According to 447498 D01 General RF Exposure Guidance v05 The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by: [(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \leq 3.0$ for 1-g SAR and \leq 7.5 for 10-g extremity SAR, where

f(GHz) is the RF channel transmit frequency in GHz

Power and distance are rounded to the nearest $\ensuremath{\mathtt{mW}}$ and $\ensuremath{\mathtt{mM}}$ before calculation

The result is rounded to one decimal place for comparison

```
eirp = pt x gt = (EXd)<sup>2</sup>/30
where:
pt = transmitter output power in watts,
gt = numeric gain of the transmitting antenna (unitless),
E = electric field strength in V/m, --- 10<sup>((dBuV/m)/20)</sup>/10<sup>6</sup>
d = measurement distance in meters (m)---3m
Sopt = (EXd)<sup>2</sup>/30 x gt
```

Ant gain= 2.34 dBi ; so Ant numeric gain= 1.7

Field strength = 89.84 dBuV/m @3m

So $Pt = \{ [10^{(89.84/20)}/10^6 x3]^2/30x1.7 \} x1000 \text{ mW} = 0.17 \text{mW} \}$

So $(0.17 \text{ mW}/5\text{mm}) \times \sqrt{2.480} \text{ GHz} = 0.054 < 3$

Then SAR evaluation is not required