

TEST REPORT

Applicant Name : Address : Report Number : FCC ID: JEM ACCESSORIES INC. 32 Brunswick Avenue,Edison,New Jersey,United States 08817 RA221109-52746E-RF-00C 2AHASXCS7-2002

Test Standard (s)

FCC PART 15.231

Sample Description

Product Type:	Smart Snapshot Battery Doorbell
Model No.:	XCS7-2002
Multiple Model(s) No.:	N/A
Trade Mark:	XTREME
Date Received:	2022/11/09
Report Date:	2022/12/13

Test Result: Pass*

* In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:

Approved By:

Andy. Yu

Andy Yu EMC Engineer

Candy . Li

Candy Li EMC Engineer

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "* ".

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Shenzhen Accurate Technology Co., Ltd.

 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China

 Tel: +86 755-26503290
 Fax: +86 755-26503396
 Web: www.atc-lab.com

Version 5: 2021-11-09

Page 1 of 25

FCC Part 15.231

TABLE OF CONTENTS

DOCUMENT REVISION HISTORY	
GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE Test Methodology	
MEASUREMENT UNCERTAINTY	
SYSTEM TEST CONFIGURATION	6
JUSTIFICATION	
SPECIAL ACCESSORIES	
Equipment Modifications Support Equipment List and Details	
EXTERNAL I/O CABLE	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	8
TEST EQUIPMENT LIST AND DETAILS	9
FCC §1.1307 (B) & §2.1091 – RF EXPOSURE	
APPLICABLE STANDARD	
Test Result:	
FCC §15.203 - ANTENNA REQUIREMENT	
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.207 (A) – AC LINE CONDUCTED EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP EMI Test Receiver Setup	
TEST PROCEDURE	
TRANSD FACTOR & MARGIN CALCULATION	
ТЕЅТ DATA	
FCC §15.205, §15.209, §15.231 (B) - RADIATED EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP EMI Test Receiver Setup	
EMI TEST RECEIVER SETUP TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST DATA	
FCC §15.231(A) (1) - DEACTIVATION TESTING	23
APPLICABLE STANDARD	
Test Procedure Test Data	
FCC §15.231(C) – 20 DB EMISSION BANDWIDTH TESTING	
APPLICABLE STANDARD	
TEST PROCEDURE	

Version 5: 2021-11-09

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
0	RA221109-52746E-RF-00C	Original Report	2022/12/13

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Frequency Range	433.92MHz
Modulation Technique	ASK
E-field strength	88.03dBuV/m@3m
Antenna Specification*	1.5 dBi (provided by the applicant)
Voltage Range	DC 3.7V from battery or DC 5V from USB port
Sample number	1PK8-1 (Assigned by ATC)
Sample/EUT Status	Good condition

Objective

All the test measurements were performed according to the measurement procedure described in ANSI C63.10 - 2013.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, section 15.203, 15.205, 15.207, 15.209, 15.35(c) and 15.231 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10 - 2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed at Shenzhen Accurate Technology Co., Ltd. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Each test item follows test standards and with no deviation.

Measurement Uncertainty

Parameter		Uncertainty
Occupied Cha	nnel Bandwidth	5%
RF output po	wer, conducted	0.73dB
Unwanted Emi	ission, conducted	1.6dB
AC Power Lines Conducted Emissions		2.72dB
	30MHz - 1GHz	4.28dB
Emissions, Radiated	1GHz - 18GHz	4.98dB
Radiated	18GHz - 26.5GHz	5.06dB
Temperature		1℃
Humidity		6%
Supply voltages		0.4%

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358, the FCC Designation No.: CN1189. Accredited by American Association for Laboratory Accreditation (A2LA) The Certificate Number is 429 7.01.

Listed by Innovation, Science and Economic Development Canada (ISEDC), the Registration Number is 5077A.

SYSTEM TEST CONFIGURATION

Justification

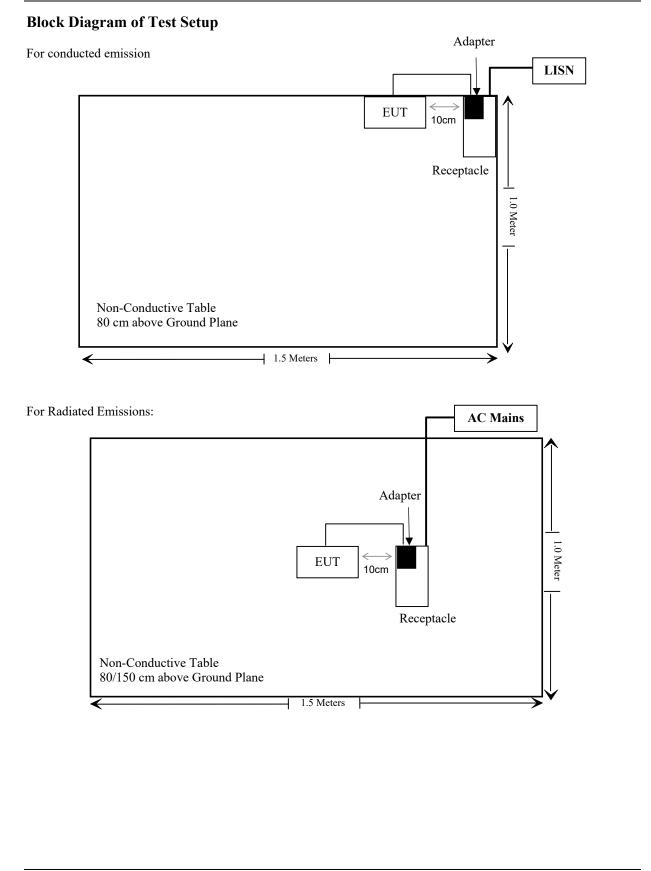
The system was configured for testing by manufacturer.

Special Accessories

No special accessories was used

Equipment Modifications

No modification was made to the EUT.


Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
TECNO	Adapter	U180TSA	Unkown

External I/O Cable

Cable Description	Length (m)	From Port	То
Un-shielded Un-detachable USB cable	1.0	EUT	Adapter

Report No.: RA221109-52746E-RF-00C

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§ 1.1307 (b) & §2.1091	RF EXPOSURE Compl	
§15.203	Antenna Requirement	Compliant
§15.207 (a)	Conducted Emissions	Compliant
§15.205, §15.209, §15.231(b)	Radiated Emissions	Compliant
§15.231 (c)	20dB Emission Bandwidth Comp	
§15.231 (a) (1)	Deactivation	Compliant

TEST EQUIPMENT LIST AND DETAILS

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date	
	Conducted Emissions Test					
Rohde& Schwarz	EMI Test Receiver	ESCI	100784	2021/12/13	2022/12/12	
Rohde & Schwarz	L.I.S.N.	ENV216	101314	2021/12/13	2022/12/12	
Anritsu Corp	50 Coaxial Switch	MP59B	6100237248	2021/12/13	2022/12/12	
Unknown	RF Coaxial Cable	No.17	N0350	2021/12/14	2022/12/13	
Conducted Emission	Test Software: e3 19821	b (V9)				
		Radiated Emissi	ons Test			
Rohde& Schwarz	Test Receiver	ESR	102725	2021/12/13	2022/12/12	
Rohde&Schwarz	Spectrum Analyzer	FSV40	101949	2021/12/13	2022/12/12	
SONOMA INSTRUMENT	Amplifier	310 N	186131	2022/11/08	2023/11/07	
A.H. Systems, inc.	Preamplifier	PAM-0118P	135	2022/11/08	2023/11/07	
Schwarzbeck	Bilog Antenna	VULB9163	9163-323	2021/07/06	2024/07/05	
Schwarzbeck	Horn Antenna	BBHA9120D	9120D-1067	2020/01/05	2023/01/04	
Radiated Emission T	est Software: e3 19821b	(V9)	· · · · · · · · · · · · · · · · · · ·		•	
Unknown	RF Coaxial Cable	No.10	N050	2021/12/14	2022/12/13	
Unknown	RF Coaxial Cable	No.11	N1000	2021/12/14	2022/12/13	
Unknown	RF Coaxial Cable	No.12	N040	2021/12/14	2022/12/13	
Unknown	RF Coaxial Cable	No.13	N300	2021/12/14	2022/12/13	
Unknown	RF Coaxial Cable	No.14	N800	2021/12/14	2022/12/13	
CD	High Pass Filter	HPM-1.2/18G -60	110	2021/12/14	2022/12/13	

* **Statement of Traceability:** Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §1.1307 (b) & §2.1091 – RF EXPOSURE

Applicable Standard

According to FCC §2.1091 and §1.1307(b), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to KDB 447498 D04 Interim General RF Exposure Guidance v01, clause 2.1.2 – 1-mW test Exemption:

Per § 1.1307(b)(3)(i)(A), a single RF source is exempt RF device (from the requirement to show data demonstrating compliance to RF exposure limits, as previously mentioned) if the available maximum time-averaged power is no more than 1 mW, regardless of separation distance.

This exemption applies to all operating configurations and exposure conditions, for the frequency range 100 kHz to 100 GHz, regardless of fixed, mobile, or portable device exposure conditions. This is a standalone exemption, and it cannot be applied in conjunction with any other test exemption.

Test Result:

For worst case:

Mada	Frequency Maximum ERP		1-mW test	
Mode	(MHz)	(dBm)	(mW)	Exemption
SRD	433.92	-9.32	0.117	Yes

Note 1: use the maximum E-field strength (88.03dBuV/m) for the RF exposure evaluation

```
Note 2: E(dBuV/m)=EIRP(dBm)-95.2 for distance 3m so the EIRP=88.03dBuV/m-95.2=-7.17dBm
```

```
Note 3: EIRP(dBm)= ERP+2.15dBi
so the ERP=-7.17dBm-2.15dBi=-9.32dBm
```

Note 4: The BT, Wi-Fi and SRD function cannot simultaneous transmitting.

Result: Compliant.

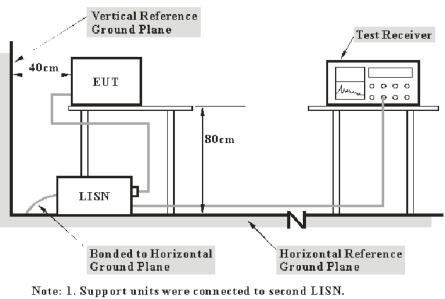
FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

Antenna Connector Construction

The EUT has one internal antenna arrangement which was permanently attached. And the antenna gain is 1.5dBi; fulfill the requirement of this section. Please refer to EUT photos.


Result: Compliant.

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a)

EUT Setup

Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with ANSI C63.10-2013. The related limit was specified in FCC Part 15.207.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Transd Factor & Margin Calculation

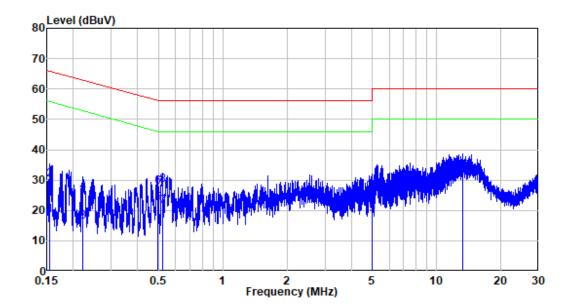
The Transd factor is calculated by adding LISN VDF (Voltage Division Factor) and Cable Loss. The basic equation is as follows:

Transd Factor = LISN VDF + Cable Loss

The "**Over limit**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over limit of -7 dB means the emission is 7 dB below the limit. The equation for calculation is as follows:

Over Limit = Level – Limit Level = Read Level + Factor

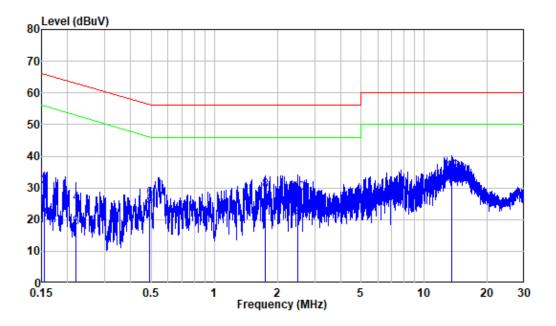
Test Data


Environmental Conditions

Temperature:	23°C
Relative Humidity:	60%
ATM Pressure:	101.0 kPa

The testing was performed by Lipa on 2022-11-25.

EUT operation mode: Transmitting


AC 120V/60 Hz, Line

Shielding Room
Line
RA221109-52746E-RF
Transmitting
AC 120V 60Hz

	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.155	9.80	8.69	18.49	55.70	-37.21	Average
2	0.155	9.80	20.37	30.17	65.70	-35.53	QP
3	0.221	9.80	6.42	16.22	52.78	-36.56	Average
4	0.221	9.80	16.18	25.98	62.78	-36.80	QP
5	0.494	9.80	12.39	22.19	46.10	-23.91	Average
6	0.494	9.80	17.87	27.67	56.10	-28.43	QP
7	0.521	9.81	11.69	21.50	46.00	-24.50	Average
8	0.521	9.81	18.48	28.29	56.00	-27.71	QP
9	5.001	9.85	8.99	18.84	50.00	-31.16	Average
10	5.001	9.85	16.64	26.49	60.00	-33.51	QP
11	13.188	9.93	19.06	28.99	50.00	-21.01	Average
12	13.188	9.93	23.08	33.01	60.00	-26.99	QP

AC 120V/60 Hz, Neutral

Site	:	Shielding Room
Condition	:	Neutral
Job No.	:	RA221109-52746E-RF
Mode :	:	Transmitting
Power	:	AC 120V 60Hz

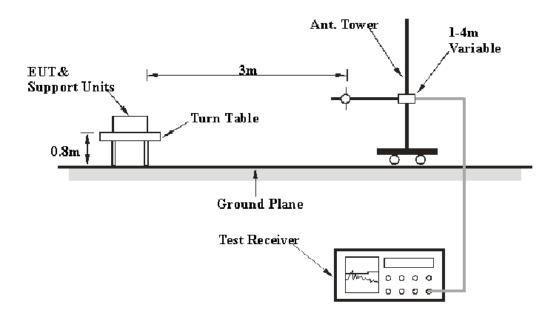
			Read		Limit	0ver	
	Freq	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.155	9.80	10.18	19.98	55.70	-35.72	Average
2	0.155	9.80	20.80	30.60	65.70	-35.10	QP
3	0.219	9.80	7.57	17.37	52.84	-35.47	Average
4	0.219	9.80	15.34	25.14	62.84	-37.70	QP
5	0.492	9.80	14.34	24.14	46.13	-21.99	Average
6	0.492	9.80	16.68	26.48	56.13	-29.65	QP
7	1.753	9.82	12.83	22.65	46.00	-23.35	Average
8	1.753	9.82	19.59	29.41	56.00	-26.59	QP
9	2.498	9.82	11.08	20.90	46.00	-25.10	Average
10	2.498	9.82	18.69	28.51	56.00	-27.49	QP
11	13.497	10.03	20.51	30.54	50.00	-19.46	Average
12	13.497	10.03	24.85	34.88	60.00	-25.12	QP -

FCC §15.205, §15.209, §15.231 (b) - RADIATED EMISSIONS

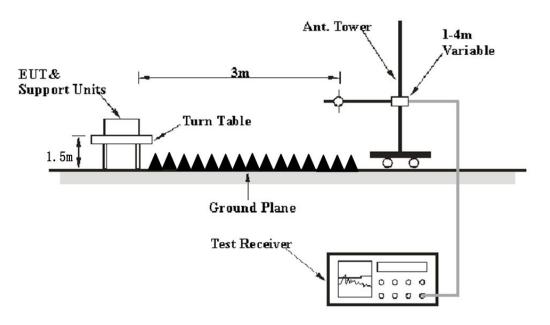
Applicable Standard

FCC §15.205, §15.209, §15.231 (b)

According to FCC §15.231(b), the field strength of emissions from intentional radiators operated under this section shall not exceed the following:


Fundamental frequency (MHz)	Field Strength of Fundamental (Microvolts /meter)	Field Strength of spurious emissions ((Microvolts /meter)
40.66-40.70	2250	225
70-130	1250	125
130-174	1250 to 3750**	125 to 375**
174-260	3750	375
260-470	3750 to 12500**	375 to 1250**
Above 470	12500	1250

*Linear interpolations.


The above field strength limits are specified at a distance of 3-meters the tighter limits apply at the band edges.

EUT Setup

Below 1 GHz:

Above 1 GHz:

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10 - 2013. The specification used was the FCC 15 § 15.209, 15.205 and 15.231.

EMI Test Receiver Setup

The system was investigated from 30 MHz to 5 GHz.

During the radiated emission test, the test receiver was set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30MHz - 1000 MHz	100 kHz	300 kHz	120 kHz	РК
Above 1 GHz	1 MHz	3 MHz	/	РК

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in the Quasi-peak detection mode from 30MHz to 1GHz, Peak and average detection mode above 1 GHz.

Corrected Amplitude & Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

Factor = Antenna Factor + Cable Loss - Amplifier Gain

The "**Over Limit/Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

Over Limit/Margin = Level / Corrected Amplitude – Limit Level / Corrected Amplitude = Read Level + Factor

Test Data

Environmental Conditions

Temperature:	24~27℃
Relative Humidity:	60 %
ATM Pressure:	101.0 kPa

The testing was performed by Jimi Zheng from 2022-11-30 to 2022-12-06 for below 1GHz, and on 2022-11-24 for above 1GHz.

Test mode: Transmitting (Pre-scan in the X,Y and Z axes of orientation, the worst case X-axis of orientation was recorded)

Fundamental:

	Re	eceiver		Rx An	itenna	Corrected	Corrected	FCC Part	15.231(b)
Frequency (MHz)	Reading (dBµV)	PK/QP/Ave.	Turntable Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
433.92	93.82	РК	342	2.2	Н	-5.79	88.03	100.83	-12.80
433.92	89.69	PK	129	1.1	V	-5.79	83.90	100.83	-16.93

Field Strength of Average Emission							
Frequency	Peak Measurement	Polar	Duty Cycle	Corrected	FCC Part 15.231(b)		
(MHz)	@3m (dBµV/m)	(H/V)	Correction Factor (dB)	Ampitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)	
433.92	88.03	Н	-8.29	79.74	80.83	-1.09	
433.92	83.90	V	-8.29	75.61	80.83	-5.22	


Note:

Corrected Amplitude = Corrected Factor + Reading Corrected Factor = Antenna factor (Rx) + cable loss – amplifier factor Margin = Corr. Amplitude - Limit Ave. = PK + 20*log(Duty Cycle)

Duty Cycle:

Ton1 = 1.5362ms, Ton2 = 0.5507ms Ton = (10*1.5362+15*0.5507) ms=23.623ms Tp = 61.304ms Duty cycle = Ton/Tp = 23.623/61.304=0.385

Duty Cycle Corrected Factor = 20lg (Duty cycle) = 20lg(0.385) = -8.29

Duty cycle

Ref Level 97.00	dBµV €	• RBW 100 kHz				
Att	10 dB 👄 SWT 10 ms 🖷	• VBW 300 kHz	Input 1 AG	2		
SGL PS TDF						
1Pk Clrw						
ю авил			D3[1]			-0.22 dE
о авру						550.7 µ
O dBuV			M1[1]			12.47 dBµ\ 5.3833 m
				7, [~	7 1	3.000311
O dBµV					++	
0 dBuV						
υ ubμv						
0 dвµv						
- uopi						
O dBµV						
0 dBµV						
O dBuV						
law what disk whi	Which there is the new	անտերերի	2	1 MP	D3 H. U.N.	al hits
e denver de la denver	- Indelated the sec	- Mill Mr Mr Mr		- V V	- Nandand - di	kulo aa
	0 **					
dBµV						1.0.1
F 433.92 MHz		691 pts	5			1.0 ms/
arker		I	1			
Type Ref Trc M1 1	X-value 5.3333 ms	<u>Y-value</u> 12.47 dBμV	Function		Function Res	uit
D1 M1 1	1.5362 ms	12.47 uвµV 3.47 dB				
M2 1	7.2754 ms	12.28 dBµV				
D3 M2 1	550.7 µs	-0.22 dB				

Date: 6.DEC.2022 23:57:34

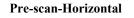
Version 5: 2021-11-09

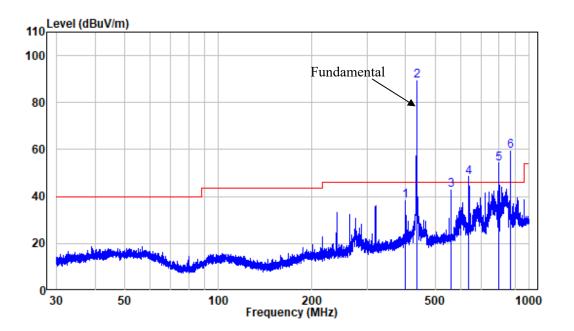
Report No.: RA221109-52746E-RF-00C

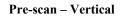
Spurious Emissions:

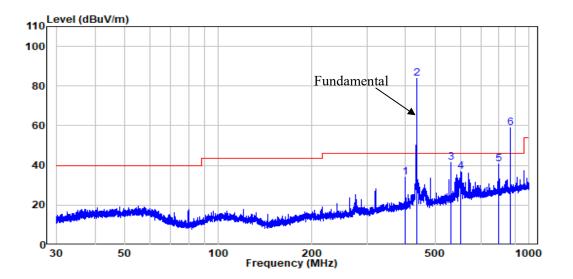
		eceiver		Rx Antenna Co		Corrected	Corrected	FCC Part	15.231(b)
Frequency (MHz)	Reading (dBµV)	PK/QP/Ave.	Turntable Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
400.08	44.90	PK	240	1.0	Н	-6.73	38.17	46	-7.83
400.08	40.97	PK	127	1.2	V	-6.73	34.24	46	-11.76
560.20	46.76	PK	182	1.7	Н	-4.04	42.72	60.83	-18.11
560.20	45.74	PK	252	1.8	V	-4.04	41.70	60.83	-19.13
600.11	50.10	PK	274	2.3	Н	-2.43	47.67	60.83	-13.16
600.11	39.35	PK	129	2.0	V	-2.43	36.92	60.83	-23.91
800.03	54.50	PK	23	1.1	Н	-0.35	54.15	60.83	-6.68
800.03	41.01	РК	136	1.3	V	-0.35	40.66	60.83	-20.17
867.84	59.40	РК	296	2.5	Н	0.65	60.05	60.83	-0.78
867.84	58.00	РК	111	2.3	V	0.65	58.65	60.83	-2.18
1301.76	59.55	PK	252	2.0	Н	-10.20	49.35	54	-4.65
1301.76	59.00	РК	71	1.9	V	-10.20	48.80	54	-5.20

Note:

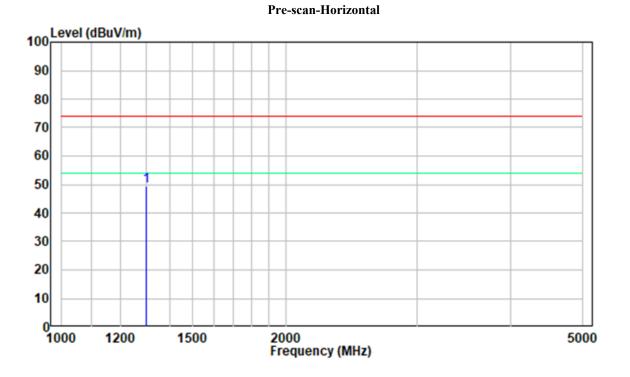

Corrected Amplitude = Corrected Factor + Reading

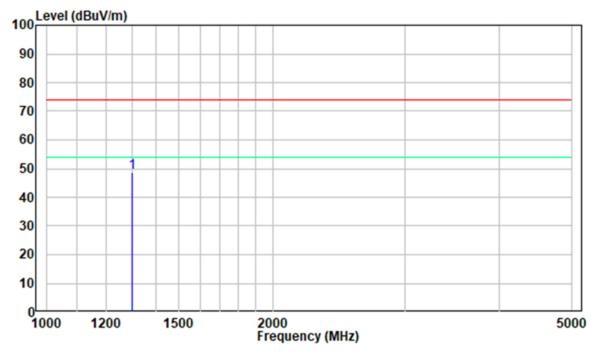

Corrected Factor = Antenna factor (Rx) + cable loss – amplifier factor


Margin = Corr. Amplitude - Limit


The peak emission value is less than the average emission limit, so no needs to test the average emission. The other spurious emission which is in the noise floor level was not recorded.

30MHz – 1 GHz:





Report No.: RA221109-52746E-RF-00C

1 GHz - 5 GHz:

Pre-scan – Vertical

FCC §15.231(a) (1) - DEACTIVATION TESTING

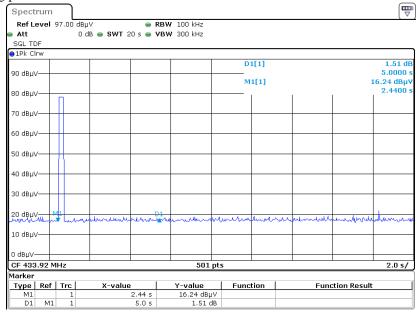
Applicable Standard

Per FCC §15.231(a) (1), A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

Test Procedure

- 1. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 2. Set center frequency of spectrum analyzer=operating frequency.
- 3. Set the spectrum analyzer as RBW=100kHz/ VBW=300kHz/ Span=0Hz.
- 4. Repeat above procedures until all frequency measured was complete.

Test Data


Environmental Conditions

Temperature:	27°C
Relative Humidity:	60 %
ATM Pressure:	101.0 kPa

The testing was performed by Jimi Zheng on 2022-12-08.

Test mode: Transmitting

Test Result: Compliant. This product will cease transmission within 5 seconds after activation. Please refer to following plots.

Date: 8.DEC.2022 19:26:32

FCC §15.231(c) – 20 dB EMISSION BANDWIDTH TESTING

Applicable Standard

Per 15.231(c), The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. Bandwidth is determined at the points 20 dB down from the modulated carrier.

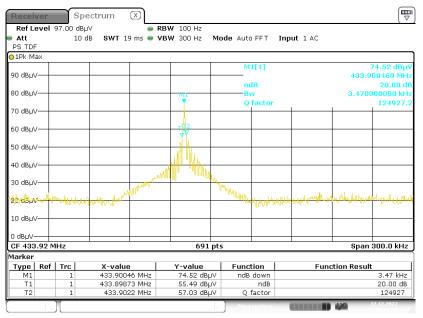
Test Procedure

The EUT is setting to the transmit mode, the waveform was received by the test antenna which was connected to the spectrum analyzer, plot the 20 dB bandwidth.

Test Data

Environmental Conditions

Temperature:	27°C
Relative Humidity:	60 %
ATM Pressure:	101.0 kPa


The testing was performed by Jimi Zheng on 2022-12-12.

Test Mode: Transmitting

Please refer to following table and plots.

Channel Frequency	20dB Emission Bandwidth	Limit
(MHz)	(kHz)	(kHz)
433.92	3.47	1085

20 dB Emission Bandwidth

Date: 12.DEC.2022 20:09:58

***** END OF REPORT *****