

For Question, Please Contact with WSCT www.wsct-cert.com

TEST REPORT

FCC ID: 2AXYP-OTW-340-R

Product: True Wireless Earbuds

Model No.: OTW-340

Trade Mark: oraimo

Report No.: WSCT-A2LA-R&E231200025A-LE

Issued Date: 28 December 2023

Issued for:

ORAIMO TECHNOLOGY LIMITED
FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI
STREET FOTAN NT HONGKONG

Issued By:

World Standardization Certification & Testing Group(Shenzhen) Co.,Ltd.
Building A-B, Baoshi Science & Technology Park, Baoshi Road,
Bao'an District, Shenzhen, Guangdong, China

TEL: +86-755-26996192

FAX: +86-755-86376605

Note: The results contained in this report pertain only to the tested sample. This report shall not be reproduced, except in full, without written approval of World Standardization Certification & Testing Group(Shenzhen) Co., Ltd. This report must not be used by the client to claim product certification, approval, or any agency of the U.S. Government.

世标检测认证股份 Group (Shenzhen) Co., Ltd.

ation & Testi

awization Certification of Testin

ADD:Bujlding A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

WSET

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

TABLE OF CONTENTS

		AAA A
/1.	Test Certification	. 3
2.	Test Result Summary	. 4
3.	EUT Description	. 5
4.	Genera Information	. 6
	4.1. TEST ENVIRONMENT AND MODE	6
-/	4.2. DESCRIPTION OF SUPPORT UNITS	6
5.	Facilities and Accreditations	. 7
1	5.1. FACILITIES	7
LT	5.2. ACCREDITATIONS	7
	5.3. MEASUREMENT UNCERTAINTY	8
	5.4. MEASUREMENT INSTRUMENTS	9
6.	Test Results and Measurement Data	10
	6.1. ANTENNA REQUIREMENT	. 10
1	6.2. CONDUCTED EMISSION	. 11
197	6.3. CONDUCTED OUTPUT POWER	. 13
	6.4. EMISSION BANDWIDTH	. 18
	6.5. Power Spectral Density	. 23
	6.6. CONDUCTED BAND EDGE AND SPURIOUS EMISSION MEASUREMENT	. 28
/	6.7. RADIATED SPURIOUS EMISSION MEASUREMENT	. 39

WSGT US Commonton (Constroup (Shenzhen) Co. Ltd.

WHITE

AVST

N/-141

Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E231200025A-LE

1. Test Certification

Product:

True Wireless Earbuds

Model No.:

OTW-340

Trade Mark:

oraimo

Applicant:

ORAIMO TECHNOLOGY LIMITED

FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25

SHAN MEI STREET FOTAN NT HONGKONG

Manufacturer:

ORAIMO TECHNOLOGY LIMITED

FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25

SHAN MEI STREET FOTAN NT HONGKONG

Date of Test:

15 December 2023 to 27 December 2023

Applicable

FCC CFR Title 47 Part 15 Subpart C Section 15.247

Standards:

KDB 558074 D01 DTS Meas Guidance v04

The above equipment has been tested by World Standardization Certification & Testing Group(Shenzhen)Co., Ltd. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By:	Wang Xiang)	Checked By:	(Qin Shuiquan)
Approved By:	Lin wan	W5(4) Date: 28	December 2 2
WHAT	(Liu Fuxin)	WEIGH	WSET WSE

ification & Testino

世标检测认证股份

Froup (Shenzhen) Co., Ltd.

World Standard agricon Certification & Con-

sct-cert.com Http:www.wsct-cert.com

Certificate #5768.01

For Question, Please Contact with WSCT www.wsct-cert.com

Test Result Summary 2.

	ZII ATHAN		Z I A Y H KI
7	Requirement	CFR 47 Section	Result
	Antenna requirement	§15.203/§15.247 (c)	PASS
0	AC Power Line Conducted Emission	§15.207	N/A
	Conducted Peak Output Power	§15.247 (b)(3) §2.1046	PASS
	6dB Emission Bandwidth	§15.247 (a)(2) §2.1049	PASS
2	Power Spectral Density	§15.247 (e)	PASS
	Band Edge	1§5.247(d) §2.1051, §2.1057	PASS
	Spurious Emission	§15.205/§15.209 §2.1053, §2.1057	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

3. **EUT Description**

Product Name:	True Wireless Earbuds
Model:	OTW-340
Trade Mark:	oraimo
Operation Frequency:	2402MHz~2480MHz
Channel Separation:	2MHz
Number of Channel:	40
Modulation Technology:	GFSK
Antenna Type:	FPC Antenna
Antenna Gain:	0.41dBi
WETE	Li-ion Battery: 501012 Voltage: 3.7V Rated Capacity: 40mAh
Operating Voltage	Limited Charge Voltage: 4.2V Charging Box: 802035 Input: 5V0.5A
WSTAT	Output: 5V===150mA*2 Capacity:500mAh 3.7V 1.85Wh
Remark:	N/A.

Operation Frequency each of channel

operation requested care or channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
\sim		\sim		\times			
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9,7	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz
Remark:	Channel 0, 1	9 & 39 ha	ave been tes	sted.	/		

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

4. Genera Information

4.1. Test environment and mode

[Operating Environment:	
}	Temperature:	25.0 °C
	Humidity:	56 % RH
	Atmospheric Pressure:	1010 mbar
7	Гest Mode:	
	Engineering mode:	Keep the EUT in continuous transmitting by select channel and modulations(The value of duty cycle is 98.46%) with Fully-charged battery.

The sample was placed (0.1m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
/		1	1	/ /

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

5. Facilities and Accreditations

5.1. Facilities

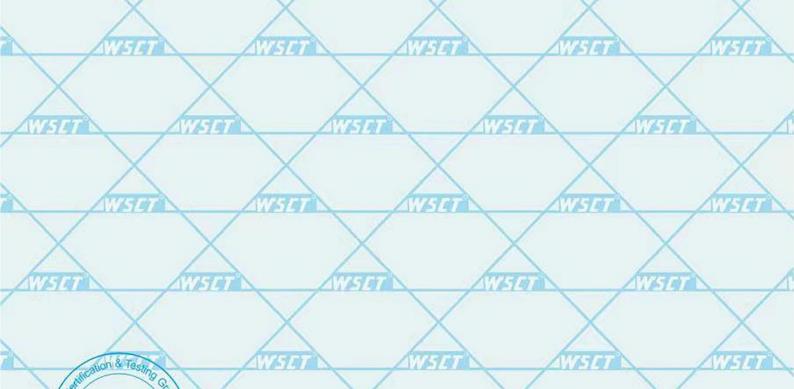
All measurement facilities used to collect the measurement data are located at Building A-B, Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China of the World Standardization Certification & Testing Group(Shenzhen) CO., LTD

The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.2. ACCREDITATIONS

CNAS - Registration Number: L3732

China National Accreditation Service for Conformity Assessment, The test firm Registration


Number: L3732

FCC - Designation Number: CN1303

World Standardization Certification & Testing Group(Shenzhen) CO., LTD. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Designation Number: CN1303.

A2LA - Certificate Number: 5768.01

The EMC Laboratory has been accredited by the American Association for Laboratory Accreditation (A2LA). Certification Number: 5768.01

世标检测认证股份 iroup (Shenzhen) Co., Ltd.

NOW * PI

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

5.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Η,	confidence of approximately 95 %.		V
/	No.	Item	MU
	1	Power Spectral Density	±3.2dB
	2	Duty Cycle and Tx-Sequence and Tx-Gap	±1%
	3 // 5 /	Medium Utilisation Factor	±1.3%
	4	Occupied Channel Bandwidth	±2.4%
/	5	Transmitter Unwanted Emission in the out-of Band	±1.3%
	6	Transmitter Unwanted Emissions in the Spurious Domain	±2.5%
	7 X	Receiver Spurious Emissions	±2.5%
	8	Conducted Emission Test	±3.2dB
	9	RF power, conducted	±0.16dB
/	10	Spurious emissions, conducted	±0.21dB
	11	All emissions, radiated(<1GHz)	±4.7dB
	12	All emissions, radiated(>1GHz)	±4.7dB
	13	Temperature	±0.5°C
/	14	Humidity	±2.0%

AVISTATI AVISTATI

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

5.4.MEASUREMENT INSTRUMENTS

_						www.wsc	.t-Ct
	NAME OF EQUIPMENT	MANUFACTURER	MODEL	SERIAL NUMBER	Calibration Date	Calibration Due.	Z:
	Test software		EZ-EMC	CON-03A	-	X	
	Test software		MTS8310	W2747	- 1	414	
	EMI Test Receiver	R&S	ESCI	100005	11/05/2023	11/04/2024	
	LISN	AFJ	LS16	16010222119	11/05/2023	11/04/2024	2
	LISN(EUT)	Mestec	AN3016	04/10040	11/05/2023	11/04/2024	ζ.
	Universal Radio Communication Tester	R&S	CMU 200	1100.0008.02	11/05/2023	11/04/2024	
7	Coaxial cable	Megalon	LMR400	N/A	11/05/2023	11/04/2024	
	GPIB cable	Megalon	GPIB	N/A	11/05/2023	11/04/2024	
	Spectrum Analyzer	R&S	FSU	100114	11/05/2023	11/04/2024	
	Pre Amplifier	H.P.	HP8447E	2945A02715	11/05/2023	11/04/2024	E
	Pre-Amplifier	CDSI	PAP-1G18-38		11/05/2023	11/04/2024	
	Bi-log Antenna	SCHWARZBECK	VULB9168	01488	7/29/2023	7/28/2024	
	9*6*6 Anechoic	A	1744	WETT	11/05/2023	11/04/2024	
	Horn Antenna	COMPLIANCE ENGINEERING	CE18000		11/05/2023	11/04/2024	1
	Horn Antenna	SCHWARZBECK	BBHA9120D	9120D-631	11/05/2023	11/04/2024	_
	Cable	TIME MICROWAVE	LMR-400	N-TYPE04	11/05/2023	11/04/2024	É
	System-Controller	ccs	N/A	N/A	N.C.R	N.C.R	
	Turn Table	ccs	N/A	N/A	N.C.R	N.C.R	
	Antenna Tower	ccs	N/A	N/A	N.C.R	N.C.R	
	RF cable	Murata	MXHQ87WA300 0	-	11/05/2023	11/04/2024	
	Loop Antenna	EMCO	6502	00042960	11/05/2023	11/04/2024	Z
/	Horn Antenna	SCHWARZBECK	BBHA 9170	1123	11/05/2023	11/04/2024	
	Power meter	Anritsu	ML2487A	6K00003613	11/05/2023	11/04/2024	
1	Power sensor	Anritsu	MX248XD	Alter	11/05/2023	11/04/2024	
	Spectrum Analyzer	Keysight	N9010B	MY60241089	11/05/2023	11/04/2024	-
		_	_				

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

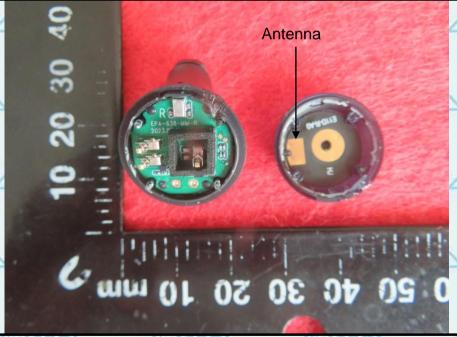
6. Test Results and Measurement Data

6.1. Antenna requirement

Standard requirement:

FCC Part15 C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetooth antenna is a Integral Antenna. it meets the standards, and the best case gain of the antenna is 0.41dBi.

176741

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

6.2. Conducted Emission

6.2.1. Test Specification

.2.1. Test Specification	
Test Requirement:	FCC Part15 C Section 15.207
Test Method:	ANSI C63.10:2014
Frequency Range:	150 kHz to 30 MHz
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto
Limits:	Frequency range (MHz) Limit (dBuV) 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50
X	Reference Plane
NVETE STEEL	Filter — AC power
Test Setup:	Test table/Insulation plane Remark: Adapter EMI Receiver
NITTED AVET	E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m
Test Mode:	Charging + Transmitting Mode
WISTOT	 The E.U.T is connected to an adapter through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main
Test Procedure:	power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs).
WHI I	3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2014 on conducted measurement.
Test Result:	N/A
191	

WSET

Spion * pil

世标检测认证股份 up(Shenzhen)Co.Ltd.

Report No.: WSCT-A2LA-R&E231200025A-LE

6.2.2. Test data

Spion * pri

Note: EUT powered by battery not applicable

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

Wister	WATER	N/ATO	WETRE	NVE-TIES I
WEI				
WEIGH	WESTER	NVEI 4 A	WEST OF THE STATE	WELT
Wift			THE ATTE	
AVISTOT	VI-14	WHI	WEIGH	Wester
NV-FI			$\langle \hspace{0.1cm} \rangle$	A AVEID
WATER OF THE PARTY	W5191	WATER	W5101	Wester
NV51			$\langle \ \rangle$	
NVE 141	WATER	WEIGH	W6-141	WATER
stall all on & Tes			THE AVE	
diffico	O C			

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

6.3. Conducted Output Power

6.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15	.247 (b)(3)			
Test Method:	KDB558074	WATER AVAIL	7.		
Limit:	30dBm	X			
Test Setup:		•	/		
	Spectrum Analyzer	EUT	-		
Test Mode:	Refer to item 4.1	WATE WATE	7		
Test Procedure:	FCC KDB No. 558074 v04. 2. Set spectrum analyzer a) Set the RBW ≥ DT b) Set VBW ≥ 3 x RB c) Set span ≥ 3 x RB d) Sweep time = auto c e) Detector = peak. f) Trace mode = max ho g) Allow trace to fully sta	Refer to item 4.1 I. The testing follows the Measurement Procedure of FCC KDB No. 558074 DTS D01 Meas. Guidance v04. 2. Set spectrum analyzer as following: a) Set the RBW > DTS bandwidth. b) Set VBW > 3 x RBW. c) Set span > 3 x RBW d) Sweep time = auto couple.			
Test Result:	PASS	V V			

NIST OF

WSET

ZIF14

Report No.: WSCT-A2LA-R&E231200025A-LE

6.3.2. Test Data

Certificate #5768.01

For Question, Please Contact with WSCT www.wsct-cert.com

BLE 1M					
Test channel Maximum Conducted Output Power (dBm)		Limit (dBm)	Result		
Lowest	-2.93	30.00	PASS		
Middle	-2.12	30.00	PASS		
Highest	-1.92	30.00	PASS		

	A TOTAL PROPERTY AND A STATE OF THE PARTY AND	ATTENDED ATT	The state of the s		
BLE 2M					
	Test channel	Maximum Conducted Output Power (dBm)	Limit (dBm)	Result	
	Lowest	-2.82	30.00	PASS	
	Middle	-2.03	30.00	PASS	
	Highest	-1.84	30.00	PASS	

Test plots as follows:

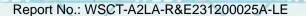
TOUP (Shenz)

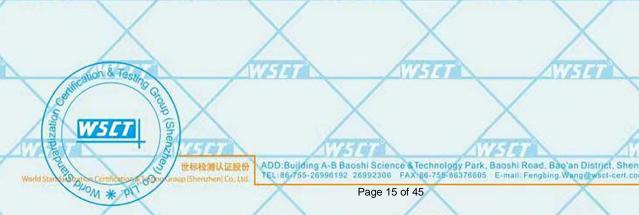
MONOW * PIT

世标检测认证股份

WHI	WSGT	AVETUE .	WEIGH	WSI
WETER	Wister	WEIGH	NI STATE	176599
WETH	IV-5101	WETER	W-510	Wester
WE191	NVF181	X	W 5-7-91	Wister
11/2/14/	N/STO	VIETUE .	WASTER	NVETO A
steption & Testino	W/5747	X	X	W-5141

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com Page 14 of 45


Member of the WSCT INC.





Span 10.00 MHz Sweep 1.33 ms (10001 pts)

Report No.: WSCT-A2LA-R&E231200025A-LE

Center 2.402000 GHz #Res BW 2.0 MHz

? Dec 26, 2023 7:40:12 PM

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86:755-26996192 26992306 FAX:66-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

#Video BW 6.0 MHz

Report No.: WSCT-A2LA-R&E231200025A-LE

Center 2.480000 GHz #Res BW 2.0 MHz

? Dec 26, 2023 7:41:35 PM

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86:755-26996192 26992306 FAX:66-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Span 10.00 MHz Sweep 1.33 ms (10001 pts)

#Video BW 6.0 MHz

MONOW * DIT

Report No.: WSCT-A2LA-R&E231200025A-LE

Certificate #5768.01

For Question, Please Contact with WSCT www.wsct-cert.com

6.4. Emission Bandwidth

6.4.1. Test Specification

FCC Part15 C Section 15.247 (a)(2)
KDB558074
>500kHz
EUT EUT
Refer to item 4.1
 The testing follows FCC KDB Publication No. 558074 DTS D01 Meas. Guidance v04. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
PASS

Report No.: WSCT-A2LA-R&E231200025A-LE

Certificate #5768.01

For Question, Please Contact with WSCT www.wsct-cert.com

6.4.2. Test data

	_			
BL		-	B 4	
~			11/1	
\mathbf{n}	400	-	IVI	F J

				HI DE
7	Toot obannal	6dB Emission I	Bandwidth (kHz)	
Test channel		BT LE mode	Limit	Result
	Lowest	0.5028	>500k	11474
	Middle	0.5043	>500k	PASS
	Highest	0.5012	>500k	

BLE 2M

Test channel	6dB Emission I	Bandwidth (kHz)			
rest channel	BT LE mode	Limit	Result		
Lowest	0.8235	>500k	WSET		
Middle	0.8523	>500k	PASS		
Highest	0.8343	>500k			

Test plots as follows:

Toup (Shenz)

SIGNOW * DIT

WEIGH	WESTER	1794	VISITE NY	900
NIFTER	NV.STET	N/H	Wister	W.S. S.
WATER	Wester	\times	\times	570
VI-19	WETER	V/510	WETER	Wister
WETAT	WESTER	X	\times	5701
sication & Testing	WSI	WISTOT	WSET	WEI W

Report No.: WSCT-A2LA-R&E231200025A-LE

Report No.: WSCT-A2LA-R&E231200025A-LE



Report No.: WSCT-A2LA-R&E231200025A-LE

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

6.5. Power Spectral Density

6.5.1. Test Specification

	Test Requirement:	FCC Part15 C Section 15.247 (e)	
_	Test Method:	KDB558074	
	Limit:	The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.	5
	Test Setup:	Spectrum Analyzer EUT	í
>	Test Mode:	Refer to item 4.1	
	Test Procedure:	 The testing follows Measurement Procedure 10.2 Method PKPSD of FCC KDB Publication No.558074 D01 DTS Meas. Guidance v04 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW) Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level. Measure and record the results in the test report. 	
	Test Result:	PASS	

6.5.2. Test Instruments

y						
	RF Test Room					
8	Equipment	Manufacturer	Model	Serial Number	Calibration Due	
	Spectrum Analyzer	R&S	FSU	200054	Sep. 27, 2018	
	RF cable (9kHz-26.5GHz)	тст	RE-06	N/A	Sep. 27, 2018	
100	Antenna Connector	TCT	RFC-01	N/A W	Sep. 27, 2018	

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

世标检测认证股份 Group (Shenzhen) Co., Ltd.

Report No.: WSCT-A2LA-R&E231200025A-LE

6.5.3. Test data

Certificate #5768.01

For Question, Please Contact with WSCT www.wsct-cert.com

Test channel	Power Spectral Density (dBm/3kHz)				
rest channel	BLE 1M	Limit	Result		
Lowest	-21.77	8 dBm/3kHz			
Middle	-20.64	8 dBm/3kHz	PASS		
Highest	-20.25	8 dBm/3kHz			

	Test channel	Power Spectral Density (dBm/3kHz)			
7	rest channel	BLE 2M	Limit	Result	
	Lowest	-23.96	8 dBm/3kHz		
1	Middle	-23.07	8 dBm/3kHz	PASS	
	Highest	-22.86	8 dBm/3kHz		

Test plots as follows:

Noup (Shenza

MONOW * DIT

WESTER	WHI	WSI	Wester
NVFID	WEIGHT AWEI	$\langle \times$	X
Wester		W5197	AVE TO S
NV5191	WATER WATER		X
WET 11 NVET 14		NVL-14 a	WETO
stration & Testing	WESTER		X

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com Page 24 of 45

Member of the WSCT INC.

Report No.: WSCT-A2LA-R&E231200025A-LE Certificate #5768.01 For Question, Please Contact with WSCT Test Graphs www.wsct-cert.com PSD NVNT BLE 1M 2402MHz Ant1 **+** Input Z: 50 Ω #Avg Type: Power (RMS 1 2 3 4 5 0 Avg|Hold: 100/100 Trig: Free Run KEYSIGHT Input: RF #Atten: 30 dB PNO: Best Wide Corr CCorr Freq Ref: Int (S) **M** ₩ ₩ ₩ ₩ Mkr1 2.402 022 6 GHz Ref LvI Offset 4.19 dB Ref Level 20.00 dBm -21.77 dBm Scale/Div 10 dB #Video BW 10 kHz Dec 26, 2023 7:38:12 PM PSD NVNT BLE 1M 2440MHz Ant1 Spectrum Analyzer 1 Swept SA + Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) PNO: Best Wide Gate: Off IF Gain: Low Sig Track: Off #Avg Type: Power (RMS 1 2 3 4 5 6 Avg|Hold: 100/100 M W W W W W W KEYSIGHT Input: RF Align: Auto PNNNNN Mkr1 2.440 021 924 GHz 1 Spectrum Ref LvI Offset 4.22 dB Ref Level 20.00 dBm -20.64 dBm #Video BW 10 kHz Center 2.4400000 GHz #Res BW 3.0 kHz Span 756.0 kHz Sweep 79.7 ms (1001 pts) .II 🔌



Report No.: WSCT-A2LA-R&E231200025A-LE

Report No.: WSCT-A2LA-R&E231200025A-LE

ertificate #5768.01

For Question, Please Contact with WSCT www.wsct-cert.com

6.6. Conducted Band Edge and Spurious Emission Measurement

6.1. Test Specification	7-19-10
Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB558074
Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Refer to item 4.1
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
Test Result:	PASS

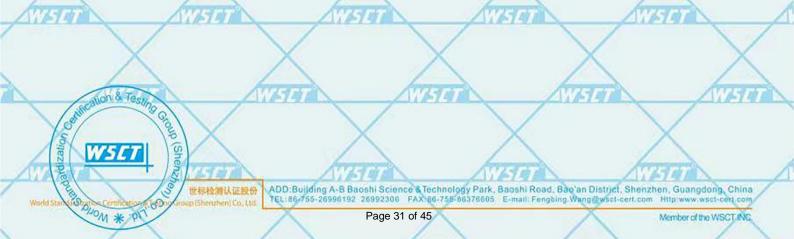
Report No.: WSCT-A2LA-R&E231200025A-LE

Test Data

Certificate #5768.01 Fo

For Question,
Please Contact with WSCT
www.wsct-cert.com

Report No.: WSCT-A2LA-R&E231200025A-LE



Report No.: WSCT-A2LA-R&E231200025A-LE

+ Input Z: 50 Ω Corr CCorr Freq Ref: Int (S)

? Dec 26, 2023 7:16:08 PM

Report No.: WSCT-A2LA-R&E231200025A-LE

KEYSIGHT Input: RF Align: Auto

1 Spectrum

Scale/Div 10 dB

#Video BW 300 kHz

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86:755-26996192 26992306 FAX:66-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

(Shenz

世标检测认证股份

TIG * MOULD WAR

+ Input Z: 50 Ω Corr CCorr Freq Ref: Int (S)

P Dec 26, 2023 7:09:25 PM

Report No.: WSCT-A2LA-R&E231200025A-LE

Align: Auto

KEYSIGHT Input: RF

1 Spectrum

Scale/Div 10 dB

Saulication & Test (Shenz) TIG * MOULD WAR 世标检测认证股份

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86:755-26996192 26992306 FAX:66-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com





Report No.: WSCT-A2LA-R&E231200025A-LE

Function Value

Report No.: WSCT-A2LA-R&E231200025A-LE

Function

-26.59 dBm -47.44 dBm -52.49 dBm -52.45 dBm -52.14 dBm

P Dec 26, 2023 7:13:04 PM

2.402 6 GHz 26.239 7 GHz 4.627 0 GHz 7.246 6 GHz 9.741 8 GHz

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86:755-26996192 26992306 FAX:66-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

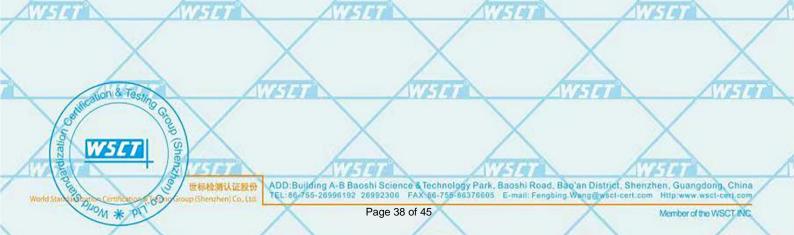
Function Width

Report No.: WSCT-A2LA-R&E231200025A-LE

26.329 7 GHz 26.329 7 GHz 5.025 8 GHz 7.272 2 GHz 9.745 4 GHz

? Dec 26, 2023 7:14:30 PM

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86:755-26996192 26992306 FAX:66-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com



Report No.: WSCT-A2LA-R&E231200025A-LE

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

6.7. Radiated Spurious Emission Measurement

6.7.1. Test Specification

Ö.	7.1. Test Specification			1			/	
	Test Requirement:	FCC Part15	C Section	n 15.209			X	
	Test Method:	ANSI C63.10):2014	NIET W		ATE	144	
	Frequency Range:	9 kHz to 25 (GHz					
	Measurement Distance:	3 m			\sim			
	Antenna Polarization:	Horizontal &	Vertical		11151			
	Operation mode:	Refer to item	4.1					
		Frequency	Detector		VBW	Rema		
	W/5/9/	9kHz- 150kHz	Quasi-pea		1kHz	Quasi-peal		
	Receiver Setup:	150kHz- 30MHz	Quasi-pea	ak 9kHz	30kHz	Quasi-peal	k Value	
	X	30MHz-1GHz	Quasi-pea	ak 100KHz	300KHz	Quasi-peal	k Value	
		Above 1GHz	Peak	1MHz	3MHz	Peak V	alue	
	WSET WSET	Above IGIIZ	Peak	1MHz	10Hz	Average	Value 🥠	
7				5110				
	× ×	Frequen	су	Field Stre		Measure		
		0.009-0.4	100	(microvolts/ 2400/F(k		Distance (meters) 300		
b	WESTER	0.490-1.7		2400/F(r 24000/F(723	
	1019	1.705-3		30	(112)	30	1 H M	
		30-88		100		3		
	X	88-216		150		3		
	Limit:	216-96	0	200	_	3		
	AVET TO AVET TO	Above 9	60	500	1169	3		
				1		1	/	
	X	X	Fic	eld Strength	Measurer	nent	X	
		Frequency		ovolts/meter)	Distanc	e De	tector	
8	V/S/B	ATTE STATE	(111101	Contract of the second	(meters		744	
		Above 1GHz	2	500	3		erage	
		5000 3 Peak						
		For radiated emissions below 30MHz						
7	AVETE	Di	istance = 3m		AVVIEW	Commuter	1	
		1.	.1			Computer		
					Dra	Amplifier		
		I '	' (1	F10 -/	piirici		

Test setup: WS

Distance = 3m

Computer

Pre -Amplifier

Receiver

30MHz to 1GHz

W5ET


DUOM * PIT

(Shen

Report No.: WSCT-A2LA-R&E231200025	NIE	THE WARNER
Report No.: WSC 1-AZEA-R&EZS1Z000ZS		Certificate #5768.01 For Question
X		a Factor + Cable Lossphase contact with wscr
	Read Level - Preamp Fac	tor = Lever
NI STEEL NI STEEL	3. For measurement below 10	Z I I AL T MI MILL
	of the EUT measured by the	
	lower than the applicable I	
	level will be reported. Other	erwise, the emission
Anna Anna	measurement will be repe	ated using the quasi-peak
1779	detector and reported.	78
	4. Use the following spectrum	analyzer settings:
X	(1) Span shall wide enough	n to fully capture the
	emission being measur	ed;
WSET WSE	(2) Set RBW=100 kHz for	Angeres (Transmit
X		r function = peak; Trace =
	max hold;	AC 0MIL C C 4 011
AUGUST AUGUST	(3) Set RBW = 1 MHz, VB	
11613	for peak measurement.	
	For average measuremen	t: VBW = 10 Hz, when
	duty cycle is no less than	98 percent. VBW ≥ 1/T,
hard hard	when duty cycle is less that	an 98 percent where T is
11579	the minimum transmission	
	transmitter is on and is tra	
X	power control level for the	
Test mode:	Refer to section 4.1 for details	
		172746
Test results:	PASS	
Y Y		

Note: Freq. = Emission frequency in MHz Reading level (dB μ V) = Receiver reading Corr. Factor (dB) = Attenuation factor + Cable loss Level (dB μ V) = Reading level (dB μ V) + Corr. Factor (dB) Limit (dB μ V) = Limit stated in standard Margin (dB) = Level (dB μ V) - Limits (dB μ V)

WEIT

AVSIT

AWSET

AW 55 40

wster (Shenz

WATER A

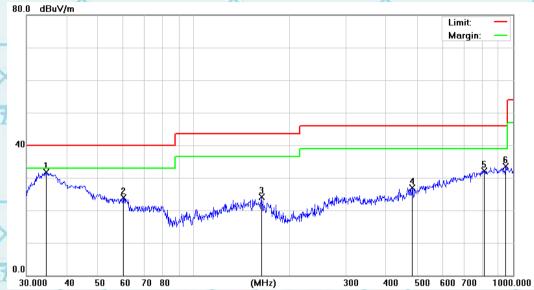
WSET

AWSET

AWSET.

Report No.: WSCT-A2LA-R&E231200025A-LE

Certificate #5768.01


Please Contact with WSCT www.wsct-cert.com

6.7.2. Test Data

Please refer to following diagram for individual

Below 1GHz

-									
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	The same
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
>	1	*	34.5173	34.66	-2.90	31.76	40.00	-8.24	QP
	2	41	60.2801	27.26	-3.38	23.88	40.00	-16.12	QP
2	3		163.1818	26.39	-2.30	24.09	43.50	-19.41	QP
	4	4	183.9094	25.68	1.28	26.96	46.00	-19.04	QP
	L 5	1	310.2654	26.14	5.99	32.13	46.00	-13.87	QP
	6	Ç	948.7610	26.20	7.40	33.60	46.00	-12.40	QP

WSET Sheps

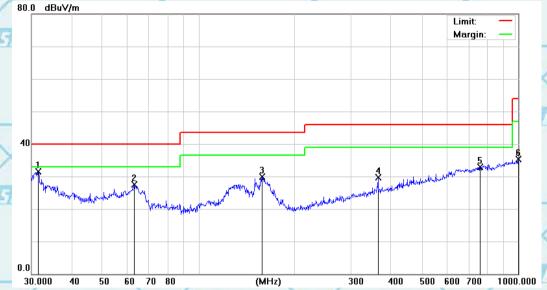
DUOM * PIT

W575

AWSET

AVISTA

Certificate #5768.01


For Question,

Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E231200025A-LE

		-						
No	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	A.
2		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	* _	31.5095	34.76	-3.20	31.56	40.00	-8.44	QP
2	4	62.8708	31.34	-3.79	27.55	40.00	-12.45	QP
3		158.1123	31.81	-2.00	29.81	43.50	-13.69	QP
4		364.2595	30.95	-1.31	29.64	46.00	-16.36	QP
Z 5	1	760.7036	27.49	5.40	32.89	46.00	-13.11	QP
6		1000.000	27.80	7.60	35.40	54.00	-18.60	QP

Note1:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = Antenna factor + Cable loss - Amplifier factor.

Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

Limit (dBµV) = Limit stated in standard

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

World Starking Organic Certification & Port

WSET

AWSET"

AWSET

Report No.: WSCT-A2LA-R&E231200025A-LE

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

Above 1GHz

	Eroa	Low channel: 2402MHz							
(MHz)	Freq.	Ant.Pol	Emission Level(dBuV)		Limit 3m(dBuV/m)		Over(dB)		
	(IVITZ)	H/V	PK	AV	PK	AV	PK	AV	
	4804	V	60.26	39.87	74	54	-13.74	-14.13	
×	7206	V	58.78	39.22	74	54	-15.22	-14.78	
Ż	4804	H	59.06	40.06	74	54	-14.94	-13.94	
	7206	Τ	58.90	39.90	74	54	-15.10	-14.10	

						The second secon				
	Frog		Middle channel: 2440MHz							
Z	Freq. (MHz)	Ant.Pol	Emission I	_evel(dBuV)	Limit 3m	(dBuV/m)	Ove	r(dB)		
	(IVIIIZ)	H/V	PK	AV	PK	AV	PK	AV		
	4880	V	58.37	39.68	74	54	-15.63	-14.32		
	7320	V	58.36	40.78	74	54	-15.64	-13.22		
7	4880	W/5H7	59.64	39.29	74	54	-14.36	-14.71		
	7320	Н	59.17	40.17	74	54	-14.83	-13.83		

	Eroa		High channel: 2480 MHz							
2	Freq. (MHz)	Ant.Pol	Emission I	_evel(dBuV)	Limit 3m	(dBuV/m)	Ove	r(dB)		
	(IVITZ)	H/V	PK	AV	PK	AV	PK	AV		
	4960	V	59.85	40.08	74	54	-14.15	-13.92		
	7440	V	58.61	39.21	74	54	-15.39	-14.79		
ì	4960	MET 7	58.83	40.55	74	54	-15.17	-13.45		
	7440	H	58.15	39.15	74	54	-15.85	-14.85		

Note:

- 1. All emissions not reported were more than 20dB below the specified limit or in the noise floor.
- 2. Emission Level= Reading Level+Probe Factor +Cable Loss.
- 3. Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

NETH	NISTA	WASTA	WET	AV.	700
		×	X	X	X
TE	AV.	777	WEIGH	WEIT	WHAT
X	X	X	X		X
AVSET	WELT	WESTER	NV518	**************************************	777
100		-			7234

世标检测认证股份 sroup (Shenzhen) Co., Ltd.

oup (Shen

Report No.: WSCT-A2LA-R&E231200025A-LE

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

Restricted Bands Requirements

YOUP (Shenz)

DUOM * PIT

Test result for GFSK Mode (the worst case)

Frequency	Reading	Correct Factor	Emission Level	Limit	Margin	Polar	Detector
(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	H/V	
1	AVESTER	(Low Cha	nnel	AUZTE		1025
2390	60.63	-8.76	51.87	74	22.13	H	PK
2390	55.75	-8.76	46.99	54	7.01	нХ	AV
2390	63.78	-8.73	55.05	74	18.95	V	PK
2390	56.48	-8.73	47.75	54	6.25	V	AV
			High Cha	nnel			
2483.5	60.25	-8.76	51.49	74	22.51	Н	PK
2483.5	56.77	-8.76	48.01	54	5.99	Н	AV
2483.5	61.31	-8.73	52.58	74	21.42	V	PK
2483.5	56.24	-8.73	47.51	54	6.49	V	AV

W-State	\times	D OF REPORT***	\times	190
WEIGH	WHITE	NYSIGI	WHEE	N/FIE
NV-14	\times	\times	\times	191
V/5191	Wister	WETER	WSF	WESTER
X	\times	\times		700
sion & Tees	N/SIA	7/65193	V/65141	77/25/40