1: Radiated testing below 1 GHz set-up

Report reference ID: REP069139 Page 10 of 94

EUT setup configuration, continued

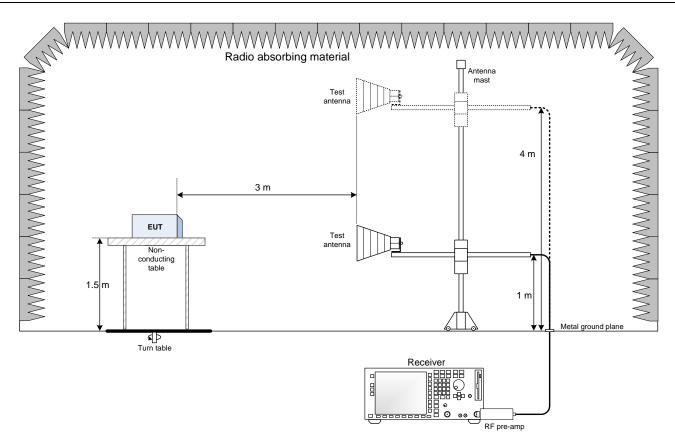


Figure 5.5-2: Radiated testing above 1 GHz set-up

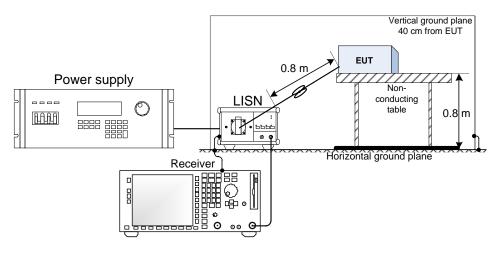


Figure 5.5-3: Conducted testing

Section 6 Summary of test results

6.1 Testing location

Test leastion (a)	Name of a A
Test location (s)	Nemko S.p.A.
	Via Del Carroccio, 4 – 20853 Biassono (MB) – Italy

6.2 Testing period

Test start date	November 11, 2024	Test end date	November 13, 2024

6.3 Sample information

Receipt date	November 11, 2024	Nemko sample ID number(s)	PRJ0068289

6.4 FCC Part 15 Subpart A and C, general requirements test results

Table 6.4-1: FCC general requirements results

Part	Test description	Verdict
§15.207(a)	Conducted limits	Pass
§15.31I	Variation of power source	Pass
§15.31(m)	Number of tested frequencies	Pass
§15.203	Antenna requirement	Pass

Notes: EUT is an AC powered device.

6.5 FCC Part §15.247 test results for frequency hopping spread spectrum systems (FHSS)

Table 6.5-1: FCC FHSS requirements results

Part	Test description	Verdict
§15.247(a)(1)(i)	Requirements for operation in the 902–928 MHz band	Pass
§15.247(a)(1)(ii)	Requirements for operation in the 5725–5850 MHz band	Not applicable
§15.247(a)(1)(iii)	Requirements for operation in the 2400–2483.5 MHz band	Not applicable
§15.247(b)(1)	Maximum peak output power in the 2400–2483.5 MHz band and 5725–5850 MHz band	Not applicable
§15.247(b)(2)	Maximum peak output power in the 902–928 MHz band	Pass
§15.247I(1)	Fixed point-to-point operation with directional antenna gains greater than 6 dBi	Not applicable
§15.247I(2)	Transmitters operating in the 2400–2483.5 MHz band that emit multiple directional beams	Not applicable
§15.247(d)	Spurious emissions	Pass
§15.247(f)	Time of occupancy for hybrid systems	Not applicable
§15.247(i)	Radiofrequency radiation exposure evaluation	Pass

Notes: -

6.6 FCC Part §15.247 test results for digital transmission systems (DTS)

Table 6.6-1: FCC DTS requirements results

Part	Test description	Verdict
§15.247(a)(2)	Minimum 6 dB bandwidth	Not applicable
§15.247(b)(3)	Maximum peak output power in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands	Not applicable
§15.247I(1)	Fixed point-to-point operation with directional antenna gains greater than 6 dBi	Not applicable
§15.247I(2)	Transmitters operating in the 2400–2483.5 MHz band that emit multiple directional beams	Not applicable
§15.247(d)	Spurious emissions	Not applicable
§15.247I	Power spectral density	Not applicable
§15.247(f)	Time of occupancy for hybrid systems	Not applicable

Notes:

Report reference ID: REP069139 Page 13 of 94

Section 7 Test equipment

7.1 Test equipment list

Table 7.1-1: Equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
EMI Receiver	Rohde & Schwarz	ESW44	101620	2024-09	2025-09
EMI Receiver	Rohde & Schwarz	ESU8	100202	2024-09	2025-09
Antenna 1 - 18 GHz	Schwarzbeck Mess-Elektronik	STLP9148	STLP 9148-152	2024-08	2027-08
Broadband Amplifier	Schwarzbeck Mess-Elektronik	BBV9718C	00121	2024-02	2025-02
Controller	Maturo	FCU3.0	10041	NCR	NCR
Tilt antenna mast	Maturo	TAM4.0-E	10042	NCR	NCR
Turntable	Maturo	TT4.0-5T	2.527	NCR	NCR
3m Semi anechoic chamber	Comtest	SAC-3	1711-150	2024-09	2026-09
Software turntable and mast	Maturo	mcApp	8.1.0.5410	NCR	NCR
Cable set	Rosenberger and Huber + Suhner	RE01+RE02	1.654+1.655	2024-02	2025-02
10m Semi anechoic chamber	Comtest	SAC-10	530	2023-09	2025-09
Coaxial cable	Rosenberger+Huber-Suhner	RE03+RE04	1.510+1.511	2024-11	2025-11
Coaxial cable	Rosenberger+Huber-Suhner	RE04+RE05	1.511+1.512	2023-12	2024-12
Coaxial cable	Rosenberger+Huber-Suhner	RE01+RE02	1.654+1.655	2024-02	2025-02
Coaxial cable	Rosenberger+Huber+Suhner	CE01+CE02	1.498+1.632	2024-11	2025-11
Cable set	Rosenberger	ST.ALO-02	1.650	2023-11	2024-11
LISN	Rohde & Schwarz	ENV432	101714	2024-09	2025-09
Attenuator	Aeroflex / Weinschel	2	CC8577	2024-02	2025-02

Notes: NCR - no calibration required, VOU - verify on use

Section	on 8 Testing d	ata				
8.1 \	/ariation of power	source				
8.1.1	References, definitio	ons and limits				
the e	ntentional radiators, meas mission, as appropriate, s	urements of the variation of the input power shall be performed with the supply voltage with the supply voltage with the performed using	aried between 85% and 115%			
8.1.2	Test summary					
Verdict		Pass				
Tested by		P. Barbieri	Test date		November	11, 2024
8.1.3	Observations, setting	gs and special notes				
The testin	g was performed as per A	NSI C63.10 Section 5.13.				
a)	Where the device is into	ended to be powered from an external pow ne device at the time of sale. If the device is n				·
b)		rating at a supply voltage deviating ±15% f	rom the nominal rated value	may ca	use damage	s or loss of intended
c)		m and maximum allowable voltage per manu inge of rated supply voltage, test at 15% belo	•			
d)	For devices obtaining po	wer from an input/output (I/O) port (USB, fir		ary to ap	oply voltage	variation to the device
For batter		ipply, while maintaining the functionalities of ne equipment tests shall be performed using a				
8.1.4	Test data					
EUT Powe	er requirements:			⊠ AC	□ DC	☐ Battery
	•	owered, was the noticeable output power va		☐ YES	⊠ NO	□ N/A
	•	d, was the testing performed using fresh batt		☐ YES	\square NO	⊠ N/A
	If EUT is rechargeable ba	attery operated, was the testing performed us	ing fully charged batteries?	☐ YES	\square NO	⊠ N/A

Report reference ID: REP069139 Page 15 of 94

8.2 Number of frequencies

8.2.1 References, definitions and limits

FCC §15.31:

(m) Measurements on intentional radiators or receivers shall be performed and, if required, reported for each band in which the device can be operated with the device operating at the number of frequencies in each band specified in the following table.

Table 8.2-1: Frequency Range of Operation

Frequency range over which the device		Location of measurement frequency inside the
operates (in each band)	Number of test frequencies required	operating frequency range
1 MHz or less	1	Center (middle of the band)
1–10 MHz	2	1 near high end, 1 near low end
Greater than 10 MHz	3	1 near high end, 1 near center and 1 near low end

Notes: "near" means as close as possible to or at the centre / low end / high end of the frequency range over which the device operates.

8.2.2 Test summary

Verdict	Pass		
Tested by	P. Barbieri	Test date	November 11, 2024

8.2.3 Observations, settings and special notes

ANSI C63.10, Clause 5.6.2.1:

The number of channels tested can be reduced by measuring the center channel bandwidth first and then applying the following relaxations as appropriate:

- a) For each operating mode, if the measured channel bandwidth on the middle channel is at least 150% of the minimum permitted bandwidth, then it is not necessary to measure the bandwidth on the high and low channels.
- b) For multiple-input multiple-output (MIMO) systems, if the measured channel bandwidth on testing the middle channel exceeds the minimum permitted bandwidth by more than 50% on one transmit chain, then it is not necessary to repeat testing on the other chains.
- c) If the measured channel bandwidth on the middle channel is less than 50% of the maximum permitted bandwidth, then it is not necessary to measure the bandwidth on the high and low channels.

ANSI C63.10, Clause 5.6.2.2:

For devices with multiple operating modes, measurements on the middle channel can be used to determine the worst-case mode(s). The worst-case modes are as follows:

- a) Band edge requirements—Measurements on the mode with the widest bandwidth can be used to cover the same channel (center frequency) on modes with narrower bandwidth that have the same or lower output power for each modulation family (e.g., OFDM and direct sequence spread spectrum).
- b) Spurious emissions—Measure the mode with the highest output power and the mode with the highest output power spectral density for each modulation family (e.g., OFDM and direct sequence spread spectrum).
- c) In-band PSD—Measurements on the mode with the narrowest bandwidth can be used to cover all modes within the same modulation family of an equal or lower output power provided the result is less than 50% of the limit.

Report reference ID: REP069139 Page 16 of 94

8.2.4 Test data

Table 8.2-2: Test channels selection

Start of Frequency range, MHz	End of Frequency range, MHz	Frequency range bandwidth, MHz	Low channel, MHz	Mid channel, MHz	High channel, MHz
915	928	13	915.2	921.2	927.8

Report reference ID: REP069139 Page 17 of 94

8.3 Antenna requirement

8.3.1 References, definitions and limits

FCC §15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

FCC §15.247:

- (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following:
- (4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

8.3.2 Test summary

Verdict		Pass				
Tested by		P. Barbieri		Test date		November 11, 2024
8.3.3	Observations, settin	gs and special notes				
None						
8.3.4	Test data					
Must the I	EUT be professionally inst	called?	☐ YES	⊠ NO		
Does the EUT have detachable antenna(s)?			\square NO			
	If detachable, is the ante	enna connector(s) non-standard?		\square NO	□ N/A	

Note: the antenna and the connector are inside the enclosure of the EUT and it's not accessible to the user without removing the screws.

Table 8.3-1: Antenna information

Antenna type	Manufacturer	Model number	Maximum gain	Connector type
			1.69 dBi @ 910 MHz	
Helicoidal internal antenna	Electronic Connector Technology	P/N 81800V685	1.41 dBi @ 920 MHz	PCB
			1.14 dBi @ 930 MHz	
			4.12 dBi @ 910 MHz	
External cable antenna	Electronic Connector Technology	P/N 81800VXXX	3.95 dBi @ 920 MHz	SMA RA
			3.73 dBi @ 930 MHz	

Report reference ID: REP069139 Page 18 of 94

8.4 AC power line conducted emissions limits

8.4.1 References, definitions and limits

FCC §15.207:

(a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μH/50 Ω line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

ANSI C63.10, Clause 6.2:

If the EUT normally receives power from another device that in turn connects to the public utility ac power lines, measurements shall be made on that device with the EUT in operation to demonstrate that the device continues to comply with the appropriate limits while providing the EUT with power. If the EUT is operated only from internal or dedicated batteries, with no provisions for connection to the public utility ac power lines (600 VAC or less) to operate the EUT (such as an adapter), then ac power-line conducted measurements are not required.

For direct current (dc) powered devices where the ac power adapter is not supplied with the device, an "off-the-shelf" unmodified ac power adapter shall be used. If the device is supposed to be installed in a host (e.g., the device is a module or PC card), then it is tested in a typical compliant host.

Table 8.4-1: Conducted emissions limit

	Conducted emissions limit, dBμV		
Frequency of emission, MHz	Quasi-peak	Average**	
0.15-0.5	66 to 56*	56 to 46*	
0.5–5	56	46	
5–30	60	50	

Notes:

8.4.2 Test summary

Verdict	Pass		
Tested by	P. Barbieri	Test date	November 13, 2024

8.4.3 Test equipment used

Equipment	Manufacturer	Model no.	Asset no.
EMI Receiver	Rohde & Schwarz	ESU8	100202
Cable set	Rosenberger+Huber+Suhner	CE01+CE02	1.498+1.632
LISN	Rohde & Schwarz	ENV432	101714
Attenuator	Aeroflex / Weinschel	2	CC8577

Report reference ID: REP069139 Page 19 of 94

^{* -} The level decreases linearly with the logarithm of the frequency.

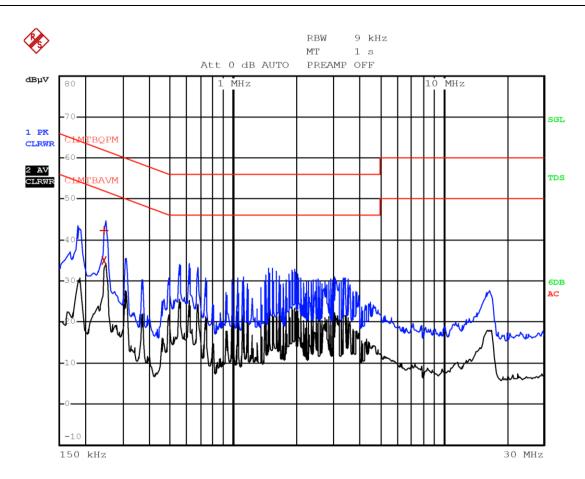
^{** -} A linear average detector is required.

8.4.4 Observations, settings and special notes

Port under test – Coupling device	AC Mains – Artificial Mains Network (AMN)
EUT power input during test	110 and 220 V _{AC} , 60 Hz
EUT setup configuration	Table top
Measurement details	A preview measurement was generated with the receiver in continuous scan mode. Emissions detected within 10 dB
	or above the limit were re-measured with the appropriate detector against the correlating limit and recorded as the
	final measurement.
Additional notes:	The EUT was set up as tabletop configuration per ANSI C63.10-2013 measurement procedure.
	 The spectral scan has been corrected with transducer factors (i.e. cable loss, LISN factors, and attenuators) for determination of compliance. Correction factor (dB) = LISN factor IL (dB) + cable loss (dB) + attenuator (dB)
	 Emissions that were continuously present for a minimum of 1 second and occurred more than once for every
	15 seconds observation period were considered valid emissions. The maximum value of valid emissions has been recorded.
	 No difference found between the two configuration with internal and external antenna

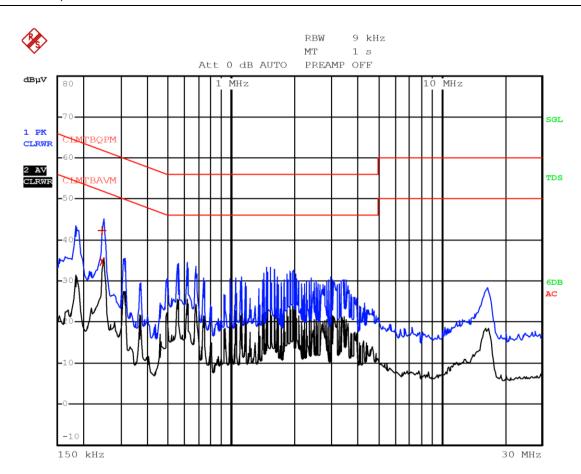
Receiver settings:

Resolution bandwidth	9 kHz
Video bandwidth	30 kHz
Detector mode	Peak and Average (Preview), Quasi-peak and CAverage (Final)
Trace mode	Max Hold
Measurement time	100 ms (Preview), 160 ms (Final)


Report reference ID: REP069139 Page 20 of 94

8.4.5 Test data

Plot 8.4-1: Conducted emissions on phase line


Frequency (MHz)	Level (dBμV)	Limit (dBμV)	Margin (dB)	Detector
0.2460	42.4	61.9	-19.5	QP
0.2460	34.9	51.9	-17.0	Av

Report reference ID: REP069139 Page 21 of 94

Plot 8.4-2: Conducted emissions on neutral line

Frequency (MHz)	Level (dBμV)	Limit (dBμV)	Margin (dB)	Detector
0.2460	42.4	61.9	-19.5	QP
0.2460	34.7	51.9	-17.2	Av

Report reference ID: REP069139 Page 22 of 94

8.5 Frequency Hopping Systems requirements, 900 MHz operation

8.5.1 References, definitions and limits

FCC §15.247:

- (a) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:
- (1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.
- (i) For frequency hopping systems operating in the 902–928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.
- (f) For the purposes of this section, hybrid systems are those that employ a combination of both frequency hopping and digital modulation techniques. The frequency hopping operation of the hybrid system, with the direct sequence or digital modulation operation turned-off, shall have an average time of occupancy on any frequency not to exceed 0.4 seconds within a time period in seconds equal to the number of hopping frequencies employed multiplied by 0.4. The power spectral density conducted from the intentional radiator to the antenna due to the digital modulation operation of the hybrid system, with the frequency hopping operation turned off, shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Table 8.5-1: Summary of the basic requirements

P _{max-pk} ≤ 1 W	P _{max-pk} ≤ 0.125 W
N _{ch} ≥ 75	N _{ch} ≥ 15
$\Delta f \ge MAX \{ 25 \text{ kHz, BW}_{20 \text{ dB}} \}$	$\Delta f \ge MAX [MAX \{25 \text{ kHz}, 0.67 \times BW_{20 \text{ dB}}\} OR MAX \{25 \text{ kHz}, BW_{20 \text{ dB}}\}]$
max. BW _{20 dB} not specified	max. BW _{20 dB} not specified
$t_{ch} \le 0.4 \text{ s for T} = 0.4 \times \text{Nch}$	$t_{ch} \le 0.4 \text{ s for T} = 0.4 \times \text{Nch}$

Note: t_{ch} = average time of occupancy; T = period; N_{ch} = # hopping frequencies; BW = bandwidth; Δf = hopping channel carrier frequency separation

8.5.2 Test summary

Verdict	Pass		
Tested by	P. Barbieri	Test date	November 13, 2024

Report reference ID: REP069139 Page 23 of 94

8.5.3 Test equipment used

Equipment	Manufacturer	Model no.	Asset no.	
Spectrum Analyzer	Rohde & Schwarz	ESW44	101620	
Cable set	Rosenberger	ST.ALO-02	1.650	

8.5.4 Observations, settings and special notes

Carrier frequency separation was tested per ANSI C63.10 subclause 7.8.2. Spectrum analyser settings:

carrier requeries separation	The tested per filter course substitute filter spectrum analyses settings.	
Resolution bandwidth	Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each	
	individual channel.	
Video bandwidth	≥ RBW	
Frequency span	Wide enough to capture the peaks of two adjacent channels	
Detector mode	Peak	
Trace mode	Max Hold	

Number of hopping frequencies was tested per ANSI C63.10 subclause 7.8.3. Spectrum analyser settings:

reduction hopping freque	nois was tested per rivor cos. to subcidase riois. Spectram analyser settings.
Resolution bandwidth	To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
Video bandwidth	≥ RBW
Frequency span	The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
Detector mode	Peak
Trace mode	Max Hold

Time of occupancy (dwell time) was tested per ANSI C63.10 subclause 7.8.4. Spectrum analyser settings:

Resolution bandwidth	shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.
Video bandwidth	≥ RBW
Frequency span	Zero span, centered on a hopping channel.
Detector mode	Peak
Trace mode	Max Hold

20 dB bandwidth was tested per ANSI C63.10 subclause 6.9.2. Spectrum analyser settings:

Resolution bandwidth	≥ 1–5% of the 20 dB bandwidth
Video bandwidth	≥ RBW
Frequency span	approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel
Detector mode	Peak
Trace mode	Max Hold

8.5.5 Test data

Table 8.5-2: 20 dB bandwidth results

Frequency, MHz	20 dB bandwidth, kHz	
915.2	102.4	
921.2	102.4	
927.8	103.4	

Report reference ID: REP069139 Page 24 of 94

Table 8.5-3: 99% occupied bandwidth results

Frequency, MHz	99% occupied bandwidth, kHz
915.2	117.2
921.2	116.9
927.8	116.9

Notes: There is no 99% occupied bandwidth limit in the standard's requirements the measurement results provided for information purposes only.

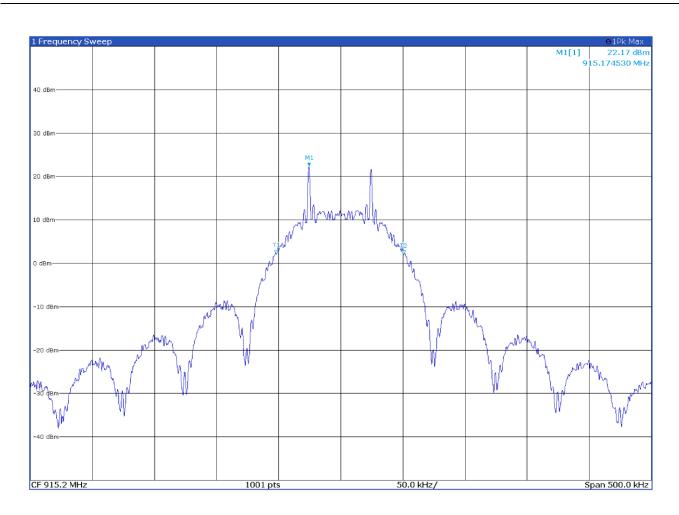
Table 8.5-4: Carrier frequency separation results

Carrier frequency separation, kHz	Minimum limit, kHz	Margin, kHz
200.2	117.2	-83.0

Table 8.5-5: Number of hopping frequencies results

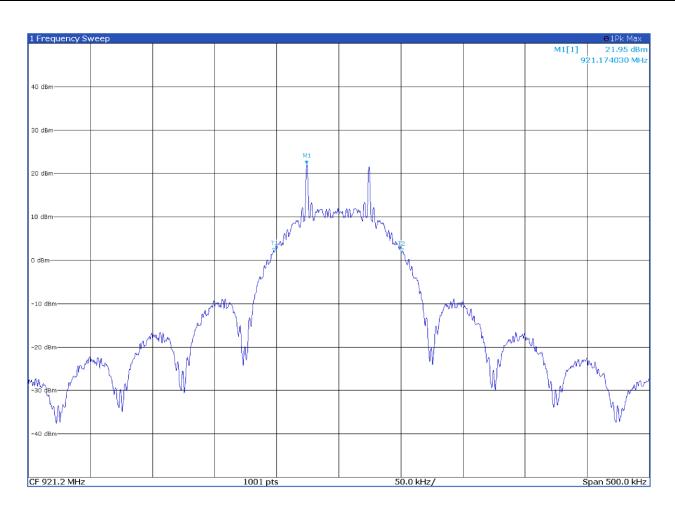
Number of hopping frequencies	Minimum limit	Margin
63	50	-13

Table 8.5-6: Average time of occupancy results


Dwell time of each pulse, ms	Number of pulses within period	Total dwell time within period, ms	Limit, ms	Margin, ms
10.4	3	31.2	400	-368.8

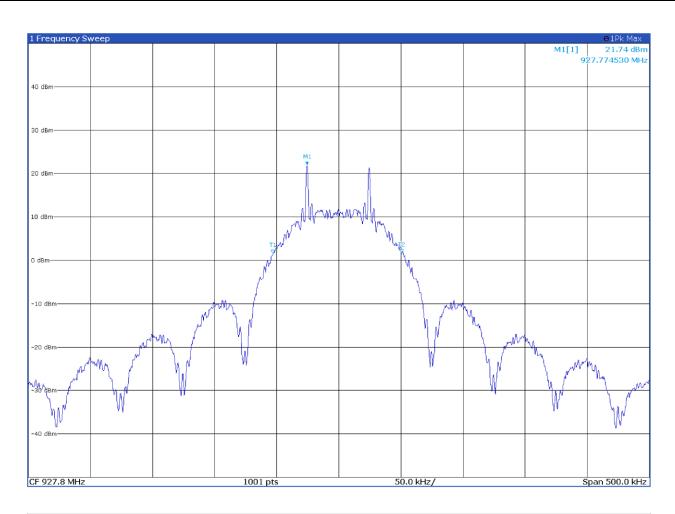
Notes: Measurement Period is 20 s

2 Marker	Table				
Type	Ref Trc	X-Value	Y-Value	Function	Function Result
M1	1	915.17453 MHz	22.17 dBm	ndB	20.0 dB
T1	1	915.14805 MHz	2.08 dBm	ndB down BW	102.40 kHz
T2	1	915.25045 MHz	1.98 dBm	Q Factor	8937.5


Figure 8.5-1: 20 dB bandwidth on low channel

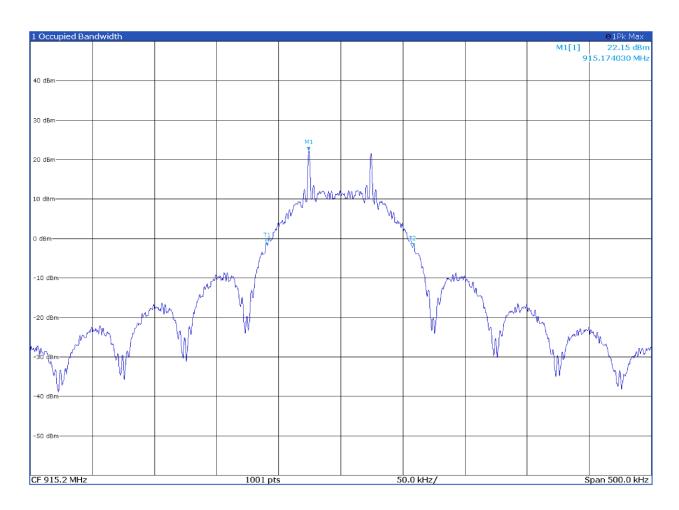
Report reference ID: REP069139 Page 26 of 94

2 Marker	Table				
Type	Ref Trc	X-Value	Y-Value	Function	Function Result
M1	1	921.17403 MHz	21.95 dBm	ndB	20.0 dB
T1	1	921.14805 MHz	1.79 dBm	ndB down BW	102.40 kHz
T2	1	921 25045 MHz	1 77 dBm	O Factor	8996 1


Figure 8.5-2: 20 dB bandwidth on mid channel

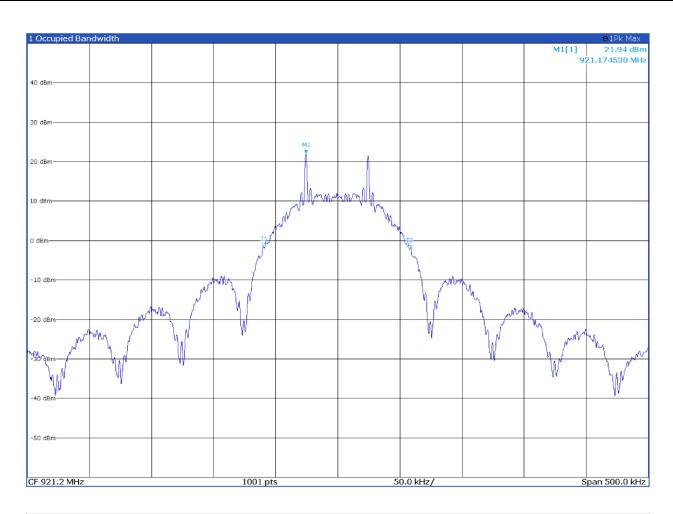
Report reference ID: REP069139 Page 27 of 94

2 Marker	Table				
Type	Ref Trc	X-Value	Y-Value	Function	Function Result
M1	1	927.77453 MHz	21.74 dBm	ndB	20.0 dB
T1	1	927.74705 MHz	1.44 dBm	ndB down BW	103.40 kHz
T2	1	927.85045 MHz	1.55 dBm	Q Factor	8973.0


Figure 8.5-3: 20 dB bandwidth on high channel

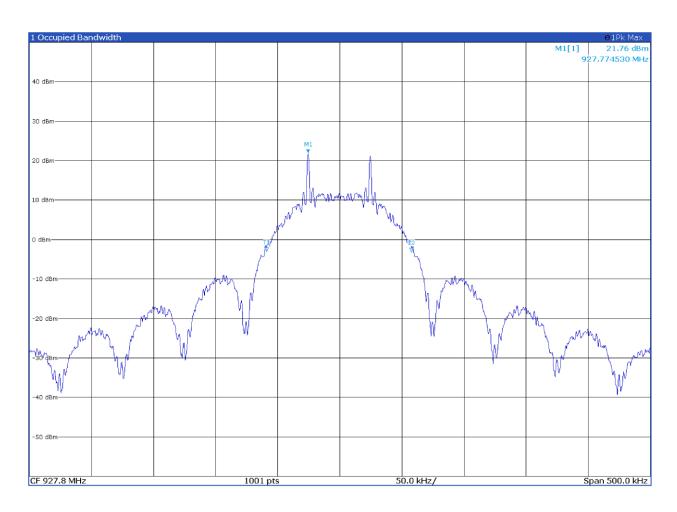
Report reference ID: REP069139 Page 28 of 94

2 Marker	Table				
Type	Ref Trc	X-Value	Y-Value	Function	Function Result
M1	1	915.17403 MHz	22.15 dBm	Occ Bw	117.197650029 kHz
T1	1	915.140563 MHz	-1.47 dBm	Occ Bw Centroid	915.19916194 MHz
T2	1	915.257761 MHz	-2.27 dBm	Occ Bw Freq Offset	-838.060428858 Hz


Figure 8.5-4: 99% bandwidth on low channel

Report reference ID: REP069139 Page 29 of 94

2 Marker	Table				
Type	Ref Trc	X-Value	Y-Value	Function	Function Result
M1	1	921.17453 MHz	21.94 dBm	Occ Bw	116.928491948 kHz
T1	1	921.140681 MHz	-1.89 dBm	Occ Bw Centroid	921.199145476 MHz
T2	1	921.25761 MHz	-2.23 dBm	Occ Bw Freq Offset	-854.523864031 Hz


Figure 8.5-5: 99% bandwidth on mid channel

Report reference ID: REP069139 Page 30 of 94

2 Marker	Table				
Type	Ref Trc	X-Value	Y-Value	Function	Function Result
M1	1	927.77453 MHz	21.76 dBm	Occ Bw	116.92010259 kHz
T1	1	927.740823 MHz	-3.14 dBm	Occ Bw Centroid	927.799283429 MHz
T2	1	927.857743 MHz	-3.25 dBm	Occ Bw Freq Offset	-716.571068168 Hz

Figure 8.5-6: 99% bandwidth on high channel

Report reference ID: REP069139 Page 31 of 94

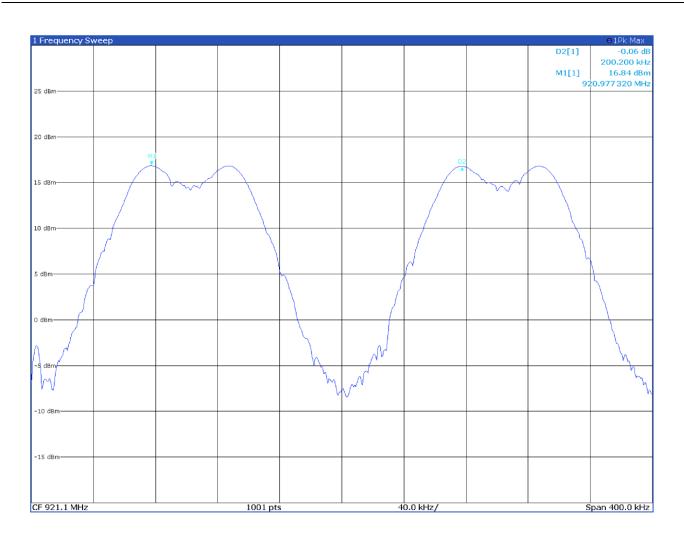


Figure 8.5-7: Carrier frequency separation

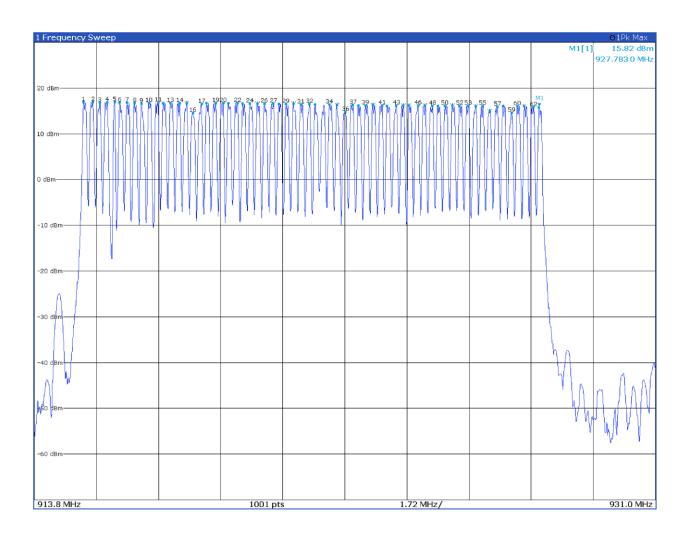


Figure 8.5-8: Number of hopping channels

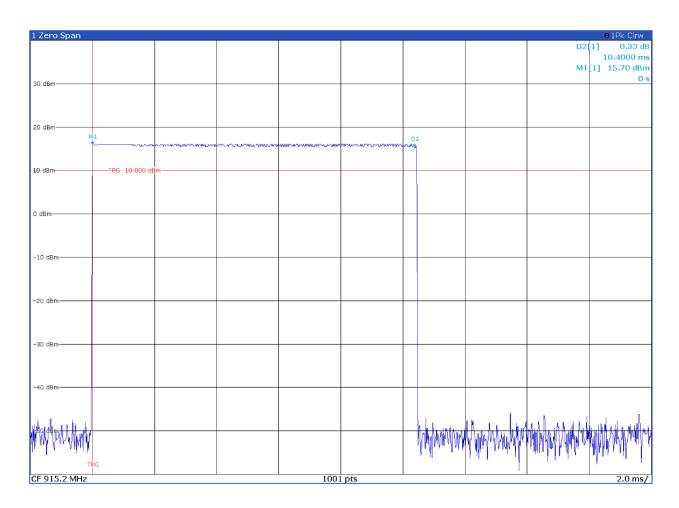


Figure 8.5-9: Dwell time

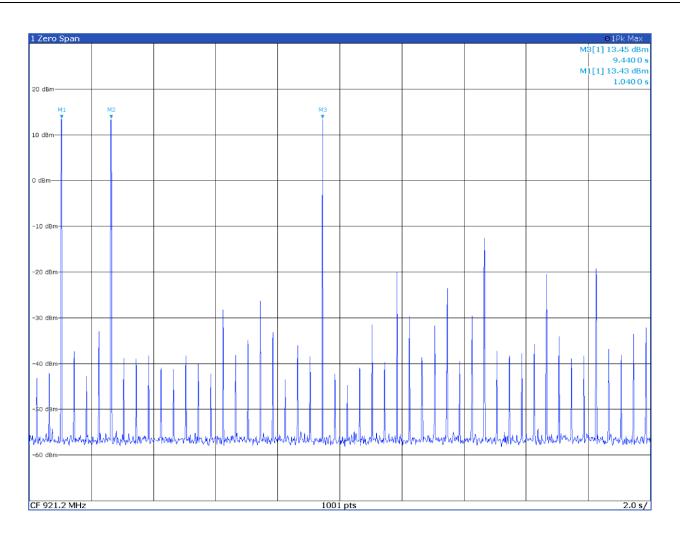


Figure 8.5-10: Number of pulses

8.6 Transmitter output power and e.i.r.p. requirements for FHSS 900 MHz

8.6.1 References, definitions and limits

FCC §15.247:

- (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following:
- (2) For frequency hopping systems operating in the 902–928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.
- (4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

8.6.2 Test summary

Verdict	Pass		
Tested by	P. Barbieri	Test date	November 13, 2024

8.6.3 Test equipment used

Equipment	Manufacturer	Model no.	Asset no.
Spectrum Analyzer	Rohde & Schwarz	ESW44	101620
Cable set	Rosenberger	ST.ALO-02	1.650

8.6.4 Observations, settings and special notes

Conducted output power was tested per ANSI C63.10 subclause 7.8.5. The hopping shall be disabled for this test. Spectrum analyser settings:

Resolution bandwidth	> 20 dB bandwidth of the emission being measured
Video bandwidth	≥ RBW
Frequency span	approximately 5 times the 20 dB bandwidth, centered on a hopping channel
Detector mode	Peak
Trace mode	Max Hold

Report reference ID: REP069139 Page 36 of 94

8.6.5 Test data

Table 8.6-1: Output power and EIRP results for configuration with internal antenna

Frequency, MHz	Output power, dBm	Output power limit, dBm	Margin, dB	Antenna gain, dBi	EIRP. dBm	EIRP limit. dBm	EIRP margin, dB
915.2	26.7	30.00	-3.3	1.69	28.4	36	-7.6
921.2	26.4	30.00	-3.6	1.41	27.8	36	-8.2
927.8	26.3	30.00	-3.7	1.14	27.4	36	-8.6

Notes: EIRP = Output power + Antenna gain

 Table 8.6-2: Output power and EIRP results for configuration with external antenna

Frequency,	Output power,	Output power					_
MHz	dBm	limit, dBm	Margin, dB	Antenna gain, dBi	EIRP, dBm	EIRP limit, dBm	EIRP margin, dB
915.2	26.7	30.00	-3.3	4.12	30.8	36	-5.2
921.2	26.4	30.00	-3.6	3.95	30.3	36	-5.7
927.8	26.3	30.00	-3.7	3.73	30.0	36	-6.0

Notes: EIRP = Output power + Antenna gain

Report reference ID: REP069139 Page 37 of 94

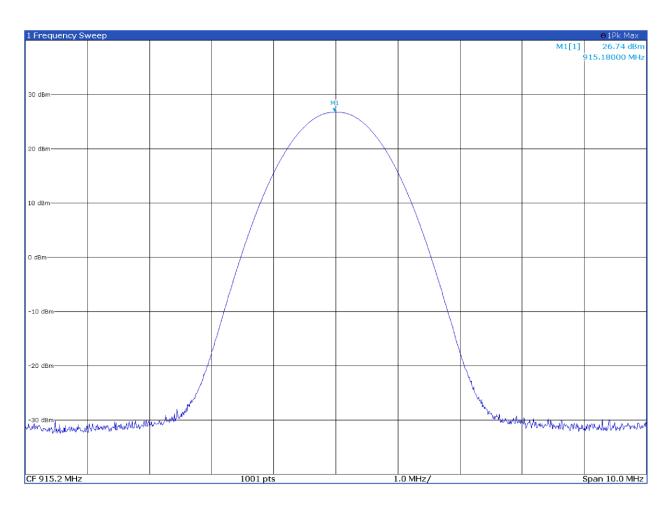


Figure 8.6-1: Output power on low channel

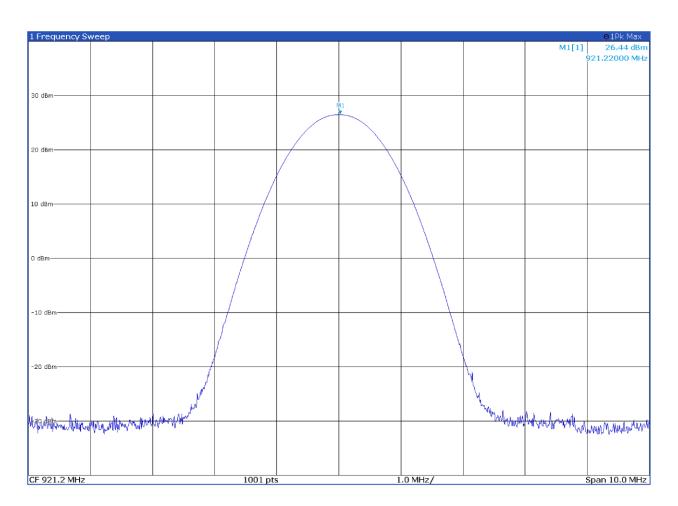


Figure 8.6-2: Output power on mid channel

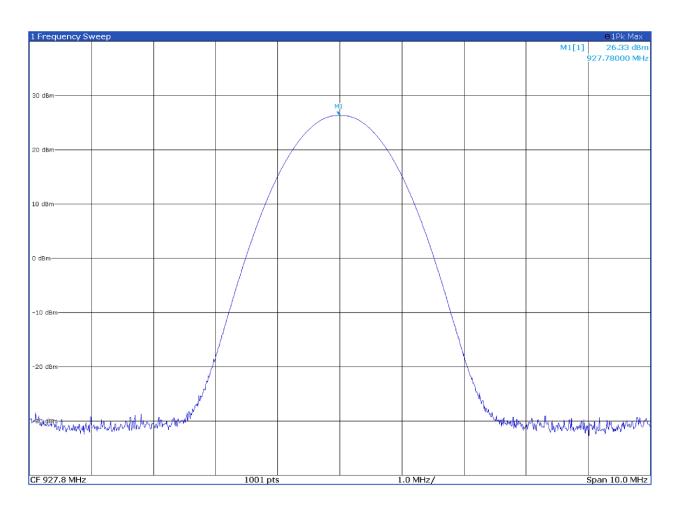


Figure 8.6-3: Output power on high channel

8.7 Spurious (out-of-band) unwanted emissions

8.7.1 References, definitions and limits

FCC §15.247:

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Table 8.7-1: FCC §15.209— Radiated emission limits

	Field strength of emissions								
Frequency, MHz	μV/m	dBμV/m	Measurement distance, m						
0.009-0.490	2400/F	67.6 – 20 × log ₁₀ (F)	300						
0.490-1.705	24000/F	$87.6 - 20 \times log_{10}(F)$	30						
1.705-30.0	30	29.5	30						
30–88	100	40.0	3						
88–216	150	43.5	3						
216–960	200	46.0	3						
above 960	500	54.0	3						

Notes: In the emission table above, the tighter limit applies at the band edges.

For frequencies above 1 GHz the limit on peak RF emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test.

Table 8.7-2: FCC restricted frequency bands

MHz	MHz	MHz	GHz
0.090-0.110	16.42–16.423	399.9–410	4.5–5.15
0.495-0.505	16.69475-16.69525	608–614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960–1240	7.25–7.75
4.125-4.128	25.5–25.67	1300–1427	8.025-8.5
4.17725-4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725-4.20775	73–74.6	1645.5–1646.5	9.3–9.5
6.215-6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775-6.26825	108-121.94	1718.8–1722.2	13.25-13.4
6.31175-6.31225	123–138	2200–2300	14.47–14.5
8.291-8.294	149.9–150.05	2310–2390	15.35–16.2
8.362-8.366	156.52475-156.52525	2483.5–2500	17.7–21.4
8.37625-8.38675	156.7–156.9	2690–2900	22.01–23.12
8.41425-8.41475	162.0125-167.17	3260–3267	23.6–24.0
12.29–12.293	167.72-173.2	3332–3339	31.2–31.8
12.51975-12.52025	240–285	3345.8–3358	36.43–36.5
12.57675-12.57725	322–335.4	3600–4400	Above 38.6
13.36–13.41			

Report reference ID: REP069139 Page 41 of 94

8.7.2 Test summary

Verdict	Pass		
Tested by	P. Barbieri	Test date	November 11, 2024

8.7.3 Test equipment used

Equipment	Manufacturer	Model no.	Asset no.
EMI Receiver	Rohde & Schwarz	ESW44	101620
EMI Receiver	Rohde & Schwarz	ESU8	100202
Antenna 1 - 18 GHz	Schwarzbeck Mess-Elektronik	STLP9148	STLP 9148-152
Broadband Amplifier	Schwarzbeck Mess-Elektronik	BBV9718C	00121
Controller	Maturo	FCU3.0	10041
Tilt antenna mast	Maturo	TAM4.0-E	10042
Turntable	Maturo	TT4.0-5T	2.527
3m Semi anechoic chamber	Comtest	SAC-3	1711-150
Software turntable and mast	Maturo	mcApp	8.1.0.5410
Cable set	Rosenberger and Huber + Suhner	RE01+RE02	1.654+1.655
Cable set	Rosenberger	ST.ALO-02	1.650

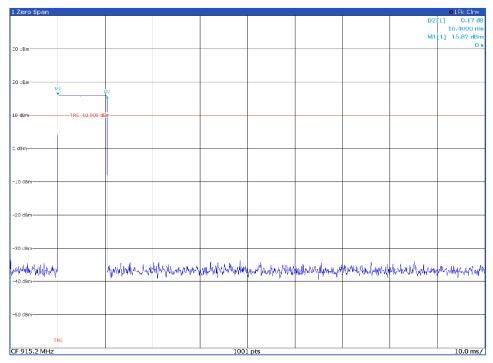
8.7.4 Observations, settings and special notes

- As part of the current assessment, the test range of 9 kHz to 10th harmonic has been fully considered and compared to the actual frequencies utilized within the EUT. Since the EUT contains a transmitter in the 900 MHz range, the EUT has been deemed compliant without formal testing in the 9 kHz to 30 MHz test range, therefore formal test results (tabular data and/or plots) are not provided within this test report.
- EUT was set to transmit with 100 % duty cycle.
- Radiated measurements were performed at a distance of 3 m.
- Since fundamental power was tested using the maximum peak conducted output power procedure to demonstrate compliance, the spurious emissions limit is -20 dBc/100 kHz.
- In the tables below, only the 15.209 limits are show. Outside the FCC restricted frequency bands, the limit is 20 dB below the peak of the carrier measurement as show in the plot above the table. Average values in the graphics are not compensated with the DCCS and should not be taken into account.

Report reference ID: REP069139 Page 42 of 94

Spectrum analyser settings for radiated measurements within restricted bands below 1 GHz:

Resolution bandwidth:	100 kHz
Video bandwidth:	300 kHz
Detector mode:	Peak
Trace mode:	Max Hold


Spectrum analyser settings for peak radiated measurements within restricted bands above 1 GHz:

Resolution bandwidth:	1 MHz
Video bandwidth:	3 MHz
Detector mode:	Peak
Trace mode:	Max Hold

Spectrum analyser settings for conducted spurious emissions measurements:

Resolution bandwidt	h: 100 kHz	
Video bandwidth:	300 kHz	
Detector mode:	Peak	
Trace mode:	Max Hold	

Spectrum analyser settings for average radiated measurements within restricted bands above 1 GHz:

Duty cycle correction factor applied: 20 * LOG (Ton/100ms)= -19.6 dB Av value = Pk value + DCCF

Report reference ID: REP069139 Page 43 of 94

8.7.5 Test data

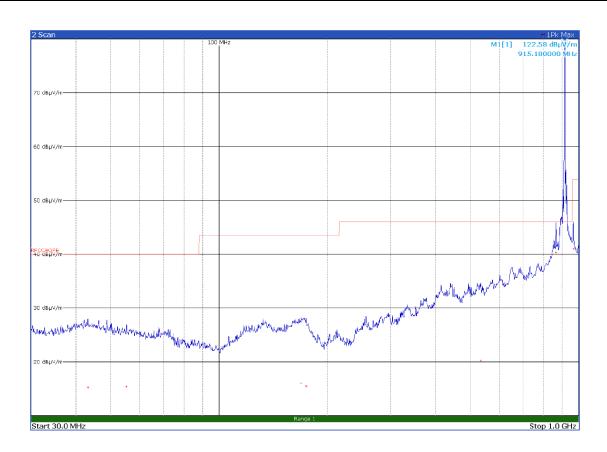


Figure 8.7-1: Radiated spurious emissions on low channel with antenna in horizontal polarization – Frequency range 30 to 1000 MHz

Internal antenna configuration

Frequency (MHz)	Level (dBμV/m)	Limit (dBμV/m)	Margin (dB)	Detector
43.1400	15.3	40.0	-24.7	QP
55.2600	15.4	40.0	-24.6	QP
169.1400	16.0	43.5	-27.5	QP
174.3900	15.5	43.5	-28.0	QP
534.3600	20.3	46.0	-25.7	QP
865.1700	40.4	46.0	-5.6	QP
965.2200	41.1	53.9	-12.8	QP

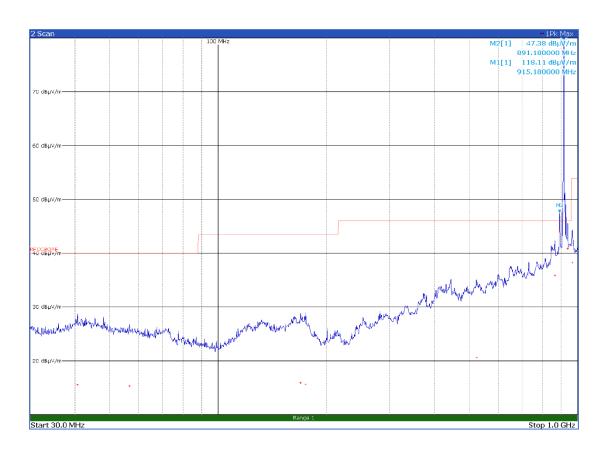


Figure 8.7-2: Radiated spurious emissions on low channel with antenna in vertical polarization – Frequency range 30 to 1000 MHz

Internal antenna configuration

Frequency (MHz)	Level (dBμV/m)	Limit (dBμV/m)	Margin (dB)	Detector
40.6800	15.5	40.0	-24.5	QP
56.7000	15.3	40.0	-24.7	QP
169.5900	16.0	43.5	-27.5	QP
175.2000	15.7	43.5	-27.8	QP
523.1700	20.7	46.0	-25.3	QP
865.1400	35.9	46.0	-10.1	QP
891.1800	44.2	46.0	-1.8	QP
939.2400	40.9	46.0	-5.1	QP
965.2200	38.3	53.9	-15.6	QP

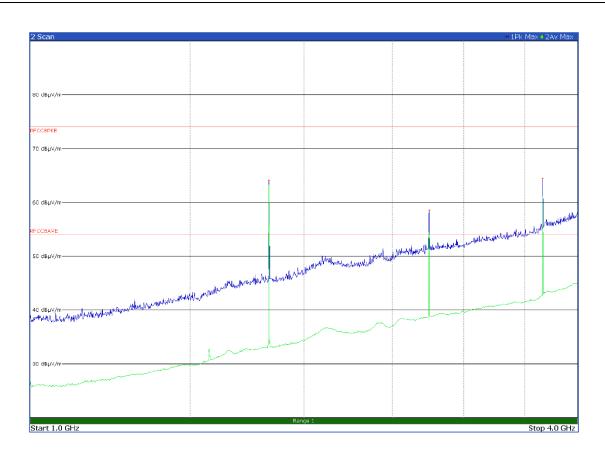


Figure 8.7-3: Radiated spurious emissions on low channel with antenna in horizontal polarization – Frequency range 1 to 4 GHz

Internal antenna configuration

Frequency (MHz)	Level (dBμV/m)	Limit (dBμV/m)	Margin (dB)	DCCF	Level (dBμV/m)	Limit (dBμV/m)	Margin (dB)
1830.5000	64.1	74.0	-9.9	-19.6	44.5	54.0	-9.5
2745.7500	58.6	74.0	-15.4	-19.6	39.0	54.0	-15.0
3660.7500	64.4	74.0	-9.6	-19.6	44.8	54.0	-9.2

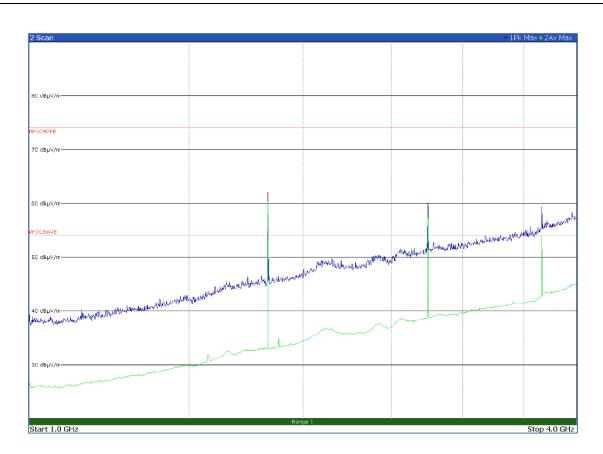


Figure 8.7-4: Radiated spurious emissions on low channel with antenna in vertical polarization – Frequency range 1 to 4 GHz

Internal antenna configuration

Frequency (MHz)	Level (dBμV/m)	Limit (dΒμV/m)	Margin (dB)	DCCF	Level (dBμV/m)	Limit (dBμV/m)	Margin (dB)
1830.5000	62.0	74.0	-12.0	-19.6	42.4	54.0	-11.6
2745.5000	59.9	74.0	-14.1	-19.6	40.3	54.0	-13.7
3660.7500	59.3	74.0	-14.7	-19.6	39.7	54.0	-14.3

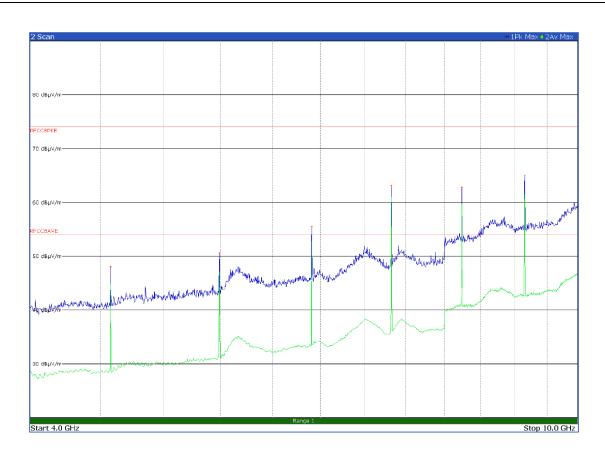


Figure 8.7-5: Radiated spurious emissions on low channel with antenna in horizontal polarization – Frequency range 4 to 10 GHz

Internal antenna configuration

Frequency (MHz)	Level (dBμV/m)	Limit (dBμV/m)	Margin (dB)	DCCF	Level (dBμV/m)	Limit (dBμV/m)	Margin (dB)
4576.0000	48.1	74.0	-25.9	-19.6	28.5	54.0	-25.5
5491.5000	50.6	74.0	-23.4	-19.6	31.0	54.0	-23.0
6406.5000	55.5	74.0	-18.5	-19.6	35.9	54.0	-18.1
7321.7500	63.1	74.0	-10.9	-19.6	43.5	54.0	-10.5
8237.0000	62.8	74.0	-11.2	-19.6	43.2	54.0	-10.8
9152.2500	65.0	74.0	-9.0	-19.6	45.4	54.0	-8.6

Report reference ID: REP069139 Page 48 of 94

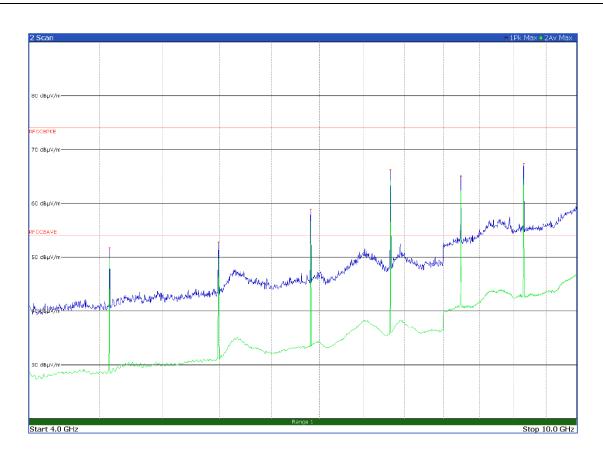


Figure 8.7-6: Radiated spurious emissions on low channel with antenna in vertical polarization – Frequency range 4 to 10 GHz

Internal antenna configuration

Frequency (MHz)	Level (dBμV/m)	Limit (dBμV/m)	Margin (dB)	DCCF	Level (dBμV/m)	Limit (dBμV/m)	Margin (dB)
4576.0000	51.7	74.0	-22.3	-19.6	32.1	54.0	-21.9
5491.5000	52.8	74.0	-21.2	-19.6	33.2	54.0	-20.8
6406.2500	58.9	74.0	-15.1	-19.6	39.3	54.0	-14.7
7321.7500	66.3	74.0	-7.7	-19.6	46.7	54.0	-7.3
8236.5000	65.1	74.0	-8.9	-19.6	45.5	54.0	-8.5
9151.7500	67.4	74.0	-6.6	-19.6	47.8	54.0	-6.2

Report reference ID: REP069139 Page 49 of 94

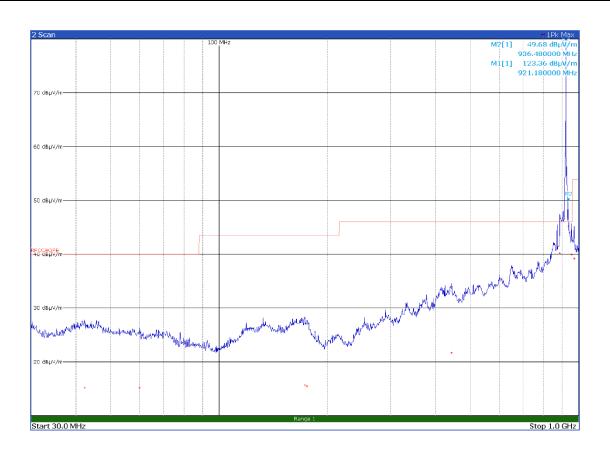


Figure 8.7-7: Radiated spurious emissions on mid channel with antenna in horizontal polarization – Frequency range 30 to 1000 MHz

Internal antenna configuration

Frequency (MHz)	Level (dBµV/m)	Limit (dBμV/m)	Margin (dB)	Detector
42.2700	15.2	40.0	-24.8	QP
60.0900	15.2	40.0	-24.8	QP
173.1600	15.7	43.5	-27.8	QP
175.7100	15.5	43.5	-28.0	QP
443.5500	21.7	46.0	-24.3	QP
871.2300	41.8	46.0	-4.2	QP
886.4700	40.2	46.0	-5.8	QP
936.4800	45.3	46.0	-0.7	QP
956.1300	40.0	46.0	-6.0	QP
971.2200	39.2	53.9	-14.7	QP

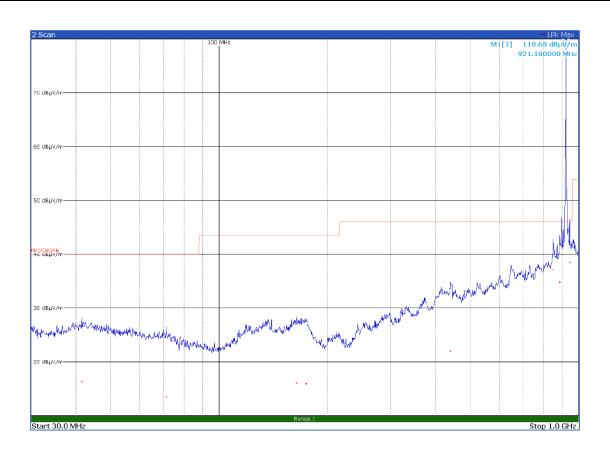


Figure 8.7-8: Radiated spurious emissions on mid channel with antenna in vertical polarization – Frequency range 30 to 1000 MHz

Internal antenna configuration

Frequency (MHz)	Level (dBμV/m)	Limit (dBμV/m)	Margin (dB)	Detector
41.4900	16.4	40.0	-23.6	QP
71.3400	13.5	40.0	-26.5	QP
164.2800	16.1	43.5	-27.4	QP
174.7800	15.9	43.5	-27.6	QP
440.1000	22.0	46.0	-24.0	QP
849.1800	37.2	46.0	-8.8	QP
886.3200	34.9	46.0	-11.1	QP
897.1800	41.6	46.0	-4.4	QP
945.2100	38.6	46.0	-7.4	QP

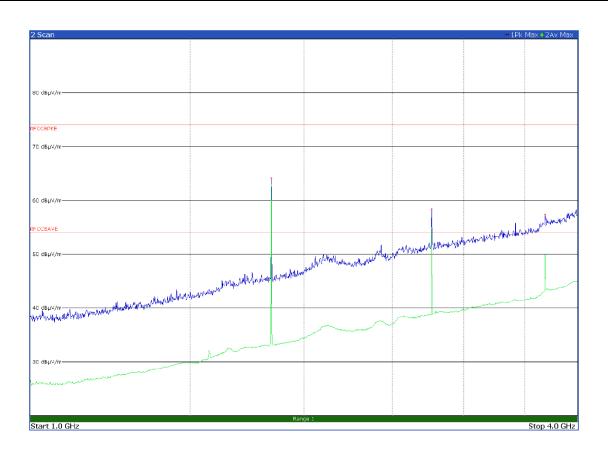


Figure 8.7-9: Radiated spurious emissions on mid channel with antenna in horizontal polarization – Frequency range 1 to 4 GHz

Internal antenna configuration

Frequency (MHz)	Level (dBμV/m)	Limit (dBμV/m)	Margin (dB)	DCCF	Level (dBμV/m)	Limit (dBμV/m)	Margin (dB)
1842.5000	64.2	74.0	-9.8	-19.6	44.6	54.0	-9.4
2763.5000	58.4	74.0	-15.6	-19.6	38.8	54.0	-15.2
3685.0000	57.3	74.0	-16.7	-19.6	37.7	54.0	-16.3

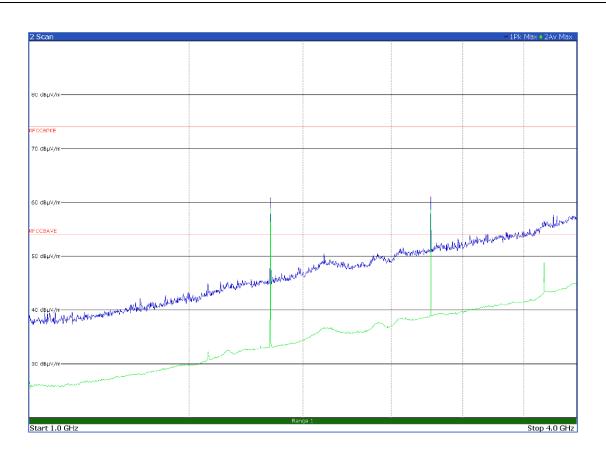


Figure 8.7-10: Radiated spurious emissions on mid channel with antenna in vertical polarization – Frequency range 1 to 4 GHz

Internal antenna configuration

Frequency (MHz)	Level (dBμV/m)	Limit (dΒμV/m)	Margin (dB)	DCCF	Level (dBμV/m)	Limit (dΒμV/m)	Margin (dB)
1842.2500	60.8	74.0	-13.2	-19.6	41.2	54.0	-12.8
2763.5000	60.9	74.0	-13.1	-19.6	41.3	54.0	-12.7

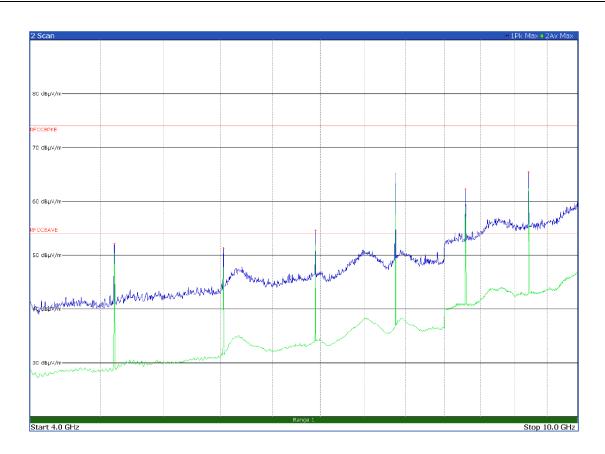


Figure 8.7-11: Radiated spurious emissions on mid channel with antenna in horizontal polarization – Frequency range 4 to 10 GHz

Internal antenna configuration

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	DCCF	Level (dBµV/m)	Limit (dBμV/m)	Margin (dB)
4606.2500	52.1	74.0	-21.9	-19.6	32.5	54.0	-21.5
5527.2500	51.3	74.0	-22.7	-19.6	31.7	54.0	-22.3
6448.5000	54.7	74.0	-19.3	-19.6	35.1	54.0	-18.9
7369.7500	65.2	74.0	-8.8	-19.6	45.6	54.0	-8.4
8290.5000	62.4	74.0	-11.6	-19.6	42.8	54.0	-11.2
9212.2500	65.5	74.0	-8.5	-19.6	45.9	54.0	-8.1



Figure 8.7-12: Radiated spurious emissions on mid channel with antenna in vertical polarization – Frequency range 4 to 10 GHz

Internal antenna configuration

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	DCCF	Level (dBμV/m)	Limit (dΒμV/m)	Margin (dB)
4606.2500	50.1	74.0	-23.9	-19.6	30.5	54.0	-23.5
5527.2500	53.0	74.0	-21.0	-19.6	33.4	54.0	-20.6
6448.2500	60.0	74.0	-14.0	-19.6	40.4	54.0	-13.6
7369.7500	70.6	74.0	-3.4	-19.6	51.0	54.0	-3.0
8291.0000	64.3	74.0	-9.7	-19.6	44.7	54.0	-9.3
9212.2500	65.7	74.0	-8.3	-19.6	46.1	54.0	-7.9

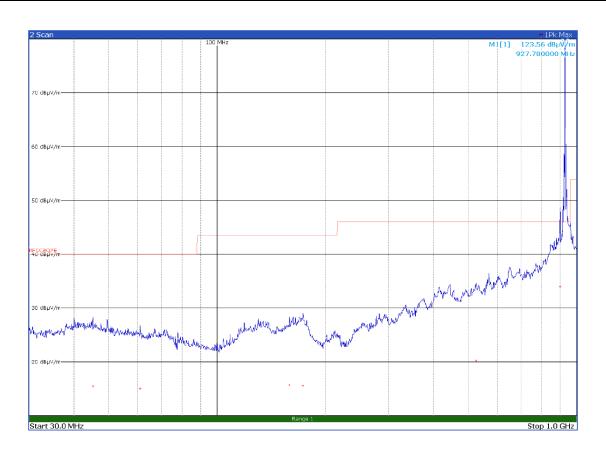


Figure 8.7-13: Radiated spurious emissions on high channel with antenna in horizontal polarization – Frequency range 30 to 1000 MHz

Internal antenna configuration

Frequency (MHz)	Level (dBμV/m)	Limit (dBμV/m)	Margin (dB)	Detector
45.1500	15.5	40.0	-24.5	QP
61.0500	15.0	40.0	-25.0	QP
158.8200	15.7	43.5	-27.8	QP
173.2500	15.6	43.5	-27.9	QP
524.5200	20.2	46.0	-25.8	QP
900.6600	34.0	46.0	-12.0	QP

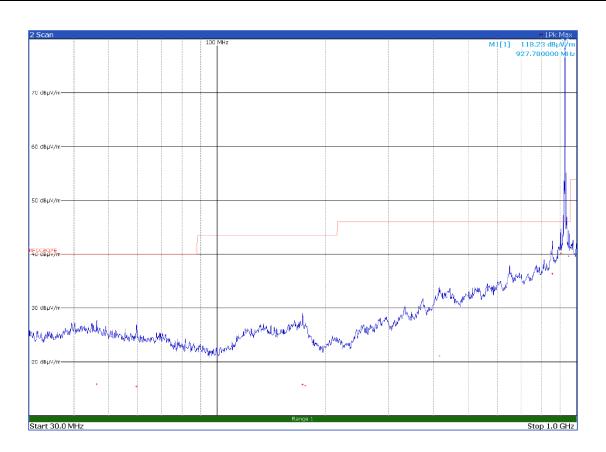


Figure 8.7-14: Radiated spurious emissions on high channel with antenna in vertical polarization – Frequency range 30 to 1000 MHz

Internal antenna configuration

Frequency (MHz)	Level (dBμV/m)	Limit (dΒμV/m)	Margin (dB)	Detector
46.2600	15.9	40.0	-24.1	QP
59.6400	15.4	40.0	-24.6	QP
172.8600	15.8	43.5	-27.7	QP
176.0100	15.6	43.5	-27.9	QP
414.6900	21.1	46.0	-24.9	QP
855.8400	36.4	46.0	-9.6	QP
903.8100	40.2	46.0	-5.8	QP
951.7800	39.7	46.0	-6.3	QP

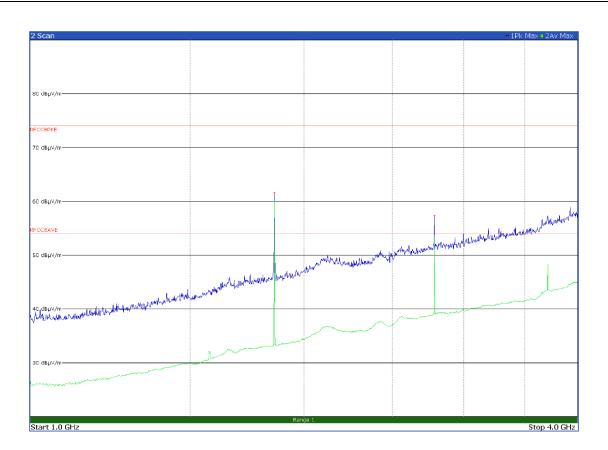


Figure 8.7-15: Radiated spurious emissions on high channel with antenna in horizontal polarization – Frequency range 1 to 4 GHz

Internal antenna configuration

Frequency (MHz)	Level (dBμV/m)	Limit (dΒμV/m)	Margin (dB)	DCCF	Level (dBμV/m)	Limit (dΒμV/m)	Margin (dB)
1855.5000	61.6	74.0	-12.4	-19.6	42.0	54.0	-12.0
2783.5000	57.3	74.0	-16.7	-19.6	37.7	54.0	-16.3

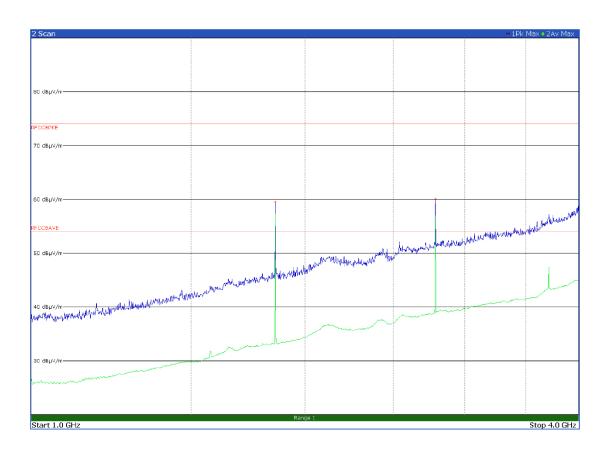


Figure 8.7-16: Radiated spurious emissions on high channel with antenna in vertical polarization – Frequency range 1 to 4 GHz

Internal antenna configuration

Frequency (MHz)	Level (dBμV/m)	Limit (dBμV/m)	Margin (dB)	DCCF	Level (dBμV/m)	Limit (dBμV/m)	Margin (dB)
1855.5000	59.6	74.0	-14.4	-19.6	40.0	54.0	-14.0
2783.2500	60.1	74.0	-13.9	-19.6	40.5	54.0	-13.5

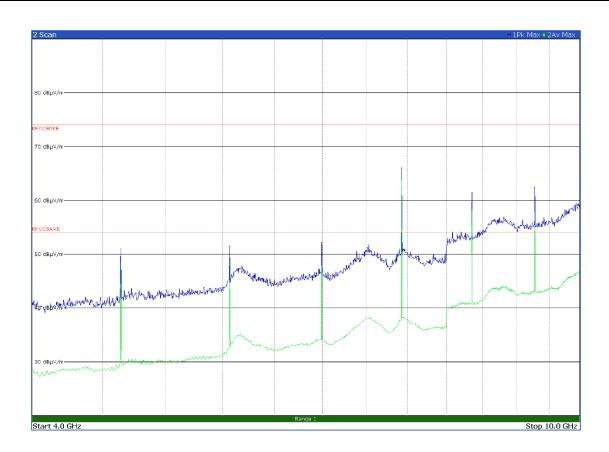


Figure 8.7-17: Radiated spurious emissions on high channel with antenna in horizontal polarization – Frequency range 4 to 10 GHz

Internal antenna configuration

Frequency (MHz)	Level (dBμV/m)	Limit (dBμV/m)	Margin (dB)	DCCF	Level (dBμV/m)	Limit (dBμV/m)	Margin (dB)
4638.7500	51.0	74.0	-23.0	-19.6	31.4	54.0	-22.6
5567.0000	51.5	74.0	-22.5	-19.6	31.9	54.0	-22.1
6494.7500	52.1	74.0	-21.9	-19.6	32.5	54.0	-21.5
7422.2500	66.0	74.0	-8.0	-19.6	46.4	54.0	-7.6
8350.0000	61.4	74.0	-12.6	-19.6	41.8	54.0	-12.2
9278.2500	62.5	74.0	-11.5	-19.6	42.9	54.0	-11.1

Report reference ID: REP069139 Page 60 of 94

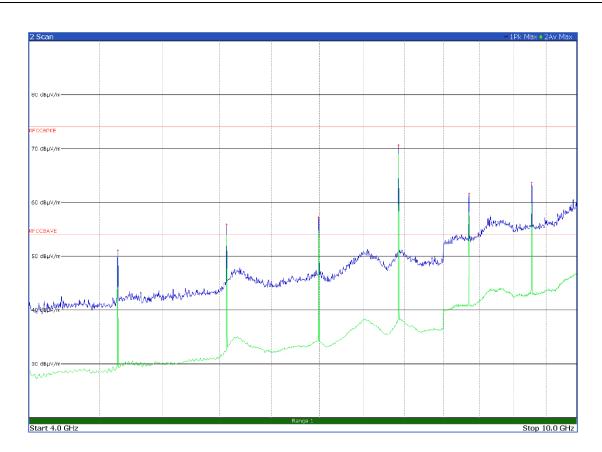
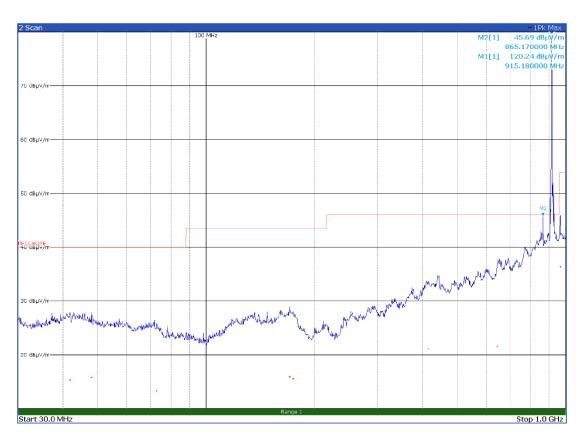


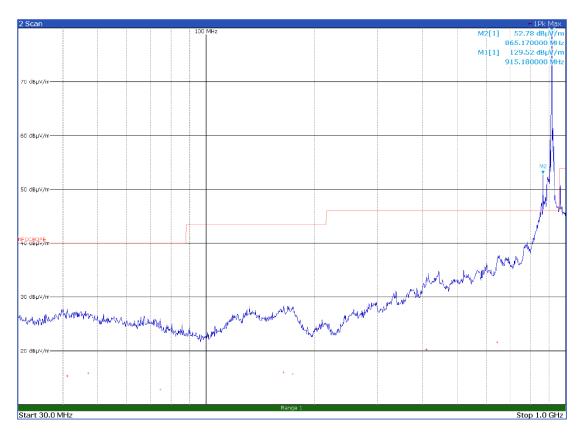
Figure 8.7-18: Radiated spurious emissions on high channel with antenna in vertical polarization – Frequency range 4 to 10 GHz


Internal antenna configuration

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	DCCF	Level (dBμV/m)	Limit (dBμV/m)	Margin (dB)
4638.7500	51.2	74.0	-22.8	-19.6	31.6	54.0	-22.4
5567.0000	56.0	74.0	-18.0	-19.6	36.4	54.0	-17.6
6494.7500	57.2	74.0	-16.8	-19.6	37.6	54.0	-16.4
7422.2500	70.7	74.0	-3.3	-19.6	51.1	54.0	-2.9
8350.0000	61.6	74.0	-12.4	-19.6	42.0	54.0	-12.0
9278.2500	63.7	74.0	-10.3	-19.6	44.1	54.0	-9.9

Limit for 865.17 MHz peak is -20 dBc = 120.24 dB μ V/m – 20 dB = 100.24 dB μ V/m

Figure 8.7-19: Radiated spurious emissions on low channel with antenna in horizontal polarization – Frequency range 30 to 1000 MHz


External antenna configuration

Frequency (MHz)	Level (dBμV/m)	Limit (dBμV/m)	Margin (dB)	Detector
41.7900	15.4	40.0	-24.6	QP
48.0000	15.8	40.0	-24.2	QP
72.9300	13.3	40.0	-26.7	QP
170.9700	15.9	43.5	-27.6	QP
174.3900	15.6	43.5	-27.9	QP
414.7500	21.1	46.0	-24.9	QP
645.0900	21.6	46.0	-24.4	QP
965.2200	36.4	53.9	-17.5	QP

Limit for 865.17 MHz peak is -20 dBc = 129.52 dB μ V/m – 20 dB = 109.52 dB μ V/m

Figure 8.7-20: Radiated spurious emissions on low channel with antenna in vertical polarization – Frequency range 30 to 1000 MHz

External antenna configuration

Frequency (MHz)	Level (dBµV/m)	Limit (dBμV/m)	Margin (dB)	Detector
35.9700	23.1	40.0	-16.9	QP
49.0800	15.7	40.0	-24.3	QP
87.2700	23.0	40.0	-17.0	QP
102.5700	25.1	43.5	-18.4	QP
136.5300	33.2	43.5	-10.3	QP
181.6800	26.7	43.5	-16.8	QP
196.5300	24.3	43.5	-19.2	QP
249.9900	23.5	46.0	-22.5	QP
450.0000	29.4	46.0	-16.6	QP
522.9600	19.6	46.0	-26.4	QP
763.5300	21.7	46.0	-24.3	QP
915.1800	111.1			QP

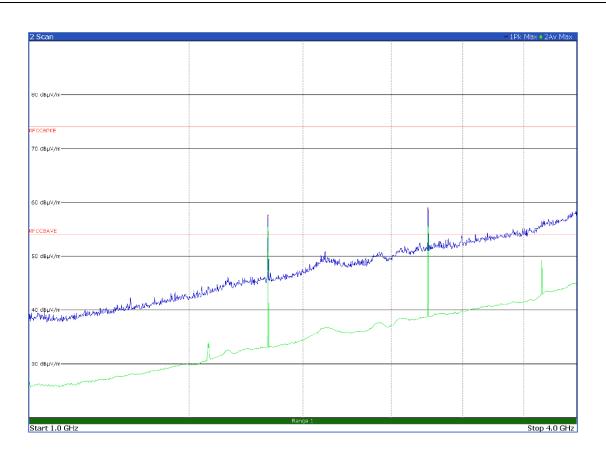


Figure 8.7-21: Radiated spurious emissions on low channel with antenna in horizontal polarization – Frequency range 1 to 4 GHz

External antenna configuration

Frequency (MHz)	Level (dBμV/m)	Limit (dΒμV/m)	Margin (dB)	DCCF	Level (dBμV/m)	Limit (dΒμV/m)	Margin (dB)
1830.5000	57.6	74.0	-16.4	-19.6	38.0	54.0	-16.0
2745.5000	59.0	74.0	-15.0	-19.6	39.4	54.0	-14.6

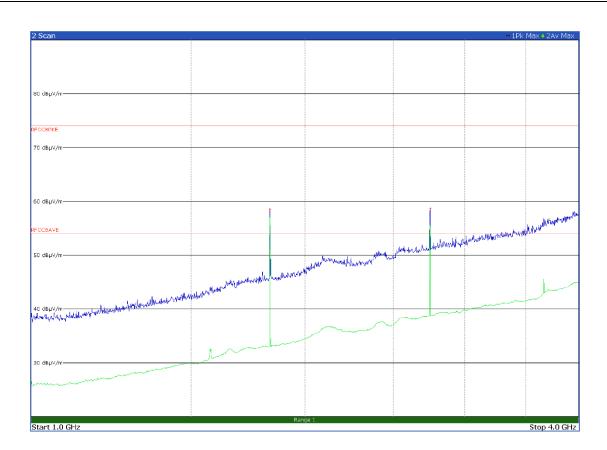


Figure 8.7-22: Radiated spurious emissions on low channel with antenna in vertical polarization – Frequency range 1 to 4 GHz

External antenna configuration

Frequency (MHz)	Level (dBμV/m)	Limit (dBμV/m)	Margin (dB)	DCCF	Level (dBμV/m)	Limit (dBμV/m)	Margin (dB)
1830.5000	57.2	74.0	-16.8	-19.6	37.6	54.0	-16.4
2745.5000	57.8	74.0	-16.2	-19.6	38.2	54.0	-15.8

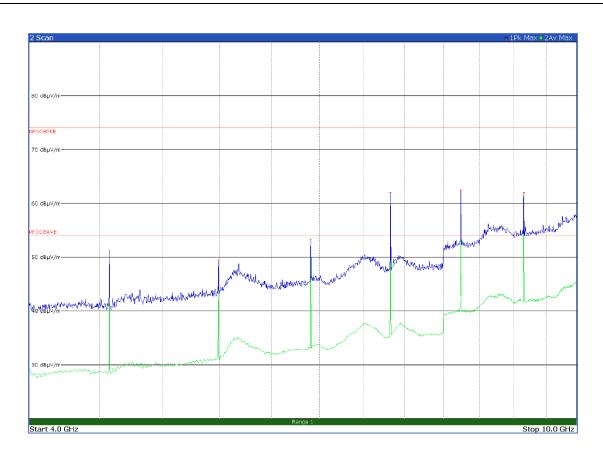


Figure 8.7-23: Radiated spurious emissions on low channel with antenna in horizontal polarization – Frequency range 4 to 10 GHz

External antenna configuration

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	DCCF	Level (dBμV/m)	Limit (dΒμV/m)	Margin (dB)
4575.7500	51.2	74.0	-22.8	-19.6	31.6	54.0	-22.4
5491.2500	49.5	74.0	-24.5	-19.6	29.9	54.0	-24.1
6406.5000	53.3	74.0	-20.7	-19.6	33.7	54.0	-20.3
7321.7500	62.1	74.0	-11.9	-19.6	42.5	54.0	-11.5
8237.0000	62.5	74.0	-11.5	-19.6	42.9	54.0	-11.1
9152.2500	62.0	74.0	-12.0	-19.6	42.4	54.0	-11.6

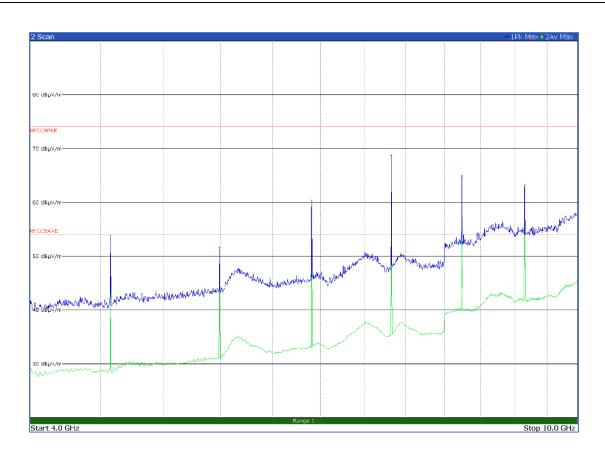


Figure 8.7-24: Radiated spurious emissions on low channel with antenna in vertical polarization – Frequency range 4 to 10 GHz

External antenna configuration

Frequency (MHz)	Level (dBμV/m)	Limit (dBμV/m)	Margin (dB)	DCCF	Level (dBμV/m)	Limit (dBμV/m)	Margin (dB)
4575.7500	53.9	74.0	-20.1	-19.6	34.3	54.0	-19.7
5491.0000	51.6	74.0	-22.4	-19.6	32.0	54.0	-22.0
6406.2500	60.4	74.0	-13.6	-19.6	40.8	54.0	-13.2
7321.7500	68.8	74.0	-5.2	-19.6	49.2	54.0	-4.8
8236.5000	64.9	74.0	-9.1	-19.6	45.3	54.0	-8.7
9151.7500	63.3	74.0	-10.7	-19.6	43.7	54.0	-10.3

Report reference ID: REP069139 Page 67 of 94

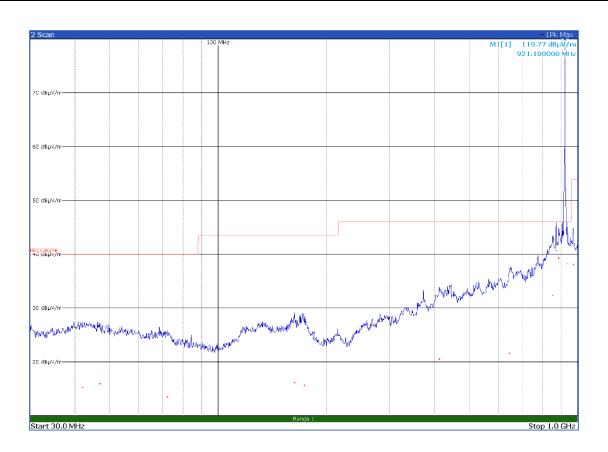


Figure 8.7-25: Radiated spurious emissions on mid channel with antenna in horizontal polarization – Frequency range 30 to 1000 MHz

External antenna configuration

Frequency (MHz)	Level (dBμV/m)	Limit (dBμV/m)	Margin (dB)	Detector
41.9700	15.3	40.0	-24.7	QP
46.9200	15.9	40.0	-24.1	QP
72.2700	13.5	40.0	-26.5	QP
163.0800	16.2	43.5	-27.3	QP
173.8800	15.6	43.5	-27.9	QP
411.5700	20.6	46.0	-25.4	QP
645.0900	21.7	46.0	-24.3	QP
853.6800	32.4	46.0	-13.6	QP
871.2300	40.7	46.0	-5.3	QP
886.4700	39.3	46.0	-6.7	QP
936.3000	38.3	46.0	-7.7	QP
971.2200	38.1	53.9	-15.8	QP

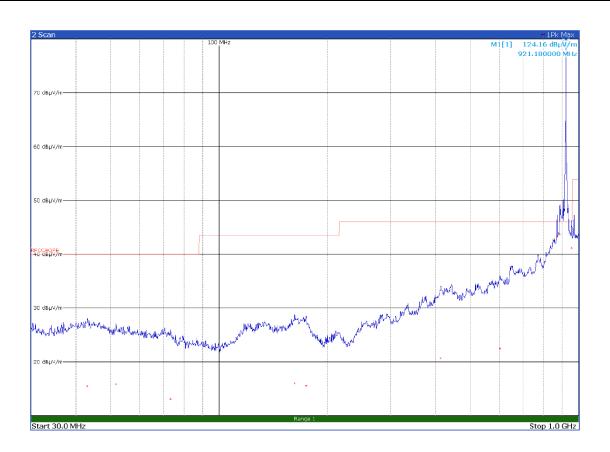


Figure 8.7-26: Radiated spurious emissions on mid channel with antenna in vertical polarization – Frequency range 30 to 1000 MHz

External antenna configuration

Frequency (MHz)	Level (dBµV/m)	Limit (dBμV/m)	Margin (dB)	Detector
42.9600	15.5	40.0	-24.5	QP
51.6600	15.9	40.0	-24.1	QP
73.3200	13.1	40.0	-26.9	QP
162.3300	16.0	43.5	-27.5	QP
174.8100	15.5	43.5	-28.0	QP
413.2500	20.7	46.0	-25.3	QP
604.5300	22.5	46.0	-23.5	QP
871.1700	43.3	46.0	-2.7	QP
886.4700	43.7	46.0	-2.3	QP
956.1300	41.2	46.0	-4.8	QP

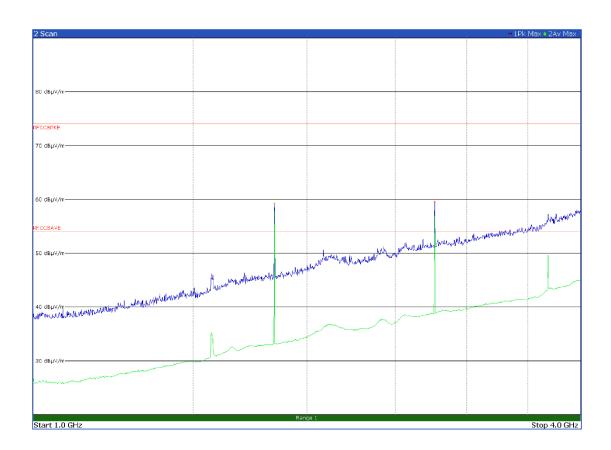


Figure 8.7-27: Radiated spurious emissions on mid channel with antenna in horizontal polarization – Frequency range 1 to 4 GHz

External antenna configuration

Frequency (MHz)	Level (dBμV/m)	Limit (dBμV/m)	Margin (dB)	DCCF	Level (dBμV/m)	Limit (dBμV/m)	Margin (dB)
1842.5000	59.3	74.0	-14.7	-19.6	39.7	54.0	-14.3
2763.5000	59.6	74.0	-14.4	-19.6	40.0	54.0	-14.0

Report reference ID: REP069139 Page 70 of 94

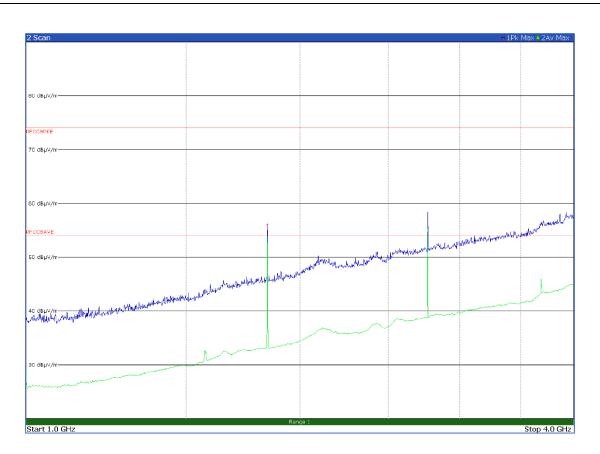


Figure 8.7-28: Radiated spurious emissions on mid channel with antenna in vertical polarization – Frequency range 1 to 4 GHz

External antenna configuration

Frequency (MHz)	Level (dBμV/m)	Limit (dΒμV/m)	Margin (dB)	DCCF	Level (dBμV/m)	Limit (dΒμV/m)	Margin (dB)
1842.5000	56.1	74.0	-17.9	-19.6	36.5	54.0	-17.5
2763.7500	58.3	74.0	-15.7	-19.6	38.7	54.0	-15.3

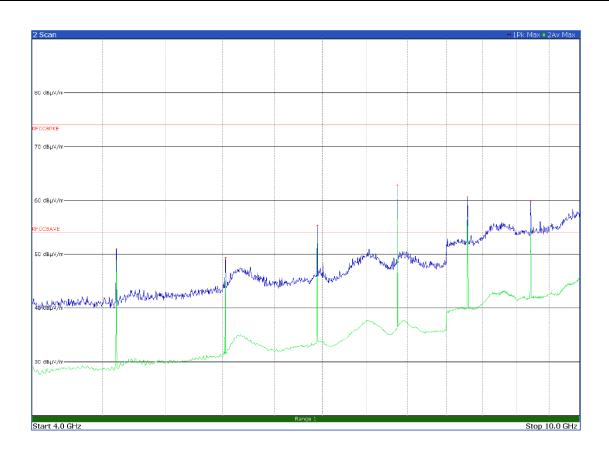


Figure 8.7-29: Radiated spurious emissions on mid channel with antenna in horizontal polarization – Frequency range 4 to 10 GHz

External antenna configuration

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	DCCF	Level (dBμV/m)	Limit (dΒμV/m)	Margin (dB)
4606.2500	51.1	74.0	-22.9	-19.6	31.5	54.0	-22.5
5527.0000	49.4	74.0	-24.6	-19.6	29.8	54.0	-24.2
6448.5000	55.4	74.0	-18.6	-19.6	35.8	54.0	-18.2
7369.7500	62.9	74.0	-11.1	-19.6	43.3	54.0	-10.7
8290.5000	60.6	74.0	-13.4	-19.6	41.0	54.0	-13.0
9211.7500	59.8	74.0	-14.2	-19.6	40.2	54.0	-13.8

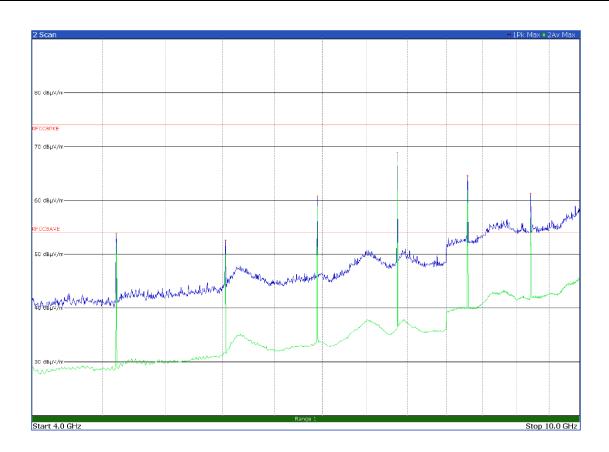


Figure 8.7-30: Radiated spurious emissions on mid channel with antenna in vertical polarization – Frequency range 4 to 10 GHz

External antenna configuration

Frequency (MHz)	Level (dBμV/m)	Limit (dBμV/m)	Margin (dB)	DCCF	Level (dBμV/m)	Limit (dBμV/m)	Margin (dB)
4606.0000	53.9	74.0	-20.1	-19.6	34.3	54.0	-19.7
5527.2500	52.6	74.0	-21.4	-19.6	33.0	54.0	-21.0
6448.5000	60.8	74.0	-13.2	-19.6	41.2	54.0	-12.8
7369.7500	68.9	74.0	-5.1	-19.6	49.3	54.0	-4.7
8291.0000	64.6	74.0	-9.4	-19.6	45.0	54.0	-9.0
9212.2500	61.2	74.0	-12.8	-19.6	41.6	54.0	-12.4

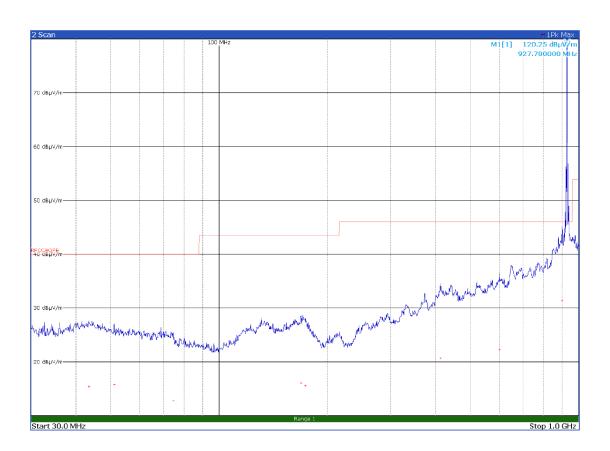


Figure 8.7-31: Radiated spurious emissions on high channel with antenna in horizontal polarization – Frequency range 30 to 1000 MHz

External antenna configuration

Frequency (MHz)	Level (dBμV/m)	Limit (dΒμV/m)	Margin (dB)	Detector
43.4100	15.4	40.0	-24.6	QP
51.0900	15.8	40.0	-24.2	QP
74.5500	12.8	40.0	-27.2	QP
168.9300	16.1	43.5	-27.4	QP
173.7900	15.6	43.5	-27.9	QP
412.7400	20.7	46.0	-25.3	QP
602.1900	22.2	46.0	-23.8	QP
900.5700	31.4	46.0	-14.6	QP

Limit exceeded by the carrier

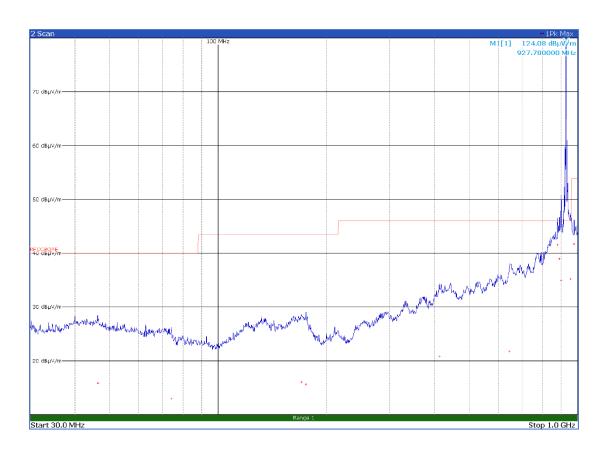


Figure 8.7-32: Radiated spurious emissions on high channel with antenna in vertical polarization – Frequency range 30 to 1000 MHz

External antenna configuration

Frequency (MHz)	Level (dBμV/m)	Limit (dBμV/m)	Margin (dB)	Detector
46.2000	15.9	40.0	-24.1	46.2000
46.5900	15.9	40.0	-24.1	46.5900
74.0700	13.0	40.0	-27.0	74.0700
170.4900	16.1	43.5	-27.4	170.4900
175.4700	15.6	43.5	-27.9	175.4700
412.6200	20.9	46.0	-25.1	412.6200
645.0900	21.8	46.0	-24.2	645.0900
877.8300	41.6	46.0	-4.4	877.8300
889.1400	39.0	46.0	-7.0	889.1400
900.5700	34.9	46.0	-11.1	900.5700
955.1400	35.2	46.0	-10.8	955.1400
977.7900	41.7	53.9	-12.2	977.7900

Limit exceeded by the carrier

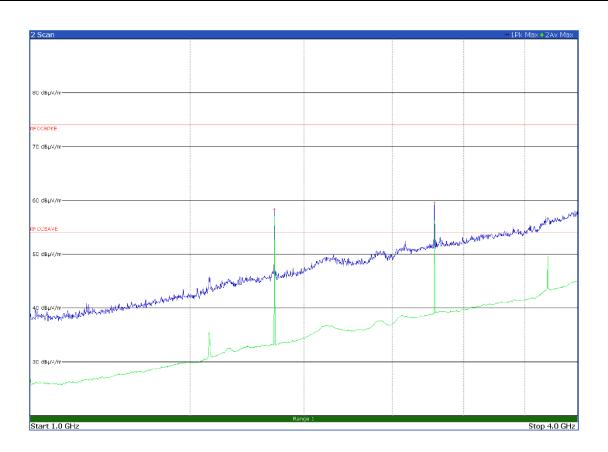


Figure 8.7-33: Radiated spurious emissions on high channel with antenna in horizontal polarization – Frequency range 1 to 4 GHz

External antenna configuration

Frequency (MHz)	Level (dBμV/m)	Limit (dΒμV/m)	Margin (dB)	DCCF	Level (dBμV/m)	Limit (dΒμV/m)	Margin (dB)
1855.5000	58.4	74.0	-15.6	-19.6	38.8	54.0	-15.2
2783.2500	59.6	74.0	-14.4	-19.6	40.0	54.0	-14.0

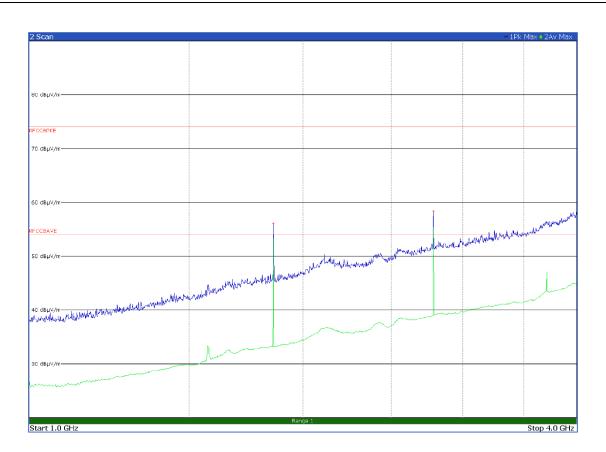


Figure 8.7-34: Radiated spurious emissions on high channel with antenna in vertical polarization — Frequency range 1 to 4 GHz

External antenna configuration

Frequency (MHz)	Level (dBμV/m)	Limit (dΒμV/m)	Margin (dB)	DCCF	Level (dBμV/m)	Limit (dΒμV/m)	Margin (dB)
1855.5000	56.1	74.0	-17.9	-19.6	36.5	54.0	-17.5
2783.5000	58.4	74.0	-15.6	-19.6	38.8	54.0	-15.2

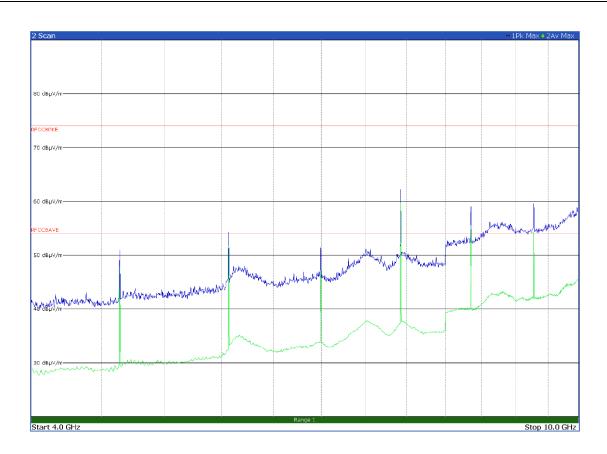


Figure 8.7-35: Radiated spurious emissions on high channel with antenna in horizontal polarization – Frequency range 4 to 10 GHz

External antenna configuration

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	DCCF	Level (dBμV/m)	Limit (dΒμV/m)	Margin (dB)
4638.7500	51.8	74.0	-22.2	-19.6	32.2	54.0	-21.8
5566.7500	54.9	74.0	-19.1	-19.6	35.3	54.0	-18.7
6494.7500	57.5	74.0	-16.5	-19.6	37.9	54.0	-16.1
7422.2500	68.7	74.0	-5.3	-19.6	49.1	54.0	-4.9
8350.0000	61.0	74.0	-13.0	-19.6	41.4	54.0	-12.6
9278.2500	61.1	74.0	-12.9	-19.6	41.5	54.0	-12.5

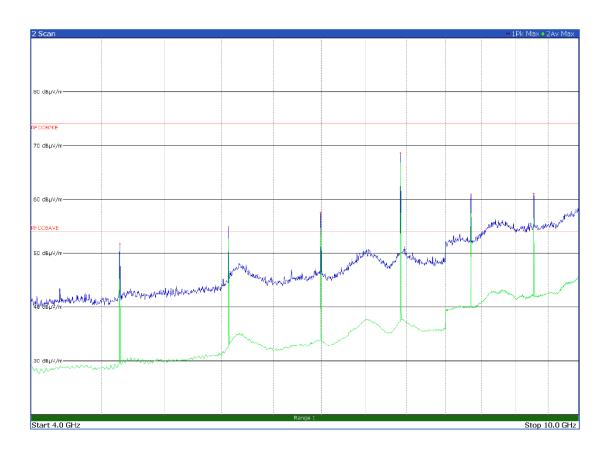


Figure 8.7-36: Radiated spurious emissions on high channel with antenna in vertical polarization – Frequency range 4 to 10 GHz

External antenna configuration

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	DCCF	Level (dBμV/m)	Limit (dΒμV/m)	Margin (dB)
4638.7500	51.8	74.0	-22.2	-19.6	32.2	54.0	-21.8
5566.7500	54.9	74.0	-19.1	-19.6	35.3	54.0	-18.7
6494.7500	57.5	74.0	-16.5	-19.6	37.9	54.0	-16.1
7422.2500	68.7	74.0	-5.3	-19.6	49.1	54.0	-4.9
8350.0000	61.0	74.0	-13.0	-19.6	41.4	54.0	-12.6
9278.2500	61.1	74.0	-12.9	-19.6	41.5	54.0	-12.5

Report reference ID: REP069139 Page 79 of 94

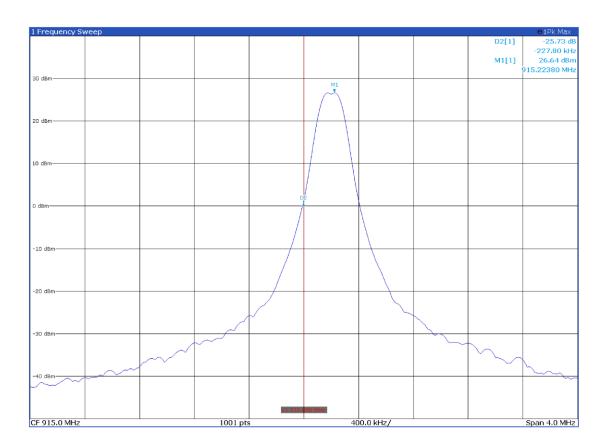


Figure 8.7-37: Band edge spurious emissions at 915 MHz (low frequency)

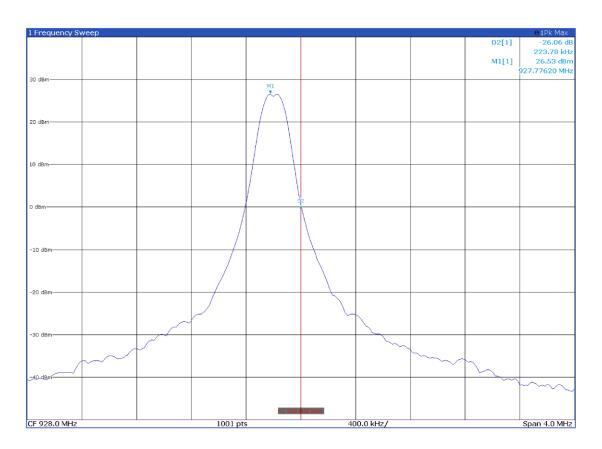


Figure 8.7-38: Band edge spurious emissions at 928 MHz (high frequency)

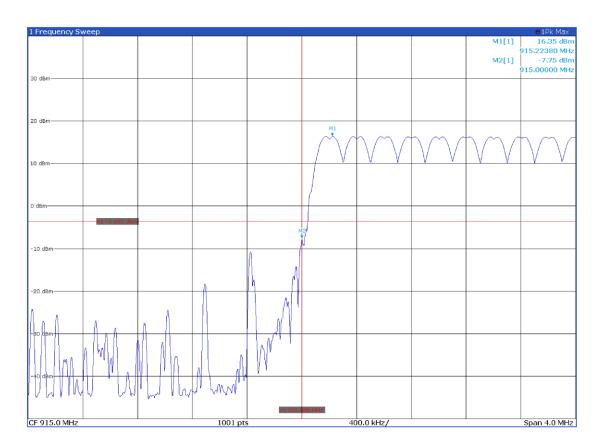


Figure 8.7-39: Band edge spurious emissions at 915 MHz (hopping mode)

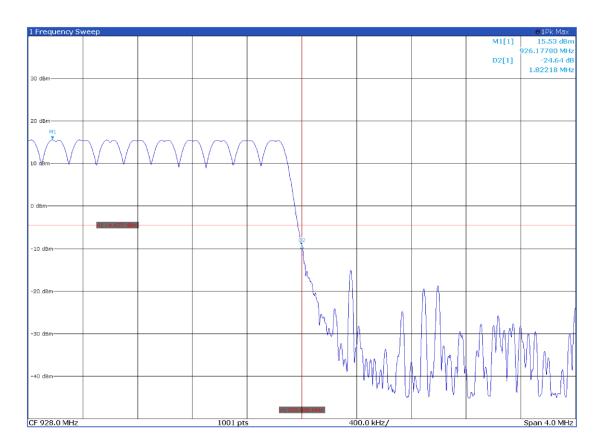


Figure 8.7-40: Band edge spurious emissions at 928 MHz (hopping mode)

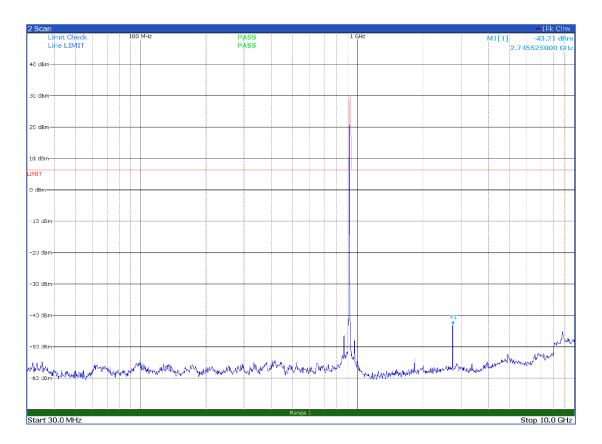


Figure 8.7-41: Conducted spurious emissions on low channel – Frequency range 30 to 10000 MHz

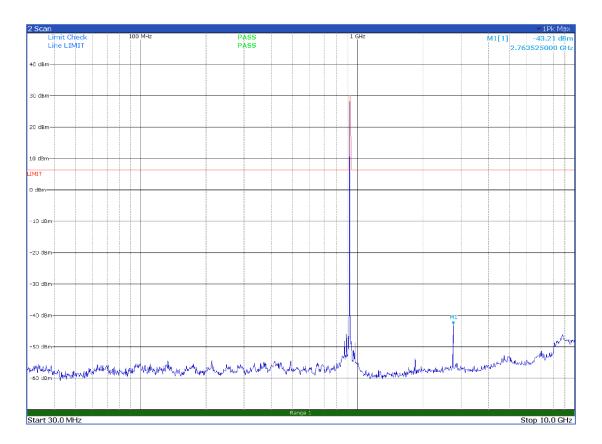


Figure 8.7-42: Conducted spurious emissions on mid channel – Frequency range 30 to 10000 MHz

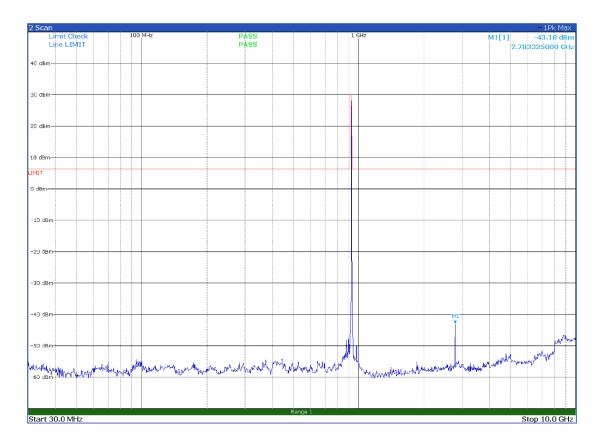


Figure 8.7-43: Conducted spurious emissions on high channel – Frequency range 30 to 10000 MHz

Section 9 EUT photos

9.1 EUT photos

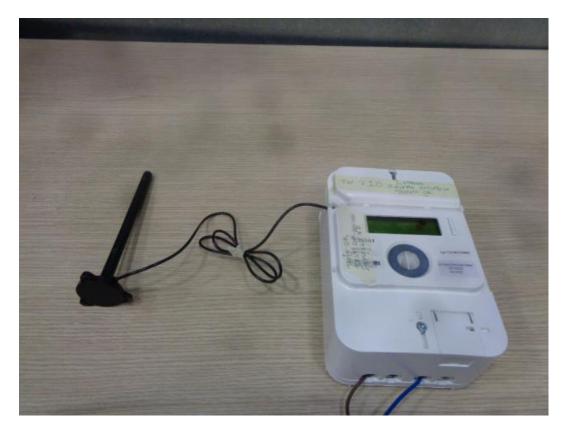


Figure 9.1-1: Front view photo with external antenna



Figure 9.1-2: Rear view photo with external antenna

Figure 9.1-3: Front view photo with interal antenna

Figure 9.1-4: Rear view photo with internal antenna

Figure 9.1-5: Radio module board photo

Report reference ID: REP069139 Page 91 of 94

Figure 9.1-6: Radio module board photo

9.2 Setup photos

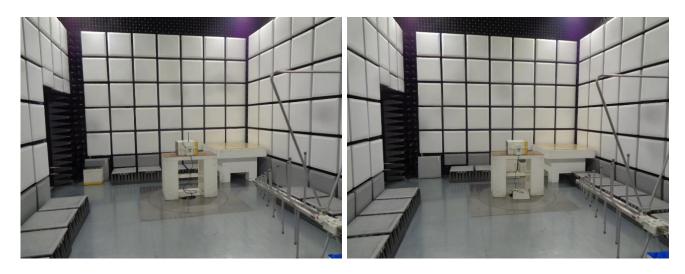


Figure 9.2-1: Radiated emissions below 1 GHz



Figure 9.2-2: Radiated emissions above 1 GHz

Report reference ID: REP069139 Page 93 of 94

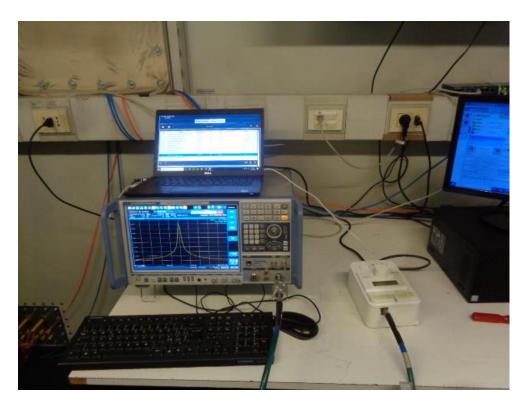


Figure 9.2-3: Conducted emissions at the antenna port

Figure 9.2-4: Conducted emissions at the AC mains port

End of the test report

Report reference ID: REP069139 Page 94 of 94