

Certificate No:

Z21-60478

CALIBRATION CERTIFICATE

Morlab

Object

D5GHzV2 - SN: 1176

Calibration Procedure(s)

Client

FF-Z11-003-01 Calibration Procedures for dipole validation kits

Calibration date:

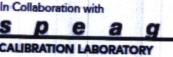
December 19, 2021

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Sched	uled Calibration
Power Meter NRP2	106277	24-Sep-21 (CTTL, No.J21X08326)		Sep-22
Power sensor NRP8S	104291	24-Sep-21 (CTTL, No.J21X08326)		Sep-22
ReferenceProbe EX3DV4	SN 7307	26-May-21(SPEAG, No. EX3-7307_May21)		May-22
DAE4	SN 1556	15-Jan-21(SPEAG,No.DAE4-1556_Jan21)		Jan-22
Secondary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Schedu	led Calibration
Signal Generator E4438C	MY49071430	01-Feb-21 (CTTL, No.J21X00593)		Jan-22
NetworkAnalyzerE5071C	MY46110673	14-Jan-21 (CTTL, No.J21X00232)		Jan-22


	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	- AL
Reviewed by:	Lin Hao	SAR Test Engineer	THE SE
Approved by:	Qi Dianyuan	SAR Project Leader	Ser all
			Issued: December 27, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z21-60478

Page 1 of 8

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 http://www.chinattl.cn

Glossary:

TSL	tissue
ConvF	sensi
N/A	not ap

e simulating liquid itivity in TSL / NORMx,y,z plicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1. DASY Versig

DASY Version	DASY52	V/52 10 4
Extrapolation	Advanced Extrapolation	V52.10.4
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz	2.2000 Hallo - 1.4 (2 direction)

Head TSL parameters at 5250 MHz The fell

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.9 ± 6 %	
Head TSL temperature change during test		04.01070	4.72 mho/m ± 6 %

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.71 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	76.7 W/kg ± 24.4 % (<i>k</i> =2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	(K-2)
SAR measured	100 mW input power	2.23 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.1 W/kg ± 24.2 % (k=2)

Certificate No: Z21-60478

Page 3 of 8

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.5 ± 6 %	5.10 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		5.10 mmo/m ± 0 %

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.12 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.8 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	21.4 /0 (X-2)
SAR measured	100 mW input power	2.35 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.3 W/kg ± 24.2 % (k=2)

Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

1 (s 44)-1(s	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.4 ± 6 %	5.27 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		0.27 millio/m ± 0 %

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.91 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	78.7 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	(x-2)
SAR measured	100 mW input power	2.27 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.5 W/kg ± 24.2 % (k=2)

Certificate No: Z21-60478

Page 4 of 8

Willia adult

A SAFE TALLAR

Carlo and the king

francia fala minn feel

Blue it h diman lin

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

Last alt

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	10.00	
Return Loss	49.3Ω - 7.38jΩ	
	- 22.6dB	

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	
Return Loss	53.7Ω - 0.82jΩ
	- 28 8dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	50.00	_
Return Loss	52.2Ω - 3.36jΩ	
	- 28.2dB	1

General Antenna Parameters and Design

Electrical Delay (one direction)	
	1.110 ns
A	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by			
Manufactured by		SPEAG	
	M = 1		
(and	5.47 State 1		
ing	10 10 18		
Certificate No: Z21-60478	AL 1242 St.		
Certificate No: 221-604/8	Page 5 of 8	de la companya de la	
11/4		1 1 to a second of a	
		1 Alexandre State	

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

CALIBRATION LABORATOR

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

Date: 2021-11-19

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1176

Communication System: CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz,

Medium parameters used: f = 5250 MHz; σ = 4.722 S/m; ϵ_r = 34.9; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 5.103 S/m; ϵ_r = 34.47; ρ = 1000 kg/m³, Medium parameters used: f = 5750 MHz; σ = 5.268 S/m; ϵ_r = 34.35; ρ =

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN7307; ConvF(5.69, 5.69, 5.69) @ 5250 MHz; ConvF(5.1, 5.1, 5.1) @ 5600 MHz; ConvF(5.05, 5.05, 5.05) @ 5750 MHz; Calibrated: 2021-05-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2021-01-15
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

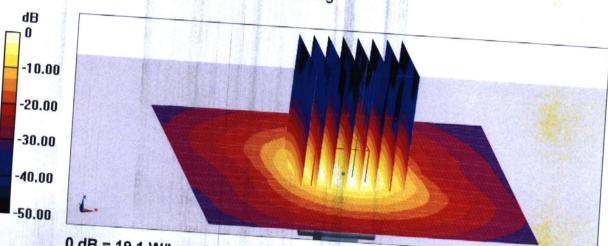
Dipole Calibration /Pin=100mW, d=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.50 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 30.5 W/kg SAR(1 g) = 7.71 W/kg; SAR(10 g) = 2.23 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 65.4% Maximum value of SAR (measured) = 17.6 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.77 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 34.6 W/kg SAR(1 g) = 8.12 W/kg; SAR(10 g) = 2.35 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 63% Maximum value of SAR (measured) = 19.1 W/kg

Certificate No: Z21-60478

Page 6 of 8

Tel: +86-10-62304633-2512

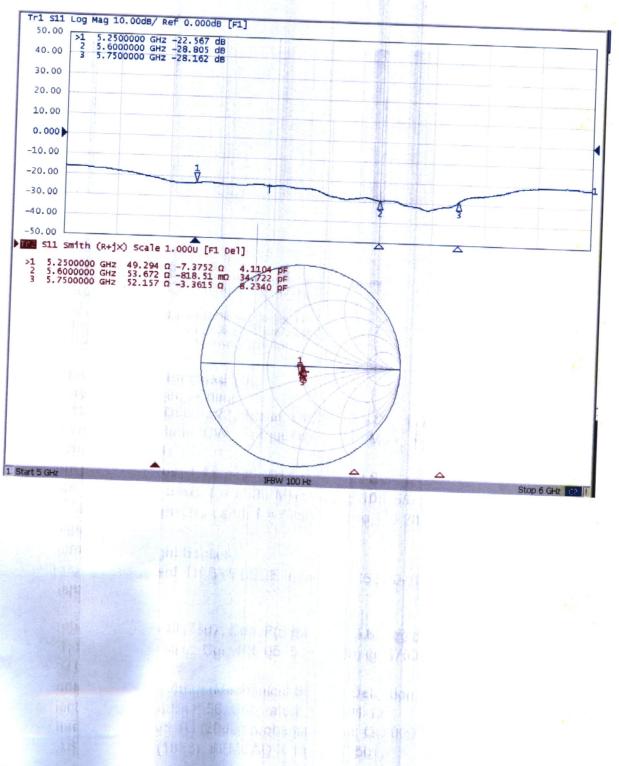

E-mail: cttl@chinattl.com

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

e

.

Dipole Calibration /Pin=100mW, d=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.00 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 35.4 W/kg SAR(1 g) = 7.91 W/kg; SAR(10 g) = 2.27 W/kg Smallest distance from peaks to all points 3 dB below = 7.5 mm Ratio of SAR at M2 to SAR at M1 = 61.8% Maximum value of SAR (measured) = 19.1 W/kg


0 dB = 19.1 W/kg = 12.81 dBW/kg

Real Char H 1

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

Page 8 of 8

1 10 fa 12.15 ix 4 ani

di dibi

Certificate No: Z21-60478

Appendix Annual validation for Test Lab.

General calibration information

Date	2022.12.15
Test Laboratory	ShenZhen Morlab Communications Technology Co., Ltd.
Antenna serial No.	D5250V2-SN: 1176

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.068Ω +1.05jΩ
Return Loss	-32.818dB

General Antenna Parameters and Design

	Electrical Delay (one direction)	1.276 ns
--	----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feed point can be measured

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard No excessive force must be applied to the dipole arm, because they might bend or the soldered connections near the feed point may be damaged.

Test Laboratory: Shenzhen Morlab Communications Technology Co., Ltd.

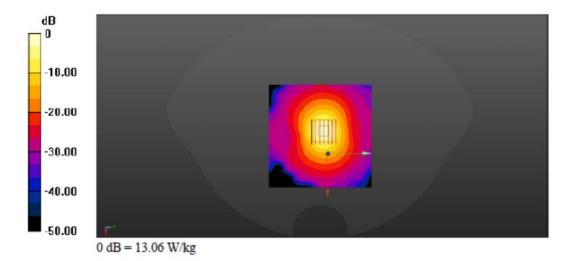
Date: 2022.12.15

System Check_5250MHz_Head

Communication System: UID 0, CW (0); Frequency: 5250 MHz; Duty Cycle: 1:1 Medium: HSL_5250 Medium parameters used: f = 5250 MHz; $\sigma = 4.714$ S/m; $\epsilon_r = 36.322$; $\rho = 1000$ kg/m³

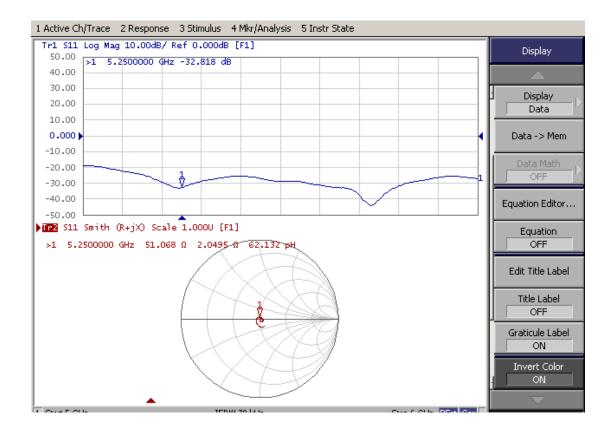
Ambient Temperature : 23.2 °C; Liquid Temperature : 22.4 °C

DASY5 Configuration:


- Probe: EX3DV4 - SN7608; ConvF(5.16, 5.16, 5.16) @ 5250 MHz; Calibrated: 2022.01.12

- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1643; Calibrated: 2021.12.30

Phantom: Twin-SAM; Type: QD 000 P41 Ax; Serial: 2020
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)


CW5250/Area Scan (101x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 13.52 W/kg

CW5250/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 55.31 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 21.2 W/kg SAR(1 g) = 7.57 W/kg; SAR(10 g) = 2.25 W/kg Maximum value of SAR (measured) = 13.06 W/kg

Appendix Impedance Measurement Plot for Head TSL

Appendix Annual validation for Test Lab.

General calibration information

Date	2022.12.15
Test Laboratory	ShenZhen Morlab Communications Technology Co., Ltd.
Antenna serial No.	D5600V2-SN: 1176

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.89Ω -2.58jΩ
Return Loss	-31.355dB

General Antenna Parameters and Design

	Electrical Delay (one direction)	1.276 ns
--	----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feed point can be measured

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard No excessive force must be applied to the dipole arm, because they might bend or the soldered connections near the feed point may be damaged.

Test Laboratory: Shenzhen Morlab Communications Technology Co., Ltd.

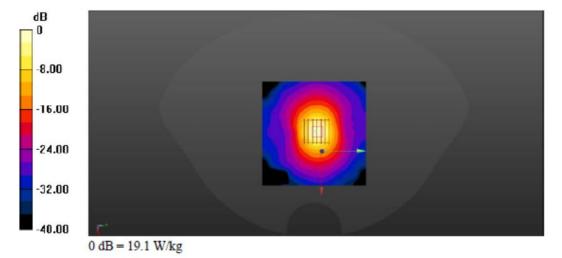
Date: 2022.12.15

System Check_5600MHz_Head

Communication System: UID 0, CW (0); Frequency: 5600 MHz; Duty Cycle: 1:1 Medium: HSL_5600 Medium parameters used: f = 5600 MHz; $\sigma = 5.11$ S/m; $\epsilon_r = 35.521$; $\rho = 1000$ kg/m³

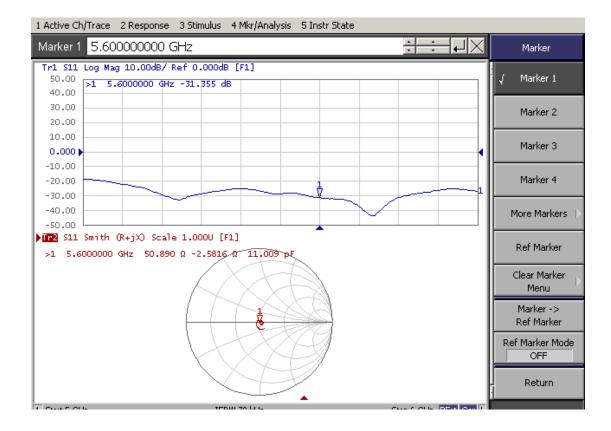
Ambient Temperature : 23.2 °C; Liquid Temperature : 22.4 °C

DASY5 Configuration:


- Probe: EX3DV4 - SN7608; ConvF(4.74, 4.74, 4.74) @ 5600 MHz; Calibrated: 2022.01.12

- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1643; Calibrated: 2021.12.30

Phantom: Twin-SAM; Type: QD 000 P41 Ax; Serial: 2020
 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)


CW5600/Area Scan (101x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 19.24 W/kg

CW5600/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 49.70 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 21.0 W/kg SAR(1 g) = 8.05 W/kg; SAR(10 g) = 2.37 W/kg Maximum value of SAR (measured) = 19.1 W/kg

Appendix Impedance Measurement Plot for Head TSL

Appendix Annual validation for Test Lab.

General calibration information

Date	2022.12.15
Test Laboratory	ShenZhen Morlab Communications Technology Co., Ltd.
Antenna serial No.	D5750V2-SN: 1176

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.962Ω +1.96jΩ
Return Loss	-40.247dB

General Antenna Parameters and Design

	Electrical Delay (one direction)	1.276 ns
--	----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feed point can be measured

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard No excessive force must be applied to the dipole arm, because they might bend or the soldered connections near the feed point may be damaged.