

2W06569

Issue III Applicant: Instantel Inc. 309 Legget Drive Kanata, Ontario K2K 3A3 **Equipment Under Test:** XMARK Large Exciter 312.5KHz Transmitter (EUT) FCC ID: **ISEXLX** FCC Part 15, Subpart C In Accordance With: Tested By: Nemko Canada Inc. 303 River Road, R.R. 5 Ottawa, Ontario K1V 1H2 **Authorized By:** Kevin Carr, EMC Specialist 28 November 2002 Date:

17

Total Number of Pages:

Test Report:

Table Of Contents

Section 1.	Summary Of Test Results	3
Section 2.	General Equipment Specification	5
	Radiated Emissions	
	Block Diagrams	
	Test Equipment List	
secuon 5.	I EST EQUIPMENT LIST	. 1

Section 1. Summary Of Test Results

General

All measurements are traceable to national standards.

WILL

These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with FCC Part 15, Subpart C, 15.209. All tests were conducted using measurement procedure ANSI C63.4-1992. Radiated Emissions were made on an open area test site. A description of the test facility in on file with the FCC.

THIS TEST REPORT RELATES ONLY TO THE ITEM(S) TESTED.

Bir Super	
ΓESTED BY:	DATE: 28 November 2002
Glen Westwell, Wireless Technologis	

Nemko Canada Inc. authorizes the above named company to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko Canada Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

This report applies only to the items tested.

FCC PART 15, SUBPART C, 15.209 PROJECT NO.:2W06569, Issue III

EQUIPMENT:XMARK Large Exciter

Summary Of Test Data

Name Of Test	Para. No.	Result
Powerline Conducted Emissions	15.207	Complies
Radiated Emissions	15.209	Complies

Notes: This unit is power by an external OEM 12Vdc source.

Ferrite 28A-20290A2 was used at the DC input power line to reduce emissions detected at 30 & 60MHz. This ferrite has been incorportated in the B.O.M (see set up photo's).

Test Conditions:

Indoor Temperature: 24°C

Humidity: 34%

Outdoor Temperature: 17°C

Humidity: 31%

FCC PART 15, SUBPART C, 15.209 PROJECT NO.:2W06569, Issue III

EQUIPMENT:XMARK Large Exciter

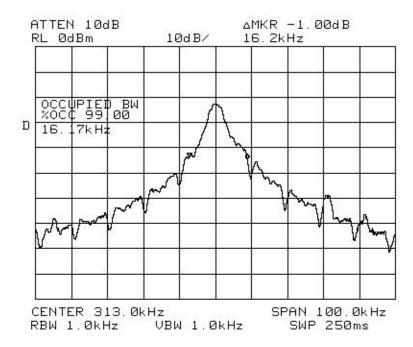
Section 2. General Equipment Specification

Manufacturer: Instantel Inc.

Model No.: 805A6201

Serial No.: none

Date Received In Laboratory: 21 Oct. 2002


Nemko Identification No.:

Transmit Frequency (fixed) 312.5KHz

Type of Modulation: On/Off Keying (OOK)

Emission designator: 16K2POD

99% Occupied Bandwidth

FCC PART 15, SUBPART C, 15.209 PROJECT NO.:2W06569, Issue III

EQUIPMENT:XMARK Large Exciter

Section 3. Powerline Conducted Emissions

Para. No.: 15.207

Test Performed By: Glen Westwell	Date of Test: 1 Nov 2002
----------------------------------	--------------------------

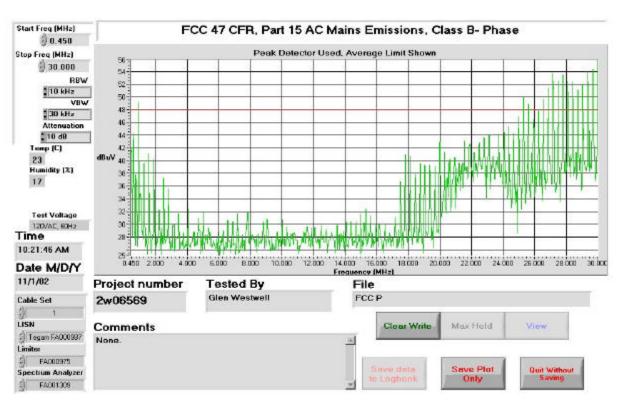
Minimum Standard:

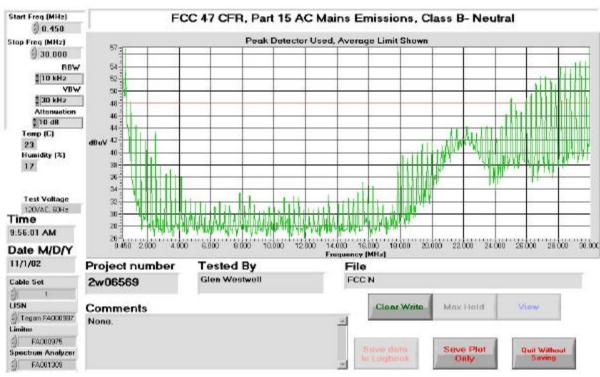
Frequency		erline Conducted oltage
(MHz)	(μV)	(dBµV)
0.45 - 30.0	250	48

Test Results: Complies.

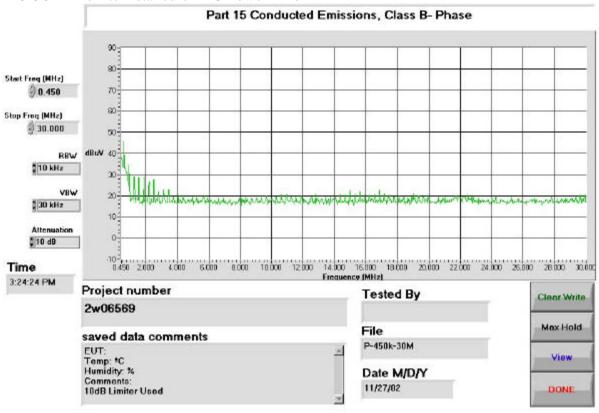
Measurement Data: See attached tables & graph(s).

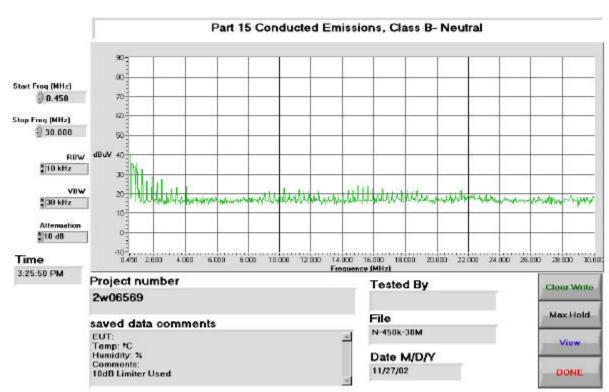
No Ferrite installed on AC Power Line

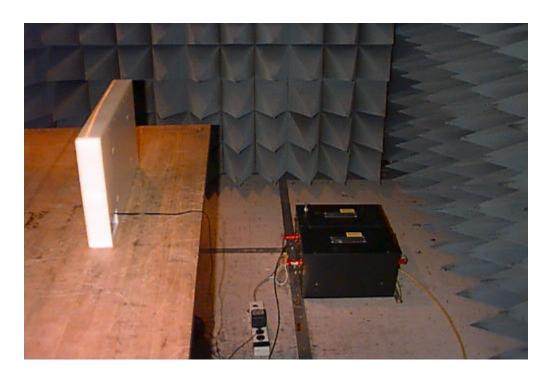

Class B Mains limits (Neutral)

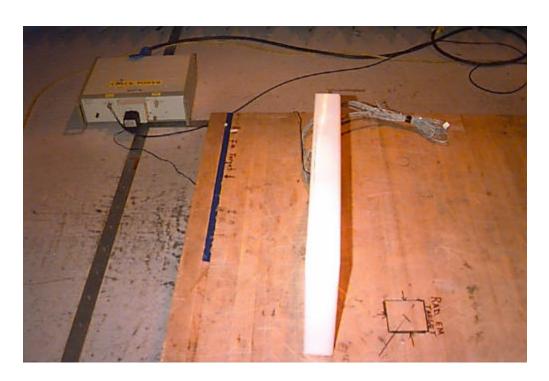

No.	Frequency of Emission	Detector	Emission Level (dBV)	Limit (dBuV)	BB / NB	BB Corr. (dB)	Result (dB)
	(MHz)						
1	30.0000	Quasi-Peak	54.2	48.0	BB	13	6.8
	30.0000	Average	39		BB	13	
2	0.6300	Quasi-Peak	55.4	48.0	BB	13	5.6
	0.6300	Average	31.7		BB	13	
3	29.1100	Quasi-Peak	47.9	48.0	BB	13	13.1
	29.1100	Average	29.1		BB	13	
4	29.7000	Quasi-Peak	47.8	48.0	BB	13	13.2
	29.7000	Average	29.1		BB	13	
5	28.4600	Quasi-Peak	42.9	48.0	BB	13	18.1
	28.4600	Average	26.2		BB	13	
6	29.4100	Quasi-Peak	41.5	48.0	BB	13	19.5
	29.4100	Average	26.4		BB	13	

Class B Mains limits (Phase)


No.	Frequency of Emission (MHz)	Detector	Emission Level (dBV)	Limit (dBuV)	BB / NB	BB Corr. (dB)	Result (dB)
1	30.0000	Quasi-Peak	55	48.0	BB	13	6.0
	30.0000	Average	39.1		BB	13	
2	29.7000	Quasi-Peak	47.9	48.0	BB	13	13.1
	29.7000	Average	29		BB	13	
3	27.8100	Quasi-Peak	48.3	48.0	BB	13	12.7
	27.8100	Average	29		BB	13	
4	27.5200	Quasi-Peak	43	48.0	BB	13	18.0
	27.5200	Average	29		BB	13	
5	28.1100	Quasi-Peak	34.1	48.0	BB	13	26.9
	28.1100	Average	21.6		BB	13	
6	29.3500	Quasi-Peak	33.2	48.0	BB	13	27.8
	29.3500	Average	21.6	-	BB	13	_


No Ferrite installed on AC Power Line





Power Line Conducted Photo

No Ferrite on AC Power Line

28A-20290A2 Ferrite installed on AC Power Line

Section 3. Radiated Emissions

Para. No.: 15.209

Test Performed By: Glen Westwell Date of Test: 21 Oct. 2002

Minimum Standard:

Tx = 312KHz

Fundamental (MHz)	Field Strength (µV/m)	Field Strength (dBµV)
0.009 - 0.490	2400/F(kHz) @ 300m	17.7
0.490 - 1.705	24000/F(kHz) @ 30m	_
1.705 - 30	30 @ 30m	_
30 - 88	100	40.0
88 - 216	150	43.5
216 - 960	200	46.0
Above 960	500	54.0

Test Results: Complies.

Note: Ferrite 28A-20290A2 was used at the DC input power line to reduce emissions detected at 30 & 60MHz. This ferrite has been incorportated in the B.O.M.

Measurement Data: See attached table.

- Worst case emissions data has been presented.
- The EUT was searched up to 1000MHz.
- The input power was varied as per 15.31(e) to determine maximum emission level.
- The EUT was searched for worst case configuration with a 1m unshielded external control wire(s) attached (see set up photo).

Test Data: Fundamental

Test	Distanc	e (meters):	10	Receiv	ver:	ESH3		Range	: A	
Detector: Avg				RBW(kHz)	: 1	0	Environn	nental Factors:	None	
No.	Freq. (MHz)	Ant.	Pol (V/H)	Field Strength at 10 meters (dBµV)	Ant. Facto (dB)*		Corr.	Field Strength Extrapolated to 300m (dBµV)	Limit At 300 meters (dBuV)	Margin (dB)
1	0.312	Active Loop		61.7				2.6	17.7	15.1

Notes:

B/C = Biconical, BL = Bilog, L/P = Log-Periodic, H = Horn, D/P = Dipole, E/D = EMCO Dipole

* Re-measured using dipole antenna.

** Includes cable loss when amplifier is not used.

*** Includes cable loss.

() Denotes failing emission level.

N.D. = Not Detected

All emissions measured were extrapolated using 40 dB/decade extrapolation factor.

Harmonics

	Titt money									
Test	Distance	(meters):	3	Recei	ver: ES	H3		Range	: A	
Dete	ctor: A	Avg		RBW(kHz)	: 10		Environm	nental Factors:	None	
No.	Freq. (MHz)	Ant.	Pol (V/H)	Field Strength at 3 meters	Ant. Factor (dB)**	Amp. Gain (dB)*	Corr.	Field Strength Extrapolated to 30m	Limit At 30 meters (dBuV)	Margin (dB)
1	0.624	Active Loop		(dBµV) 42.2		**		(dBμV) 2.2	31.7	29.5
2	0.936	Active Loop		39.3				-0.7	28.2	28.9
No.	Freq. (MHz)	Ant.	Pol (V/H)	Received Signal 3 meters (dBµV)	Ant. Factor (dB)**	Amp. Gain (dB)*	Corr.	Field Strength (dBµV)	Limit (dBuV)	Margin (dB)
3	30.647	BL	V	17.4	20.4			37.8	40.0	2.2
	30.647	BL	Н	16.4	20.4			36.8	40.0	3.2
4	60.4	BL	V	27.5	8.1			35.6	40.0	4.4
	60.4	BL	Н	23.3	8.1			31.4	40.0	8.6

Notes:

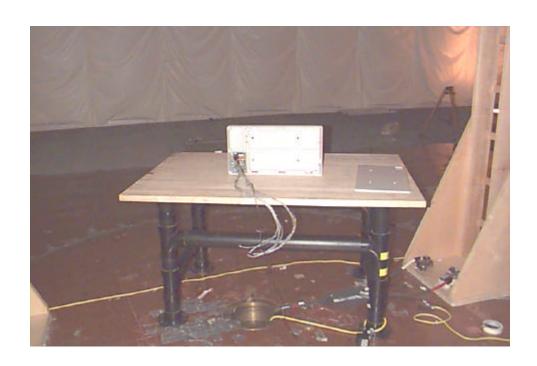
B/C = Biconical, BL = Bilog, L/P = Log-Periodic, H = Horn, D/P = Dipole, E/D = EMCO Dipole

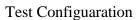
* Re-measured using dipole antenna.

** Includes cable loss when amplifier is not used.

*** Includes cable loss.

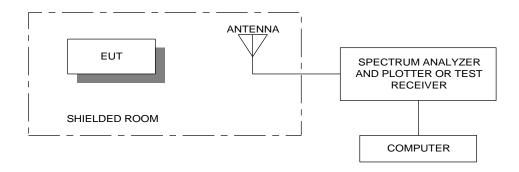
() Denotes failing emission level.


N.D. = Not Detected

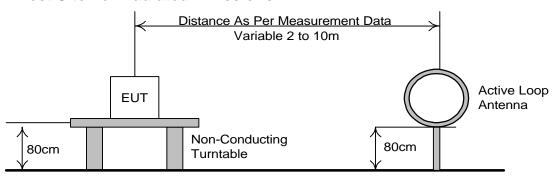

All emissions measured were extrapolated using $40\ dB/decade$ extrapolation factor.

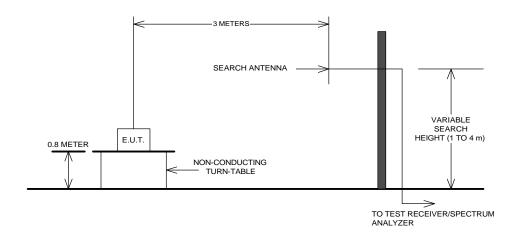
All harmonic and spurious emissions were searched up to the 10th harmonic

Photo, Test Set-up



Ferrite on Power Line




Section 4. Block Diagrams

Radiated Prescan

Test Site For Radiated Emissions

FCC PART 15, SUBPART C, 15.209 PROJECT NO.:2W06569, Issue III

EQUIPMENT:XMARK Large Exciter

Section 5. Test Equipment List

CAL	Equipment	Manufacturer	Model No.	Asset/Serial No.	Last Cal.	Next Cal.
Cycle						
1 Year	Receiver	Rohde & Schwarz	ESH3	FA000872	May 02/02	May 02/03
1 Year	Receiver	Rohde & Schwarz	ESVS-30	FA001445	June. 07/02	June. 07/03
1 Year	Spectrum Analyzer	Hewlett-Packard	8565E	FA000981	July. 15/02	July. 15/03
1 Year	Active Loop Antenna	Rohde & Schwarz	HFH2-Z2	FA000631	May. 12/02	May. 12/03
1 Year	Bilog	Schaffner	CBL6112B	FA001503	July. 02/02	July. 02/03
Extended	LISN(peripheral)	Tegam	95300-50	FA000986	Oct. 22/01	Nov. 22/02
Extended	LISN(peripheral)	Tegam	95300-50	FA000987	Oct. 22/01	Nov. 22/02
NCR	International Power Supply	California	1001WP	FA000965	NCR	NCR
		Instruments				
1 Year	Spectrum Analyzer	Hewlett-Packard	8566B	FA001309	Nov. 27/01	Nov. 27/02
1 Year	Spectrum Analyzer Display	Hewlett-Packard	85662A	FA001309	Nov. 27/01	Nov. 27/02
1 Year	Quasi-Peak Adapter	Hewlett-Packard	85650A	FA000801	Nov. 27/01	Nov. 27/02

Page 17 of 17