

ANSI/IEEE Std. C95.1-1992

in accordance with the requirements of

FCC Report and Order: ET Docket 93-62, and OET Bulletin 65 Supplement C

TEST REPORT

For

Alpha Networks Inc.

802.11g cardbus

Model: CG-WLCB54GL

Trade Name: corega K.K.

Prepared for

Alpha Networks Inc. No. 8, Li-Shing Road VII, Science-based Industrial Park, Hsinchu, Taiwan, R.O.C.

Prepared by

Compliance Certification Services Inc. No. 81-1, Lane 210, Bade Rd. 2, Luchu Hsiang, Taoyuan Hsien, (338) Taiwan, R.O.C. TEL: 886-3-324-0332 FAX: 886-3-324-5235

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document.

CERTIFICATE OF COMPLIANCE (SAR EVALUATION)

Dates of Tests: March 23, 2004			
Applicant:	Alpha Networks Inc. No. 8, Li-Shing Road VII, Science-based Industrial Park, Hsinchu, Taiwan, R.O.C.		
Model Number:	CG-WLCB54GL		
Device Category:	PORTABLE DEVICES		
Exposure Category:	GENERAL POPULATION/UNCONTROLLED EXPOSURE		

Test Sample is a:	Production unit	_	
Modulation type: Tx Frequency:	802.11b Direct Sequence Spread Spectrum 802.11g Orthogonal Frequency Division Multiplexing (OFDM) 2412 ~ 2462 MHz		
Max. O/P Power: (Conducted/Peak) Max. SAR (1g):	: 17.62dBm 0.457W/kg		
Application Type:	Certification		
FCC Rule Part(s):	15C		

Note: This Report is only applicable for 802.11b/g.

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE Std. C95.1-1992 and had been tested in accordance with the measurement procedures specified in FCC OET 65 Supplement C (released on 6/29/2001 see Test Report).

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Approved by:

Harris W. Lai Executive Vice President Compliance Certification Services Inc.

Reviewed by:

James Lee Section Manager Compliance Certification Services Inc.

TABLE OF CONTENTS

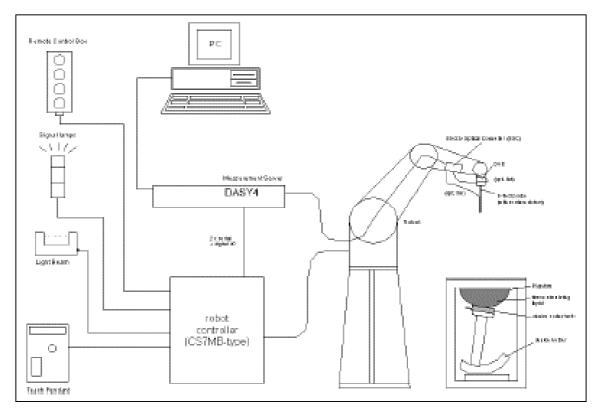
1.	EUI	Γ DESCRIPTION	.4
2.	REC	QUIREMENTS FOR COMPLIANCE TESTING DEFINED BY THE FCC	.5
3.	DOS	SIMETRIC ASSESSMENT SYSTEM	.5
	3.1	MEASUREMENT SYSTEM DIAGRAM	6
	3.2	SYSTEM COMPONENTS DASY4 Measurement Server Data Acquisition Electronics (DAE) ET3DV6 Isotropic E-Field Probe for Dosimetric Measurements SAM Phantom (V4.0) Device Holder for SAM Twin Phantom System Validation Kits	7 7 7 8 8
4.	EVA	ALUATION PROCEDURES	.9
5.	ME	ASUREMENT UNCERTAINTY	12
6.	EXI	POSURE LIMIT	13
7.	ME	ASUREMENT RESULTS	14
	7.1	SYSTEM PERFORMANCE CHECK	14
	7.2	TEST LIQUID CONFIRMATION	15
	7.3	EUT TUNE-UP PROCEDURES	16
	7.4	SAR MEASUREMENTS RESULTS	17
8.	EUT	Г РНОТОЅ	19
9.	EQ	UIPMENT LIST & CALIBRATION STATUS	20
10.	REI	FERENCES	21
11.	AT	FACHMENTS	22

1. EUT DESCRIPTION

Applicant:	Alpha Networks Inc. No. 8, Li-Shing Road VII, Science-based Industrial Park, Hsinchu, Taiwan, R.O.C.		
Model Number:	CG-WLCB54GL		
Device Category:	PORTABLE DEVICES		
Exposure Category:	GENERAL POPULATION/UNCONTROLLED EXPOSURE		

Test Sample is a:	Production unit		
Modulation type:	802.11b Direct Sequence Spread Spectrum 802.11g Orthogonal Frequency Division Multiplexing (OFDM)		
Tx Frequency:	2412 ~ 2462 MHz		
Max. O/P Power: (Conducted/Peak)	17.62dBm		
Max. SAR (1g):	0.457W/kg		
Application Type:	Certification		
FCC Rule Part(s):	15C		
Antennas:	Printed Ant.		
Test Host:	Compaq P/N:PP2150 S/N:1V31LDL23407		

2. REQUIREMENTS FOR COMPLIANCE TESTING DEFINED BY THE FCC


The US Federal Communications Commission has released the report and order "Guidelines for Evaluating the Environmental Effects of RF Radiation", ET Docket No. 93-62 in August 1996 [1]. The order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mW/g for an uncontrolled environment and 8.0 mW/g for an occupational/controlled environment as recommended by the ANSI/IEEE standard C95.1-1992 [6]. According to the Supplement C of OET Bulletin 65 "Evaluating Compliance with FCC Guide-lines for Human Exposure to Radio frequency Electromagnetic Fields", released on Jun 29, 2001 by the FCC, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.

3. DOSIMETRIC ASSESSMENT SYSTEM

These measurements were performed with the automated near-field scanning system DASY4 from Schmid & Partner Engineering AG (SPEAG). The system is based on a high precision robot (working range greater than 0.9 m) which positions the probes with a positional repeatability of better than \pm 0.02 mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines to the data acquisition unit. The SAR measurements were conducted with the dosimetric probe ET3DV6-SN: 1762 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe has been calibrated according to the procedure with accuracy of better than \pm 10%. The spherical isotropy was evaluated with the procedure and found to be better than \pm 0.25 dB. The phantom used was the SAM Twin Phantom as described in FCC supplement C, IEEE P1528 and EN50361.

3.1 MEASUREMENT SYSTEM DIAGRAM

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (St'aubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY4 software.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing validating the proper functioning of the system.

3.2 SYSTEM COMPONENTS

DASY4 Measurement Server

The DASY4 measurement server is based on a PC/104 CPU board with a 166MHz low-power Pentium, 32MB chip disk and 64MB RAM. The necessary circuits for communication with either the DAE3 electronic box as well as the 16-bit AD-converter system for optical detection and digital I/O interface are contained on the DASY4 I/O-board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation.

The PC-operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with two expansion slots which are reserved for future applications. Please note that the expansion slots do not have a standardized pinout and therefore only the expansion cards provided by SPEAG can be inserted. Expansion cards from any other supplier could seriously damage the measurement server. Calibration: No calibration required.

Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE3) consists of a highly sensitive electrometer grade preamplifier with auto-zeroing, a channel and gainswitching multiplexer, a fast 16 bit AD converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection. The input impedance of the DAE3 box is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

ET3DV6 Isotropic E-Field Probe for Dosimetric Measurements

Construction:	Symmetrical design with triangular core Built-in optical fiber for surface detection system (ET3DV6 only) Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., glycolether)	
Calibration:	Basic Broad Band Calibration in air: 10-2500 MHz. Conversion Factors (CF) for HSL 900 and HSL 1800 CF-Calibration for other liquids and frequencies upon request.	
Frequency:	10 MHz to 3 GHz; Linearity: ± 0.2 dB (30 MHz to 3 GHz)	
Directivity:	± 0.2 dB in HSL (rotation around probe axis) ± 0.4 dB in HSL (rotation normal to probe axis)	
Dynamic Range: Optical Surface	$2~\mu\text{W/g}$ to $>100~\text{mW/g};$ Linearity: $\pm~0.2~\text{dB}$	
Detection:	\pm 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces (ET3DV6 only)	
Dimensions:	Overall length: 330 mm (Tip: 16 mm) Tip diameter: 6.8 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.7 mm	
Application:	General dosimetric measurements up to 3 GHz Interior of probe Compliance tests of mobile phones Fast automatic scanning in arbitrary phantoms (ET3DV6)	

E-Field probe

SAM Phantom (V4.0)

- Construction: The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528-200X, CENELEC 50361 and IEC 62209. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points with the robot.
 Shell Thickness: 2 ±0.2 mm
- Filling Volume:
 Approx. 25 liters

 Dimensions:
 Height: 810mm; Length: 1000mm; Width: 500mm

Device Holder for SAM Twin Phantom

Construction: In combination with the Twin SAM Phantom V4.0 or Twin SAM, the Mounting Device (made from POM) enables the rotation of the mounted transmitter in spherical coordinates, whereby the rotation point is the ear opening. The devices can be easily and accurately positioned according to IEC, IEEE, CENELEC, FCC or other specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

System Validation Kits

Construction:	Symmetrical dipole with l/4 balun Enables measurement of feedpoint impedance with NWA Matched for use near flat phantoms filled with brain simulating solutions Includes distance holder and tripod adaptor.	
Frequency:	450, 900, 1800, 2450, 5800 MHz	
Return loss:	> 20 dB at specified validation position	
Power capability:	> 100 W (f < 1 GHz); > 40 W (f > 1 GHz)	2
Dimensions:	450V2: dipole length: 270 mm; overall height: 330 mm D900V2: dipole length: 149 mm; overall height: 330 mm D1800V2: dipole length: 72 mm; overall height: 300 mm D2450V2: dipole length: 51.5 mm; overall height: 300 mm D5GHzV2: dipole length: 25.5 mm; overall height: 290 mm	LAR

4. EVALUATION PROCEDURES

DATA EVALUATION

The DASY4 post processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	- Sensitivity	<i>Norm</i> _{<i>i</i>} , a_{i0} , a_{i1} , a_{i2}
	- Conversion factor	$ConvF_i$
	- Diode compression point	dcp_i
Device parameters:	- Frequency	f
	- Crest factor	cf
Media parameters:	- Conductivity	σ
	- Density	ρ

These parameters must be set correctly in the software. They can be found in the component documents or be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

with	V_i	= Compensated signal of channel i	(i = x, y, z)
	U_i	= Input signal of channel i	(i = x, y, z)
	cf	= Crest factor of exciting field	(DASY parameter)
	dcp_i	= Diode compression point	(DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes:
$$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

H-field probes:

$$H_i = \sqrt{Vi} \cdot \frac{a_{i10} + a_{i11}f + a_{i12}f^2}{f}$$

with V_i = Compensated signal of channel i (i = x, y, z) $Norm_i$ = Sensor sensitivity of channel i (i = x, y, z) $\mu V/(V/m)^2$ for E0field Probes

ConvF = Sensitivity enhancement in solution

- *aij* = Sensor sensitivity factors for H-field probes
- f = Carrier frequency (GHz)
- Ei = Electric field strength of channel i in V/m
- Hi = Magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with SAR = local specific absorption rate in mW/g

 E_{tot} = total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

 ρ = equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

The power flow density is calculated assuming the excitation field as a free space field.

$$P_{pwe} = \frac{E_{tot}^2}{3770}$$
 or $P_{pwe} = H_{tot}^2 \cdot 37.7$

with P_{pwe} = Equivalent power density of a plane wave in mW/cm²

 E_{tot} = total electric field strength in V/m

 H_{tot} = total magnetic field strength in A/m

SAR MEASUREMENT PROCEDURES

The procedure for assessing the peak spatial-average SAR value consists of the following steps:

• Power Reference Measurement

The reference and drift jobs are useful jobs for monitoring the power drift of the device under test in the batch process. Both jobs measure the field at a specified reference position, at a selectable distance from the phantom surface. The reference position can be either the selected section's grid reference point or a user point in this section. The reference job projects the selected point onto the phantom surface, orients the probe perpendicularly to the surface, and approaches the surface using the selected detection method.

Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a finer measurement around the hot spot. The sophisticated interpolation routines implemented in DASY4 software can find the maximum locations even in relatively coarse grids. The scan area is defined by an editable grid. This grid is anchored at the grid reference point of the selected section in the phantom. When the area scan's property sheet is brought-up, grid was at to **15 mm by 15 mm** and can be edited by a user.

Zoom Scan

Zoom scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default zoom scan measures 5x5x7 points within a cube whose base faces are centered around the maximum found in a preceding area scan job within the same procedure. If the preceding Area Scan job indicates more then one maximum, the number of Zoom Scans has to be enlarged accordingly (The default number inserted is 1).

• Power Drift measurement

The drift job measures the field at the same location as the most recent reference job within the same procedure, and with the same settings. The drift measurement gives the field difference in dB from the reading conducted within the last reference measurement. Several drift measurements are possible for one reference measurement. This allows a user to monitor the power drift of the device under test within a batch process. In the properties of the Drift job, the user can specify a limit for the drift and have DASY4 software stop the measurements if this limit is exceeded.

• Z-Scan

The Z Scan job measures points along a vertical straight line. The line runs along the Z-axis of a onedimensional grid. A user can anchor the grid to the current probe location. As with any other grids, the local Zaxis of the anchor location establishes the Z-axis of the grid.

5. MEASUREMENT UNCERTAINTY

UNCERTAINTY BUDGE ACCORDING TO IEEE P1528						
Error Description	Uncertainty Value ±%	Probability distribution	Divisor	C ₁ 1g	Standard unc.(1g) ±%	V ₁ or V _{eff}
Measurement System						
Probe calibration	±4.8	normal	1	1	±4.8	
Axial isotropy of probe	±4.6	rectangular	3	$(1-Cp)^{1/2}$	±1.9	
Sph. Isotropy of probe	±9.7	rectangular	3		±3.9	
Probe linearity	±4.5	rectangular	3	1	±2.7	
Detection Limit	±0.9	rectangular	3	1	±0.6	
Boundary effects	±8.5	rectangular	3	1	±4.8	
Readoutelectronics	±1.0	normal	1	1	±1.0	
Response time	±0.9	rectangular	3	1	±0.5	
Integration time	±1.2	rectangular	3	1	±0.8	
Mech Constrains of robot	±0.5	rectangular	3	1	±0.2	
Probe positioning	±2.7	rectangular	3	1	±1.7	
Extrap. And integration	±4.0	rectangular	3	1	±2.3	
RF ambient conditiona	±0.54	rectangular	3	1	±0.43	
Test Sample Related						
Device positioning	±2.2	normal	1	1	±2.23	11
Device holder uncertainty	±5	normal	1	1	±5.0	7
Power drift	±5	rectangular	3	1	±2.9	
Phantom and Set up						
Phantom uncertainty	±4	rectangular	3	1	±2.3	
Liquid conductivity	±5	rectangular	3	0.6	±1.7	
Liquid conductivity	±5	rectangular	3	0.6	±3.5/1.7	
Liquid permittivity	±5	rectangular	3	0.6	±1.7	
Liquid permittivity	±5	rectangular	3	0.6	±1.7	
Combined Standard Uncertainty					±12.14/11.76	
Coverage Factor for 95%		kp=2				
Expanded Standard Uncertainty					±24.29/23.51	

Table: Worst-case uncertainty for DASY4 assessed according to IEEE P1528.

The budge is valid for the frequency range 300 MHz to 3G Hz and represents a worst-case analysis.

6. EXPOSURE LIMIT

(A).Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	2.0

(B). Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

NOTE: Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

Population/Uncontrolled Environments:

are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Occupational/Controlled Environments:

are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

NOTE GENERAL POPULATION/UNCONTROLLED EXPOSURE PARTIAL BODY LIMIT 1.6 W/kg

7. MEASUREMENT RESULTS

7.1 SYSTEM PERFORMANCE CHECK

The system performance check is performed prior to any usage of the system in order to guarantee reproducible results. The system performance check verifies that the system operates within its specifications. The system performance check results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files.

SYSTEM PERFORMANCE CHECK MEASUREMENT CONDITIONS

- The measurements were performed in the flat section of the SAM twin phantom filled with Body simulating liquid of the following parameters.
- The DASY4 system with an E-fileld probe ET3DV6 SN: 1762 was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 10mm was aligned with the dipole.
- Special 5x5x7 fine cube was chosen for cube integration (dx=dy= 7.5 mm, dz= 3 mm).
- Distance between probe sensors and phantom surface was set to 3.0 mm.
- The dipole input power (forward power) was 250 mW±3%.
- The results are normalized to 1 W input power.

Reference SAR values

The reference SAR values were using measurement results indicated in the dipole calibration document (see table below)

Frequency (MHz)	1g SAR	10g SAR	Local SAR at Surface (Above Feed Point)	Local SAR at Surface (y = 2cm offset from feed point)
900	10.3	6.57	16.4	5.4
1800	38.2	20.3	69.5	6.8
2450(Body)	53.2	24.3	104.2	7.7

SYSTEM PERFORMANCE CHECK RESULTS

Dipole: D2450V2 SN: 731 **Date:** March 23, 2004

Ambient condition: Temperature 25.1°C; Relative humidity: 52%

Body Simulating Liquid		Daramatars	arameters Target		Deviation[%]	Limited[%]	
f(MHz)	Temp. [°C]	Depth [cm]	Tarameters	Target	Measured		
2450.00 24.10		Permitivity:	52.70	51.29	-2.68	± 5	
	24.10	15.00	Conductivity:	1.95	1.92	-1.54	± 5
			1g SAR:	53.20	52.80	-0.75	± 5

7.2 TEST LIQUID CONFIRMATION

SIMULATING LIQUIDS PARAMETER CHECK

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values

The relative permittivity and conductivity of the tissue material should be within \pm 5% of the values given in the table below. 5% may not be easily achieved at certain frequencies. Under such circumstances, 10% tolerance may be used until more precise tissue recipes are available

IEEE SCC-34/SC-2 P1528 RECOMMENDED TISSUE DIELECTRIC PARAMETERS

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in P1528

Target Frequency	Head		Bo	ody
(MHz)	٤ _r	σ (S/m)	٤ _r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800-2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	45.3	5.27	48.2	6.00

SIMULATING LIQUIDS PARAMETER CHECK RESULTS

Ambient condition: Temperature: 25.1°C; Relative humidity: 52%

Date: March 23, 2004

Body Simulating Liquid		Parameters Target		Measured	Deviation[%]	Limited[%]	
f (MHz)	Temp. [°C]	Depth (cm)	Farameters	Target	wieasuieu	Deviation[%]	Lillineu[%]
2450.00	2450.00 24.10	24.10 15.00	Permitivity:	52.70	51.29	-2.68	± 5
2430.00		15.00	Conductivity:	1.95	1.92	-1.54	± 5

7.3 EUT TUNE-UP PROCEDURES

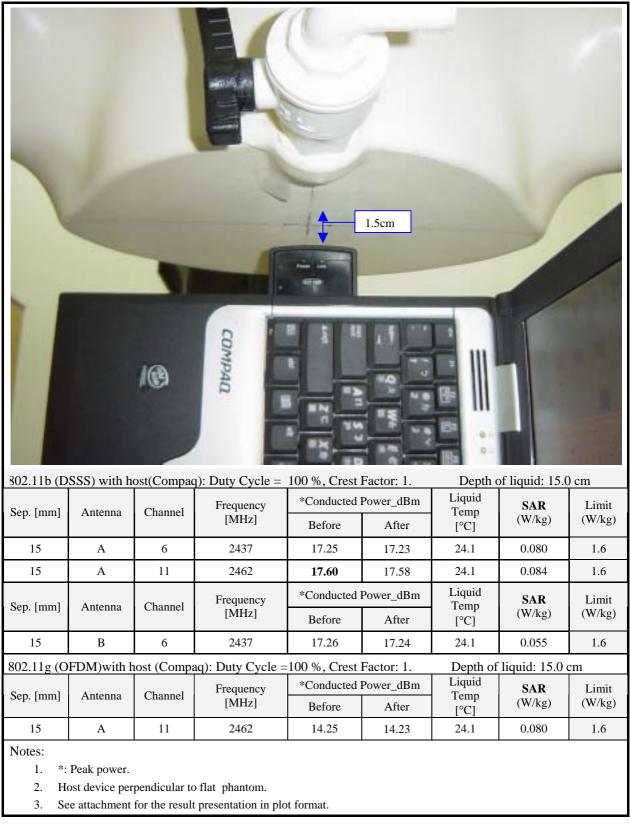
The following procedure had been used to prepare the EUT for the SAR test.

- The client supplied a special driver to program the EUT, allowing it to continually transmit the specified maximum power and change the channel frequency.
- The conducted power was measured at the high, middle and low channel frequency before and after the SAR measurement.
- The output power(dBm) we measured before SAR test in different transition rate and channel

Rate CH	1M	2M	5.5M	11M
1	16.67	16.87	17.07	17.27
6	16.66	16.86	17.06	17.26
11	17.02	17.22	17.42	17.62

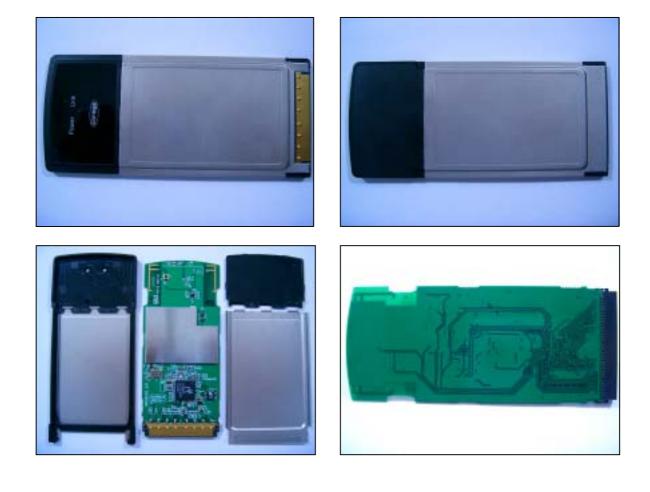
IEEE802.11g:

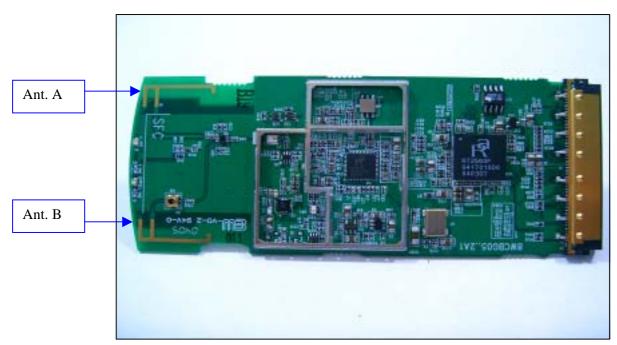
Rate CH	6M
1	14.08
6	14.00
11	14.26


7.4 SAR MEASUREMENTS RESULTS

EUT Setup Configuration 1

							IIIII	Tar
802.11b (D	SSS)with ho	Dist (Compace	1.0cm			Depth of Liquid	<u>liquid: 15.0</u>	
Sep. [mm]	Antenna	Channel	Frequency [MHz]	*Conducted I Before	After	Temp [°C]	SAR (W/kg)	Limit (W/kg)
0	А	1	2412	17.27	17.25	24.1	0.356	1.6
0	А	6	2437	17.26	17.24	24.1	0.395	1.6
0	А	11	2462	17.62	17.60	24.1	0.457	1.6
Sep. [mm]	Antenna	Channel	Frequency [MHz]	*Conducted I Before	Power_dBm After	Liquid Temp [°C]	SAR (W/kg)	Limit (W/kg)
0	В	6	2437	17.61	17.59	24.1	0.264	1.6
802.11g (O	FDM)with h	lost (Compa	aq): Duty Cycle =	=100 %, Crest]	Factor: 1.	Depth of	liquid: 15.0	cm
Sep. [mm]	Antenna	Channel	Frequency [MHz]	*Conducted I Before		Liquid Temp [°C]	SAR (W/kg)	Limit (W/kg)
0	А	11	2462	14.26	14.24	24.1	0.419	1.6
Notes: 1. *: 2. Bo	Peak power.	parallel with	flat phantom. presentation in pla				L	1




EUT Setup Configuration 2

8. EUT PHOTOS

9. EQUIPMENT LIST & CALIBRATION STATUS

Name of Equipment	Manufacturer	Type/Model	Serial Number	Calibration Due
S-Parameter Network Analyzer	Agilent	E8358A	US40260243	05/24/04
Electronic Probe kit	Hewlett Packard	85070D	N/A	N/A
Power Meter	Boonton	4531	13061	07/13/04
Power Sensor	Boonton	56218	2240	07/13/04
Power Meter	Agilent	E4416A	GB41291611	03/15/04
Power Sensor	Agilent	E9327A	US40441097	03/15/04
Thermometer	Amarell	4046	24775	10/10/13
Thermometer	Amarell	4046	23641	12/12/12
Universal Radio Communication Tester	Rohde & Schwarz	CMU 200	1100.0008.02	N/A
Signal Generator	Agilent	E8257C	US542340383	04/22/04
Amplifier	Mini-Circuit	ZHL-1724HLN	N/A	N/A
DC Power generator	ABM	8301HD		N/A
Data Acquisition Electronics (DAE)	SPEAG	DAE3	<mark>558</mark>	<mark>03/07/04</mark>
Dosimetric E-Field Probe	SPEAG	ET3DV6	1762	03/31/04
900 MHz System Validation Dipole	SPEAG	D900V2	172	01/12/06
1800 MHz System Validation Dipole	SPEAG	D1800V2	2d057	02/09/06
2450 MHz System Validation Dipole	SPEAG	D2450V2	731	03/21/05
Probe Alignment Unit	SPEAG	LB (V2)	348	N/A
Robot	Staubli	RX90B L	F02/5T69A1/A/01	N/A
SAM Twin Phantom V4.0	SPEAG	N/A	N/A	N/A
Devices Holder	SPEAG	N/A	N/A	N/A
Head 835 MHz	CCS	H835A	N/A	N/A
Muscle 835 MHz	CCS	M835A	N/A	N/A
Head 900 MHz	CCS	H900A	N/A	N/A
Muscle 900 MHz	CCS	M900A	N/A	N/A
Head 1800 MHz	CCS	H1800A	N/A	N/A
Muscle 1800 MHz	CCS	M1800A	N/A	N/A
Head 1900 MHz	CCS	H1900A	N/A	N/A
Muscle 1900 MHz	CCS	M1900A	N/A	N/A
Head 2450 MHz	CCS	H2450A	N/A	N/A
Muscle 2450 MHz	CCS	M2450A	N/A	N/A
Note: SPEAG will arrange the calibrati The equipment accuracy, please			k " of this test report	t on P.14.

10. FACILITIES

All measurement facilities used to collect the measurement data are located at

No. 81-1, Lane 210, Bade Rd. 2, Luchu Hsiang, Taoyuan Hsien, Taiwan, R.O.C.

No. 11, Wu-Kung 6 Rd, Wu-Ku Hsiang, Wu-Ku Industrial District, Taipei Hsien, (248) Taiwan.

No. 199, Chunghsen Road, Hsintien City, Taipei Hsien, Taiwan, R.O.C. **11. REFERENCES**

- [1] Federal Communications Commission, \Report and order: Guidelines for evaluating the environ-mental effects of radiofrequency radiation", Tech. Rep. FCC 96-326, FCC, Washington, D.C. 20554, 1996.
- [2] David L. Means Kwok Chan, Robert F. Cleveland, \Evaluating compliance with FCC guidelines for human exposure to radiofrequency electromagnetic fields", Tech. Rep., Federal Communication Commision, O_ce of Engineering & Technology, Washington, DC, 1997.
- [3] Thomas Schmid, Oliver Egger, and Niels Kuster, \Automated E-_eld scanning system for dosimetric assessments", IEEE Transactions on Microwave Theory and Techniques, vol. 44, pp. 105{113, Jan. 1996.
- [4] Niels Kuster, Ralph K.astle, and Thomas Schmid, \Dosimetric evaluation of mobile communications equipment with known precision", IEICE Transactions on Communications, vol. E80-B, no. 5, pp. 645{652, May 1997.
- [5] CENELEC, \Considerations for evaluating of human exposure to electromagnetic fields (EMFs) from mobile telecommunication equipment (MTE) in the frequency range 30MHz - 6GHz", Tech. Rep., CENELEC, European Committee for Electrotechnical Standardization, Brussels, 1997.
- [6] ANSI, ANSI/IEEE C95.1-1992: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, The Institute of Electrical and Electronics Engineers, Inc., New York, NY 10017, 1992.
- [7] Katja Pokovic, Thomas Schmid, and Niels Kuster, \Robust setup for precise calibration of E-_eld probes in tissue simulating liquids at mobile communications frequencies", in ICECOM _ 97, Dubrovnik, October 15{17, 1997, pp. 120{124.
- [8] Katja Pokovic, Thomas Schmid, and Niels Kuster, \E-_eld probe with improved isotropy in brain simulating liquids", in Proceedings of the ELMAR, Zadar, Croatia, 23{25 June, 1996, pp. 172{175.
- [9] Volker Hombach, Klaus Meier, Michael Burkhardt, Eberhard K. uhn, and Niels Kuster, \The dependence of EM energy absorption upon human head modeling at 900 MHz", IEEE Transactions onMicrowave Theory and Techniques, vol. 44, no. 10, pp. 1865{1873, Oct. 1996.
- [10] Klaus Meier, Ralf Kastle, Volker Hombach, Roger Tay, and Niels Kuster, \The dependence of EM energy absorption upon human head modeling at 1800 MHz", IEEE Transactions on Microwave Theory and Techniques, Oct. 1997, in press.
- [11] W. Gander, Computermathematik, Birkhaeuser, Basel, 1992.
- [12] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Receptes in C, The Art of Scientific Computing, Second Edition, Cambridge University Press, 1992. Dosimetric Evaluation of Sample device, month 1998 9
- [13] NIS81 NAMAS, \The treatment of uncertainity in EMC measurement", Tech. Rep., NAMAS Executive, National Physical Laboratory, Teddington, Middlesex, England, 1994.
- [14] Barry N. Taylor and Christ E. Kuyatt, \Guidelines for evaluating and expressing the uncertainty of NIST measurement results", Tech. Rep., National Institute of Standards and Technology, 1994. Dosimetric Evaluation of Sample device, month 1998 10

12. ATTACHMENTS

Exhibit	Content
1	Data Acquisition Electronics (DAE)-DAE3, S/N: 558
2	Dosimetric E-Field Probe - ET3DV6, S/N: 1762
3	Validation Dipole - D2450V2, S/N: 731
4	System Performance Check Plots
5	SAR Test Plots

END OF REPORT

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

-

20 C C

and the second se

Object(s)	DAE3 - SN:558	Note Man Banna	
Calibration procedure(s)	QA CAL-06.v2 Calibration proces	dure for the data acquisit	tion unit (DAE)
Calibration date:	March 07, 2003	and the second	CONTRACTOR OF STREET
Condition of the calibrated item	In Tolerance (acc	ording to the specific cal	libration document)
Calibration Equipment used (MSTE Model Type	critical for calibration)	Cal Date	
VICIDE: 1 VICE	10 #		
Fluka Process Calibrator Type 702	and the second se	3-Sep-01	Scheduled Calibration Sep-03
and the second se	and the second se	and a little of a second second second	and the second se
luka Process Calibrator Type 702	SN: 6295803	3-Sep-01	Sep-03
luka Process Calibrator Type 702	and the second se	and a little of a second second second	and the second se
luka Process Calibrator Type 702	SN: 6295803	3-Sep-01	Sep-03
luka Process Calibrator Type 702	SN: 6295803	3-Sep-01 Function Technician	Signature

1. DC Voltage Measurement

DA - Converter Values from DAE

High Range:	1LSB =	6.1µV,	full range =	400 mV
Low Range:	1LSB =	61nV,	full range =	4 mV

Software Set-up: Calibration time: 3 sec Measuring time: 3 sec

Setup	X	Y	Z
High Range	405.010098	404.9037428	405.0817835
Low Range	3.972	3.95185	3.96828
Connector Position	86 °		•

High Range	Input	Reading in µV	% Error
Channel X + Input	200mV	200000	0.00
	20mV	20003.4	0.02
Channel X - Input	20mV	-19993	-0.04
Channel Y + Input	200mV	200001	0.00
	20mV	20002.7	0.01
Channel Y - Input	20mV	-19993	-0.04
Channel Z + Input	200mV	200000	0.00
	20mV	20000.8	0.00
Channel Z - Input	20mV	-19997.7	-0.01

Low Range	Input	Reading in µV	% Error
Channel X + Input	2mV	2000.2	0.01
-	0.2mV	200.04	0.02
Channel X - Input	0.2mV	-200.81	0.41
Channel Y + Input	2mV	2000.1	0.00
	0.2mV	199.47	-0.27
Channel Y - Input	0.2mV	-201.01	0.50
Channel Z + Input	2mV	1999.9	0.00
	0.2mV	198.68	-0.66
Channel Z - Input	0.2mV	-201.1	0.55

2. Common mode sensitivity

Software Set-up

Calibration time: 3 sec, Measuring time: 3 sec High/Low Range

in μV	Common mode Input Voltage	High Range Reading	Low Range Reading
Channel X	200mV	-1.0284	-1.5716
	- 200mV	3.9204	1.3725
Channel Y	200mV	6.7686	5.874
	- 200mV	-6.8145	-8.0898
Channel Z	200mV	2.1943	2.766
	- 200mV	-2.52	-4.6218

3. Channel separation

Software Set-up Calibration time: 3 sec, Measuring time: 3 sec High Range

in μV	Input Voltage	Channel X	Channel Y	Channel Z
Channel X	200mV		0.88082	0.19177
Channel Y	200mV	0.049124		0.25676
Channel Z	200mV	-2.1226	-0.89508	

4. AD-Converter Values with inputs shorted

in LSB	Low Range	High Range
Channel X	16492	16236
Channel Y	16307	15690
Channel Z	16461	16033

-

5. Input Offset Measurement

Measured after 15 min warm-up time of the Data Acquisition Electronic. Every Measurement is preceded by a calibration cycle.

Software set-up:

Calibration time:
Measuring time:
Number of measurements:

3 sec 3 sec 100, Low Range

Input 10MΩ

in μV	Average	min. Offset	max. Offset	Std. Deviation
Channel X	-0.52	-1.64	0.60	0.43
Channel Y	-2.05	-3.65	0.06	0.51
Channel Z	-0.34	-2.05	0.43	0.37

Input shorted

in μV	Average	min. Offset	max. Offset	Std. Deviation
Channel X	0.04	-0.84	1.09	0.41
Channel Y	-0.77	-2.08	0.17	0.40
Channel Z	-1.01	-1.68	-0.38	0.24

6. Input Offset Current

in fA	Input Offset Current
Channel X	< 25
Channel Y	< 25
Channel Z	< 25

7. Input Resistance

	Calibrating	Measuring
Channel X	200 kΩ	200 MΩ
Channel Y	200 kΩ	200 MΩ
Channel Z	200 kΩ	200 MΩ

8. Low Battery Alarm Voltage

in V	Alarm Level
Supply (+ Vcc)	7.66 V
Supply (- Vcc)	-7.53 V

9. Power Consumption

in mA	Switched off	Stand by	Transmitting
Supply (+ Vcc)	0.000	5.83	14.1
Supply (- Vcc)	-0.011	-7.86	-9.13

10. Functional test

Touch async pulse 1	ok
Touch async pulse 2	ok
Touch status bit 1	ok
Touch status bit 2	ok
Remote power off	ok
Remote analog Power control	ok
Modification Status	B – C

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

C&C (Auden)

bject(s)	ET3DV6 - SN:1762	and the second second second second	
Calibration procedure(s)	QA CAL-01.v2 Calibration procedu	re for dosimetric E-field probe	8
Calibration date:	March 31, 2003		
Condition of the calibrated item	In Tolerance (accord	rding to the specific calibration	document)
17025 international standard.	d in the closed laboratory facilit	the calibration procedures and conformity of the calibration procedures and conformity of the transmission of the calibration o	
Model Type	ID#	Cel Date	Scheduled Calibration
IF generator HP 8684C	US3642U01700	4-Aug-99 (in house check Aug-02)	In house check: Aug-05
ower sensor E4412A	MY41495277	Mar-02	Mar-03
ower sensor HP 8481A	MY41092180	18-Sep-02	Sep-03
	GB41293874	13-Sep-02	Sep-03
ower meter EPM E44198	U\$38432428	3-May-00	In house check: May 03
		3-Sep-01	Sep-03
Network Analyzer HP 8753E	SN: 6295803		
Power meter EPM E44198 Network Analyzer HP 8753E Fluke Process Calibrator Type 702	SN: 6295803	Function	Signature
Network Analyzer HP 8753E		Function Technician	D.Vellen
Network Analyzer HP 8753E Fulke Process Calibrator Type 702	- Name	station and in the stational station of the local state of the state o	D.Vellen Aus, - Katy-
Network Analyzer HP 8753E Fulke Process Calibrator Type 702 Calibrated by:	Name New Vetterk	Textmin	D.Vellen

880-KP0301061-A

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Probe ET3DV6

S

peag

SN:1762

Manufactured: Last calibration: January 20, 2003 March 31, 2003

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

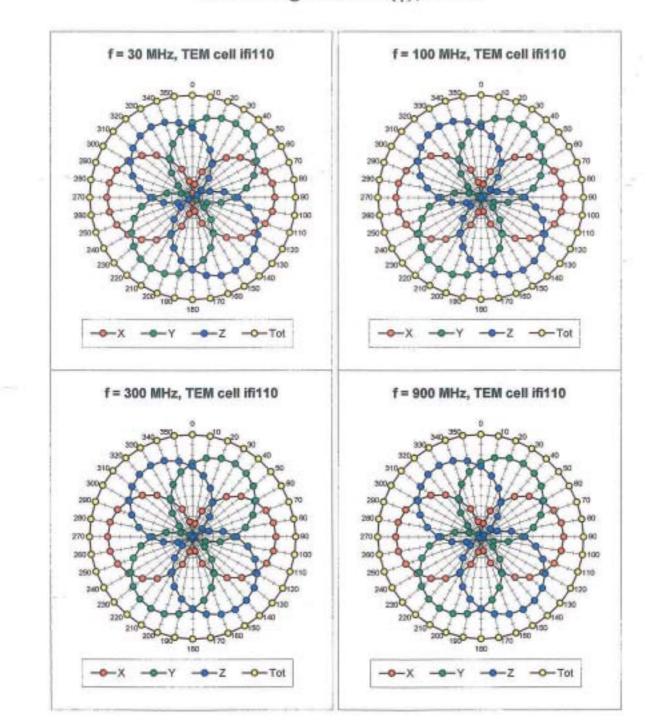
March 31, 2003

DASY - Parameters of Probe: ET3DV6 SN:1762

Sensitivity in Free Space Diode Compression

NormX	1.90 μV/(V/m) ²	DCP X	96	mV
NormY	1.78 µV/(V/m)2	DCP Y	96	mV
NormZ	1.82 µV/(V/m) ²	DCP Z	96	mV

Sensitivity in Tissue Simulating Liquid

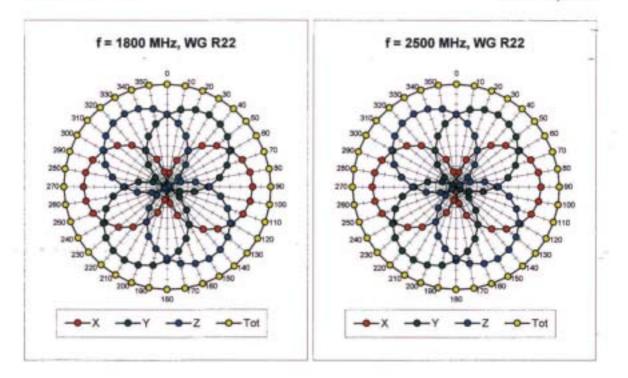

Head	900 MHz		_{Er} = 41.5 ± 5%	$\sigma=0.97\pm5\%$	mho/m
Head	835 MHz		$v_{\rm r} = 41.5 \pm 5\%$	$\sigma = 0.90 \pm 5\%$	mho/m
	ConvF X	6.7	± 9.5% (k=2)	Boundary e	effect:
	ConvF Y	6.7	± 9.5% (k=2)	Alpha	0.67
	ConvF Z	6.7	± 9.5% (k=2)	Depth	1.74
Head	1800 MHz		$e_r = 40.0 \pm 5\%$	$\sigma = 1.40 \pm 5\%$	mho/m
Head	1900 MHz		$c_r = 40.0 \pm 5\%$	$\sigma = 1.40 \pm 5\%$	mho/m
	ConvF X	5.4	± 9.5% (k=2)	Boundary e	effect:
	ConvF Y	5.4	± 9.5% (k=2)	Alpha	0.50
	ConvF Z	5.4	± 9.5% (k=2)	Depth	2.63

Boundary Effect

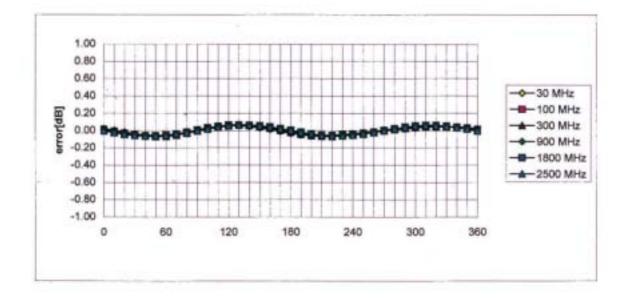
	Probe Tip ti	Boundary	1 mm	2 mm
	SAR _{be} [%]	Without Correction Algorithm	8.8	4.5
	SAR _{be} [%]	With Correction Algorithm	0.1	0.2
Head	1800	MHz Typical SAR gradient: 1	0 % per mm	
	Probe Tip to	Boundary	1 mm	2 mm
	SAR _{be} [%]	Without Correction Algorithm	13.8	9.3
	SAR _{be} [%]	With Correction Algorithm	0.2	0.1

Probe Tip to Sensor Center	2.7	mm
Optical Surface Detection	1.4 ± 0.2	mm

March 31, 2003

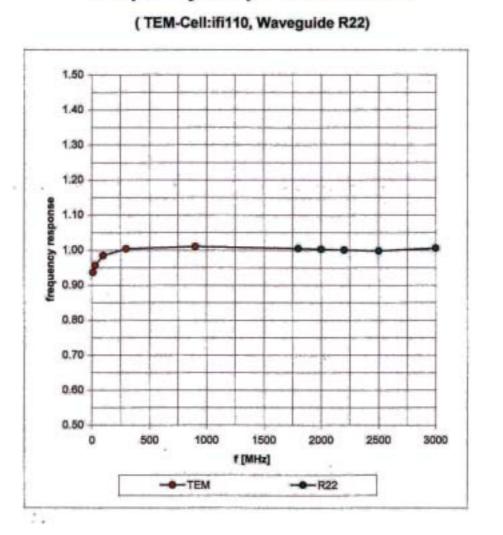


Receiving Pattern (ϕ), $\theta = 0^{\circ}$

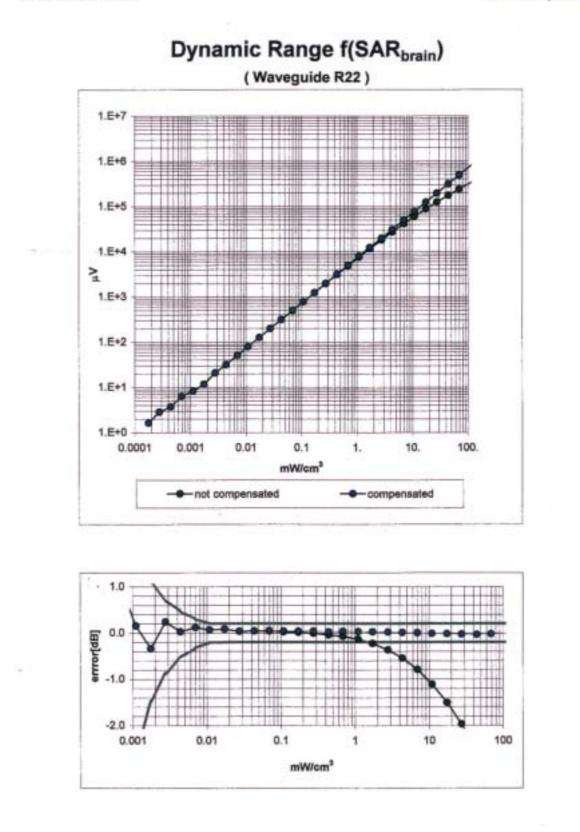

Page 3 of 10

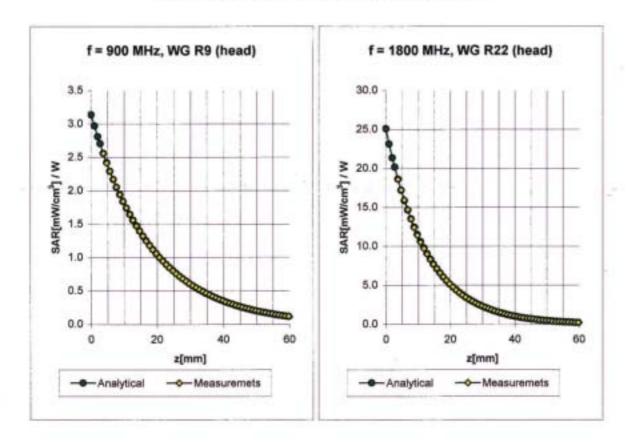
-

March 31, 2003


Isotropy Error (ϕ), $\theta = 0^{\circ}$

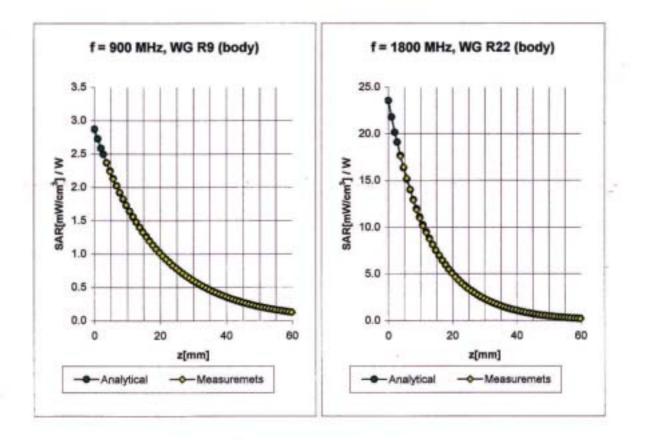
Page 4 of 10


March 31, 2003



Frequency Response of E-Field

Page 5 of 10

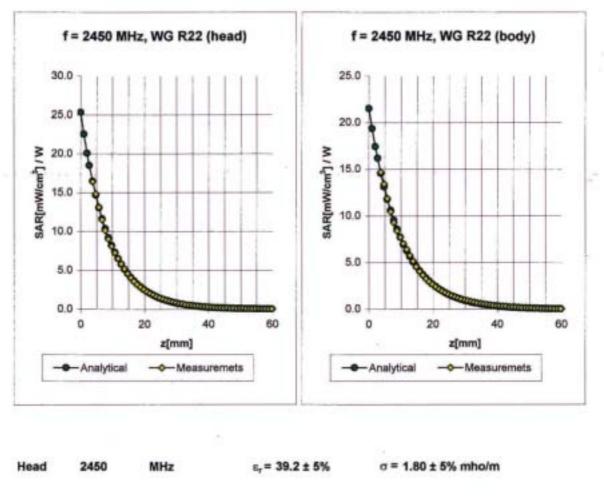

Page 6 of 10

Conversion Factor Assessment

Head	900 MHz		$e_r = 41.5 \pm 5\%$	σ = 0.97 ± 5% mho/	m
Head	835 MHz		$\varepsilon_r = 41.5 \pm 5\%$	a = 0.90 ± 5% mho/	m
	ConvF X	6.7	± 9.5% (k=2)	Boundary effect	
	ConvF Y	6.7	± 9.5% (k=2)	Alpha	0.67
	ConvF Z	6.7	± 9.5% (k=2)	Depth	1.74
	ConvF Y	6.7	± 9.5% (k=2)	Alpha	0.67

Head	1800 MHz		$e_r = 40.0 \pm 5\%$	σ=	1.40 ± 5% m	nho/m
Head	1900 MHz		$\epsilon_r = 40.0 \pm 5\%$	σ=	1.40 ± 5% m	nho/m
	ConvF X	5.4	± 9.5% (k=2)		Boundary ef	ffect:
	ConvF Y	5.4	± 9.5% (k=2)		Alpha	0.50
	ConvF Z	5.4	± 9.5% (k=2)		Depth	2.63

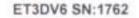
Conversion Factor Assessment

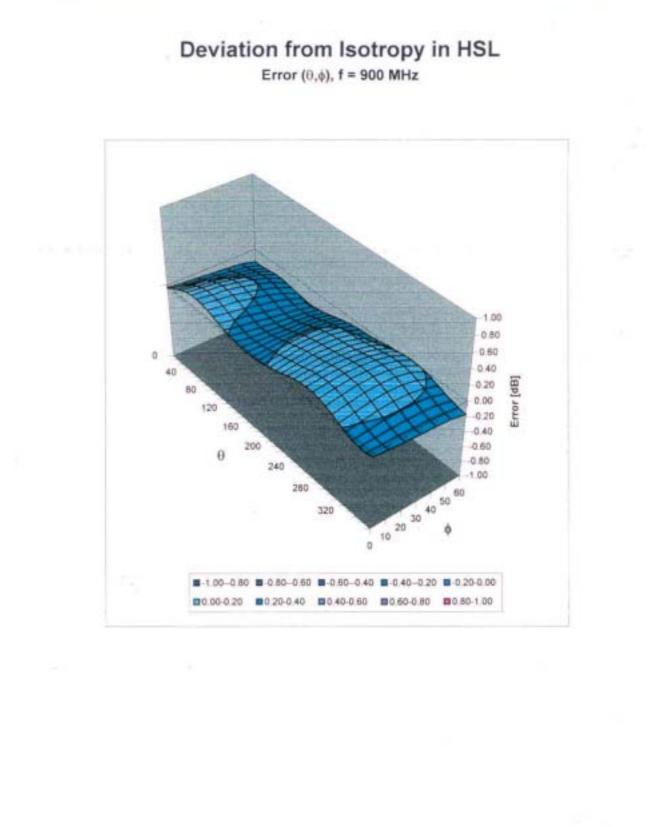

Body	900 MHz		$\epsilon_r = 55.0 \pm 5\%$	σ = 1.05 ± 5% mh	o/m
Body	835 MHz		$\epsilon_r = 55.2 \pm 5\%$	σ = 0.97 ± 5% mh	o/m
	ConvF X	6.5	± 9.5% (k=2)	Boundary effe	ct:
	ConvF Y	6.5	± 9.5% (k=2)	Alpha	0.43
	ConvF Z	6.5	± 9.5% (k=2)	Depth	2.34

E,= 53.3 ± 5% σ = 1.52 ± 5% mho/m Body 1800 MHz Body 1900 MHz s,= 53.3 ± 5% σ = 1.52 ± 5% mho/m ConvF X 5.0 ± 9.5% (k=2) Boundary effect: ConvF Y 5.0 ± 9.5% (k=2) Alpha 0.57 2.65 5.0 ± 9.5% (k=2) ConvF Z Depth

Page 8 of 10

ET3DV6 SN:1762


March 31, 2003


Conversion Factor Assessment

Head	2450	MHz		$z_r = 39.2 \pm 5\%$	σ = 1.80 ± 5% m	ho/m
	ConvF X		5.1	± 8.9% (k=2)	Boundary eff	ect:
	ConvF Y		5.1	± 8.9% (k=2)	Alpha	1.32
	ConvF Z		5.1	± 8.9% (k=2)	Depth	1.61
		30				
Body	2450	MHz		$v_r = 52.7 \pm 5\%$	σ = 1.95 ± 5% m	ho/m
	ConvF X		4.6	± 8.9% (k=2)	Boundary eff	lect:
	ConvF Y		4.6	± 8.9% (k=2)	Alpha	1.39
	ConvF Z		4.6	± 8.9% (k=2)	Depth	1.60

Page 9 of 10

March 31, 2003

d2450v2_731_20030521_p01-09 (1702x2338x24b jpeg)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Bwitzerland

(special)	D2450V2 - SN:731			
Calibration procedure(s)	QA CAL-05.v2 Calibration procedure for dipole validation kits			
Calibration date	May 21, 2003			
Condition of the calibrated litem	In Tolerance (according to the specific calibration document)			
		ry facility: environment temperature 22 +/- 2 degrees	Contrast and contrast of the or	
Calibration Equipment used (M61 Vodel Type RF generator R&S SML-03 Power sensor HP 6461A Power sensor HP 6461A	TE critical for calibration) ID # 100698 MY41092317 US37292783	Cal Date (Calibrated by, Certificate No.) 27-Mar-2002 (RSS. No. 20-92389) 18-Oct-02 (Aglient, No. 20021018) 30-Oct-02 (METAS. No. 252-0236)	Scheduled Calibration In house check: Mar-05 Oct-04 Oct-00	
Calibration Equipment used (M61 Nodel Type RF generator R&S SML-03 Power sensor HP 8481A Power sensor HP 8481A Power mater EPM E442	TE critical for calibration) ID # 100698 MY41092317	Cal Date (Calibrated by, Certificate No.) 27-Mar-2002 (RSB, No. 20-92389) 18-Oct-02 (Aglient, No. 20021018)	Scheduled Calibration In house check: Mar-05 Oct-04	
Calibration Equipment used (M61 Nodel Type RF generator R&S SML-03 Power sensor HP 8481A Power sensor HP 8481A Power mater EPM E442	TE critical for calibration) 10:00 100698 MY41092317 US37292783 GB37490704	Cal Date (Calibrated by, Certificate No.) 27-Mar-2002 (RSS. No. 20-92389) 18-Oct-02 (Aglient, No. 20021018) 30-Oct-02 (METAS. No. 252-0236) 30-Oct-02 (METAS. No. 252-0236)	Scheduled Calibration In house check: Mar-05 Oct-04 Oct-03 Oct-03	
Calibration Equipment used (M61 RF generator R&S SML-00 Power sensor HP 6461A Power metar HP 8481A Power metar EPM E442 Vetwork Analyzer HP 8753E	TE critical for calibration(100698 MY41032317 US37202783 GB37480704 US38432420	Cal Date (Calibrated by, Certificate No.) 27-Mar-2002 (R&B, No. 20-92389) 18-OEI-02 (Aglient, No. 20021018) 30-OEI-02 (METAB, No. 252-0236) 30-OEI-02 (METAB, No. 252-0236) 3-OEI-02 (METAB, No. 252-0236) 3-May-00 (Agrient, No. 8702H084802)	Scheduled Calibration In house check: Man-05 Oct-04 Oct-03 Oct-03 In house check: May 03 Signature	
Al calibration Equipment used (M&T Calibration Equipment used (M&T Model Type RF generator R&S SML-00 Power sensor HP 5481A Power sensor HP 5481A Power matar EPM E442 Natwork Analyzer HP 8753E Calibrated by:	TE critical for calibration(10.4 100608 MY41032317 US37202783 GB37480704 US38432420 Name	Cal Date (Calibrated by, Certificate No.) 27-Mar-2002 (9658, No. 20-90389) 18-Oct-02 (Aglient, No. 20021018) 30-Oct-02 (METAS, No. 252-0236) 30-Oct-02 (METAS, No. 252-0236) 3-May-00 (Agrient, No. 8702K084802) Function	Scheduled Calibration In house check: Man-05 Oct-04 Oct-03 Oct-03 In house check: May 03	
Calibration Equipment used (M&T RF generator R&S SML-00 Power sensor HP 6451A Power sensor HP 6451A Power mater EPM E442 Vetwork Analyzer HP 8753E Calibrated by:	TE critical for calibration(ID-# 1006938 MY410922917 US37202783 GB37480704 US38432420 Name Judith Mueller	Cal Date (Calibrated by, Centificate No.) 27-Mar-2002 (R&S. No. 20-92389) 18-Oct-02 (Agrient, No. 20021018) 30-Oct-02 (METAS. No. 250-0236) 30-Oct-02 (METAS. No. 250-0236) 3-May-00 (Agrient, No. 8702K084602) Function Technician	Scheduled Calibration In house check: Man-05 Oct-04 Oct-03 Oct-03 In house check: May 03 Signature	

d2450v2_731_20030521_p02-09 (1702x2338x24b jpeg)

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fisx +41 1 245 9779 Info®apeeg.com, http://www.speeg.com

DASY

Dipole Validation Kit

Type: D2450V2

Serial: 731

Manufactured: May 7, 2003 Calibrated: May 21, 2003

1. Measurement Conditions

The measurements were performed in the flat section of the SAM twin phantom filled with head simulating solution of the following electrical parameters at 2450 MHz:

Relative Dielectricity	37.5	± 5%
Conductivity	1.89 mho/m	$\pm 5\%$

The DASY4 System with a dosimetric E-field probe ES3DV2 (SN:3013, Conversion factor 4.8 at 2450 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was <u>10mm</u> from dipole center to the solution surface. Lossless spacer was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was 250mW ± 3 %. The results are normalized to 1W input power.

2. SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 1. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ES3DV2 SN:3013 and applying the <u>advanced extrapolation</u> are:

averaged over 1 cm ³ (1 g) of tissue:	55.2 mW/g \pm 16.8 % (k=2) ¹
averaged over 10 cm3 (10 g) of tissue:	24.5 mW/g \pm 16.2 % (k=2) ¹

1 validation uncertainty

3. Dipole Impedance and Return Loss

The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are:

Electrical delay:	1.150 ns	(one direction)
Transmission factor:	0,990	(voltage transmission, one direction)

The dipole was positioned at the flat phantom sections according to section 1 and the distance holder was in place during impedance measurements.

Feedpoint impedance at 2450 MHz:	Re{Z} = 52.9 m
	Im (Z) = 3.9 Ω
Return Loss at 2450 MHz	-26.4 dB

4. Measurement Conditions

The measurements were performed in the flat section of the SAM twin phantom filled with body simulating solution of the following electrical parameters at 2450 MHz:

Relative Dielectricity	50.5	± 5%
Conductivity	1.97 mho/m	± 5%

The DASY4 System with a dosimetric E-field probe ES3DV2 (SN:3013, Conversion factor 4.2 at 2450 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was <u>10mm</u> from dipole center to the solution surface. Lossless spacer was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was 250mW ± 3 %. The results are normalized to 1W input power.

5. SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 4. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ES3DV2 SN:3013 and applying the <u>advanced extrapolation</u> are:

averaged over 1 cm3 (1 g) of tissue:	53.2 mW/g \pm 16.8 % $(k=2)^2$
averaged over 10 cm3 (10 g) of tissue:	24.3 mW/g \pm 16.2 % (k=2) ²

6. Dipole Impedance and Return Loss

The dipole was positioned at the flat phantom sections according to section 4 and the distance holder was in place during impedance measurements.

Feedpoint impedance at 2450 MHz:	Re{Z} = 49.1 n
	${\rm Im}~\{Z\}=5.0~\Omega$
Return Loss at 2450 MHz	-25.7 dB

7. Handling

Do not apply excessive force to the dipole arms, because they might bend. Bending of the dipole arms stresses the soldered connections near the feedpoint leading to a damage of the dipole.

8. Design

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DCsignals.

Small end caps have been added to the dipole arms in order to improve matching when loaded according to the position as explained in Sections 1 and 4. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

9. Power Test

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

2 validation uncertainty

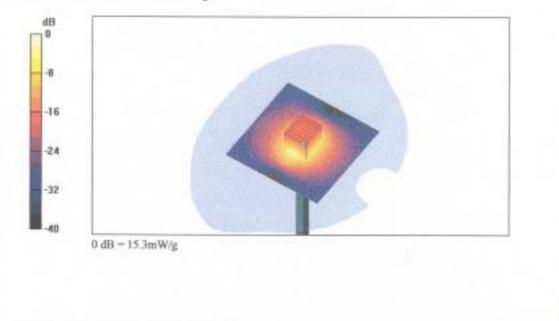
Page 1 of 1

Date/Time: 05/19/03 14:30:09

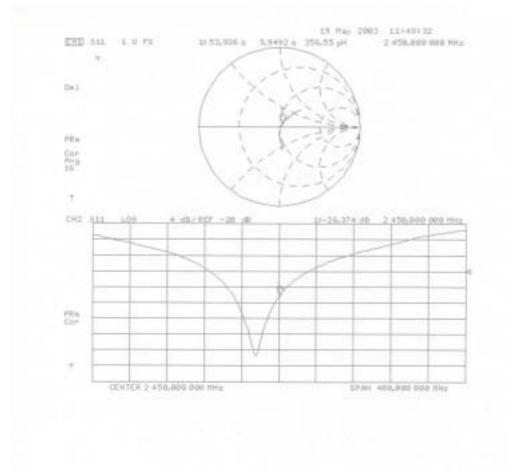
Test Laboratory: SPEAG, Zurich, Switzerland File Name: SN731_SN3013_HSL2450_190503.da4

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN731 Program: Dipole Calibration

Communication System: CW-2450; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium: HSL 2450 MHz (α = 1.89 mho/m, ε_p = 37.52, ρ = 1000 kg/m³) Phantom section: Flut Section Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:

Maximum value of SAR = 15.3 mW/g


- Probe: ES3DV2 SN3013; ConvF(4.8, 4.8, 4.8); Calibrated: 1/19/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 SN411; Calibrated: 1/16/2003
- Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

Pin = 250 mW; d = 10 mm/Area Sean (81x81x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 91 V/m Power Drift = -0.003 dB Maximum value of SAR = 15.1 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Peak SAR (extrapolated) = 30.3 W/kg SAR(1 g) = 13.8 mW/g; SAR(10 g) = 6.13 mW/g Reference Value = 91 V/m Power Drift = -0.003 dB

d2450v2_731_20030521_p07-09 (1702x2338x24b jpeg)

731

Page 1 of 1

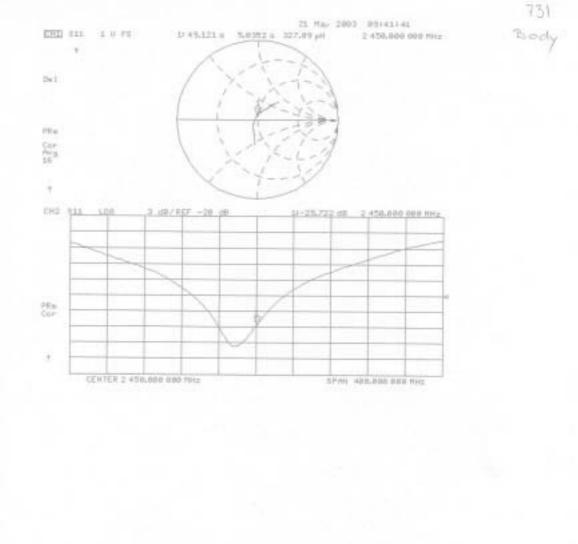
Date/Time: 05/21/03 11:32:43

Test Laboratory: SPEAG, Zurich, Switzerland File Name: SN731_SN3013_M2450_210503.da4

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN731 Program: Dipole Calibration

Communication System: CW-2450; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium: Muscle 2450 MHz ($\alpha = 1.97 \text{ mho/m}, \epsilon_p = 50.47, p = 1000 \text{ kg/m}^3$) Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:


- Probe: ES3DV2 SN3013; ConvF(4.2, 4.2, 4.2); Calibrated: 1/19/2003
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- · Electronics: DAE3 SN411; Calibrated: 1/16/2003
- Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 89.5 V/m Power Drift = 0.06 dB Maximum value of SAR = 14.8 mW/g

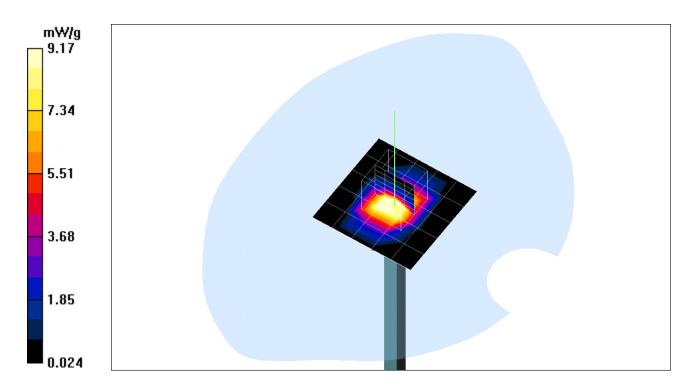
Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Peak SAR (extrapolated) = 26.6 W/kg SAR(1 g) = 13.3 mW/g; SAR(10 g) = 6.08 mW/g Reference Value = 89.5 V/m Power Drift = 0.06 dB

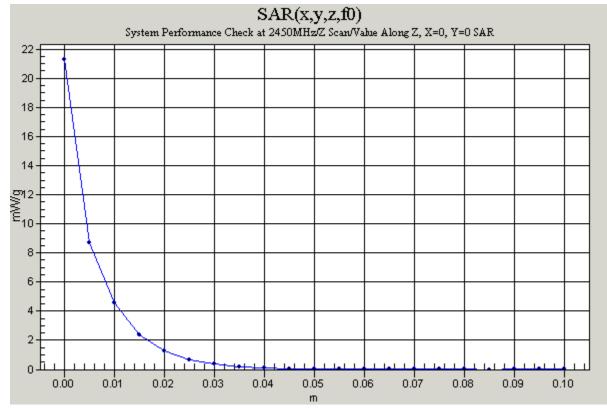
d2450v2_731_20030521_p09-09 (1702x2338x24b jpeg)

D2450V2 SN 731

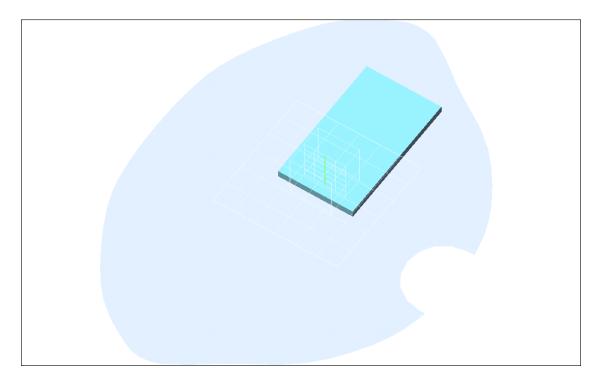
DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:731

Communication System: CW2450; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium: BSL2450 (σ = 1.92 mho/m, ϵ_r = 51.29, ρ = 1000 kg/m³) Air Temperature 25.1 deg C ;Liquid Temperature 24.1 deg C Phantom section: Flat Section


DASY4 Configuration:


- Probe: ET3DV6 SN1762; ConvF(4.6, 4.6, 4.6); Calibrated: 3/31/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection) Sensor-Surface: 0mm (Fix Surface) Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn558; Calibrated: 3/7/2003
- Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1271
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.8 Build 62

Pin=250mW,d=10mm/Area Scan (6x6x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 91.2 V/m Power Drift = 0.0 dB Maximum value of SAR = 9.17 mW/g


Pin=250mW,d=10mm/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Reference Value = 91.2 V/m Power Drift = -0.1 dB Maximum value of SAR = 21.3 mW/g

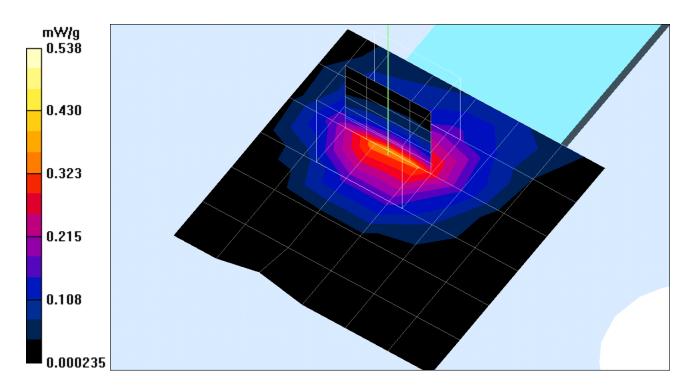
Pin=250mW,d=10mm/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Peak SAR (extrapolated) = 29.5 W/kg SAR(1 g) = 13.2 mW/g; SAR(10 g) = 6.03 mW/g Reference Value = 91.2 V/m Power Drift = 0.0 dB Maximum value of SAR = 14.8 mW/g

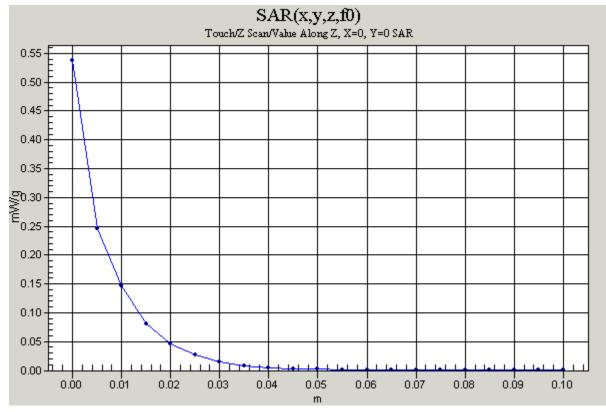
Test Configuration-1

Touch-b mode-ANT A

DUT: 802.11G Cardbus; Type: CG-WLCB54GL; Serial: N/A

Communication System: IEEE 802.11b; Frequency: 2412 MHz;Duty Cycle: 1:1 Medium: BSL2450 (σ = 1.92 mho/m, ϵ_r = 51.29, ρ = 1000 kg/m³) Air Temperature 25.1 deg C ;Liquid Temperature 24.1 deg C Phantom section: Flat Section


DASY4 Configuration:


- Probe: ET3DV6 SN1762; ConvF(4.6, 4.6, 4.6); Calibrated: 3/31/2003
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection) Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE3 Sn558; Calibrated: 3/7/2003
- Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1150
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.8 Build 62

CH=1 11M/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mmReference Value = 12.2 V/m Power Drift = 0.1 dB Maximum value of SAR = 0.354 mW/g

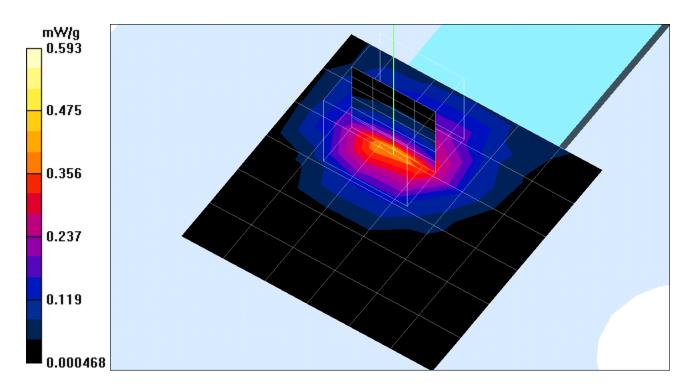
CH=1 11M/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Reference Value = 12.2 V/m Power Drift = 0.0 dB Maximum value of SAR = 0.538 mW/g

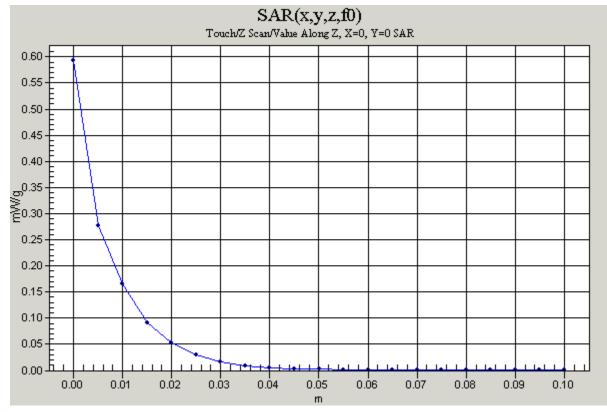
CH=1 11M/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Peak SAR (extrapolated) = 0.699 W/kgSAR(1 g) = 0.356 mW/g; SAR(10 g) = 0.190 mW/gReference Value = 12.2 V/mPower Drift = 0.1 dBMaximum value of SAR = 0.383 mW/g

Touch-b mode-ANT A

DUT: 802.11G Cardbus; Type: CG-WLCB54GL; Serial: N/A

Communication System: IEEE 802.11b; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: BSL2450 (σ = 1.92 mho/m, ϵ_r = 51.29, ρ = 1000 kg/m³) Air Temperature 25.1 deg C ;Liquid Temperature 24.1 deg C Phantom section: Flat Section


DASY4 Configuration:


- Probe: ET3DV6 SN1762; ConvF(4.6, 4.6, 4.6); Calibrated: 3/31/2003
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection) Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE3 Sn558; Calibrated: 3/7/2003
- Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1150
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.8 Build 62

CH=6 11M/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mmReference Value = 11.1 V/m Power Drift = -0.2 dB Maximum value of SAR = 0.403 mW/g

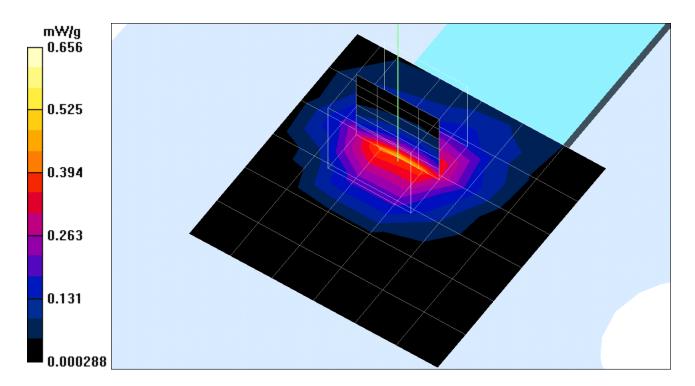
CH=6 11M/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Reference Value = 11.1 V/m Power Drift = -0.2 dB Maximum value of SAR = 0.593 mW/g

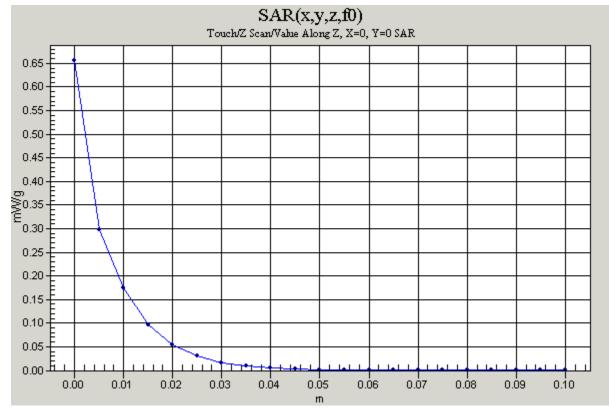
CH=6 11M/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Peak SAR (extrapolated) = 0.772 W/kg SAR(1 g) = 0.395 mW/g; SAR(10 g) = 0.208 mW/g Reference Value = 11.1 V/m Power Drift = -0.2 dB Maximum value of SAR = 0.430 mW/g

Touch-b mode-ANT A

DUT: 802.11G Cardbus; Type: CG-WLCB54GL; Serial: N/A

Communication System: IEEE 802.11b; Frequency: 2462 MHz;Duty Cycle: 1:1 Medium: BSL2450 ($\sigma = 1.92$ mho/m, $\epsilon_r = 51.29$, $\rho = 1000$ kg/m³) Air Temperature 25.1 deg C ;Liquid Temperature 24.1 deg C Phantom section: Flat Section


DASY4 Configuration:


- Probe: ET3DV6 SN1762; ConvF(4.6, 4.6, 4.6); Calibrated: 3/31/2003
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection) Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE3 Sn558; Calibrated: 3/7/2003
- Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1150
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.8 Build 62

CH=11 11M/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 13.1 V/m Power Drift = 0.2 dB Maximum value of SAR = 0.430 mW/g

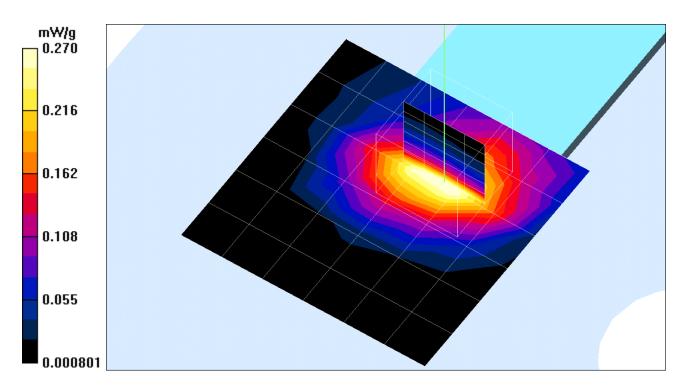
CH=11 11M/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Reference Value = 13.1 V/m Power Drift = 0.2 dB Maximum value of SAR = 0.656 mW/g

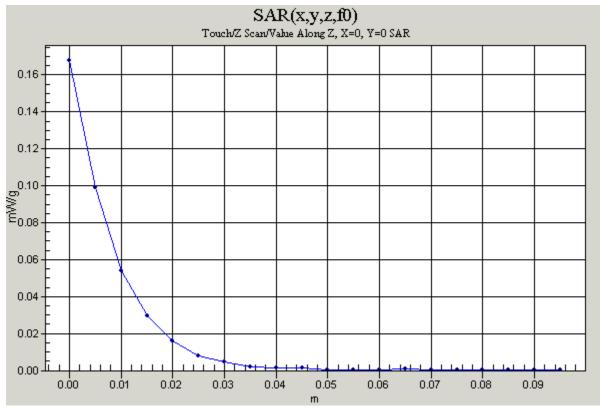
CH=11 11M/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Peak SAR (extrapolated) = 0.919 W/kgSAR(1 g) = 0.457 mW/g; SAR(10 g) = 0.238 mW/gReference Value = 13.1 V/mPower Drift = 0.2 dBMaximum value of SAR = 0.499 mW/g

Touch-b mode-ANT B

DUT: 802.11G Cardbus; Type: CG-WLCB54GL; Serial: N/A

Communication System: IEEE 802.11b; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: BSL2450 (σ = 1.92 mho/m, ϵ_r = 51.29, ρ = 1000 kg/m³) Air Temperature 25.1 deg C ;Liquid Temperature 24.1 deg C Phantom section: Flat Section


DASY4 Configuration:


- Probe: ET3DV6 SN1762; ConvF(4.6, 4.6, 4.6); Calibrated: 3/31/2003
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection) Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE3 Sn558; Calibrated: 3/7/2003
- Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1150
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.8 Build 62

CH=6 11M/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mmReference Value = 10.6 V/m Power Drift = 0.1 dB Maximum value of SAR = 0.270 mW/g

CH=6 11M/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mmReference Value = 10.6 V/m Power Drift = 0.1 dB Maximum value of SAR = 0.168 mW/g

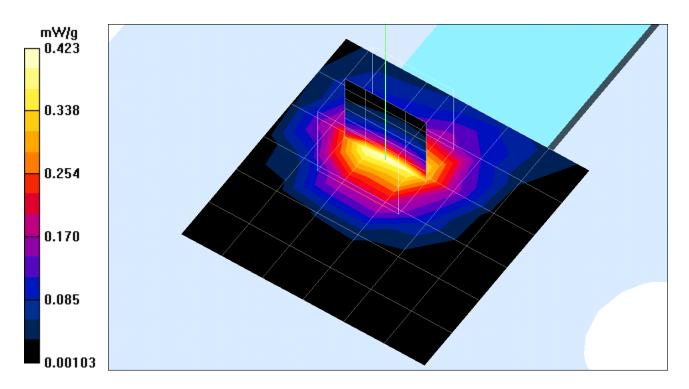
CH=6 11M/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Peak SAR (extrapolated) = 0.556 W/kgSAR(1 g) = 0.264 mW/g; SAR(10 g) = 0.143 mW/gReference Value = 10.6 V/mPower Drift = 0.1 dBMaximum value of SAR = 0.279 mW/g

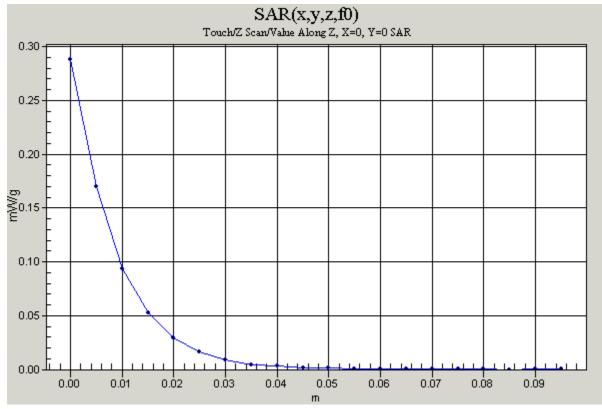
Touch-G mode-ANT A

DUT: 802.11G Cardbus; Type: CG-WLCB54GL; Serial: N/A

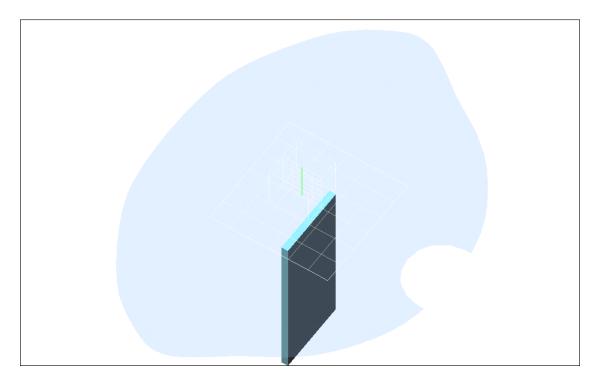
Communication System: IEEE 802.11G; Frequency: 2472 MHz;Duty Cycle: 1:1 Medium: BSL2450 (σ = 1.92 mho/m, ϵ_r = 51.29, ρ = 1000 kg/m³) Air Temperature 25.1 deg C ;Liquid Temperature 24.1 deg C

Phantom section: Flat Section


DASY4 Configuration:


- Probe: ET3DV6 SN1762; ConvF(4.6, 4.6, 4.6); Calibrated: 3/31/2003
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection) Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE3 Sn558; Calibrated: 3/7/2003
- Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1150
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.8 Build 62

CH=11 6M/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mmReference Value = 13.1 V/m Power Drift = -0.0 dB Maximum value of SAR = 0.423 mW/g


CH=11 6M/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mmReference Value = 13.1 V/m Power Drift = -0.0 dB Maximum value of SAR = 0.288 mW/g

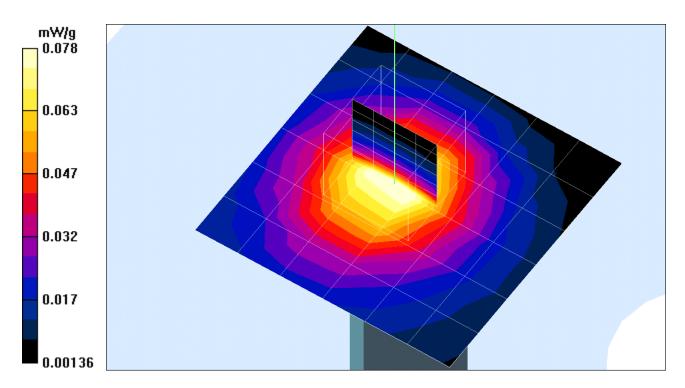
CH=11 6M/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Peak SAR (extrapolated) = 0.843 W/kg SAR(1 g) = 0.419 mW/g; SAR(10 g) = 0.219 mW/g Reference Value = 13.1 V/m Power Drift = -0.0 dB Maximum value of SAR = 0.460 mW/g

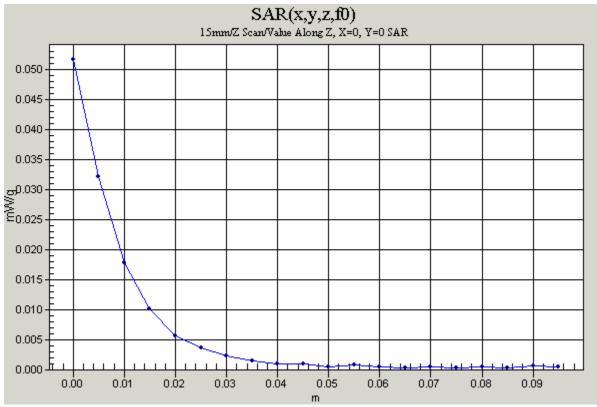
Test Configuration-2

15mm-b mode-ANT A

DUT: 802.11G Cardbus; Type: CG-WLCB54GL; Serial: N/A

Communication System: IEEE 802.11b; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: BSL2450 (σ = 1.92 mho/m, ϵ_r = 51.29, ρ = 1000 kg/m³) Air Temperature 25.1 deg C ;Liquid Temperature 24.1 deg C Phantom section: Flat Section


DASY4 Configuration:


- Probe: ET3DV6 SN1762; ConvF(4.6, 4.6, 4.6); Calibrated: 3/31/2003
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection) Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE3 Sn558; Calibrated: 3/7/2003
- Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1150
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.8 Build 62

CH=Mid 11M/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mmReference Value = 6.87 V/m Power Drift = -0.2 dB Maximum value of SAR = 0.078 mW/g

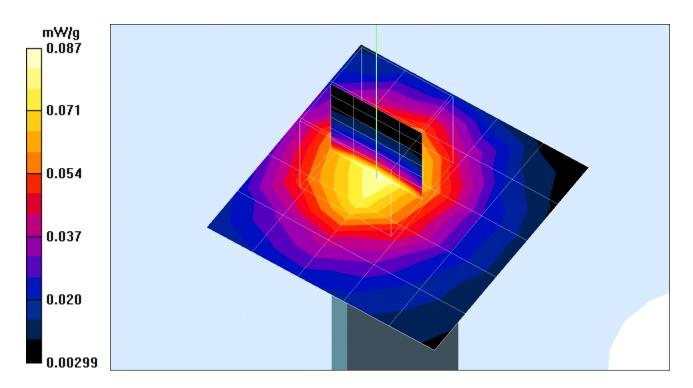
CH=Mid 11M/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Reference Value = 6.87 V/m Power Drift = -0.2 dB Maximum value of SAR = 0.052 mW/g

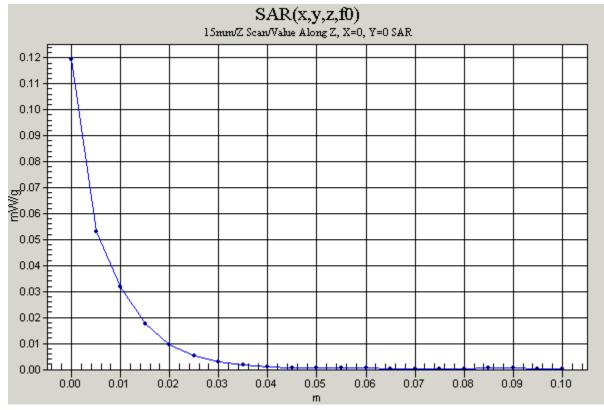
CH=Mid 11M/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Peak SAR (extrapolated) = 0.158 W/kgSAR(1 g) = 0.080 mW/g; SAR(10 g) = 0.046 mW/gReference Value = 6.87 V/mPower Drift = -0.2 dBMaximum value of SAR = 0.085 mW/g

15mm-b mode-ANT A

DUT: 802.11G Cardbus; Type: CG-WLCB54GL; Serial: N/A

Communication System: IEEE 802.11b; Frequency: 2462 MHz;Duty Cycle: 1:1 Medium: BSL2450 (σ = 1.92 mho/m, ϵ_r = 51.29, ρ = 1000 kg/m³) Air Temperature 25.1 deg C ;Liquid Temperature 24.1 deg C Phantom section: Flat Section


DASY4 Configuration:


- Probe: ET3DV6 SN1762; ConvF(4.6, 4.6, 4.6); Calibrated: 3/31/2003
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection) Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE3 Sn558; Calibrated: 3/7/2003
- Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1150
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.8 Build 62

CH=High 11M/Area Scan (6x6x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 6.94 V/m Power Drift = 0.005 dB Maximum value of SAR = 0.087 mW/g

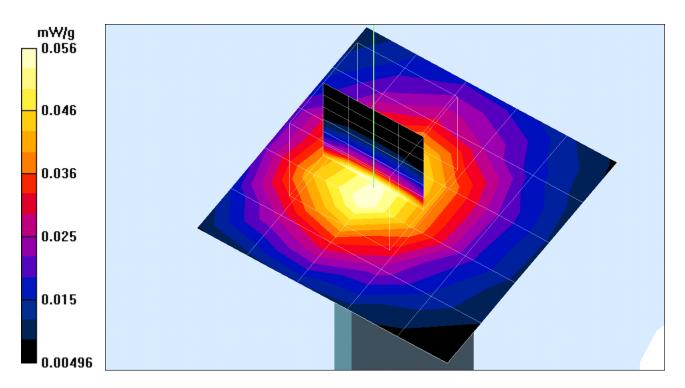
CH=High 11M/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Reference Value = 6.94 V/m Power Drift = -0.001 dB Maximum value of SAR = 0.119 mW/g

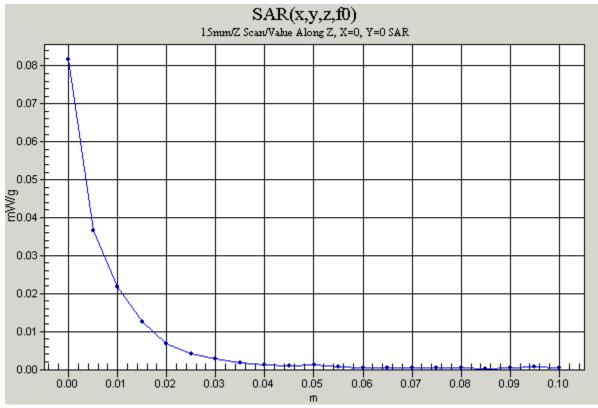
CH=High 11M/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Peak SAR (extrapolated) = 0.166 W/kgSAR(1 g) = 0.084 mW/g; SAR(10 g) = 0.048 mW/gReference Value = 6.94 V/mPower Drift = 0.005 dBMaximum value of SAR = 0.089 mW/g

15mm-b mode-ANT B

DUT: 802.11G Cardbus; Type: CG-WLCB54GL; Serial: N/A

Communication System: IEEE 802.11b; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: BSL2450 (σ = 1.92 mho/m, ϵ_r = 51.29, ρ = 1000 kg/m³) Air Temperature 25.1 deg C ;Liquid Temperature 24.1 deg C Phantom section: Flat Section


DASY4 Configuration:


- Probe: ET3DV6 SN1762; ConvF(4.6, 4.6, 4.6); Calibrated: 3/31/2003
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection) Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE3 Sn558; Calibrated: 3/7/2003
- Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1150
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.8 Build 62

CH=Mid 11M/Area Scan (6x6x1): Measurement grid: dx=15mm, dy=15mmReference Value = 5.61 V/m Power Drift = 0.0 dB Maximum value of SAR = 0.056 mW/g

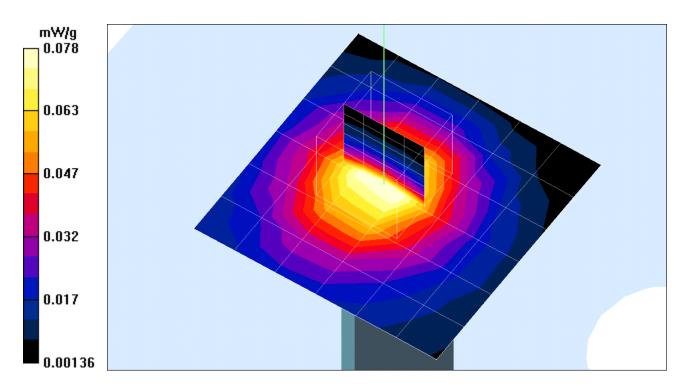
CH=Mid 11M/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Reference Value = 5.61 V/m Power Drift = 0.0 dB Maximum value of SAR = 0.082 mW/g

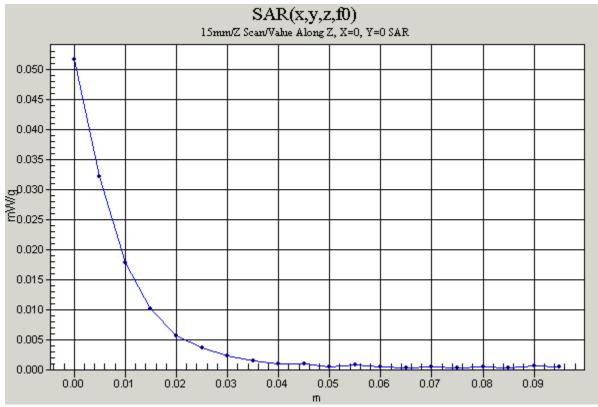
CH=Mid 11M/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Peak SAR (extrapolated) = 0.107 W/kgSAR(1 g) = 0.055 mW/g; SAR(10 g) = 0.032 mW/gReference Value = 5.61 V/mPower Drift = 0.0 dBMaximum value of SAR = 0.059 mW/g

15mm-b mode-ANT A

DUT: 802.11G Cardbus; Type: CG-WLCB54GL; Serial: N/A

Communication System: IEEE 802.11b; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: BSL2450 ($\sigma = 1.92$ mho/m, $\epsilon_r = 51.29$, $\rho = 1000$ kg/m³) Air Temperature 25.1 deg C ;Liquid Temperature 24.1 deg C Phantom section: Flat Section


DASY4 Configuration:


- Probe: ET3DV6 SN1762; ConvF(4.6, 4.6, 4.6); Calibrated: 3/31/2003
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection) Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE3 Sn558; Calibrated: 3/7/2003
- Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1150
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.8 Build 62

CH=High 6M/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mmReference Value = 6.87 V/m Power Drift = -0.2 dB Maximum value of SAR = 0.078 mW/g

CH=High 6M/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Reference Value = 6.87 V/m Power Drift = -0.2 dB Maximum value of SAR = 0.052 mW/g

CH=High 6M/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm Peak SAR (extrapolated) = 0.158 W/kgSAR(1 g) = 0.080 mW/g; SAR(10 g) = 0.046 mW/gReference Value = 6.87 V/mPower Drift = -0.2 dBMaximum value of SAR = 0.085 mW/g

