802 N. Twin Oaks Valley Road, Suite 105 • San Marcos, CA 92069 • U.S.A. TEL (760) 471-2100 • FAX (760) 471-2121 http://www.rfexposurelab.com # CERTIFICATE OF COMPLIANCE SAR EVALUATION Juniper Systems 1132 West 1700 North Logan, UT 84321 Dates of Test: December 17-31, 2015, March 22-23, 2016 Test Report Number: SAR.20151211 Revision E FCC ID: VSF25271, VSFMS2, VSF25589 IC Certificate: 7980A-25271, 7980A-MS2, 7980A-25589 Model(s): MS2 Test Sample: Engineering Unit Same as Production Serial Number: MS2P41 Equipment Type: Wireless Rugged Tablet Classification: Portable Transmitter Next to Body TX Frequency Range: 704 – 716 MHz, 777 – 787 MHz, 817 – 849 MHz; 1710 – 1755 MHz, 1850 – 1910 MHz, 2412 - 2462 MHz, 5150 - 5350 MHz, 5500 - 5700 MHz; 5745 - 5825 MHz, 917.4 - 927.2 MHz Frequency Tolerance: ± 2.5 ppm Maximum RF Output: 750 MHz (LTE) – 23.0 dBm, 850 MHz (CDMA) – 24.0 dBm, 850 MHz (GSM) – 33.0 dBm, 850 MHz (WCDMA) – 23.0 dBm, 850 MHz (LTE) – 23.0 dBm, 1735 MHz (WCDMA) – 19.0 dBm, 1735 MHz (LTE) – 19.0 dBm, 1900 MHz (CDMA) – 19.0 dBm, 1900 MHz (GSM) – 28.0 dBm, 1900 MHz (WCDMA) – 19.0 dBm, 1900 MHz (LTE) – 19.0 dBm, 2450 MHz (b) – 18.0 dBm, 2450 MHz (g) – 17.00 dBm, 2450 MHz (n20) – 16.0 dBm, 2450 MHz (n40) – 16.0 dBm, 5250 MHz (n20) – 14.0 dBm, 5250 MHz (n40) – 14.0 dBm, 5600 MHz (a) - 16.0 dBm, 5600 (n20) - 14.0 dBm, 5600 (n40) - 14.0 dBm, 5800 MHz (a) - 16.0 dBm, 5800 MHz (n20) - 14.0 dBm, 5800 MHz (n40) - 14.0 dBm, 900 MHz - 20 dBm Conducted Signal Modulation: WCDMA, GMSK, 8-PSK, CDMA, QPSK, 16QAM, DSSS, OFDM, FHSS Antenna Type: Internal Application Type: Certification FCC Rule Parts: Part 2, 15C, 15E, 22, 24, 27 KDB Test Methodology: KDB 447498 D01 v06, KDB 248227 v02r02, KDB 616217 D04 v01r02, KDB 941225 D01 v03r01 & D05 v02r05 Industry Canada: RSS-102 Issue 5, Safety Code 6 Max. Stand Alone SAR Value: 1.32 W/kg Reported Max. Simultaneous SAR Value: 1.57 W/kg Reported & 0.04 Separation Ratio Separation Distance: 0 mm This wireless mobile and/or portable device has been shown to be compliant for localized specific absorption rate (SAR) for uncontrolled environment/general exposure limits specified in ANSI/IEEE Std. C95.1-1992 and had been tested in accordance with the measurement procedures specified in IEEE 1528-2013 and IEC 62209-2:2010 (See test report). I attest to the accuracy of the data. All measurements were performed by myself or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. RF Exposure Lab, LLC certifies that no party to this application is subject to a denial of Federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 853(a). Jay M. Moulton Vice President # **Table of Contents** | 1. | Introduction | | | |-----|---|-----|---| | | SAR Definition [5] | | | | 2. | SAR Measurement Setup | | | | | Robotic System | | | | | System Hardware | 5 | , | | | System Electronics | | | | | Probe Measurement System | 6 | ì | | 3. | Probe and Dipole Calibration | | | | 4. | Phantom & Simulating Tissue Specifications | .14 | ŀ | | | Head & Body Simulating Mixture Characterization | .14 | ŀ | | 5. | ANSI/IEEE C95.1 – 1992 RF Exposure Limits [2] | .15 | , | | | Uncontrolled Environment | .15 | , | | | Controlled Environment | .15 | , | | 6. | Measurement Uncertainty | .16 | j | | 7. | System Validation | .17 | , | | | Tissue Verification | .17 | , | | | Test System Verification | .17 | , | | 8. | LTÉ Document Checklist | .18 | š | | 9. | SAR Test Data Summary | .22 |) | | | Procedures Used To Establish Test Signal | | | | | Device Test Condition | .22 |) | | Fig | jure 9.1 | | | | 10 | | | | | | 10.1 Procedures Used to Establish RF Signal for SAR | | | | | 10.2 SAR Measurement Conditions for CDMA2000, 1xEV-DO | .25 | , | | | 10.3 SAR Measurement Conditions for WCDMA/HSDPA/HSUPA | | | | | 10.4 SAR Measurement Conditions for GSM | | | | | 10.5 SAR Measurement Conditions for LTE Bands | | | | | SAR Data Summary – 750 MHz Body – LTE Band 17 | .67 | , | | | SAR Data Summary – 750 MHz Body – LTE Band 13 | .68 | ; | | | SAR Data Summary – 835 MHz Body - CDMA | | | | | SAR Data Summary – 835 MHz Body - GPRS | | | | | SAR Data Summary – 835 MHz Body - WCDMA | | | | | SAR Data Summary – 835 MHz Body – LTE Band 5 | | | | | SAR Data Summary – 1750 MHz Body - WCDMA | .73 | ; | | | SAR Data Summary – 1750 MHz Body – LTE Band 4 | | | | | SAR Data Summary – 1900 MHz Body - CDMA | | | | | SAR Data Summary – 1900 MHz Body - GPRS | | | | | SAR Data Summary – 1900 MHz Body - WCDMA | | | | | SAR Data Summary – 1900 MHz Body – LTE Band 2 | | | | | SAR Data Summary – 2450 MHz Body 802.11b | | | | | SAR Data Summary – 5250 MHz Body 802.11a | | | | | SAR Data Summary – 5600 MHz Body 802.11a | | | | | SAR Data Summary – 5800 MHz Body 802.11a | | _ | | | SAR Data Summary – 900 MHz Body RFID | | | | | SAR Data Summary – Simultaneous Transmit (WWAN-WLAN Main) | | | | | SAR Data Summary – Simultaneous Transmit (WWAN-WLAN Aux) | | | | | SAR Data Summary – Simultaneous Transmit (RFID) | | | | 11 | | | | | 12 | | | | | 13 | | | | | | pendix A – System Validation Plots and Data | | | | | pendix B – SAR Test Data Plots | | | | | pendix C – SAR Test Setup Photos | | | | | pendix D – Probe Calibration Data Sheets | | | | | pendix E – Dipole Calibration Data Sheets | | | | AD | pendix F – Phantom Calibration Data Sheets | 225 | , | ## 1. Introduction This measurement report shows compliance of the Juniper Systems Model MS2 FCC ID: VSF25271, VSFMS2, VSF25589 with FCC Part 2, 1093, ET Docket 93-62 Rules for mobile and portable devices and IC Certificate: 7980A-25271, 7980A-MS2, 7980A-25589 with RSS102 Issue 5 & Safety Code 6. The FCC has adopted the guidelines for evaluating the environmental effects of radio frequency radiation in ET Docket 93-62 on August 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC regulated portable devices. [1], [6] The test results recorded herein are based on a single type test of Juniper Systems Model MS2 and therefore apply only to the tested sample. The test procedures, as described in ANSI C95.1 – 1999 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [2], ANSI C95.3 – 2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields [3], IEEE Std.1528 – 2013 Recommended Practice [4], and Industry Canada Safety Code 6 Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3kHz to 300 GHz were employed. The following table indicates all the wireless technologies operating in the MS2 Wireless Rugged Tablet. The table also shows the tolerance for the power level for each mode. | Band | Technology | Class | 3GPP
Nominal
Power
dBm | Calibrated
Nominal
Power
dBm | Tolerance
dBm | Lower
Tolerance
dBm | Upper
Tolerance
dBm | |-------------------|------------|-------|---------------------------------|---------------------------------------|------------------|---------------------------|---------------------------| | Band 17 – 750 MHz | LTE | 3 | 22.0 | 22.0 | ±1.0 | 21.0 | 23.0 | | Band 13 – 750 MHz | LTE | 3 | 22.0 | 22.0 | ±1.0 | 21.0 | 23.0 | | Band 5 – 835 MHz | CDMA | 3 | 23.0 | 23.0 | ±1.0 | 22.0 | 24.0 | | Band 5 – 850 MHz | GPRS | 4 | 32.0 | 32.0 | ±1.0 | 31.0 | 33.0 | | Band 5 – 850 MHz | EDGE | E2 | 26.0 | 26.0 | ±1.0 | 25.0 | 27.0 | | Band 5 – 850 MHz | WCDMA/HSPA | 3 | 22.0 | 22.0 | ±1.0 | 21.0 | 23.0 | | Band 5 – 835 MHz | LTE | 3 | 22.0 | 22.0 | ±1.0 | 21.0 | 23.0 | | Band 4 – 1750 MHz | WCDMA/HSPA | 3 | 18.0 | 18.0 | ±1.0 | 17.0 | 19.0 | | Band 4 – 1750 MHz | LTE | 3 | 18.0 | 18.0 | ±1.0 | 17.0 | 19.0 | | Band 2 – 1900 MHz | CDMA | 3 | 18.0 | 18.0 | ±1.0 | 17.0 | 19.0 | | Band 2 – 1900 MHz | GPRS | 1 | 27.0 | 27.0 | ±1.0 | 26.0 | 28.0 | | Band 2 – 1900 MHz | EDGE | E2 | 25.0 | 25.0 | ±1.0 | 24.0 | 26.0 | | Band 2 – 1900 MHz | WCDMA/HSPA | 3 | 18.0 | 18.0 | ±1.0 | 17.0 | 19.0 | | Band 2 – 1900 MHz | LTE | 3 | 18.0 | 18.0 | ±1.0 | 17.0 | 19.0 | | WLAN – 2.4 GHz | 802.11b | N/A | N/A | 16 | ±2.0 | 16.0 | 18.0 | | WLAN – 2.4 GHz | 802.11g | N/A | N/A | 15 | ±2.0 | 13.0 | 17.0 | | WLAN – 2.4 GHz | 802.11n | N/A | N/A | 14 | ±2.0 | 12.0 | 16.0 | | WLAN – 5.0 GHz | 802.11a | N/A | N/A | 14 | ±2.0 | 12.0 | 16.0 | | WLAN – 5.0 GHz | 802.11n | N/A | N/A | 12 | ±2.0 | 10.0 | 14.0 | | Bluetooth | 802.15.1 | N/A | N/A | N/A | N/A | N/A | 8.5 | | RFID | FHSS | N/A | N/A | N/A | N/A | N/A | 20.0 | # **SAR Definition [5]** Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). $$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$ SAR is expressed in units of watts per kilogram (W/kg). SAR can be related to the electric field at a point by $$SAR = \frac{\sigma \mid E \mid^2}{\rho}$$ where: σ = conductivity of the tissue (S/m) ρ = mass density of the tissue (kg/m³) E = rms electric field strength (V/m) # 2. SAR Measurement Setup # **Robotic System** These measurements are performed using the DASY52 automated dosimetric assessment system. The DASY52 is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland and consists of high precision robotics system (Staubli), robot controller, Intel Core2 computer, near-field probe, probe alignment sensor, and the generic twin phantom containing the brain equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Fig. 2.1). ## **System Hardware** A
cell controller system contains the power supply, robot controller teach pendant (Joystick), and a remote control used to drive the robot motors. The PC consists of the HP Intel Core2 computer with Windows XP system and SAR Measurement Software DASY52, A/D interface card, monitor, mouse, and keyboard. The Staubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit that performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card. Figure 2.1 SAR Measurement System Setup # **System Electronics** The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail in. # **Probe Measurement System** The SAR measurements were conducted with the dosimetric probe EX3DV4, designed in the classical triangular configuration (see Fig. 2.2) and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multi fiber line ending at the front of the probe tip. (see Fig. 2.3) It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY52 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped at reaching the maximum. DAE System ## **Probe Specifications** **Calibration:** In air from 10 MHz to 6.0 GHz In brain and muscle simulating tissue at Frequencies of 450 MHz, 835 MHz, 1750 MHz, 1900 MHz, 2450 MHz, 2600 MHz, 3500 MHz, 5200 MHz, 5300 MHz, 5600 MHz, 5800 MHz Frequency: 10 MHz to 6 GHz **Linearity:** ±0.2dB (30 MHz to 6 GHz) **Dynamic:** 10 mW/kg to 100 W/kg Range: Linearity: ±0.2dB **Dimensions:** Overall length: 330 mm Tip length: 20 mm Body diameter: 12 mm **Tip diameter:** 2.5 mm Distance from probe tip to sensor center: 1 mm **Application:** SAR Dosimetry Testing Compliance tests of wireless device Figure 2.2 Triangular Probe Configurations Figure 2.3 Probe Thick-Film Technique #### **Probe Calibration Process** #### **Dosimetric Assessment Procedure** Each probe is calibrated according to a dosimetric assessment procedure described in with accuracy better than +/- 10%. The spherical isotropy was evaluated with the procedure described in and found to be better than +/-0.25dB. The sensitivity parameters (Norm X, Norm Y, Norm Z), the diode compression parameter (DCP) and the conversion factor (Conv F) of the probe is tested. #### Free Space Assessment The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies below 1 GHz, and in a waveguide above 1GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm². #### **Temperature Assessment *** E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium, correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor based temperature probe is used in conjunction with the E-field probe $$SAR = C \frac{\Delta T}{\Delta t}$$ $$SAR = \frac{\left| E \right|^2 \cdot \sigma}{\rho}$$ where: where: Δt = exposure time (30 seconds), σ = simulated tissue conductivity, C = heat capacity of tissue (brain or muscle), ρ = Tissue density (1.25 g/cm³ for brain tissue) ΔT = temperature increase due to RF exposure. SAR is proportional to $\Delta T / \Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. Now it's possible to quantify the electric field in the simulated tissue by equating the thermally derived SAR to the E- field; Figure 2.4 E-Field and Temperature Measurements at 900MHz Figure 2.5 E-Field and Temperature Measurements at 1800MHz ## **Data Extrapolation** The DASY52 software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given like below: with $$V_i = \text{compensated signal of channel i}$$ $(i=x,y,z)$ $U_i = \text{input signal of channel i}$ $(i=x,y,z)$ $U_i = \text{input signal of channel i}$ $(i=x,y,z)$ $C_i = \text{crest factor of exciting field}$ $C_i = C_i = C_i$ $C_$ From the compensated input signals the primary field data for each channel can be evaluated: E-field probes: with $$V_i$$ = compensated signal of channel i (i = x,y,z) Norm_i = sensor sensitivity of channel i (i = x,y,z) $\mu V/(V/m)^2$ for E-field probes ConvF = sensitivity of enhancement in solution E_i = electric field strength of channel i in V/m The RSS value of the field components gives the total field strength (Hermetian magnitude): $$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$ The primary field data are used to calculate the derived field units. $$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$ with SAR = local specific absorption rate in W/g = total field strength in V/m = conductivity in [mho/m] or [Siemens/m] ρ = equivalent tissue density in g/cm³ The power flow density is calculated assuming the excitation field to be a free space field. $$P_{proc} = \frac{E_{tot}^2}{3770}$$ with $P_{proc} = \text{equivalent power density of a plane wave in W/cm}^2$ = total electric field strength in V/m ## Scanning procedure - The DASY installation includes predefined files with recommended procedures for measurements and system check. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions. - The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. +/- 5 %. - The highest integrated SAR value is the main concern in compliance test applications. These values can mostly be found at the inner surface of the phantom and cannot be measured directly due to the sensor offset in the probe. To extrapolate the surface values, the measurement distances to the surface must be known accurately. A distance error of 0.5mm could produce SAR errors of 6% at 1800 MHz. Using predefined locations for measurements is not accurate enough. Any shift of the phantom (e.g., slight deformations after filling it with liquid) would produce high uncertainties. For an automatic and accurate detection of the phantom surface, the DASY5 system uses the mechanical surface detection. The detection is always at touch, but the probe will move backward from the surface the indicated distance before starting the measurement. - The "area scan" measures the SAR above the DUT or verification dipole on a parallel plane to the surface. It is used to locate the approximate location of the peak SAR with 2D spline interpolation. The robot performs a stepped movement along one grid axis while the local electrical field strength is measured by the probe. The probe is touching the surface of the SAM during acquisition of measurement values. The scan uses different grid spacings for different frequency measurements. Standard grid spacing for head measurements in frequency ranges 2GHz is 15 mm in x and y-dimension. For higher frequencies a finer resolution is needed, thus for the grid spacing is reduced according the following table: | Area scan grid spacing for different frequency ranges | | | | | | | |---|--------------|--|--|--|--|--| | Frequency range | Grid spacing | | | | | | | ≤ 2 GHz | ≤ 15 mm | | | | | | | 2 – 4 GHz | ≤ 12 mm | | | | | | | 4 – 6 GHz | ≤ 10 mm | | | | | | Grid spacing and orientation have no influence on the
SAR result. For special applications where the standard scan method does not find the peak SAR within the grid, e.g. mobile phones with flip cover, the grid can be adapted in orientation. Results of this coarse scan are shown in annex B. • A "zoom scan" measures the field in a volume around the 2D peak SAR value acquired in the previous "coarse" scan. It uses a fine meshed grid where the robot moves the probe in steps along all the 3 axis (x,y and z-axis) starting at the bottom of the Phantom. The grid spacing for the cube measurement is varied according to the measured frequency range, the dimensions are given in the following table: | Zoom scan grid spacing and volume for different frequency ranges | | | | | | | | |--|---------------|--------------|--------------|--|--|--|--| | Frequency range | Grid spacing | Grid spacing | Minimum zoom | | | | | | r requericy rarige | for x, y axis | for z axis | scan volume | | | | | | ≤ 2 GHz | ≤ 8 mm | ≤ 5 mm | ≥ 30 mm | | | | | | 2 – 3 GHz | ≤ 5 mm | ≤ 5 mm | ≥ 28 mm | | | | | | 3 – 4 GHz | ≤ 5 mm | ≤ 4 mm | ≥ 28 mm | | | | | | 4 – 5 GHz | ≤ 4 mm | ≤ 3 mm | ≥ 25 mm | | | | | | 5 – 6 GHz | ≤ 4 mm | ≤ 2 mm | ≥ 22 mm | | | | | DASY is also able to perform repeated zoom scans if more than 1 peak is found during area scan. In this document, the evaluated peak 1g and 10g averaged SAR values are shown in the 2D-graphics in annex B. Test results relevant for the specified standard (see section 3) are shown in table form in section 7. ### **Spatial Peak SAR Evaluation** The spatial peak SAR - value for 1 and 10 g is evaluated after the Cube measurements have been done. The basis of the evaluation are the SAR values measured at the points of the fine cube grid consisting of all points in the three directions x, y and z. The algorithm that finds the maximal averaged volume is separated into three different stages. - The data between the dipole center of the probe and the surface of the phantom are extrapolated. This data cannot be measured since the center of the dipole is 1 to 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is about 1 mm (see probe calibration sheet). The extrapolated data from a cube measurement can be visualized by selecting 'Graph Evaluated'. - The maximum interpolated value is searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10 g) are computed using the 3d-spline interpolation algorithm. If the volume cannot be evaluated (i.e., if a part of the grid was cut off by the boundary of the measurement area) the evaluation will be started on the corners of the bottom plane of the cube. - All neighbouring volumes are evaluated until no neighbouring volume with a higher average value is found. #### **Extrapolation** The extrapolation is based on a least square algorithm [W. Gander, Computermathematik, p.168-180]. Through the points in the first 3 cm along the z-axis, polynomials of order four are calculated. These polynomials are then used to evaluate the points between the surface and the probe tip. The points, calculated from the surface, have a distance of 1 mm from each other. #### Interpolation The interpolation of the points is done with a 3d-Spline. The 3d-Spline is composed of three one-dimensional splines with the "Not a knot"-condition [W. Gander, Computermathematik, p.141-150] (x, y and z -direction) [Numerical Recipes in C, Second Edition, p.123ff]. #### **Volume Averaging** At First the size of the cube is calculated. Then the volume is integrated with the trapezoidal algorithm. 8000 points (20x20x20) are interpolated to calculate the average. #### **Advanced Extrapolation** DASY uses the advanced extrapolation option which is able to compensate boundary effects on Efield probes. #### **SAM PHANTOM** The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. (see Fig. 2.6) #### **Phantom Specification** **Phantom:** SAM Twin Phantom (V4.0) **Shell Material:** Vivac Composite **Thickness:** $2.0 \pm 0.2 \text{ mm}$ Figure 2.6 SAM Twin Phantom #### **Device Holder for Transmitters** In combination with the SAM Twin Phantom V4.0 the Mounting Device (see Fig. 2.7), enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation point is the ear opening. The devices can be easily, accurately, and repeat ably be positioned according to the FCC, CENELEC, IEC and IEEE specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom). Figure 2.7 Mounting Device Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produce infinite number of configurations. To produce the worst-case condition (the hand absorbs antenna output power), the hand is omitted during the tests. # 3. Probe and Dipole Calibration See Appendix D and E. # 4. Phantom & Simulating Tissue Specifications # **Head & Body Simulating Mixture Characterization** The head and body mixtures consist of the material based on the table listed below. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. Body tissue parameters that have not been specified in IEEE1528 – 2013 are derived from the issue dielectric parameters computed from the 4-Cole-Cole equations. **Table 4.1 Typical Composition of Ingredients for Tissue** | | | | Simulating Tissue | | | | | |---------------------|--------|--------------------------|---------------------|---------------------------------------|---------------|---------------|--------------------------| | Ingredients | | 750 MHz Body | 835/900 MHz
Body | 1750 MHz Body | 1900 MHz Body | 2450 MHz Body | 5 GHz Body | | Mixing Percentage | | | | | | | | | Water | | | 52.50 | | 69.91 | 73.20 | | | Sugar | | | 45.00 | | 0.00 | 0.00 | | | Salt | | Proprietary
Purchased | 1.40 | 1.40 Proprietary Purchased From Speag | 0.13 | 0.10 | Proprietary
Purchased | | HEC | | From Speag | | | 0.00 | 0.00 | From Speag | | Bactericide | | | 0.10 | | 0.00 | 0.00 | , , | | DGBE | | | 0.00 | 0.00 | | 26.70 | | | Dielectric Constant | Target | 55.53 | 55.20 | 53.43 | 53.30 | 52.70 | Various | | Conductivity (S/m) | Target | 0.96 | 0.97 | 1.49 | 1.52 | 1.95 | Various | # 5. ANSI/IEEE C95.1 – 1992 RF Exposure Limits [2] #### **Uncontrolled Environment** Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity. #### **Controlled Environment** Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means. **Table 5.1 Human Exposure Limits** | | UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g) | CONTROLLED ENVIROMENT Professional Population (W/kg) or (mW/g) | |---|--|--| | SPATIAL PEAK SAR ¹
Head | 1.60 | 8.00 | | SPATIAL AVERAGE SAR ² Whole Body | 0.08 | 0.40 | | SPATIAL PEAK SAR ³ Hands, Feet, Ankles, Wrists | 4.00 | 20.00 | ¹ The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time. ² The Spatial Average value of the SAR averaged over the whole body. ³ The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time. # 6. Measurement Uncertainty Measurement uncertainty table is not required per KDB 865664 D01 v01r04 section 2.8.2 page 12. SAR measurement uncertainty analysis is required in the SAR report only when the highest measured SAR in a frequency band is \geq 1.5 W/kg for 1-g SAR. The equivalent ratio (1.5/1.6) should be applied to extremity and occupational exposure conditions. The highest reported value is less than 1.5 W/kg. Therefore, the measurement uncertainty table is not required. # 7. System Validation ## **Tissue Verification** **Table 7.1 Measured
Tissue Parameters** | Table III measured income i diameter | | | | | | | | | |--------------------------------------|---------------|--------------|----------|---------------|---------------|---------------|----------|--| | | | 750 MHz Body | | 835 MHz Body | | 1750 MHz Body | | | | Date(s) | | Dec. | 30, 2015 | Dec. 29, 2015 | | Dec. 28, 2015 | | | | Liquid Temperature (°C) | 20.0 | Target | Measured | Target | Measured | Target | Measured | | | Dielectric Constant: ε | | 55.35 | 54.69 | 55.20 | 54.37 | 53.43 | 52.68 | | | Conductivity: σ | | 0.96 | 0.94 | 0.97 | 0.98 | 1.49 | 1.56 | | | | | 1900 | MHz Body | 2450 l | 2450 MHz Body | | MHz Body | | | Date(s) | | Dec. | 21, 2015 | Dec. 17, 2015 | | Dec. 18, 2015 | | | | Liquid Temperature (°C) | 20.0 | Target | Measured | Target | Measured | Target | Measured | | | Dielectric Constant: ε | | 53.30 | 53.17 | 52.70 | 52.77 | 49.01 | 49.07 | | | Conductivity: σ | | 1.52 | 1.54 | 1.95 | 1.92 | 5.30 | 5.21 | | | | | 5600 | MHz Body | 5800 MHz Body | | 900 MHz Body | | | | Date(s) | | Dec. | 18, 2015 | Dec. 18, 2015 | | Mar. 22, 2016 | | | | Liquid Temperature (°C) | 20.0 | Target | Measured | Target | Measured | Target | Measured | | | Dielectric Constant: ε | | 48.47 | 48.47 | 48.20 | 48.17 | 55.00 | 55.39 | | | Conductivity: σ | | 5.77 | 5.73 | 6.00 | 5.99 | 1.05 | 1.03 | | | Annondia A for data print | A L'AC LL 'LL | | | | | | | | See Appendix A for data printout. # **Test System Verification** Prior to assessment, the system is verified to the $\pm 10\%$ of the specifications at the test frequency by using the system kit. Power is normalized to 1 watt. (Graphic Plots Attached) **Table 7.2 System Dipole Validation Target & Measured** | | Test
Frequency | Targeted
SAR _{1g} (W/kg) | Measure
SAR _{1g} (W/kg) | Tissue Used for Verification | Deviation (%) | Plot Number | |-------------|-------------------|--------------------------------------|-------------------------------------|------------------------------|---------------|-------------| | 30-Dec-2015 | 750 MHz | 8.48 | 8.65 | Body | + 2.00 | 1 | | 30-Dec-2015 | 835 MHz | 9.28 | 9.43 | Body | + 1.62 | 2 | | 30-Dec-2015 | 1750 MHz | 37.70 | 38.50 | Body | + 2.12 | 3 | | 30-Dec-2015 | 1900 MHz | 40.40 | 40.20 | Body | - 0.50 | 4 | | 30-Dec-2015 | 2450 MHz | 52.10 | 51.20 | Body | - 1.73 | 5 | | 30-Dec-2015 | 5200 MHz | 77.40 | 76.30 | Body | - 1.42 | 6 | | 30-Dec-2015 | 5600 MHz | 80.70 | 78.30 | Body | - 2.97 | 7 | | 30-Dec-2015 | 5800 MHz | 78.80 | 74.90 | Body | - 4.95 | 8 | | 22-Mar-2016 | 900 MHz | 10.60 | 10.90 | Body | + 2.83 | 9 | See Appendix A for data plots. Figure 7.1 Dipole Validation Test Setup # 8. LTE Document Checklist 1) Identify the operating frequency range of each LTE transmission band used by the device | LTE Operating | Uplink (transmit) | Downlink (Receive) | Duplex mode | |---------------|-------------------|--------------------|-------------| | Band | Low - high | Low - high | (FDD/TDD) | | 2 | 1850-1910 | 1930-1990 | FDD | | 4 | 1710-1755 | 2110-2155 | FDD | | 5 | 824-849 | 869-894 | FDD | | 13 | 777-787 | 746-756 | FDD | | 17 | 704-716 | 734-746 | FDD | 2) Identify the channel bandwidths used in each frequency band; 1.4, 3, 5, 10, 15, 20 MHz etc | LTE Band Class | Bandwidth (MHz) | Frequency or Freq. Band (MHz) | |----------------|-----------------------|-------------------------------| | 2 | 1.4, 3, 5, 10, 15, 20 | 1850-1910 MHz | | 4 | 1.4, 3, 5, 10, 15, 20 | 1710-1755 MHz | | 5 | 5, 10 | 824-849 MHz | | 13 | 5, 10 | 777-787 MHz | | 17 | 5, 10 | 704-716 MHz | 3) Identify the high, middle and low (H, M, L) channel numbers and frequencies in each LTE frequency band | LTE Band | Bandwidth | | nel # | | | | | | |----------|-----------|--------|-------|--------|-------|--------|-------|--| | Class | (MHz) | L | ow | M | id | High | | | | 2 | 1.4 | 1850.7 | 18607 | 1880.0 | 18900 | 1909.3 | 19193 | | | 2 | 3 | 1851.5 | 18615 | 1880.0 | 18900 | 1908.5 | 19185 | | | 2 | 5 | 1852.5 | 18625 | 1880.0 | 18900 | 1907.5 | 19175 | | | 2 | 10 | 1855.0 | 18650 | 1880.0 | 18900 | 1905.0 | 19150 | | | 2 | 15 | 1857.5 | 18675 | 1880.0 | 18900 | 1902.5 | 19125 | | | 2 | 20 | 1860.0 | 18700 | 1880.0 | 18900 | 1900.0 | 19100 | | | 4 | 1.4 | 1710.7 | 19957 | 1732.5 | 20175 | 1754.3 | 20393 | | | 4 | 3 | 1711.5 | 19965 | 1732.5 | 20175 | 1753.5 | 20385 | | | 4 | 5 | 1712.5 | 19975 | 1732.5 | 20175 | 1752.5 | 20375 | | | 4 | 10 | 1715.0 | 20000 | 1732.5 | 20175 | 1750.0 | 20350 | | | 4 | 15 | 1717.5 | 20025 | 1732.5 | 20175 | 1747.5 | 20325 | | | 4 | 20 | 1720.0 | 20050 | 1732.5 | 20175 | 1745.0 | 20300 | | | 5 | 5 | 826.5 | 20425 | 836.5 | 20525 | 846.5 | 20625 | | | 5 | 10 | 829.0 | 20450 | 836.5 | 20525 | 844.0 | 20600 | | | 13 | 5 | | | 782.0 | 23230 | | | | | 13 | 10 | | | 782.0 | 23230 | | | | | 17 | 5 | 706.5 | 23755 | 710.0 | 23790 | 713.5 | 23825 | | | 17 | 10 | 709.0 | 23780 | 710.0 | 23790 | 711.0 | 23800 | | - 4) Specify the UE category and uplink modulations used: - UE Category: 3 - Uplink modulations: QPSK and 16QAM - 5) Include descriptions of the LTE transmitter and antenna implementation; and also identify whether it is a standalone transmitter operating independently of other wireless transmitters in the device or sharing hardware components and/or antenna(s) with other transmitters etc The device has 4 antennas: - WWAN Main (Transmit and Receive) Antenna - WLAN Main and Aux (Transmit and Receive) Antenna - Diversity (Receive Only) Antenna Transmission relationship - All transmission (TX) is limited to the WWAN and WLAN antennas only - The device is <u>unable</u> to transmit CDMA/EDGE/GPRS/WCDMA/HSPA and LTE simultaneously. - The Diversity antenna is receive only antenna which is reserved for the WWAN operation. - Rx is simultaneous on Main and Diversity - Simultaneous Tx with the WWAN and WLAN is allowed. | Antenna port | CDMA/EDGE/GPRS/
WCDMA/HSPA | | LTE | | 802.11 b/g/n | | |-----------------|-------------------------------|-----|-----|-----|--------------|-----| | 7 titteima port | TX | RX | TX | RX | TX | RX | | #1 WWAN Main | Yes | Yes | Yes | Yes | No | No | | #2 WLAN Main | No | No | No | No | Yes | Yes | | #3 WLAN Aux | No | No | No | No | Yes | Yes | | #4 (Diversity) | No | Yes | No | Yes | No | No | 6) Identify the LTE voice/data requirements in each operating mode and exposure condition with respect to head and body test configurations, antenna locations, handset flip-cover or slide positions, antenna diversity conditions etc The device is a data only. Data mode was tested in each operating mode and exposure condition in the body configuration. See test setup photos to see all configurations tested. - 7) Identify if Maximum Power Reduction (MPR) is optional or mandatory, i.e. built-in by design: - a) Only mandatory MPR may be considered during SAR testing, when the maximum output power is permanently limited by the MPR implemented within the UE; and only for the applicable RB (resource block) configurations specified in LTE standards MPR is mandatory, built-in by design on all production units. It was enabled during testing. | Modulation | Ch | Channel Bandwidth/transmission Bandwidth Configuration | | | | | | | | |------------|-----|--|-----|------|------|------|-----|--|--| | | | (RB) | | | | | | | | | | 1.4 | 1.4 3.0 5 10 15 20 | | | | | | | | | | MHz | MHz MHZ MHz MHz MHz MHz | | | | | | | | | QPSK | > 5 | > 4 | > 8 | > 12 | > 16 | > 18 | ≤ 1 | | | | 16QAM | ≤ 5 | ≤ 4 | ≤ 8 | ≤ 12 | ≤ 16 | ≤ 18 | ≤ 1 | | | | 16QAM | > 5 | > 4 | > 8 | > 12 | > 16 | > 18 | ≤ 2 | | | - b) A-MPR (additional MPR) must be disabled - c) A-MPR was disabled during testing. 8) Include the maximum average conducted output power measured on the required test channels for each channel bandwidth and UL modulation used in each frequency band: The maximum average conducted output power measured for the testing is listed on pages 48-60 of this report. The below table shows the factory set point with the allowable tolerance. | Band | Technology | Class | 3GPP
Nominal
Power
dBm | Calibrated
Nominal
Power
dBm | Tolerance
dBm | Lower
Tolerance
dBm | Upper
Tolerance
dBm | |-------------------|------------|-------|---------------------------------|---------------------------------------|------------------|---------------------------|---------------------------| | Band 17 – 750 MHz | LTE | 3 | 22.0 | 22.0 | ±1.0 | 21.0 | 23.0 | | Band 13 – 750 MHz | LTE | 3 | 22.0 | 22.0 | ±1.0 | 21.0 | 23.0 | | Band 5 – 835 MHz | LTE | 3 | 22.0 | 22.0 | ±1.0 | 21.0 | 23.0 | | Band 4 – 1750 MHz | LTE | 3 | 18.0 | 18.0 | ±1.0 | 17.0 | 19.0 | | Band 2 – 1900 MHz | LTE | 3 | 18.0 | 18.0 | ±1.0 | 17.0 | 19.0 | 9) Identify all other U.S. wireless operating modes (3G, Wi-Fi, WiMax, Bluetooth etc), device/exposure configurations (head and body, antenna and handset flip-cover or slide positions, antenna diversity conditions etc.) and frequency bands used for these modes Other wireless modes: | Band | Technology | Class | 3GPP
Nominal
Power
dBm | Calibrated
Nominal
Power
dBm | Tolerance
dBm | Lower
Tolerance
dBm | Upper
Tolerance
dBm | |-------------------|------------|-------|---------------------------------|---------------------------------------|------------------|---------------------------|---------------------------| | Band 5 – 835 MHz | CDMA | 3 | 23.0 | 23.0 | ±1.0 | 22.0 | 24.0 | | Band 5 – 850 MHz | GPRS | 4 | 32.0 | 32.0 | ±1.0 | 31.0 | 33.0 | | Band 5 – 850 MHz | EDGE | E2 | 26.0 | 26.0 | ±1.0 | 25.0 | 27.0 | | Band 5 – 850 MHz | WCDMA/HSPA | 3 | 22.0 | 22.0 | ±1.0 | 21.0 | 23.0 | | Band 4 – 1750 MHz | WCDMA/HSPA | 3 | 18.0 | 18.0 | ±1.0 | 17.0 | 19.0 | | Band 2 – 1900 MHz | CDMA | 3 | 18.0 | 18.0 | ±1.0 | 17.0 | 19.0 | | Band 2 – 1900 MHz | GPRS | 1 | 27.0 | 27.0 | ±1.0 | 26.0 | 28.0 | | Band 2 – 1900 MHz | EDGE | E2 | 25.0 | 25.0 | ±1.0 | 24.0 | 26.0 | | Band 2 – 1900 MHz | WCDMA/HSPA |
3 | 18.0 | 18.0 | ±1.0 | 17.0 | 19.0 | 10) Include the maximum average conducted output power measured for the other wireless modes and frequency bands. The maximum average conducted output power measured for the testing is listed on pages 25-29 of this report. The table in item 9 shows the factory set point with the allowable tolerance. 11) Identify the <u>simultaneous transmission conditions</u> for the voice and data configurations supported by all wireless modes, device configurations and frequency bands, for the head and body exposure conditions and device operating configurations (handset flip or cover positions, antenna diversity conditions etc.) The device is unable to transmit WCDMA/GPRS/EDGE/CDMA and LTE simultaneously. The device is able to transmit WWAN and WLAN simultaneously. | | TX Modes | WCDMA/GPRS/EDGE/CDMA | LTE | 802.11 b/g/n | |---|----------|----------------------|-----|--------------| | Ī | 1 | ON | OFF | ON | | Ī | 2 | OFF | ON | ON | 12) When power reduction is applied to certain wireless modes to satisfy SAR compliance for simultaneous transmission conditions, other equipment certification or operating requirements, include the maximum average conducted output power measured in each power reduction mode applicable to the simultaneous voice/data transmission configurations for such wireless configurations and frequency bands; and also include details of the power reduction implementation and measurement setup Power reduction is not required to satisfy SAR compliance. 13) Include descriptions of the test equipment, test software, built-in test firmware etc. required to support testing the device when power reduction is applied to one or more transmitters/antennas for simultaneous voice/data transmission Power reduction is not required to satisfy SAR compliance. 14) When appropriate, include a SAR test plan proposal with respect to the above Power reduction is not required to satisfy SAR compliance. 15) If applicable, include preliminary SAR test data and/or supporting information in laboratory testing inquiries to address specific issues and concerns or for requesting further test reduction considerations appropriate for the device; for example, simultaneous transmission configurations. Not applicable. # 9. SAR Test Data Summary See Measurement Result Data Pages See Appendix B for SAR Test Data Plots. See Appendix C for SAR Test Setup Photos. # **Procedures Used To Establish Test Signal** The device was either placed into simulated transmit mode using the manufacturer's test codes or the actual transmission is activated through a base station simulator or similar equipment. See data pages for actual procedure used in measurement. #### **Device Test Condition** In order to verify that the device was tested at full power, conducted output power measurements were performed before and after each SAR measurement to confirm the output power unless otherwise noted. If a conducted power deviation of more than 5% occurred, the test was repeated. The power drift of each test is measured at the start of the test and again at the end of the test. The drift percentage is calculated by the formula ((end/start)-1)*100 and rounded to three decimal places. The drift percentage is calculated into the resultant SAR value on the data sheet for each test. The testing was conducted on all edges closest to each antenna. The back and right side was tested for the WWAN antenna. The remaining sides were not tested as the WWAN antenna was more than 2.5 cm from the side. The back, top, left and right sides were tested for the WLAN antennas. The remaining sides were not tested as the antenna was more than 2.5 cm from these sides. The back, left, right and top sides were tested for the RFID antenna. The remaining side was not tested as the RFID antenna was more than 2.5 cm for this side. All further test reductions are shown on pages 44-46 for CDMA/GSM/WCDMA bands, page 33-43 for WLAN, and pages 62-66 for LTE bands. See the photo in Appendix C for a pictorial of the setups and antenna locations. The closest distance between the Bluetooth antenna and the user is 12 mm and the maximum power of the Bluetooth transmitter is 6.7 mW. For the FCC, the calculation mW/mm* $\sqrt{f_{(GHz)}}$ <3.0 yields 6.7/12* $\sqrt{2.48}$ =0.88 which is less than 3.0. Therefore, the Bluetooth transmitter is excluded from SAR testing. This device is capable of operating in 850/1900 GPRS/EDGE frequency bands. In GPRS mode, the device is in Class 4 for 850 MHz and Class 1 for 1900 MHz. In EDGE mode, the device is in Class E2 for 850/1900 MHz. The testing was conducted in the GPRS mode. The GPRS mode has 1-slot, 2-slot, 3-slot and 4-slot configurations. The power measured is peak power. The average power in all GPRS Slots calculated and the 1-slot had the highest average power. Therefore, the testing was conducted in 1-Slot. The EDGE mode is >5 dB lower than its equivalent slot configuration for GPRS. Therefore, the device was only tested in the highest power configuration which was 1-slot GPRS. The WCDMA testing was conducted using 12.2 kbps RMC configured in Test Loop Mode 1. The HSPA testing was conducted with HS-DPCCH, E-DPCCH and E-DPDCH all enabled and a 12.2 kbps RMC. FRC was configured according to HS-DPCCH Sub-Test 1 using H-set 1 and QPSK. The 1xRTT testing was conducted in RC3 with the device configured using TDSO/SO32 with FCH transmitting at full rate. The power control was set to "All Bits Up." 1xRTT did not require SAR testing due to the measured power being less than $\frac{1}{4}$ dB higher than Rev. 0. The Rev. 0 testing was conducted with the Reverse Data Channel rate of 153.6 kbps. The Forward Traffic Channel data rate is set to the 2-slot version of 307.2 kbps with the ACK Channel transmitting in all slots. The power control was set to "All Bits Up." Other rates were not tested due to the conducted power measured was less than ¼ dB higher than 153.6 kbps. The Rev. A Subtype 2 testing was conducted with the Reverse Data Channel payload size of 4096 bits and Termination Target of 16 slots. The Forward Traffic Channel data rate is set to the 2-slot version of 307.2 kbps with the ACK Channel transmitting in all slots. The power control was set to "All Bits Up." Rev. A did not require SAR testing due to the measured power being less than ½ dB higher than Rev. 0. 4.097 BT/Wifi Primary UHF RFID 5.339 BT/WiFi Secondary Cellular Diversity Cellular Primary Figure 9.1 SAR Location Diagram of Antenna Distances # **Antenna Distances** WWAN main to WLAN (Chain 1) (mm): 112.85 mm WWAN main to WLAN (Chain 2) (mm): 23.67 mm # 10. FCC 3G Measurement Procedures Power measurements were performed using a base station simulator under average power. ## 10.1 Procedures Used to Establish RF Signal for SAR The device was placed into a simulated call using a base station simulator in a screen room. Such test signals offer a consistent means for testing SAR and recommended for evaluating SAR. The SAR measurement software calculates a reference point at the start and end of the test to check for power drifts. If conducted power deviations of more than 5% occurred, the tests were repeated. # 10.2 SAR Measurement Conditions for CDMA2000, 1xEV-DO ## 10.2.1 Output Power Verification 1xRTT Use CDMA2000 Rev 6 protocol in the call box. - 1) Test for RC 3 Reverse FCH, RC3 Reverse SCH0 and demodulation of RC 3, 4 and 5. - a. Set up a call using Supplemental Channel Test Mode 3 (RC 3, SO 32) with 9600 bps Fundamental Channel and 9600 bps SCH0 data rate. - b. As per C.S0011 or TIA/EIA-98-F Table 4.4.5.2-2, set the test parameters. - c. Send alternating '0' and '1' power control bit to the device - d. Determine the active channel configuration. If the desired channel configuration is not the active channel configuration, increase Îor by 1 dB and repeat the verification. Repeat this step until the desired channel configuration becomes active. - e. Measure the output power at the device antenna connector. - f. Decrease lor by 0.5 dB. - g. Determine the active channel configuration. If the active channel configuration is the desired channel configuration, measure the output power at the device antenna connector. - h. Repeat step f and g until the output power no longer increases or the desired channel configuration is no longer active. Record the highest output power achieved with the desired channel configuration active. - Repeat step a through h ten times and average the result. ## 10.2.2 Output Power Verification 1xEvDo - 1) Use 1xEV-DO Rel 0 protocol in the call box 8960. - a. FTAP - Select Test Application Protocol to FTAP - Set FTAP Rate to 307.2 kbps (2 Slot, QPSK) - Generator Info -> Termination Parameters -> Max Forward Packet Duration -> 16 Slots - Set Îor to -60 dBm/1.23 MHz - Send continuously '0' power control bits - Measure the power at device antenna connector - b. RTAP - Select Test Application Protocol to RTAP - Set RTAP Rate to 9.6 kbps - Generator Info -> Termination Parameters -> Max Forward Packet Duration -> 16 Slots - Set Îor to -60 dBm/1.23 MHz - Send continuously '0' power control bits - Measure the power at device antenna connector - Repeat above steps for RTAP Rate = 19.2 kbps, 38.4 kbps, 76.8 kbps and 153.6 kbps respectively - 2) Use 1xEV-DO Rev A protocol in the call box 8960 #### a. FETAP - Select Test Application Protocol to FETAP - Set FETAP Rate to 307.2 kbps (2 Slot, QPSK) - Generator Info -> Termination Parameters -> Max Forward Packet Duration -> 16 Slots - Set Îor to -60 dBm/1.23 MHz - Send continuously '0' power control bits - Measure the power at device antenna connector #### b. RETAP - Select Test Application Protocol to RETAP - F-Traffic Format -> 4 (1024, 2, 128) Canonical (307.2k, QPSK) Set R-Data Pkt Size to 128 - Generator Info -> Termination Parameters -> Max Forward Packet Duration -> 16 Slots -> ACK R-Data After -> Subpacket 0 (All ACK) - Set Îor to -60 dBm/1.23 MHz - Send continuously '0' power control bits - Measure
the power at device antenna connector - Repeat above steps for R-Data Pkt Size = 256, 512, 768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288 respectively. | | | IS-2000 | 1Xev-Do Rev. 0 | 1Xev-Do Rev. A
Subtype 0/1 | |-----------------|---------|---------------------|----------------|-------------------------------| | | Channel | TDSO
SO32
RC3 | RTAP
[dBm] | RTAP
[dBm] | | Callular | 1013 | 23.40 | 23.40 | 23.46 | | Cellular
BC0 | 384 | 23.36 | 23.35 | 23.40 | | ВСО | 777 | 23.42 | 23.40 | 23.45 | | | | | | | | Cellular | 450 | 23.45 | 23.41 | 23.42 | | BC10 | 584 | 23.39 | 23.39 | 23.45 | | ВСТО | 719 | 23.48 | 23.38 | 23.41 | | | | | | | | | 25 | 18.50 | 18.70 | 18.38 | | PCS | 600 | 18.49 | 18.70 | 18.44 | | | 1175 | 18.50 | 18.71 | 18.43 | CDMA Power Measurements Power Control was set in "All Bits Up" for all measurements. ## 10.3 SAR Measurement Conditions for WCDMA/HSDPA/HSUPA Configure the call box 8960 to support all WCDMA tests in respect to the 3GPP 34.121 (listed in Table below). Measure the power at Ch4132, 4182 and 4233 for US cell; Ch9262, 9400 and 9538 for US PCS band. For Rel99 - Set a Test Mode 1 loop back with a 12.2kbps Reference Measurement Channel (RMC). - Set and send continuously Up power control commands to the device - Measure the power at the device antenna connector using the power meter with average detector. #### For HSDPA Rel 6 - Establish a Test Mode 1 look back with both 1 12.2kbps RMC channel and a H-Set1 Fixed Reference Channel (FRC). With the 8960 this is accomplished by setting the signal Channel Coding to "Fixed Reference Channel" and configuring for HSET-1 QKSP. - Set beta values and HSDPA settings for HSDPA Subtest1 according to Table below. - Send continuously Up power control commands to the device - Measure the power at the device antenna connector using the power meter with modulated average detector. - Repeat the measurement for the HSDPA Subtest2, 3 and 4 as given in Table below. #### For HSUPA Rel 6 - Use UL RMC 12.2kbps and FRC H-Set1 QPSK, Test Mode 1 loop back. With the 8960 this is accomplished by setting the signal Channel Coding to "E-DCH Test Channel" and configuring the equipment category to Cat5_10ms. - Set the Absolute Grant for HSUPA Subtest1 according to Table below. - Set the device power to be at least 5dB lower than the Maximum output power - Send power control bits to give one TPC_cmd = +1 command to the device. If device doesn't send any E-DPCH data with decreased E-TFCI within 500ms, then repeat this process until the decreased E-TFCI is reported. - Confirm that the E-TFCI transmitted by the device is equal to the target E-TFCI in Table below. If the E-TFCI transmitted by the device is not equal to the target E-TFCI, then send power control bits to give one TPC_cmd = -1 command to the UE. If UE sends any E-DPCH data with decreased E-TFCI within 500 ms, send new power control bits to give one TPC_cmd = -1 command to the UE. Then confirm that the E-TFCI transmitted by the UE is equal to the target E-TFCI in Table below. - Measure the power using the power meter with modulated average detector. - Repeat the measurement for the HSUPA Subtest2, 3, 4 and 5 as given in Table below. | 3GPP
Release | Mode | Cellular Band [dBm] | | | Sub-Test
(See Table | MPR | |-----------------|-------|---------------------|-------|-------|------------------------|-----| | Version | | 4132 | 4183 | 4233 | Below) | | | 99 | WCDMA | 22.99 | 22.98 | 22.99 | - | - | | 6 | | 22.86 | 22.87 | 22.79 | 1 | 0 | | 6 | HSDPA | 22.82 | 22.89 | 22.85 | 2 | 0 | | 6 | ПЭДРА | 22.39 | 22.42 | 22.37 | 3 | 0.5 | | 6 | | 22.94 | 22.49 | 22.40 | 4 | 0.5 | | 6 | | 22.80 | 22.90 | 22.83 | 1 | 0 | | 6 | | 20.95 | 20.99 | 20.96 | 2 | 2 | | 6 | HSUPA | 21.97 | 22.08 | 21.99 | 3 | 1 | | 6 | | 21.06 | 21.01 | 21.04 | 4 | 2 | | 6 | | 22.82 | 22.84 | 22.87 | 5 | 0 | | 3GPP
Release | Mode | AWS Band [dBm] | | | Sub-Test
(See Table | MPR | |-----------------|-------|----------------|-------|-------|------------------------|-----| | Version | | 1312 | 1413 | 1513 | `Below) | | | 99 | WCDMA | 18.88 | 18.90 | 18.95 | - | - | | 6 | | 18.79 | 18.82 | 18.76 | 1 | 0 | | 6 | HSDPA | 18.81 | 18.75 | 18.79 | 2 | 0 | | 6 | ПЭБРА | 18.36 | 18.34 | 18.36 | 3 | 0.5 | | 6 | | 18.41 | 18.31 | 18.39 | 4 | 0.5 | | 6 | | 18.84 | 18.82 | 18.75 | 1 | 0 | | 6 | | 16.97 | 17.01 | 16.89 | 2 | 2 | | 6 | HSUPA | 17.94 | 18.05 | 17.94 | 3 | 1 | | 6 | | 16.99 | 16.95 | 17.03 | 4 | 2 | | 6 | | 17.82 | 18.80 | 18.71 | 5 | 0 | | 3GPP
Release | Mode | PCS Band [dBm] | | | Sub-Test
(See Table | MPR | |-----------------|-------|----------------|-------|-------|------------------------|-----| | Version | | 9262 | 9400 | 9538 | Below) | | | 99 | WCDMA | 18.92 | 18.97 | 18.95 | - | - | | 6 | | 18.81 | 18.85 | 18.79 | 1 | 0 | | 6 | HSDPA | 18.75 | 18.79 | 18.74 | 2 | 0 | | 6 | ПЭДРА | 18.42 | 18.36 | 18.38 | 3 | 0.5 | | 6 | | 18.44 | 18.36 | 18.40 | 4 | 0.5 | | 6 | | 18.88 | 18.85 | 18.72 | 1 | 0 | | 6 | | 16.92 | 17.05 | 16.93 | 2 | 2 | | 6 | HSUPA | 17.91 | 18.03 | 17.99 | 3 | 1 | | 6 | | 16.95 | 16.97 | 17.00 | 4 | 2 | | 6 | | 17.85 | 18.81 | 18.78 | 5 | 0 | # **Sub-Test Setup for Release 6 HSDPA** | Sub-Test | β _c | β_d | B _c / β _d | β_{hs} | |--|----------------------|-----------|---------------------------------|--------------| | 1 | 2/15 | 15/15 | 2/15 | 4/15 | | 2 | 12/15 | 15/15 | 15/15 | 24/15 | | 3 | 15/15 | 8/15 | 15/8 | 30/15 | | 4 | 15/15 | 4/15 | 15/4 | 30/15 | | $\Delta_{ m ack}$, $\Delta_{ m nack}$ a | and $\Delta_{cqi} =$ | 8 | | | # **Sub-Test Setup for Release 6 HSUPA** | Sub-Test | β_{c} | β_d | B _c / β _d | β_{hs} | B _{ec} | B_{ed} | MPR | AG Index | E-TFCI | |--|--|-----------|---------------------------------|--------------|-----------------|----------|-----|----------|--------| | 1 | 11/15 | 15/15 | 11/15 | 22/15 | 209/225 | 1039/225 | 0.0 | 20 | 75 | | 2 | 6/15 | 15/15 | 6/15 | 12/15 | 12/15 | 94/75 | 2.0 | 12 | 67 | | 3 | 15/15 | 9/15 | 15/9 | 30/15 | 30/15 | 47/15 | 1.0 | 15 | 92 | | 4 | 2/15 | 15/15 | 2/15 | 4/15 | 2/15 | 56/15 | 2.0 | 17 | 71 | | 5 | 15/15 | 15/15 | 15/15 | 30/15 | 24/15 | 134/15 | 0.0 | 21 | 81 | | Δ_{ack} , Δ_{nack} and | $\Delta_{ m ack},\Delta_{ m nack}$ and $\Delta_{ m cqi}=8$ | | | | | | | | | # 10.4 SAR Measurement Conditions for GSM Configure the 8960 box to support GMSK and 8PSK call respectively, and set one timeslot and two timeslot transmission for GMSK GSM/GPRS and 8PSK EDGE. Measure and record power outputs for both modulations. | The defection of | | | | | | | | |------------------|------------------------|-------|-------|--|--|--|--| | GPRS-GMSK/1 slot | | | | | | | | | Band | Band Channel Peak Frai | | | | | | | | Callular | 128 | 32.50 | 23.47 | | | | | | Cellular | 190 | 32.45 | 23.42 | | | | | | | 251 | 32.44 | 23.41 | | | | | | | 512 | 27.45 | 18.42 | | | | | | PCS | 661 | 27.20 | 18.17 | | | | | | | 810 | 27.50 | 18.47 | | | | | | GPRS-GMSK/2 slot | | | | | | | |------------------|---------|------------------|-------|--|--|--| | Band | Channel | Frame
Average | | | | | | | 128 | 29.87 | 23.85 | | | | | Cellular | 190 | 29.87 | 23.85 | | | | | | 251 | 29.85 | 23.83 | | | | | | 512 | 24.96 | 18.94 | | | | | PCS | 661 | 24.91 | 18.89 | | | | | | 810 | 24.95 | 18.93 | | | | | GPRS-GMSK/3 slot | | | | | | | |------------------|---------|---------------|------------------|--|--|--| | Band | Channel | Peak
Power | Frame
Average | | | | | | 128 | 27.25 | 22.99 | | | | | Cellular | 190 | 27.16 | 22.90 | | | | | | 251 | 27.23 | 22.97 | | | | | | 512 | 22.35 | 18.09 | | | | | PCS | 661 | 22.22 | 17.96 | | | | | | 810 | 22.46 | 18.02 | | | | | GPRS-GMSK/4 slot | | | | | | | |------------------|---------------|------------------|-------|--|--|--| | Band | Peak
Power | Frame
Average | | | | | | | 128 | 26.87 | 23.86 | | | | | Cellular | 190 | 26.76 | 23.75 | | | | | | 251 | 26.70 | 23.69 | | | | | | 512 | 21.03 | 18.02 | | | | | PCS | 661 | 21.93 | 17.92 | | | | | | 810 | 21.03 | 18.02 | | | | | EDGE-8PSK/1 slot | | | | | | | |------------------|---------|---------------|------------------|--|--|--| | Band | Channel | Peak
Power | Frame
Average | | | | | | 128 | 26.59 | 17.56 | | | | | Cellular | 190 | 26.53 | 17.50 | | | | | | 251 | 26.68 | 17.65 | | | | | | 512 | 25.62 | 16.59 | | | | | PCS | 661 | 25.46 | 16.43 | | | | | | 810 | 25.55 | 16.52 | | | | | EDGE-8PSK/2 slot | | | | | | | |------------------|---------|---------------|------------------|--|--|--| | Band | Channel | Peak
Power | Frame
Average | | | | | | 128 | 23.99 | 17.97 | | | | | Cellular | 190 | 23.95 | 17.93 | | | | | | 251 | 23.99 | 17.97 | | | | | | 512 | 22.99 | 16.97 | | | | | PCS | 661 | 22.89 | 16.87 | | | | | | 810 | 23.06 | 17.04 | | | | | EDGE-8PSK/3 slot | | | | | | | |------------------|---------|---------------|------------------|--|--|--| | Band | Channel | Peak
Power | Frame
Average | | | | | | 128 | 22.35 | 18.09 | | | | | Cellular | 190 | 22.29 | 18.03 | | | | | | 251 | 22.45 | 18.19 | | | | | | 512 | 21.38 | 17.12 | | | | | PCS | 661 | 21.34 | 17.08 | | | | | | 810 | 21.52 | 17.26 | | | | | EDGE-8PSK/4 slot | | | | | | | |------------------|---------|---------------|------------------|--|--|--| | Band | Channel | Peak
Power | Frame
Average | | | | | | 128 | 21.18 | 18.17 | | | | | Cellular | 190 | 21.16 | 18.15 | | | | | | 251 | 21.21 | 18.20 | | | | | | 512 | 20.22 | 17.21 | | | | | PCS | 661 | 20.17 | 17.16 | | | | | | 810 | 20.28 | 17.27 | | | | | Road | Mada | Bandwidth | Channel | Frequency | Data | Antonno | Power | | | |---------------|----------|-----------|----------------------------|--------------|---------|---------|----------------|---------|-------| | Band | Mode | (MHz) | Channel | (MHz) | Rate |
Antenna | (dBm) | | | | | | | 11 | 2412 | | | 17 91 | | | | | | | 6 | 2437 | | Chain A | 18.00 | | | | | 802.11b | 20 | 11
1 | 2462
2412 | 1 Mbps | | 17.96
17.95 | | | | | | | 6 | 2437 | | Chain B | 17.98 | | | | | | | 11 | 2462 | | | 17.96 | | | | | | | 1 | 2412 | | | 16.93 | | | | | | | 6 | 2437 | | Chain A | 16.98 | | | | | 802.11g | 20 | 11
1 | 2462
2412 | 6 Mbps | | 16.96
16.95 | | | | | | | 6 | 2412 | | Chain B | 16.99 | | | | | | | 11 | 2462 | | | 16.92 | | | | 2450 MHz | | | 1 | 2412 | | | 15.90 | | | | | | | 6 | 2437 | | Chain A | 15.97 | | | | | 802.11n | 20 | 11 | 2462 | HT4 | | 15.89 | | | | | | | 1 | 2412 | | Chain B | 15.91 | | | | | | | 6
11 | 2437
2462 | | Chairib | 15.92
15.96 | | | | | | | 3 | 2422 | | | 13.92 | | | | | | | 6 | 2437 | | Chain A | 13.95 | | | | | 802.11n | 40 | 9 | 2452 | HT4 | | 13.98 | | | | | 002.1111 | 40 | 3 | 2422 | 1114 | | 13.91 | | | | | | | 6 | 2437 | | Chain B | 13.96 | | | | | | | 9 | 2452 | | | 13.97
15.92 | | | | | | | 36 5180
40 5200 Chain / | | 15.97 | | | | | | | | 20 | 44 | 5220 | 6 Mbps | Chain A | 16.00 | | | | | 802.11a | | 48 | 5240 | | | 15.96 | | | | | 002.11a | | 36 | 5180 | | Chain B | 15.96 | | | | | | | 40 | 5200 | | | 15.92 | | | | | | | 44 | 5220 | | | 16.00 | | | | | | | 48
36 | 5240
5180 | | | 15.99
13.89 | | | | E 4 E E 2 E 2 | 802.11n | | 40 | 5200 | | | 13.93 | | | | 5.15-5.25 GHz | | | 44 | 5220 | | Chain A | 13.96 | | | | | | 20 | 48 5240 HT4 | | | HT4 | | 13.92 | | | | 002.1111 | 20 | 36 | 5180 | 114 | 1114 | | | 13.88 | | | | | 40 | 5200 | | | Chain B | 13.85 | | | | | | 44
48 | 5220
5240 | | | 13.93
13.90 | | | | ŀ | | | 38 | 5190 | | | 13.86 | | | | | 000.44 | 40 | 46 | 5230 | HT4 | HT4 | HT4 Chain A | Chain A | 13.89 | | | 802.11n | 40 | 38 | 5190 | HT4 | Chain B | 13.85 | | | | | | | 46 | 5230 | 1114 | CHAILLD | 13.88 | | | | | | | 52 | 5260 | | | 15.98 | | | | | | | 56
60 | 5280 | | Chain A | 15.96
16.00 | | | | | | 1 | 60
64 | 5300
5320 | | | 16.00
15.86 | | | | | 802.11a | 20 | 52 | 5260 | 6 Mbps | | 15.94 | | | | | | | 56 | 5280 | | Chain B | 15.95 | | | | | | 1 | 60 | 5300 | | Chain B | 16.00 | | | | | | 64 | 5320 | | | 15.92 | | | | | | | | 52 | 5260 | | | 13.91 | | | | 5.25-5.35 GHz | | 1 | 56
60 | 5280
5300 | | Chain A | 13.87
13.89 | | | | | | 1 | 64 | 5320 | | | 13.89 | | | | | 802.11n | 20 | 52 | 5260 | HT4 | Chain B | 13.91 | | | | | | 1 | 56 | 5280 | | | 13.88 | | | | | | | 60 | 5300 | | | 13.96 | | | | | | 1 | 64 | 5320 | | | 13.90 | | | | | | | 54 | 5270 | HT4 | Chain A | 13.92 | | | | | 802.11n | 40 | 62
54 | 5310
5270 | | | 13.89 | | | | | | 54 | 5270
5310 | HT4 | Chain B | 13.85 | | | | **Conducted Average Power Measurements** | MHz MHz Rate (GBm) | Band | Mode | Bandwidth | Channel | Frequency | Data | Antenna | Power | |--|------------|---------|-----------|---------|-----------|----------|----------|-------| | 104 5520 15.88 15.92 | 20110 | | (MHz) | | (MHz) | Rate | 1 | (dBm) | | 108 5540 115.92 15.91 15.91 15.91 15.91 15.91 15.91 15.91 15.91 15.91 15.91 15.91 15.91 15.91 15.91 15.91 15.91 15.91 15.91 15.92 15.93 | | | | | | | | | | 112 5560 16.00 15.90 16.00 15.90 16.00 15.90 15.90 15.90 15.90 15.90 15.90 15.90 16.00 15.90 16.00 16.00 16.00 16.00 16.00 15.90 16.00 | | | 104 5520 | | | | | | | 116 5580 16.00 124 5620 132 5660 15.94 16.00 15.94 16.00 15.94 16.00 15.92 132 5660 15.93 15.94 16.00 15.93 15.94 16.00 15.93 15.94 16.00 15.93 15.94 16.00 15.93 15.94 16.00 15.93 15.94 16.00 15.94 16.00 15.94 16.00 15.94 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00
16.00 | | | | | | | | | | 120 | | | | | | | | | | \$02.11a | | | | | | | Chain A | | | \$802.11a | | | | | | | Chain A | | | \$802.11a | | | | | | | | | | \$02.11a 20 | | | | | | | | | | \$02.11a | | | | | | | | | | 100 | | 002.110 | 20 | 140 | | C Mhas | | | | 108 5540 15.90 15.95 15.95 15.95 15.95 15.95 15.95 15.95 15.95 15.95 15.95 15.95 15.95 15.95 15.90 12.40 5620 12.40 5660 13.90 1 | | 802.11a | 20 | 100 | 5500 | ь іхіррѕ | | 15.94 | | \$600 MHz\$ 112 | | | | | | | | | | 116 | | | | | | | | | | 120 5600 13.89 15.89 16.00 15.92 15.91 15.92 15.91 15.92 15.91 | | | | | | | | | | 124 5620 15.92 15.92 15.92 15.92 15.92 15.92 15.92 15.91 16.00 15.91 16.00 15.91 16.00 15.91 16.00 15.91 16.00 15.91 16.00 15.91 16.00 15.91 16.00 15.91 16.00 15.91 16.00 15.91 16.00 15.90 16.00 | | | | | | | Chair D | | | 128 5540 15.92 16.00 136 5680 15.91 16.00 15.91 16.00 15.91 16.00 15.91 16.00 15.91 16.00 15.91 16.00 15.91 16.00 15.91 16.00 15.91 16.00 15.91 16.00 15.91 16.00 15.91 16.00 15.91 16.00 15.91 16.00 15.90 15.94 16.00 16 | | | | | | | Cuain R | | | 132 5560 15.90 15.91 | | | | | | | | | | 136 5680 15.91 | | | | | | | | | | 140 5700 15,94 13,95 13,95 13,90 13,80 13,90
13,90 | | | | | | | | | | 100 5500 13.95 13.95 13.95 13.95 13.89 13.87 | | | | | | | | | | 104 5520 13.90 13.90 13.89 13.89 13.89 13.81 13.90 13.87 13.91 13.90 13.87 13.87 13.89 | | | | | | | Chain A | | | \$600 MHz\$ 108 | | | | | | | | | | 112 5560 13.87 | | | | | | | | | | 116 5580 13.88 13.90 13.90 13.91 13.90 | | | | | | | | | | 124 5620 13.94 13.85 13.87 13.84 13.89 13. | FC00 MALI- | | | 116 | | | | | | 802.11n 20 | 5600 IVIHZ | | | 120 | 5600 | | | 13.90 | | 802.11n 20 132 136 5680 13.87 140 5700 100 5500 108 5540 112 5560 112 5560 113.90 116 5580 120 5600 118 5580 13.93 Chain B 13.94 13.94 13.94 13.94 13.94 13.94 13.95 13.94 13.94 13.95 13.94 13.94 13.94 13.95 13.94 13.95 13.94 13.94 13.94 13.91 13.91 13.92 13.91 13.92 140 5550 13.92 13.93 13.91 13.91 13.91 13.91 13.91 13.91 13.91 13.91 13.91 13.91 13.91 13.90 13.90 13.90 13.90 13.90 13.90 13.90 13.90 13.90 13.90 13.90 13.90 13.90 13.90 13.90 13.90 | | | | | | | | | | 802.11n 20 | | | | | | | | | | 802.11n 20 140 5700 100 5500 108 5540 1112 5560 112 5560 116 5580 120 5600 116 5580 124 5620 13.93 124 5620 13.87 132 5660 13.94 136 5680 13.91 100 5550 118 5580 119
5550 119 5550 1 | | | | | | | Т4 | | | 100 5500 11.4 13.84 13.96 13.96 13.96 13.96 13.96 13.90 11.12 5560 13.90 11.12 5560 13.90 11.12 12.0 5600 12.8 5640 13.89 12.8 5640 13.89 13.82 13.6 5680 13.91 13.91 13.91 13.91 13.91 13.91 13.91 13.91 13.91 13.91 13.91 13.91 13.91 13.91 13.91 13.91 13.90 13 | | | | | | | | | | 104 5520 13.96 13.96 13.92 13.90 13.91 13.91 13.91 13.91 13.90 13.90 13.90 13.90 13.90 13.90 13.91 13.90 | | 802.11n | 20 | | | HT4 | | | | 108 5540 13.92 13.90 13.90 13.90 13.90 13.90 13.90 13.90 13.90 13.90 13.89 124 5620 13.89 128 5640 13.87 132 5660 13.87 132 5660 13.82 140 5700 13.91 102 5510 13.91 13.92 110 5550 13.87 126 5610 13.89 13.89 13.89 13.89 13.89 13.89 13.90 | | | | | | | | | | 112 5560 13.90 13.93 13.93 120 5600 124 5620 128 5640 13.87 13.94 136 5680 13.94 13.94 13.91 140 5700 13.91 110 5550 13.91 118 5580 Chain A 13.87 13.89 13.87 13.89 13.89 13.89 13.89 13.89 13.89 13.90 13.90 13.90 13.90 13.90 13.90 13.90 13.90 13.90 13.90 13.90 13.90 13.90 13.90 13.89 13.89 13.89 13.89 13.89 13.89 13.90 13.89 13 | | | | | | | | | | 116 5580 13.93 120 5600 Chain B 13.97 124 5620 13.89 128 5640 13.91 130 5660 13.94 136 5680 13.91 140 5700 13.91 102 5510 118 5580 Chain A 13.87 126 5610 13.90 13.90 13.90 13.90 13.90 13.91 13.90 13.9 | | | | | | | | | | 120 5600 Chain B 13.97 124 | | | | | | | | | | 124 5620 13.89 128 5640 13.87 132 5660 13.94 136 5680 13.82 140 5700 13.91 100 5550 13.91 118 5580 Chain A 13.87 13.90 110 5550 13.91 110 5550 13.91 1110 5550 13.91 1110 5550 13.91 1110 5550 13.91 1110 5550 13.90 1110 5550 13.90 1110 5550 13.90 1110 5550 13.90 1110 5550 13.90 1110 5550 13.90 | | | | | | | Chain B | | | 802.11n 40 128 5640 13.87 13.94 13.94 13.94 13.82 140 5700 13.91 13.91 13.91 13.91 13.87 126 5610 13.89 13.90 13.90 13.90 13.90
13.90 13.90 13.90 13.90 13.90 13.90 13.90 | | | | | | | | | | 802.11n 40 132 5660 13.94 13.82 13.82 140 5700 13.91 13.91 140 5550 13.91 148 5580 148 5670 149 159 110 5550 13.90 159 159 159 159 159 159 159 159 159 159 | | | | | | | | | | 802.11n 40 5780 13.82 13.91 13.89 13.4 5670 13.90 13.90 13.90 13.90 13.90 13.90 13.90 13.90 13.90 13.90 13.90 13.90 13.89 | | | | | | | | | | 802.11n 40 5700 13.91
100 5510 13.92
110 5550 13.92
1118 5580 Chain A 13.87
126 5610 13.89
134 5670 HT4 13.90
102 5510 13.90
110 5550 Chain B 13.84 | | | | | | | | | | 802.11n 40 118 5580 Chain A 13.91 13.89 13.89 102 5510 110 5550 118 5580 Chain B 13.89 13.90 Chain B 13.89 | | | | 140 | 5700 | | | 13.91 | | 802.11n 40 118 5580 Chain A 13.87 126 5610 13.89 13.90 118 5550 118 5580 Chain B 13.89 13.90 Chain B 13.89 | | | | | | | | | | 802.11n 40 126 5610 13.89 13.90 13.90 13.90 13.90 13.90 13.90 13.91 13.91 13.91 13.90 13.89 13.89 13.89 13.89 | | | | | | | | | | 802.11n 40 134 5670 HT4 13.90 13.91 13.91 13.90 118 5580 Chain B 13.84 | | | | | | | Chain A | | | 102 5510 H14 13.91 13.90 118 5580 Chain B 13.84 | | | | | | | | | | 110 5550 13.90 118 5580 Chain B 13.84 | | 802.11n | 40 | | | HT4 | | | | <u>118</u> <u>5580</u> Chain B <u>13.84</u> | | | | | | | | | | | | | | | | | Chain B | | | 1 136 5610 1 43.04 | | | | | | | CIIdIN B | | | 126 5610 13.81
134 5670 13.89 | | | | | | | | | **Conducted Average Power Measurements** | Band | Mode | Bandwidth
(MHz) | Channel | Frequency
(MHz) | Data
Rate | Antenna | Power
(dBm) | |----------|---------|--------------------|---------|--------------------|--------------|---------|----------------| | | | | 149 | 5745 | | | 15 92 | | | | | 153 | 5765 | | | 15.98 | | | | | 157 | 5785 | | Chain A | 16.00 | | | | | 161 | 5805 | | | 15.94 | | | 802.11a | 20 | 165 | 5825 | C Mbns | | 16.00 | | | 802.11a | 20 | 149 | 5745 | 6 Mbps | | 15.96 | | | | | 153 | 5765 | | Chain B | 15.91 | | | | | 157 | 5785 | | | 16.00 | | | | | 161 | 5805 | | | 15.95 | | | | | 165 | 5825 | | | 16.00 | | | | | 149 | 5745 | | | 13.91 | | | | | 153 | 5765 | | 13.90 | | | 5800 MHz | | | | | 157 5785 | Chain A | 13.89 | | | | | 161 | 5805 | | | 13.93 | | | | | 165 | 5825 | | | 13.88 | | | 802.11n | 20 | 149 | 5745 HT8 | | 13.96 | | | | | | 153 | 5765 | | | 13.91 | | | | | 157 | 5785 | | Chain B | 13.90 | | | | | 161 | 5805 | | | 13.93 | | | | | 165 | 5825 | | | 13.97 | | | | | 151 | 5755 | | | 13.89 | | | | | 159 | 5795 | HT8 | Chain A | 13.85 | | | 802.11n | 40 | 151 | 5755 | | | 13.84 | | | | | 159 | 5795 | | Chain B | 13.87 | **Conducted Average Power Measurements** Figure 10.1 Test Reduction Table – WiFi 2.4 GHz Main | Mode | Side | Required
Channel | Tested/Reduced | |----------|-----------|---------------------|----------------------| | | | 1 – 2412 MHz | Reduced ¹ | | | Back | 6 – 2437 MHz | Tested | | | | 11 – 2462 MHz | Reduced ¹ | | | | 1 – 2412 MHz | Reduced ¹ | | 802.11b | Тор | 6 – 2437 MHz | Tested | | 002.110 | | 11 – 2462 MHz | Reduced ¹ | | | | 1 – 2412 MHz | Reduced ¹ | | | Left Side | 6 – 2437 MHz | Tested | | | | 11 – 2462 MHz | Reduced ¹ | | | Rema | aining Sides | Reduced ³ | | | | 1 – 2412 MHz | Reduced ² | | | Back | 6 – 2437 MHz | Reduced ² | | | | 11 – 2462 MHz | Reduced ² | | | Тор | 1 – 2412 MHz | Reduced ² | | 802.11g | | 6 – 2437 MHz | Reduced ² | | 602.11g | | 11 – 2462 MHz | Reduced ² | | | | 1 – 2412 MHz | Reduced ² | | | Left Side | 6 – 2437 MHz | Reduced ² | | | | 11 – 2462 MHz | Reduced ² | | | Rema | aining Sides | Reduced ³ | | | | 1 – 2412 MHz | Reduced ² | | | Back | 6 – 2437 MHz | Reduced ² | | | | 11 – 2462 MHz | Reduced ² | | | | 1 – 2412 MHz | Reduced ² | | 802.11n | Тор | 6 – 2437 MHz | Reduced ² | | 002.1111 | | 11 – 2462 MHz | Reduced ² | | | | 1 – 2412 MHz | Reduced ² | | | Left Side | 6 – 2437 MHz | Reduced ² | | | | 11 – 2462 MHz | Reduced ² | | | | aining Sides | Reduced ³ | Reduced¹ – When the reported SAR is ≤ 0.4 W/kg, SAR is not required for the remaining test configuration per KDB 248227 D01 v02r02 section 5.1.1 1) page 9. Reduced² – When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required per KDB 248227 D01 v02 section 5.2.2 2) page 10. Reduced³ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 2) page 11. See below for calculations. Maximum power: 63.1 mW Closest Distance to Right: 90.0 mm Closest Distance to Bottom: 180.0 mm The closest distance is from the right side. Therefore, if the right side is excluded the bottom would also be excluded. $[\{[(3.0)/(\sqrt{2.462})]*50 \text{ mm}\}]+[\{90-50 \text{ mm}\}*10]=495 \text{ mW}$ which is greater than 63.1 mW Figure 10.2 Test Reduction Table - WiFi 2.4 GHz Aux | Mode | Side | Required
Channel | Tested/Reduced | | |---------|------------|---------------------|----------------------|--| | | | 1 – 2412 MHz | Reduced ¹ | | | | Back | 6 – 2437 MHz | Tested | | | | | 11 – 2462 MHz | Reduced ¹ | | | 802.11b | | 1 – 2412 MHz | Reduced ¹ | | | | Right Side | 6 – 2437 MHz | Tested | | | | | 11 – 2462 MHz | Reduced ¹ | | | | Rema | aining Sides | Reduced ³ | | | | | 1 – 2412 MHz | Reduced ² | | | | Back | 6 – 2437 MHz | Reduced ² | | | | | 11 – 2462 MHz | Reduced ² | | | 802.11g | | 1 – 2412 MHz | Reduced ² | | | | Right Side | 6 – 2437 MHz | Reduced ² | | | | _ | 11 – 2462 MHz | Reduced ² | | | | Rema | Remaining Sides | | | | | | 1 – 2412 MHz | Reduced ² | | | | Back | 6 – 2437 MHz | Reduced ² | | | | | 11 – 2462 MHz | Reduced ² | | | 802.11n | | 1 – 2412 MHz | Reduced ² | | | | Right Side | 6 – 2437 MHz | Reduced ² | | | | | 11 – 2462 MHz | Reduced ² | | | | Rema | aining Sides | Reduced ³ | | Reduced¹ – When the reported SAR is ≤ 0.4 W/kg, SAR is not required for the remaining test configuration per KDB 248227 D01 v02r02 section 5.1.1 1) page 9. Reduced² – When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required per KDB 248227 D01 v02 section 5.2.2 2) page 10. Reduced³ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 2) page 11. See below for calculations. Maximum power: 63.1 mW Closest Distance to Left: 128.0 mm Closest Distance to Bottom: 126.0 mm Closest Distance to Top: 55 mm The closest distance is from the top side. Therefore, if the top side is excluded the bottom and left sides would also be excluded. $[\{[(3.0)/(\sqrt{2.462})]*50 \text{ mm}\}]+[\{55-50 \text{ mm}\}*10]=145 \text{ mW}$ which is greater than 63.1 mW Figure 10.3 Test Reduction Table – WiFi 5.1 GHz Main | Mode | Side | Required
Channel | Tested/Reduced | |---------------------|-------|----------------------|----------------------| | | | 36 – 5180 MHz | Reduced ¹ | | | Dools | 40 – 5200 MHz | Reduced ¹ | | | Back | 44 – 5220 MHz | Reduced ¹ | | | | 48 – 5240 MHz | Reduced ¹ | | | | 36 – 5180 MHz | Reduced ¹ | | 000 11- | Ton | 40 – 5200 MHz | Reduced ¹ | | 802.11a
5150 MHz | Тор | 44 – 5220 MHz | Reduced ¹ | | 3130 MHZ | | 48 – 5240 MHz | Reduced ¹ | | | | 36 – 5180 MHz | Reduced ¹ | | | Left | 40 – 5200 MHz | Reduced ¹ | | | Len | 44 – 5220 MHz | Reduced ¹ | | | | 48 – 5240 MHz | Reduced ¹ | | | Rema | Reduced ² | | | | | 36 – 5180 MHz | Reduced ¹ | | | Back | 40 – 5200 MHz | Reduced ¹ | | | Dack | 44 – 5220 MHz | Reduced ¹ | | | | 48 – 5240 MHz | Reduced ¹ | | | | 36 – 5180 MHz | Reduced ¹ | | 802.11n | Тор | 40 – 5200 MHz | Reduced ¹ | | 5150 MHz | ТОР | 44 – 5220 MHz | Reduced ¹ | | 3130 MHZ | | 48 – 5240 MHz | Reduced ¹ | | | | 36 – 5180 MHz | Reduced ¹ | | | Left | 40 – 5200 MHz | Reduced ¹ | | | Leit | 44 – 5220 MHz | Reduced ¹ | | | | 48 – 5240 MHz | Reduced ¹ | | | Rema | ining Sides | Reduced ² | Reduced¹ – When the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for the UNII-1 with the same or lower maximum output power in that test configuration per KDB 248227 D01 v02r02 section 5.3.1 1) page 11. Reduced² – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations. Maximum power: 39.8 mW Closest Distance to Right: 90.0 mm Closest Distance to Bottom: 180.0 mm The closest distance is from the right side. Therefore, if the right side is excluded the bottom would also be excluded. $[\{[(3.0)/(\sqrt{5.24})]*50 \text{ mm}\}]+[\{90-50 \text{ mm}\}*10]=465 \text{ mW}$ which is greater than 39.8 mW Figure 10.4 Test Reduction Table – WiFi 5.1 GHz Aux | Mode | Side | Required
Channel | Tested/Reduced | |---------------------|-----------------|---------------------|----------------------| | 802.11a
5150 MHz | Back | 36 – 5180 MHz | Reduced ¹ | | | | 40 – 5200 MHz | Reduced ¹ | | | | 44 – 5220 MHz | Reduced ¹ | | | | 48 – 5240 MHz | Reduced ¹ | | | Right | 36 – 5180 MHz | Reduced ¹ | | | | 40 – 5200 MHz | Reduced ¹ | | | | 44 – 5220 MHz | Reduced ¹ | | | | 48 – 5240 MHz | Reduced ¹ | | | Remaining Sides | | Reduced ² | | 802.11n
5150 MHz | Back | 36 – 5180 MHz | Reduced ¹ | | | | 40 – 5200 MHz | Reduced ¹ | | | | 44 – 5220 MHz | Reduced ¹ | | | | 48 – 5240 MHz | Reduced ¹ | | | Right | 36 – 5180 MHz | Reduced ¹ | | | | 40 – 5200 MHz | Reduced ¹ | | | | 44 – 5220 MHz | Reduced ¹ | | | | 48 – 5240 MHz | Reduced ¹ | | | Remaining Sides | | Reduced ² | Reduced¹ – When the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for the UNII-1 with the same or lower maximum output power in that test configuration per KDB 248227 D01 v02r02 section 5.3.1 1) page 11. Reduced² – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations. Maximum power: 39.8 mW Closest Distance to Left: 128.0 mm
Closest Distance to Bottom: 126.0 mm Closest Distance to Top: 55 mm The closest distance is from the top side. Therefore, if the top side is excluded the bottom and left sides would also be excluded. $[\{[(3.0)/(\sqrt{5.24})]*50 \text{ mm}\}]+[\{55-50 \text{ mm}\}*10]=115 \text{ mW}$ which is greater than 39.8 mW Figure 10.5 Test Reduction Table - WiFi 5.2 GHz Main | Mode | Side | Required
Channel | Tested/Reduced | |-------------|-----------------|---------------------|----------------------| | | | 52 – 5260 MHz | Reduced ³ | | | Back | 56 – 5280 MHz | Reduced ³ | | | Dack | 60 – 5300 MHz | Tested | | | | 64 – 5320 MHz | Tested | | | | 52 – 5260 MHz | Reduced ¹ | | 802.11a | Тор | 56 – 5280 MHz | Reduced ¹ | | 5250 MHz | ТОР | 60 – 5300 MHz | Tested | | 3230 WII 12 | | 64 – 5320 MHz | Reduced ¹ | | | | 52 – 5260 MHz | Reduced ³ | | | Left | 56 – 5280 MHz | Reduced ³ | | | | 60 – 5300 MHz | Tested | | | | 64 – 5320 MHz | Tested | | | Rema | iining Sides | Reduced ² | | | | 52 – 5260 MHz | Reduced ³ | | | Back | 56 – 5280 MHz | Reduced ³ | | | Dack | 60 – 5300 MHz | Reduced ³ | | | | 64 – 5320 MHz | Reduced ³ | | | | 52 – 5260 MHz | Reduced ¹ | | 802.11n | Тор | 56 – 5280 MHz | Reduced ¹ | | 5250 MHz | ТОР | 60 – 5300 MHz | Reduced ¹ | | 3230 WII 12 | | 64 – 5320 MHz | Reduced ¹ | | | | 52 – 5260 MHz | Reduced ³ | | | Left | 56 – 5280 MHz | Reduced ³ | | | Leit | 60 – 5300 MHz | Reduced ³ | | | | 64 – 5320 MHz | Reduced ³ | | | Remaining Sides | | Reduced ² | Reduced¹ – When the reported SAR is ≤ 0.4 W/kg, SAR is not required for the remaining test configuration per KDB 248227 D01 v02r02 section 5.1.1 1) page 9. Reduced² – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations. Reduced³ – When the reported SAR is >0.4 W/kg, test the next highest configuration until the SAR value is ≤ 0.8 W/kg per KDB 248227 D01 v02r02 section 5.1.1 2) page 9. Maximum power: 39.8 mW Closest Distance to Right: 90.0 mm Closest Distance to Bottom: 180.0 mm The closest distance is from the right side. Therefore, if the right side is excluded the bottom would also be excluded. [{[(3.0)/($\sqrt{5.32}$)]*50 mm}]+[{90-50 mm}*10]=465 mW which is greater than 39.8 mW Figure 10.6 Test Reduction Table – WiFi 5.2 GHz Aux | Mode | Side | Required
Channel | Tested/Reduced | |---------------------|-----------------|---------------------|----------------------| | | | 52 – 5260 MHz | Reduced ¹ | | | Back | 56 – 5280 MHz | Reduced ¹ | | | Dack | 60 – 5300 MHz | Tested | | 802.11a | | 64 – 5320 MHz | Reduced ¹ | | 5250 MHz | | 52 – 5260 MHz | Reduced ¹ | | 3230 IVII IZ | Right | 56 – 5280 MHz | Reduced ¹ | | | Hight | 60 – 5300 MHz | Tested | | | | 64 – 5320 MHz | Reduced ¹ | | | Rema | ining Sides | Reduced ² | | | | 52 – 5260 MHz | Reduced ¹ | | | Back | 56 – 5280 MHz | Reduced ¹ | | | Dack | 60 – 5300 MHz | Reduced ¹ | | 000 115 | | 64 – 5320 MHz | Reduced ¹ | | 802.11n
5250 MHz | | 52 – 5260 MHz | Reduced ¹ | | 3230 IVII IZ | Diaht | 56 – 5280 MHz | Reduced ¹ | | | Right | 60 – 5300 MHz | Reduced ¹ | | | | 64 – 5320 MHz | Reduced ¹ | | | Remaining Sides | | Reduced ² | Reduced¹ – When the reported SAR is ≤ 0.4 W/kg, SAR is not required for the remaining test configuration per KDB 248227 D01 v02r02 section 5.1.1 1) page 9. Reduced² – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations. Reduced³ – When the reported SAR is >0.4 W/kg, test the next highest configuration until the SAR value is ≤ 0.8 W/kg per KDB 248227 D01 v02r02 section 5.1.1 2) page 9. Maximum power: 39.8 mW Closest Distance to Left: 128.0 mm Closest Distance to Bottom: 126.0 mm Closest Distance to Top: 55 mm The closest distance is from the top side. Therefore, if the top side is excluded the bottom and left sides would also be excluded. $[\{[(3.0)/(\sqrt{5.24})]*50 \text{ mm}\}]+[\{55-50 \text{ mm}\}*10]=115 \text{ mW}$ which is greater than 39.8 mW Figure 10.7 Test Reduction Table - WiFi 5.6 GHz Main | Mode | Side | Required
Channel | Tested/Reduced | |----------|------|---------------------|----------------------| | | | 100 – 5500 MHz | Reduced ¹ | | | | 104 – 5520 MHz | Reduced ¹ | | | | 108 – 5540 MHz | Reduced ¹ | | | | 112 – 5560 MHz | Reduced ¹ | | | | 116 – 5580 MHz | Tested | | | Back | 120 – 5600 MHz | Reduced ¹ | | | | 124 – 5620 MHz | Tested | | | | 128 – 5640 MHz | Reduced ¹ | | | | 132 – 5660 MHz | Reduced ¹ | | | | 136 – 5680 MHz | Reduced ¹ | | | | 140 – 5700 MHz | Reduced ¹ | | | Тор | 100 – 5500 MHz | Reduced ³ | | | | 104 – 5520 MHz | Reduced ³ | | | | 108 – 5540 MHz | Reduced ³ | | | | 112 – 5560 MHz | Reduced ³ | | | | 116 – 5580 MHz | Tested | | 802.11a | | 120 – 5600 MHz | Reduced ³ | | 5600 MHz | | 124 – 5620 MHz | Tested | | | | 128 – 5640 MHz | Reduced ³ | | | | 132 – 5660 MHz | Reduced ³ | | | | 136 – 5680 MHz | Reduced ³ | | | | 140 – 5700 MHz | Reduced ³ | | | | 100 – 5500 MHz | Reduced ³ | | | | 104 – 5520 MHz | Reduced ³ | | | | 108 – 5540 MHz | Reduced ³ | | | | 112 – 5560 MHz | Reduced ³ | | | | 116 – 5580 MHz | Tested | | | Left | 120 – 5600 MHz | Reduced ³ | | | | 124 – 5620 MHz | Tested | | | | 128 – 5640 MHz | Reduced ³ | | | | 132 – 5660 MHz | Reduced ³ | | | | 136 – 5680 MHz | Reduced ³ | | | | 140 – 5700 MHz | Reduced ³ | | | | ining Sides | Reduced ² | Reduced¹ – When the reported SAR is >0.8 W/kg, test the next highest configuration until the SAR value is ≤ 1.2 W/kg per KDB 248227 D01 v02r02 section 5.1.1 3) page 9. Reduced² – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations. Reduced³ – When the reported SAR is >0.4 W/kg, test the next highest configuration until the SAR value is ≤ 0.8 W/kg per KDB 248227 D01 v02r02 section 5.1.1 2) page 9. Maximum power: 39.8 mW Closest Distance to Right: 90.0 mm Closest Distance to Bottom: 180.0 mm The closest distance is from the right side. Therefore, if the right side is excluded the bottom would also be excluded. $[\{[(3.0)/(\sqrt{5.70})]*50 \text{ mm}]+[\{90-50 \text{ mm}\}*10]=462 \text{ mW}$ which is greater than 39.8 mW Figure 10.8 Test Reduction Table - WiFi 5.6 GHz Main | guic 10.0 | | | | | | |-----------|------|----------------|----------------------|--|--| | Mode | Side | Required | Tested/Reduced | | | | Wode | Side | Channel | resteurriedacea | | | | | | 100 – 5500 MHz | Reduced ¹ | | | | | | 104 – 5520 MHz | Reduced ¹ | | | | | | 108 – 5540 MHz | Reduced ¹ | | | | | | 112 – 5560 MHz | Reduced ¹ | | | | | | 116 – 5580 MHz | Reduced ¹ | | | | | Back | 120 – 5600 MHz | Reduced ¹ | | | | | | 124 – 5620 MHz | Reduced ¹ | | | | | | 128 – 5640 MHz | Reduced ¹ | | | | | | 132 – 5660 MHz | Reduced ¹ | | | | | | 136 – 5680 MHz | Reduced ¹ | | | | | | 140 – 5700 MHz | Reduced ¹ | | | | | | 100 – 5500 MHz | Reduced ³ | | | | | Тор | 104 – 5520 MHz | Reduced ³ | | | | | | 108 – 5540 MHz | Reduced ³ | | | | | | 112 – 5560 MHz | Reduced ³ | | | | | | 116 – 5580 MHz | Reduced ³ | | | | 802.11n | | 120 – 5600 MHz | Reduced ³ | | | | 5600 MHz | | 124 – 5620 MHz | Reduced ³ | | | | | | 128 – 5640 MHz | Reduced ³ | | | | | | 132 – 5660 MHz | Reduced ³ | | | | | | 136 – 5680 MHz | Reduced ³ | | | | | | 140 – 5700 MHz | Reduced ³ | | | | | | 100 – 5500 MHz | Reduced ³ | | | | | | 104 – 5520 MHz | Reduced ³ | | | | | | 108 – 5540 MHz | Reduced ³ | | | | | | 112 – 5560 MHz | Reduced ³ | | | | | | 116 – 5580 MHz | Reduced ³ | | | | | Left | 120 – 5600 MHz | Reduced ³ | | | | | | 124 – 5620 MHz | Reduced ³ | | | | | | 128 – 5640 MHz | Reduced ³ | | | | | | 132 – 5660 MHz | Reduced ³ | | | | | | 136 – 5680 MHz | Reduced ³ | | | | | | 140 – 5700 MHz | Reduced ³ | | | | | Rema | aining Sides | Reduced ² | | | | | | | | | | Reduced¹ – When the reported SAR is >0.8 W/kg, test the next highest configuration until the SAR value is ≤ 1.2 W/kg per KDB 248227 D01 v02r02 section 5.1.1 3) page 9. Reduced² – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations. Reduced³ – When the reported SAR is >0.4 W/kg, test the next highest configuration until the SAR value is ≤ 0.8 W/kg per KDB 248227 D01 v02r02 section 5.1.1 2) page 9. Maximum power: 39.8 mW Closest Distance to Right: 90.0 mm Closest Distance to Bottom: 180.0 mm The closest distance is from the right side. Therefore, if the right side is excluded the bottom would also be excluded. [{[(3.0)/($\sqrt{5.70}$)]*50 mm}]+[{90-50 mm}*10]=462 mW which is greater than 39.8 mW Figure 10.9 Test Reduction Table - WiFi 5.6 GHz Aux | guie 10.3 | | Required | VII I 3.0 GIIZ A | |-----------|-------|----------------------------------|---| | Mode | Side | Channel | Tested/Reduced | | | | | Deduced ¹ | | | | 100 – 5500 MHz
104 – 5520 MHz | Reduced ¹ Reduced ¹ | | | | 104 – 5520 MHz
108 – 5540 MHz | Reduced ¹ | | | | | | | | | 112 – 5560 MHz | Reduced ¹ | | | Dools | 116 – 5580 MHz
120 – 5600 MHz | Reduced ¹ Reduced ¹ | | | Back | 124 – 5620 MHz | | | | | | Tested | | | | 128 – 5640 MHz | Reduced ¹ | | | | 132 – 5660 MHz | Reduced ¹ Reduced ¹ | | | | 136 – 5680 MHz | | | 802.11a | | 140 – 5700 MHz | Reduced ¹ | | 5600 MHz | | 100 – 5500 MHz | Reduced ¹ | | | | 104 – 5520 MHz | Reduced ¹ | | | | 108 – 5540 MHz | Reduced ¹ | | | | 112 – 5560 MHz | Reduced ¹ | | | D: 1. | 116 – 5580 MHz | Reduced ¹ | | | Right | 120 – 5600 MHz | Reduced ¹ | | | | 124 – 5620 MHz | Tested | | | | 128 – 5640 MHz | Reduced ¹ | | | | 132 – 5660 MHz | Reduced ¹ | | | | 136 – 5680 MHz | Reduced ¹ | | | | 140 – 5700 MHz | Reduced ¹ | | | Rema | ining Sides | Reduced ² | | | | 100 – 5500 MHz | Reduced ¹ | | | | 104 – 5520 MHz | Reduced ¹ | | | | 108 – 5540 MHz | Reduced ¹ | | | | 112 – 5560 MHz | Reduced ¹ | | | | 116 – 5580 MHz | Reduced ¹ | | | Back | 120 – 5600 MHz |
Reduced ¹ | | | | 124 – 5620 MHz | Reduced ¹ | | | | 128 – 5640 MHz | Reduced ¹ | | | | 132 – 5660 MHz | Reduced ¹ | | | | 136 – 5680 MHz | Reduced ¹ | | 802.11n | | 140 – 5700 MHz | Reduced ¹ | | 5600 MHz | | 100 – 5500 MHz | Reduced ¹ | | | | 104 – 5520 MHz | Reduced ¹ | | | | 108 – 5540 MHz | Reduced ¹ | | | | 112 – 5560 MHz | Reduced ¹ | | | | 116 – 5580 MHz | Reduced ¹ | | | Right | 120 – 5600 MHz | Reduced ¹ | | | | 124 – 5620 MHz | Reduced ¹ | | | | 128 – 5640 MHz | Reduced ¹ | | | | 132 – 5660 MHz | Reduced ¹ | | | | 136 – 5680 MHz | Reduced ¹ | | | | 140 – 5700 MHz | Reduced ¹ | | | Rema | ining Sides | Reduced ² | Reduced¹ – When the reported SAR is ≤ 0.4 W/kg, SAR is not required for the remaining test configuration per KDB 248227 D01 v02r02 section 5.1.1 1) page 9. Reduced² – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations. Maximum power: 39.8 mW Closest Distance to Left: 128.0 mm Closest Distance to Bottom: 126.0 mm Closest Distance to Top: 55 mm The closest distance is from the top side. Therefore, if the top side is excluded the bottom and left sides would also be excluded. $[\{[(3.0)/(\sqrt{5.70})]*50 \text{ mm}\}]+[\{55-50 \text{ mm}\}*10]=112 \text{ mW}$ which is greater than 39.8 mW Figure 10.10 Test Reduction Table - WiFi 5.8 GHz Main | Mode | Side | Required
Channel | Tested/Reduced | |----------|-----------------|---------------------|----------------------| | | | 149 – 5745 MHz | Reduced ¹ | | | | 153 – 5765 MHz | Reduced ¹ | | | Back | 157 – 5785 MHz | Tested | | | | 161 – 5805 MHz | Reduced ¹ | | | | 165 – 5825 MHz | Tested | | | | 149 – 5745 MHz | Reduced⁴ | | | | 153 – 5765 MHz | Reduced⁴ | | 802.11a | Тор | 157 – 5785 MHz | Tested | | 5800 MHz | | 161 – 5805 MHz | Reduced⁴ | | | | 165 – 5825 MHz | Reduced⁴ | | | | 149 – 5745 MHz | Reduced ³ | | | | 153 – 5765 MHz | Reduced ³ | | | Left | 157 – 5785 MHz | Tested | | | | 161 – 5805 MHz | Reduced ³ | | | | 165 – 5825 MHz | Tested | | | Remaining Sides | | Reduced ² | | | | 149 – 5745 MHz | Reduced ¹ | | | | 153 – 5765 MHz | Reduced ¹ | | | Back | 157 – 5785 MHz | Reduced ¹ | | | | 161 – 5805 MHz | Reduced ¹ | | | | 165 – 5825 MHz | Reduced ¹ | | | | 149 – 5745 MHz | Reduced⁴ | | | | 153 – 5765 MHz | Reduced ⁴ | | 802.11n | Тор | 157 – 5785 MHz | Reduced⁴ | | 5800 MHz | | 161 – 5805 MHz | Reduced⁴ | | | | 165 – 5825 MHz | Reduced⁴ | | | | 149 – 5745 MHz | Reduced ³ | | | | 153 – 5765 MHz | Reduced ³ | | | Left | 157 – 5785 MHz | Reduced ³ | | | | 161 – 5805 MHz | Reduced ³ | | | | 165 – 5825 MHz | Reduced ³ | | | Rema | ining Sides | Reduced ² | Reduced¹ – When the reported SAR is >0.8 W/kg, test the next highest configuration until the SAR value is ≤ 1.2 W/kg per KDB 248227 D01 v02r02 section 5.1.1 3) page 9. Reduced² – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations. Reduced³ – When the reported SAR is >0.4 W/kg, test the next highest configuration until the SAR value is ≤ 0.8 W/kg per KDB 248227 D01 v02r02 section 5.1.1 2) page 9. Reduced⁴ – When the reported SAR is ≤ 0.4 W/kg, ŠAR is not required for the remaining test configuration per KDB 248227 D01 v02r02 section 5.1.1 1) page 9. Maximum power: 39.8 mW Closest Distance to Right: 90.0 mm Closest Distance to Bottom: 180.0 mm The closest distance is from the right side. Therefore, if the right side is excluded the bottom would also be excluded. $[\{[(3.0)/(\sqrt{5.825})]*50 \text{ mm}\}]+[\{90-50 \text{ mm}\}*10]=462 \text{ mW}$ which is greater than 39.8 mW Figure 10.11 Test Reduction Table – WiFi 5.8 GHz Aux | Mode | Side | Required
Channel | Tested/Reduced | |--------------|-----------------|---------------------|----------------------| | | | 149 – 5745 MHz | Reduced ¹ | | | | 153 – 5765 MHz | Reduced ¹ | | | Back | 157 – 5785 MHz | Tested | | | | 161 – 5805 MHz | Reduced ¹ | | 802.11a | | 165 – 5825 MHz | Reduced ¹ | | 5800 MHz | | 149 – 5745 MHz | Reduced ¹ | | 3600 IVII 12 | | 153 – 5765 MHz | Reduced ¹ | | | Right | 157 – 5785 MHz | Tested | | | | 161 – 5805 MHz | Reduced ¹ | | | | 165 – 5825 MHz | Reduced ¹ | | | Remaining Sides | | Reduced ² | | | | 149 – 5745 MHz | Reduced ¹ | | | Back | 153 – 5765 MHz | Reduced ¹ | | | | 157 – 5785 MHz | Reduced ¹ | | | | 161 – 5805 MHz | Reduced ¹ | | 802.11n | | 165 – 5825 MHz | Reduced ¹ | | 5800 MHz | | 149 – 5745 MHz | Reduced ¹ | | 3000 IVII 12 | | 153 – 5765 MHz | Reduced ¹ | | | Right | 157 – 5785 MHz | Reduced ¹ | | | | 161 – 5805 MHz | Reduced ¹ | | | | 165 – 5825 MHz | Reduced ¹ | | | Remaining Sides | | Reduced ² | Reduced¹ – When the reported SAR is ≤ 0.4 W/kg, SAR is not required for the remaining test configuration per KDB 248227 D01 v02r02 section 5.1.1 1) page 9. Reduced² – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations. Maximum power: 39.8 mW Closest Distance to Left: 128.0 mm Closest Distance to Bottom: 126.0 mm Closest Distance to Top: 55 mm The closest distance is from the top side. Therefore, if the top side is excluded the bottom and left sides would also be excluded. $[\{[(3.0)/(\sqrt{5.825})]*50 \text{ mm}\}]+[\{55-50 \text{ mm}\}*10]=112 \text{ mW}$ which is greater than 39.8 mW Figure 10.12 Test Reduction Table - 3G 850 MHz | Band/ | Technology | Side | Required | Tested/ | |-----------------|------------|---------------|-------------|----------------------| | Frequency (MHz) | | | Channel | Reduced | | | | | 450 | Tested | | | | Back | 267 | Tested | | | | | 777 | Tested | | | CDMA | | 450 | Reduced ¹ | | | | Right | 267 | Tested | | | | | 777 | Reduced ¹ | | | | Rema | ining Sides | Reduced ² | | | | | 128 | Tested | | | GSM | Back
Right | 190 | Tested | | Band 5 | | | 251 | Tested | | 824-849 MHz | | | 128 | Reduced ¹ | | 024 043 WHZ | | | 190 | Tested | | | | | 251 | Reduced ¹ | | | | Rema | ining Sides | Reduced ² | | | | | 4132 | Tested | | | | Back | 4183 | Tested | | | | | 4233 | Tested | | | WCDMA | | 4132 | Reduced ¹ | | | | Right | 4183 | Tested | | | | | 4233 | Reduced ¹ | | | | Rema | ining Sides | Reduced ² | Reduced¹ – When the mid channel is 3 dB below the limit, the remaining channels are not required per KDB 447498 D01 v06 section 4.3.3 page 14. Reduced² – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations. Maximum power: 251.19 mW Closest Distance to Left: 117.0 mm Closest Distance to Bottom: 67.0 mm Closest Distance to Top: 82 mm The closest distance is from the bottom side. Therefore, if the bottom side is excluded the top and left sides would also be excluded. $[\{[(3.0)/(\sqrt{0.849})]*50 \text{ mm}\}]+[\{67-50 \text{ mm}\}*10]=332 \text{ mW}$ which is greater than 251.19 mW ## Figure 10.13 Test Reduction Table – 3G 1750 MHz | Band/
Frequency (MHz) | Technology | Side | Required Channel | Tested/
Reduced | |--------------------------|------------|------|------------------|----------------------| | | | | 1312 | Tested | | Band 4
1710-1755 MHz | WCDMA | Back | 1413 | Tested | | | | | 1513 | Tested | | | | | 1312 | Tested | | | | | Right | 1413 | | | | | 1513 | Tested | | | | Rema | ining Sides | Reduced ² | Reduced¹ – When the mid channel is 3 dB below the limit, the remaining channels are not required per KDB 447498 D01 v05r02 section 4.3.3 page 14. Reduced² – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v05r02 section 4.3.1 1) page 11. See below for calculations. Maximum power: 79.43 mW Closest Distance to Left: 117.0 mm Closest Distance to Bottom: 67.0 mm Closest Distance to Top: 82 mm The closest distance is from the bottom side. Therefore, if the bottom side is excluded the top and left sides would also be excluded. $[\{[(3.0)/(\sqrt{1.755})]*50 \text{ mm}\}]+[\{67-50 \text{ mm}\}*10]=283 \text{ mW}$ which is greater than 79.43 mW Figure 10.14 Test Reduction Table – 3G 1900 MHz | Band/ | Technology | Side | Required | Tested/ | |-----------------|------------|-------|-------------|----------------------| | Frequency (MHz) | | | Channel | Reduced | | | | | 25 | Tested | | | | Back | 600 | Tested | | | | | 1175 | Tested | | | CDMA | | 25 | Tested | | | | Right | 600 | Tested | | | | | 1175 | Tested | | | | Rema | ining Sides | Reduced ² | | | | | 512 | Tested | | | GSM | Back | 661 | Tested | | Band 2 | | | 810 | Tested | | 1850-1910 MHz | | | 512 | Reduced ¹ | | 1000 1010 10112 | | Right | 661 | Tested | | | | | 810 | Reduced ¹ | | | | Rema | ining Sides | Reduced ² | | | | | 9262 | Tested | | | | Back | 9400 | Tested | | | | | 9538 | Tested | | | WCDMA | | 9262 | Tested | | | Right | Right | 9400 | Tested | | | | | 9538 | Tested | | | | Rema | ining Sides | Reduced ² | Reduced¹ – When the mid channel is 3 dB below the limit, the remaining channels are not required per KDB 447498 D01 v05r02 section 4.3.3 page 14. Reduced² – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v05r02 section 4.3.1 1) page 11. See below for calculations. Maximum power: 79.43 mW Closest Distance to Left: 117.0 mm Closest Distance to Bottom: 67.0 mm Closest Distance to Top: 82 mm The closest distance is from the bottom side. Therefore, if the bottom side is excluded the top and left sides would also be excluded. $[\{[(3.0)/(\sqrt{1.91})]*50 \text{ mm}\}]+[\{67-50 \text{ mm}\}*10]=278 \text{ mW}$ which is greater than 79.43 mW ## Figure 10.15 Test Reduction Table –900 MHz RFID | Band/
Frequency (MHz) | Technology | Side | Required Frequency | Tested/
Reduced | |--------------------------|------------|--------|--------------------|----------------------| | | | Back | 922.4 | Tested | | | | Left | 922.4 | Tested | | 917.4-927.2 MHz | FHSS | Right | 922.4 | Tested | | | | Top | 922.4 | Tested | | | | Bottom |
922.4 | Reduced ¹ | Reduced¹ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v05r02 section 4.3.1 1) page 11. See below for calculations. Maximum power: 100 mW Closest Distance to Bottom: 160.8 mm $[\{[(3.0)/(\sqrt{0.928})]*50 \text{ mm}\}]+[\{160.8-50 \text{ mm}\}*10]=1263 \text{ mW}$ which is greater than 100 mW ### 10.5 SAR Measurement Conditions for LTE Bands ### 10.5.1 LTE Functionality The follow table identifies all the channel bandwidths in each frequency band supported by this device. | LTE Band Class | Bandwidth (MHz) | Frequency or Freq. Band (MHz) | |----------------|-----------------------|-------------------------------| | 2 | 1.4, 3, 5, 10, 15, 20 | 1850-1910 MHz | | 4 | 1.4, 3, 5, 10, 15, 20 | 1710-1755 MHz | | 5 | 5, 10 | 824-849 MHz | | 13 | 5, 10 | 777-787 MHz | | 17 | 5, 10 | 704-716 MHz | ### 10.5.2 Test Conditions All SAR measurements for LTE were performed using the Anritsu MT8820C. A closed loop power control setting allowed the UE to transmit at the maximum output power during the SAR measurements. The Figure 11.1 table indicates all the test reduction utilized for this report. MPR was enabled for this device. A-MPR was disabled for all SAR test measurements. **Table 10.5.1 LTE Power Measurements** | | Table 10.5.1 LTE Power Measurements | | | | | | | | | | | |------|-------------------------------------|-------------|---------|-----------|---------|-----------|--------|-------|--|--|--| | Band | Modulation | Bandwidth | RB Size | RB Offset | Channel | Frequency | Power | 18607 | 1850.7 | 17.95 | | | | | | | | | 6 | 0 | 18900 | 1880 | 18.20 | | | | | | | | | | | 19193 | 1909.3 | 17.19 | | | | | | | | | | | 18607 | 1850.7 | 19.00 | | | | | | | | | 3 | 1 | 18900 | 1880 | 19.00 | | | | | | | | 4 4 5 4 1 - | | | 19193 | 1909.3 | 18.70 | | | | | | | | 1.4 MHz | | | 18607 | 1850.7 | 19.00 | | | | | | | | | 1 | 0 | 18900 | 1880 | 18.61 | | | | | | | | | | | 19193 | 1909.3 | 18.85 | | | | | | | | | | | 18607 | 1850.7 | 18.99 | | | | | | | | | 1 | 5 | 18900 | 1880 | 19.00 | | | | | | | | | | | 19193 | 1909.3 | 18.99 | | | | | | | | | | | 18615 | 1851.5 | 18.01 | | | | | | | | | 15 | 0 | 18900 | 1880 | 18.11 | | | | | | | | | | | 19185 | 1908.5 | 17.91 | | | | | | | | 3 MHz | | | 18615 | 1851.5 | 17.95 | | | | | | | | | 8 | 3 | 18900 | 1880 | 18.05 | | | | | | 2 | QPSK | | | | 19185 | 1908.5 | 17.81 | | | | | | 2 | QF3K | | 1 | | | 18615 | 1851.5 | 19.00 | | | | | | | | | 0 | 18900 | 1880 | 18.74 | | | | | | | | | | | 19185 | 1908.5 | 18.99 | | | | | | | | | | | 18615 | 1851.5 | 18.99 | | | | | | | | | 1 | 14 | 18900 | 1880 | 18.73 | | | | | | | | | | | 19185 | 1908.5 | 19.00 | | | | | | | | | | | 18625 | 1852.5 | 17.93 | | | | | | | | | 25 | 0 | 18900 | 1880 | 17.98 | | | | | | | | | | | 19175 | 1907.5 | 17.92 | | | | | | | | | | | 18625 | 1852.5 | 17.83 | | | | | | | | | 12 | 6 | 18900 | 1880 | 18.13 | | | | | | | | E NALI- | | | 19175 | 1907.5 | 17.88 | | | | | | | | 5 MHz | | | 18625 | 1852.5 | 18.95 | | | | | | | | | 1 | 0 | 18900 | 1880 | 18.56 | | | | | | | | | | | 19175 | 1907.5 | 18.32 | | | | | | | | | | | 18625 | 1852.5 | 18.45 | | | | | | | | | 1 | 24 | 18900 | 1880 | 18.36 | | | | | | | | | | | 19175 | 1907.5 | 18.98 | | | | | | Band | Modulation | Bandwidth | RB Size | RB Offset | Channel | Frequency | Power | | |------|------------|-----------|---------|-----------|---------|--------------|--------|-------| | | | | | | | - requestion | | | | | | | | | 18650 | 1855 | 17.52 | | | | | | 50 | 0 | 18900 | 1880 | 17.55 | | | | | | | | 19150 | 1905 | 17.57 | | | | | | | | 18650 | 1855 | 17.30 | | | | | | 25 | 12 | 18900 | 1880 | 17.95 | | | | | | | | 19150 | 1905 | 17.42 | | | | | 10 MHz | | | 18650 | 1855 | 18.95 | | | | | | 1 | 0 | 18900 | 1880 | 18.30 | | | | | | | | 19150 | 1905 | 18.23 | | | | | | | | 18650 | 1855 | 18.46 | | | | | | 1 | 24 | 18900 | 1880 | 19.00 | | | | | | | | 19150 | 1905 | 18.35 | | | | | | | | 18675 | 1857.5 | 17.38 | | | | | | 75 | 0 | 18900 | 1880 | 17.51 | | | | | 15 MHz | | - | 19125 | 1902.5 | 17.46 | | | | | | 36 | | 18675 | 1857.5 | 17.16 | | | | | | | 19 | 18900 | 1880 | 17.86 | | | | | | | | 19125 | 1902.5 | 17.31 | | | 2 | QPSK | | 1 | | | 18675 | 1857.5 | 18.89 | | | | | | 0 | 18900 | 1880 | 18.38 | | | | | | | | 19125 | 1902.5 | 18.42 | | | | | | | | 18675 | 1857.5 | 18.48 | | | | | | 1 | 74 | 18900 | 1880 | 18.31 | | | | | | | | 19125 | 1902.5 | 19.00 | | | | | | | | 18625 | 1852.5 | 17.50 | | | | | | 100 | 0 | 18900 | 1880 | 17.52 | | | | | | | | 19175 | 1907.5 | 17.40 | | | | | | | | 18700 | 1860 | 17.89 | | | | | | 50 | 25 | 18900 | 1880 | 17.91 | | | | | 20 1411- | | | 19100 | 1900 | 17.92 | | | | | 20 MHz | | | 18700 | 1860 | 18.98 | | | | | | 1 | 0 | 18900 | 1880 | 18.97 | | | | | | | | 19100 | 1900 | 18.94 | | | | | | 1 | | 18700 | 1860 | 18.33 | | | | | | | 99 | 18900 | 1880 | 18.35 | | | | | | | | 19100 | 1900 | 18.43 | | | Band | Modulation | Bandwidth | RB Size | RB Offset | Channel | Frequency | Power | |------|------------|-----------|---------|-----------|---------|-----------|-------| | | | | | | | | | | | | | | | 18607 | 1850.7 | 16.96 | | | | | 6 | 0 | 18900 | 1880 | 17.11 | | | | | | | 19193 | 1909.3 | 16.92 | | | | | | | 18607 | 1850.7 | 16.95 | | | | | 3 | 1 | 18900 | 1880 | 17.14 | | | | | | | 19193 | 1909.3 | 16.88 | | | | 1.4 MHz | | | 18607 | 1850.7 | 16.94 | | | | | 1 | 0 | 18900 | 1880 | 17.12 | | | | | | | 19193 | 1909.3 | 16.91 | | | | | | | 18607 | 1850.7 | 16.91 | | | | | 1 | 5 | 18900 | 1880 | 17.10 | | | | | | | 19193 | 1909.3 | 16.93 | | | | | | | 18615 | 1851.5 | 16.98 | | | | 3 MHz | 15 | 0 | 18900 | 1880 | 17.14 | | | | | | | 19185 | 1908.5 | 16.92 | | | | | 8 | | 18615 | 1851.5 | 16.76 | | | | | | 3 | 18900 | 1880 | 17.10 | | 2 | 16QAM | | | | 19185 | 1908.5 | 16.82 | | 2 | IOQAIVI | | 1 | | 18615 | 1851.5 | 17.92 | | | | | | 0 | 18900 | 1880 | 17.63 | | | | | | | 19185 | 1908.5 | 17.75 | | | | | | | 18615 | 1851.5 | 17.69 | | | | | 1 | 14 | 18900 | 1880 | 17.39 | | | | | | | 19185 | 1908.5 | 17.74 | | | | | | | 18625 | 1852.5 | 17.01 | | | | | 25 | 0 | 18900 | 1880 | 16.96 | | | | | | | 19175 | 1907.5 | 17.01 | | | | | | | 18625 | 1852.5 | 16.84 | | | | | 12 | 6 | 18900 | 1880 | 17.21 | | | | 5 MHz | | | 19175 | 1907.5 | 16.88 | | | | J IVITZ | | | 18625 | 1852.5 | 17.79 | | | | | 1 | 0 | 18900 | 1880 | 17.44 | | | | | | | 19175 | 1907.5 | 17.37 | | | | | | | 18625 | 1852.5 | 17.21 | | | | | 1 | 24 | 18900 | 1880 | 17.07 | | | | | | | 19175 | 1907.5 | 17.75 | | Band | Modulation | Bandwidth | RB Size | RB Offset | Channel | Frequency | Power | |------|------------|-----------|---------|-----------|---------|-----------|-------| | | | | | | | | | | | | | | | 18650 | 1855 | 16.30 | | | | | 50 | 0 | 18900 | 1880 | 16.62 | | | | | | | 19150 | 1905 | 16.53 | | | | | | | 18650 | 1855 | 16.17 | | | | | 25 | 12 | 18900 | 1880 | 16.81 | | | | 40.8411 | | | 19150 | 1905 | 16.42 | | | | 10 MHz | | | 18650 | 1855 | 17.77 | | | | | 1 | 0 | 18900 | 1880 | 17.19 | | | | | | | 19150 | 1905 | 17.07 | | | | | | | 18650 | 1855 | 17.24 | | | | | 1 | 24 | 18900 | 1880 | 17.96 | | | | | | | 19150 | 1905 | 17.25 | | | | | | | 18675 | 1857.5 | 16.35 | | | | | 75 | 0 | 18900 | 1880 | 16.25 | | | | | | | 19125 | 1902.5 | 16.46 | | | | | | 19 | 18675 | 1857.5 | 16.17 | | | | | 36 | | 18900 | 1880 | 16.64 | | 2 | 16QAM | 1E N/LI- | | | 19125 | 1902.5 | 16.23 | | 2 | IOQAIVI | 15 MHz | 1 | | 18675 | 1857.5 | 17.79 | | | | | | 0 | 18900 | 1880 | 17.07 | | | | | | | 19125 | 1902.5 | 17.21 | | | | | 1 | | 18675 | 1857.5 | 17.13 | | | | | | 74 | 18900 | 1880 | 16.96 | | | | | | | 19125 | 1902.5 | 17.76 | | | | | | | 18625 | 1852.5 | 16.54 | | | | | 100 | 0 | 18900 | 1880 | 16.50 | | | | | | | 19175 | 1907.5 | 16.32 | | | | | | | 18700 | 1860 | 16.39 | | | | | 50 | 25 | 18900 | 1880 | 16.54 | | | | 20 MHz | | | 19100 | 1900 | 16.16 | | | | ZU IVITIZ | | | 18700 | 1860 | 17.68 | | | | | 1 | 0 | 18900 | 1880 | 17.38 | | | | | | | 19100 | 1900 | 16.74 | | | | | 1 | | 18700 | 1860 | 17.01 | | | | | | 99 | 18900 | 1880 | 16.71 | | | | | | | 19100 | 1900 | 17.68 | | Band | Modulation | Bandwidth | RB Size | RB Offset | Channel | Frequency | Power | |------|------------|-----------|---------|-----------|---------|-----------|--------| | | | | | | | Troquency | | | | | | | | 19957 | 1710.7 | 18.67 | | | | | 6 | 0 | 20175 | 1732.5 | 18.06 | | | | | | | 20393 | 1754.3 | 18.61 | | | | | | | 19957 | 1710.7 | 18.99 | | | | | 3 | 1 | 20175 | 1732.5 | 19.00 | | | | | | | 20393 | 1754.3 | 18.99 | | | | 1.4 MHz | | | 19957 | 1710.7 | 18.98 | | | | | 1 | 0 | 20175 | 1732.5 | 18.58 | | | | | | | 20393 | 1754.3 | 18.99 | | | | | | | 19957 | 1710.7 | 18.98 | | | | | 1 | 5 | 20175 | 1732.5 | 18.93 | | | | | | | 20393 | 1754.3 | 19.00 | | | | 3 MHz | | | 19965 | 1711.5 | 18.11 | | | | | 15 | 0 | 20175 | 1732.5 | 18.09 | | | | | | - | 20385 | 1753.5 | 18.15 | | | | | 8 | | 19965 | 1711.5 | 18.02 | | | | | | 3 | 20175 | 1732.5 | 17.93 | | | | | | | 20385 | 1753.5 | 18.07 | | 4 | QPSK | | 1 | | | 19965 | 1711.5 | | | | | | 0 | 20175 | 1732.5 | 18.40 | | | | | | | 20385 | 1753.5 | 18.53 | | | | | | | 19965 | 1711.5 | 18.34 | | | | | 1 | 14 | 20175 | 1732.5 | 18.99 | | | | | | | 20385 | 1753.5 | 18.94 | | | | | | | 19975 | 1712.5 | 17.49 | | | | | 25 | 0 | 20175 | 1732.5 | 18.19 | | | | | | | 20375 | 1752.5 | 17.87 | | | | | | | 19975 | 1712.5 | 17.44 | | | | | 12 | 6 | 20175 | 1732.5 | 18.13 | | | | 5.4 | | | 20375 | 1752.5 | 17.64 | | | | 5 MHz | | | 19975 | 1712.5 | 18.99 | | | | | 1 | 0 | 20175 | 1732.5 | 18.31 | | | | | | | 20375 | 1752.5 | 18.67 | | | | | 1 | | 19975 | 1712.5 | 18.19 | | | | | | 24 | 20175 | 1732.5 | 19.00 | | | | | | | 20375 | 1752.5 | 18.99 | | Band | Modulation | Bandwidth | RB Size | RB Offset | Channel | Frequency | Power | | |------|------------|-----------|---------|-----------|---------|--------------|--------|-------| | | | | | | | - requestion | |
 | | | | | | 20000 | 1715 | 17.36 | | | | | | 50 | 0 | 20175 | 1732.5 | 17.99 | | | | | | | | 20350 | 1750 | 17.80 | | | | | | | | 20000 | 1715 | 16.92 | | | | | | 25 | 12 | 20175 | 1732.5 | 18.04 | | | | | | | | 20350 | 1750 | 17.57 | | | | | 10 MHz | | | 20000 | 1715 | 19.00 | | | | | | 1 | 0 | 20175 | 1732.5 | 18.31 | | | | | | | | 20350 | 1750 | 18.60 | | | | | | | | 20000 | 1715 | 18.14 | | | | | | 1 | 24 | 20175 | 1732.5 | 18.92 | | | | | | | | 20350 | 1750 | 18.67 | | | | | | | | 20025 | 1717.5 | 17.29 | | | | | | 75 | 0 | 20175 | 1732.5 | 17.67 | | | | | | , , | _ | 20325 | 1747.5 | 17.62 | | | | | | 36 | 19 | 20025 | 1717.5 | 17.01 | | | | | | | | 20175 | 1732.5 | 18.17 | | | | | | | | 20325 | 1747.5 | 17.64 | | | 4 | QPSK | 15 MHz | 1 | | | 20025 | 1717.5 | 18.99 | | | | | | 0 | 20175 | 1732.5 | 18.13 | | | | | | | | 20325 | 1747.5 | 18.38 | | | | | | | 74 | 20025 | 1717.5 | 18.18 | | | | | | 1 | | 20175 | 1732.5 | 18.45 | | | | | | | | 20325 | 1747.5 | 18.60 | | | | | | | | 20050 | 1720 | 17.23 | | | | | | 100 | 0 | 20175 | 1732.5 | 17.68 | | | | | | | | 20300 | 1745 | 17.52 | | | | | | | | 20050 | 1720 | 17.81 | | | | | | 50 | 25 | 20175 | 1732.5 | 18.00 | | | | | 20.8411 | | | 20300 | 1745 | 17.91 | | | | | 20 MHz | | | 20050 | 1720 | 19.00 | | | | | | 1 | 0 | 20175 | 1732.5 | 18.90 | | | | | | | | 20300 | 1745 | 18.98 | | | | | | 1 | | 20050 | 1720 | 18.28 | | | | | | | 99 | 20175 | 1732.5 | 18.56 | | | | | | | | 20300 | 1745 | 19.00 | | | Band | Modulation | Bandwidth | RB Size | RB Offset | Channel | Frequency | Power | |------|------------|-----------|---------|-----------|---------|-----------|--------| | | | | | | | | | | | | | | | 19957 | 1710.7 | 17.51 | | | | | 6 | 0 | 20175 | 1732.5 | 17.02 | | | | | | | 20393 | 1754.3 | 17.52 | | | | | | | 19957 | 1710.7 | 18.44 | | | | | 3 | 1 | 20175 | 1732.5 | 17.90 | | | | | _ | | 20393 | 1754.3 | 18.25 | | | | 1.4 MHz | | | 19957 | 1710.7 | 18.39 | | | | | 1 | 0 | 20175 | 1732.5 | 17.52 | | | | | | | 20393 | 1754.3 | 18.25 | | | | | | | 19957 | 1710.7 | 18.09 | | | | | 1 | 5 | 20175 | 1732.5 | 18.05 | | | | | | | 20393 | 1754.3 | 18.21 | | | | | | | 19965 | 1711.5 | 17.12 | | | | | 15 | 0 | 20175 | 1732.5 | 17.19 | | | | 3 MHz | | · · | 20385 | 1753.5 | 17.22 | | | | | 8 | | 19965 | 1711.5 | 17.02 | | | | | | 3 | 20175 | 1732.5 | 17.05 | | | | | | | 20385 | 1753.5 | 17.27 | | 4 | 16QAM | | 1 | | | 19965 | 1711.5 | | | | | | 0 | 20175 | 1732.5 | 17.22 | | | | | | | 20385 | 1753.5 | 17.51 | | | | | | 14 | 19965 | 1711.5 | 17.18 | | | | | 1 | | 20175 | 1732.5 | 18.32 | | | | | | | 20385 | 1753.5 | 18.50 | | | | | | | 19975 | 1712.5 | 16.53 | | | | | 25 | 0 | 20175 | 1732.5 | 17.19 | | | | | | | 20375 | 1752.5 | 16.94 | | | | | | | 19975 | 1712.5 | 16.51 | | | | | 12 | 6 | 20175 | 1732.5 | 17.00 | | | | 5.4 | | | 20375 | 1752.5 | 16.59 | | | | 5 MHz | | | 19975 | 1712.5 | 18.40 | | | | | 1 | 0 | 20175 | 1732.5 | 17.03 | | | | | | | 20375 | 1752.5 | 17.33 | | | | | 1 | | 19975 | 1712.5 | 16.62 | | | | | | 24 | 20175 | 1732.5 | 18.26 | | | | | | | 20375 | 1752.5 | 18.33 | | Band | Modulation | Bandwidth | RB Size | RB Offset | Channel | Frequency | Power | |------|------------|-----------|---------|-----------|---------|-----------|-------| | | | | | | | | | | | | | | | 20000 | 1715 | 16.37 | | | | | 50 | 0 | 20175 | 1732.5 | 17.06 | | | | | | | 20350 | 1750 | 16.69 | | | | | | | 20000 | 1715 | 16.11 | | | | | 25 | 12 | 20175 | 1732.5 | 16.96 | | | | 40 8411- | | | 20350 | 1750 | 16.44 | | | | 10 MHz | | | 20000 | 1715 | 18.35 | | | | | 1 | 0 | 20175 | 1732.5 | 16.91 | | | | | | | 20350 | 1750 | 17.26 | | | | | | | 20000 | 1715 | 17.00 | | | | | 1 | 24 | 20175 | 1732.5 | 17.83 | | | | | | | 20350 | 1750 | 17.33 | | | | 15 MHz | | | 20025 | 1717.5 | 16.23 | | | | | 75 | 0 | 20175 | 1732.5 | 16.58 | | | | | | | 20325 | 1747.5 | 16.61 | | | | | | 19 | 20025 | 1717.5 | 16.13 | | | | | 36 | | 20175 | 1732.5 | 17.17 | | 4 | 16QAM | | | | 20325 | 1747.5 | 16.55 | | 4 | IOQAIVI | | 1 | | 20025 | 1717.5 | 18.38 | | | | | | 0 | 20175 | 1732.5 | 16.79 | | | | | | | 20325 | 1747.5 | 17.15 | | | | | | | 20025 | 1717.5 | 16.96 | | | | | 1 | 74 | 20175 | 1732.5 | 17.32 | | | | | | | 20325 | 1747.5 | 18.19 | | | | | | | 20050 | 1720 | 16.30 | | | | | 100 | 0 | 20175 | 1732.5 | 16.65 | | | | | | | 20300 | 1745 | 16.57 | | | | | | | 20050 | 1720 | 16.21 | | | | | 50 | 25 | 20175 | 1732.5 | 17.12 | | | | 20 1411- | | | 20300 | 1745 | 16.58 | | | | 20 MHz | | | 20050 | 1720 | 18.20 | | | | | 1 | 0 | 20175 | 1732.5 | 18.13 | | | | | | | 20300 | 1745 | 17.75 | | | | | | | 20050 | 1720 | 16.94 | | | | | 1 | 99 | 20175 | 1732.5 | 17.35 | | | | | | | 20300 | 1745 | 18.24 | | Donal | | Donali, si dala | DD Ci | DD Offers | Channal | F | D | |-------|--------------|-----------------|---------|-----------|----------|-----------|-------| | Band | iviodulation | Bandwidth | RB Size | RB Offset | Channel | Frequency | Power | | | | | | | | | | | | | | | | 20425 | 826.5 | 22.01 | | | | | 25 | 0 | 20525 | 836.5 | 22.06 | | | | | | | 20625 | 846.5 | 22.18 | | | | | | | 20425 | 826.5 | 22.76 | | | | | 12 | 6 | 20525 | 836.5 | 22.85 | | | | 5 MHz | | | 20625 | 846.5 | 22.97 | | | | J IVITIZ | | | 20425 | 826.5 | 22.91 | | | | | 1 | 0 | 20525 | 836.5 | 22.97 | | | | | | | 20625 | 846.5 | 23.00 | | | | | | | 20425 | 826.5 | 22.89 | | | | | 1 | 24 | 24 20525 | 836.5 | 23.00 | | 5 | QPSK | | | | 20625 | 846.5 | 23.00 | | 3 | QF3K | | 50 | 0 | 20450 | 829.0 | 22.01 | | | | | | | 20525 | 836.5 | 22.05 | | | | | | | 20600 | 844.0 | 22.11 | | | | | | | 20450 | 829.0 | 22.87 | | | | | 25 | 12 | 20525 | 836.5 | 22.91 | | | | 10 MHz | | | 20600 | 844.0 | 22.93 | | | | TO IVITIZ | | | 20450 | 829.0 | 22.96 | | | | | 1 | 0 | 20525 | 836.5 | 22.97 | | | | | | | 20600 | 844.0 | 23.00 | | | | | | | 20450 | 829.0 | 22.89 | | | | | 1 | 24 | 20525 | 836.5 | 22.94 | | | | | | | 20600 | 844.0 | 23.00 | | Band | Modulation | Bandwidth | RB Size | RB Offset | Channel | Frequency | Power | |------|----------------|-----------|----------|------------|----------|-----------|---------| | Dana | - Trioudiation | Danaman | 110 0120 | ind direct | <u> </u> | Trequency | . 01101 | | | | <u> </u> | | Г | | | | | | | | | _ | 20425 | 826.5 | 20.12 | | | | | 25 | 0 | 20525 | 836.5 | 20.08 | | | | | | | 20625 | 846.5 | 20.16 | | | | | | | 20425 | 826.5 | 21.89 | | | | | 12 | 6 | 20525 | 836.5 | 21.92 | | | | 5 MHz | | | 20625 | 846.5 | 21.99 | | | | 3 141112 | | | 20425 | 826.5 | 21.96 | | | | | 1 | 0 | 20525 | 836.5 | 21.98 | | | | | | | 20625 | 846.5 | 22.13 | | | | | 1 | | 20425 | 826.5 | 21.92 | | | | | | 24 | 20525 | 836.5 | 22.16 | | 5 | 160414 | | | | 20625 | 846.5 | 22.33 | | 5 | 16QAM | | 50 | 0 | 20450 | 829.0 | 20.08 | | | | | | | 20525 | 836.5 | 20.10 | | | | | | | 20600 | 844.0 | 20.16 | | | | | | | 20450 | 829.0 | 21.92 | | | | | 25 | 12 | 20525 | 836.5 | 21.97 | | | | 10 1411- | | | 20600 | 844.0 | 21.96 | | | | 10 MHz | | | 20450 | 829.0 | 21.98 | | | | | 1 | 0 | 20525 | 836.5 | 21.99 | | | | | | | 20600 | 844.0 | 22.11 | | | | | | | 20450 | 829.0 | 21.93 | | | | | 1 | 24 | 20525 | 836.5 | 21.97 | | | | | | | 20600 | 844.0 | 22.15 | | Band | Modulation | Bandwidth | RB Size | RB Offset | Channel | Frequency | Power | |------|------------|-----------|---------|-----------|---------|-----------|-------| | | | | | | | | | | | | | 25 | 0 | 23230 | 782.0 | 22.23 | | | | 5 MHz | 12 | 6 | 23230 | 782.0 | 22.24 | | | | 5 IVITZ | 1 | 0 | 23230 | 782.0 | 23.00 | | | QPSK | | 1 | 24 | 23230 | 782.0 | 23.00 | | | QP3K | | 50 | 0 | 23230 | 782.0 | 22.19 | | | | 10 MHz | 25 | 12 | 23230 | 782.0 | 23.00 | | | | | 1 | 0 | 23230 | 782.0 | 23.00 | | 13 | | | 1 | 24 | 23230 | 782.0 | 23.00 | | 13 | | | 25 | 0 | 23230 | 782.0 | 20.32 | | | | 5 MHz | 12 | 6 | 23230 | 782.0 | 22.11 | | | | 2 IVITZ | 1 | 0 | 23230 | 782.0 | 22.26 | | | 16000 | | 1 | 24 | 23230 | 782.0 | 22.22 | | | 16QAM | | 50 | 0 | 23230 | 782.0 | 20.29 | | | | 10 MHz | 25 | 12 | 23230 | 782.0 | 22.10 | | | | TO IVIUS | 1 | 0 | 23230 | 782.0 | 22.20 | | | | | 1 | 24 | 23230 | 782.0 | 22.29 | | Band | Modulation | Bandwidth | RB Size | RB Offset | Channel | Frequency | Power | |------|------------|-----------|---------|-----------|---------|-----------|-------| | | | | | | | <u> </u> | | | | | | | | 23755 | 706.5 | 22.19 | | | | | 25 | 0 | 23790 | 710.0 | 22.20 | | | | | | | 23825 | 713.5 | 22.15 | | | | | | | 23755 | 706.5 | 23.00 | | | | | 12 | 6 | 23790 | 710.0 | 23.00 | | | | 5 MHz | | | 23825 | 713.5 | 23.00 | | | | 5 IVITZ | | | 23755 | 706.5 | 23.00 | | | | | 1 | 0 | 23790 | 710.0 | 23.00 | | | | | | | 23825 | 713.5 | 23.00 | | | | | 1 | | 23755 | 706.5 | 23.00 | | | | | | 24 | 23790 | 710.0 | 23.00 | | 17 | QPSK | | | | 23825 | 713.5 | 23.00 | | 1/ | QP3K | | 50 | | 23780 | 709.0 | 22.08 | | | | | | 0 | 23790 | 710.0 | 22.15 | | | | | | | 23800 | 711.0 | 22.21 | | | | | | | 23780 | 709.0 | 23.00 | | | | | 25 | 12 | 23790 | 710.0 | 23.00 | | | | 10 MHz | | | 23800 | 711.0 | 23.00 | | | | 10 MHz | | | 23780 | 709.0 | 23.00 | | | | | 1 | 0 | 23790 | 710.0 | 23.00 | | | | | | | 23800 | 711.0 | 23.00 | | | | | | | 23780 | 709.0 | 23.00 | | | | | 1 | 24 | 23790 | 710.0 | 23.00 | | | | | | | 23800 | 711.0 | 23.00 | | Band | Modulation | Bandwidth | RB Size | RB Offset | Channel | Frequency | Power | |------|------------|-----------|---------|-----------|---------|-----------|-------| | | | | | | | <u> </u> | | | | | | | | 23755 | 706.5 | 20.29 | | | | | 25 | 0 | 23790 | 710.0 | 20.23 | | | | | | | 23775 | 713.5 | 20.19 | | | | | 12 | | 23755 | 706.5 | 22.10 | | | | | | 6 | 23790 | 710.0 | 22.08 | | | | 5 MHz | | | 23775 | 713.5 | 22.13 | | | | | 1 | | 23755 | 706.5 | 22.18 | | | 10000 | | | 0 | 23790 | 710.0 | 22.24 | | | | | | | 23775 | 713.5 | 22.26 | | | | | 1 | | 23755 | 706.5 | 22.29 | | | | | | 24 | 23790 | 710.0 | 22.18 | | 17 | | | | | 23775 | 713.5 | 22.27 | | 1/ | 16QAM | | 50 | 0 | 23780 | 709.0 | 20.14 | | | | | | | 23790 | 710.0 | 20.26 | | | | | |
| 23800 | 711.0 | 20.30 | | | | | | | 23780 | 709.0 | 22.05 | | | | | 25 | 12 | 23790 | 710.0 | 22.08 | | | | 10 MHz | | | 23800 | 711.0 | 22.14 | | | | 10 MHz | | | 23780 | 709.0 | 22.07 | | | | | 1 | 0 | 23790 | 710.0 | 22.18 | | | | | | | 23800 | 711.0 | 22.15 | | | | _ | 1 | | 23780 | 709.0 | 22.22 | | | | | | 24 | 23790 | 710.0 | 22.27 | | | | | | | 23800 | 711.0 | 22.20 | ### Table 10.5.2 Test Reduction Table – LTE | Donal/ | | Deguired | . oo. moat | Jotion Tub | | DD | Toolsal | |-----------------|------------------|--------------------------|--|--------------------|-----------------------|--------------|---| | Band/ | Side | Required | Bandwidth | Modulation | RB | RB | Tested/ | | Frequency (MHz) | Olde | Test Channel | Danawiatii | modulation | Allocation | Offset | Reduced | | | | 18700 | | | | | Tested | | | | 18900 | | | 50 | 0 | Tested | | | | 19100 | | | | | Tested | | | | 18700 | | | | | Reduced ¹ | | | | 18900 | | | 100 | 0 | Reduced ¹ | | | | 19100 | | QPSK | | | Reduced ¹ | | | | 18700 | | <u> </u> | | _ | Tested | | | | 18900 | | | | 0 | Tested | | | | 19100 | | | 1 | | Tested | | | | 18700 | | | | 99 | Reduced ² | | | | 18900 | | | | | Reduced ² | | | Back | 19100 | 20 MHz | | | | Reduced ² | | | | 18700 | | | 50 | 0.5 | Reduced ³ | | | | 18900
19100 | | | 50 | 25 | Reduced ³ Reduced ³ | | | | 18700 | | | | | Reduced ¹ | | | | 18900 | | | 100 | 0 | Reduced ¹ | | | | 19100 | | | 100 | U | Reduced ¹ | | | | 18700 | | 16QAM | | | Reduced ⁴ | | | | 18900 | | | | 0 | Reduced ⁴ | | | | 19100 | | | | U | Reduced ⁴ | | | | 18700 | | | 1 | | Reduced ⁴ | | | | 18900 | | | | 99 | Reduced ⁴ | | | | 19100 | | | | 00 | Reduced ⁴ | | 5 | | | wer bandwidths (15 | MHz, 10 MHz, 5 MHz | , 3 MHz, 1.4 MHz) | | Reduced ⁵ | | Band 2 | | 18700 | | , - , - , | , | | Tested | | 1850-1910 MHz | | 18900 | | | 50 | 25 | Tested | | | | 19100 | | | | | Tested | | | | 18700 | | | 100 | 0 | Reduced ¹ | | | | 18900 | | QPSK | | | Reduced ¹ | | | | 19100 | | | | | Reduced ¹ | | | | 18700 | | QFSK | | | Tested | | | | 18900 | | | | 0 | Tested | | | | 19100 | | | 1 | | Tested | | | | 18700 | | | ' | | Reduced ² | | | | 18900 | | | | 99 | Reduced ² | | | | 19100 | 20 MHz | | | | Reduced ² | | | Right | 18700 | 20 1011 12 | | | | Reduced ³ | | | | 18900 | | | 50 | 25 | Reduced ³ | | | | 19100 | | | | | Reduced ³ | | | | 18700 | | | | | Reduced ¹ | | | | 18900 | | | 100 | 0 | Reduced ¹ | | | | 19100 | | 16QAM | | | Reduced ¹ | | | | 18700 | | | | | Reduced ⁴ | | | | 18900 | | | | 0 | Reduced ⁴ | | | | 19100 | | | 1 | | Reduced ⁴ | | | | 18700 | | | ı | 99 | Reduced ⁴ | | | | 18900 | | | | | Reduced ⁴ Reduced ⁴ | | | | | 19100 All lower bandwidths (15 MHz, 10 MHz, 5 MHz, 3 MHz, 1.4 MHz) | | | | | | | | All 10 | | ining sides | , J IVITZ, 1.4 IVITZ) | | Reduced ⁵ Reduced ⁶ | | D | Landara da Alaia | 50% RR testing is less t | | | l I/DD04400 | DOE 0\ A\ I\ | | Reduced 1 – If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4. Maximum power: 79.43 mW Closest Distance to Left: 117.0 mm Closest Distance to Bottom: 67.0 mm Closest Distance to Top: 82 mm The closest distance is from the bottom side. Therefore, if the bottom side is excluded the top and left sides would also be excluded. $[\{[(3.0)/(\sqrt{1.91})]*50 \text{ mm}\}]+[\{67-50 \text{ mm}\}*10]=278 \text{ mW}$ which is greater than 79.43 mW Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4. Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4. Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5. Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) Reduced - When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations. | Band/ | 61. | Required | | | RB | RB | Tested/ | | | |---------------------|------------|--|--------------------|--------------------|-------------------|--------|---|--|--| | Frequency (MHz) | Side | Test Channel | Bandwidth | Modulation | Allocation | Offset | Reduced | | | | r requericy (Wiriz) | | 18700 | | | Allocation | Oliset | | | | | | | | | | EO | OF | Tested | | | | | | 18900
19100 | | | 50 | 25 | Tested
Tested | | | | | | 18700 | | | | | Reduced ¹ | | | | | | 18900 | | | 100 | 0 | Reduced ¹ | | | | | | 19100 | | | 100 | U | Reduced ¹ | | | | | | 18700 | | QPSK | | | Tested | | | | | | 18900 | | | | 0 | Tested | | | | | | 19100 | | | | Ü | Tested | | | | | | 18700 | | | 1 | | Reduced ² | | | | | | 18900 | | | | 99 | Reduced ² | | | | | | 19100 | 00.1411 | | | | Reduced ² | | | | | Back | 18700 | 20 MHz | | | | Reduced ³ | | | | | | 18900 | | | 50 | 25 | Reduced ³ | | | | | | 19100 | | | | | Reduced ³ | | | | | | 18700 | | | | | Reduced ¹ | | | | | | 18900 | | | 100 | 0 | Reduced ¹ | | | | | | 19100 | | 16QAM | | | Reduced ¹ | | | | | | 18700 | | TOQAW | | | Reduced ⁴ | | | | | | 18900 | | | | 0 | Reduced ⁴ | | | | | | 19100 | | | 1 | | Reduced ⁴ | | | | | | 18700 | | | • | | Reduced ⁴ | | | | | | 18900 | | | | 99 | Reduced ⁴ | | | | | | 19100 | 1 1 1 1 1 /45 | | 0.141. | | Reduced ⁴ | | | | Band 4 | | | wer bandwidths (15 | MHz, 10 MHz, 5 MHz | , 3 MHz, 1.4 MHz) | | Reduced ⁵ | | | | 1710-1755 MHz | | 18700 | | | 50 | 25 | Tested | | | | | | 18900
19100 | | | | | Tested | | | | | | 18700 | | | | | Tested
Reduced ¹ | | | | | | 18900 | | | 100 | 0 | Reduced ¹ | | | | | | 19100 | | | | | Reduced ¹ | | | | | | 18700 | | QPSK | | | Tested | | | | | | 18900 | | | | 0 | Tested | | | | | | 19100 | | | | U | Tested | | | | | | 18700 | | | 1 | | Reduced ² | | | | | | 18900 | | | | 99 | Reduced ² | | | | | | 19100 | | | | | Reduced ² | | | | | Right | 18700 | 20 MHz | | | | Reduced ³ | | | | | | 18900 | | | 50 | 25 | Reduced ³ | | | | | | 19100 | | | | | Reduced ³ | | | | | | 18700 | | | | | Reduced ¹ | | | | | | 18900 | | | 100 | 0 | Reduced ¹ | | | | | | 19100 | | 100414 | | | Reduced ¹ | | | | | | 18700 | | 16QAM | | | Reduced ⁴ | | | | | | 18900 | | | | 0 | Reduced ⁴ | | | | | | 19100 | | | 1 | | Reduced ⁴ | | | | | | 18700 | | | 1 | 99 | Reduced⁴ | | | | | | 18900 | | | | | Reduced⁴ | | | | | | 19100 | | | | | Reduced ⁴ Reduced ⁵ | | | | | | All lower bandwidths (15 MHz, 10 MHz, 5 MHz, 3 MHz, 1.4 MHz) | | | | | | | | | | | | All rema | ining sides | | | Reduced ⁶ | | | Reduced¹ – If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4. Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4. Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4. Reduced⁴ - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5. Reduced⁵ - If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5. Reduced⁶ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations. Maximum power: 79.43 mW Closest Distance to Left: 117.0 mm Closest Distance to Bottom: 67.0 mm Closest Distance to Top: 82 mm The closest distance is from the bottom side. Therefore, if the bottom side is excluded the top and left sides would also be excluded. $[\{[(3.0)/(\sqrt{1.755})]*50 \text{ mm}\}]+[\{67-50 \text{ mm}\}*10]=283 \text{ mW}$ which is greater than 79.43 mW | Band/ | | Required | | | RB | RB | Tested/ | |----------------------|-------|------------------------------|-----------|----------------------|-------------------------------------|-----------|--| | Frequency (MHz) | Side | Test Channel | Bandwidth | Modulation | Allocation | Offset | Reduced | | ricquericy (iiii i=) | | 20450 | | | 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | O III C C | Tested | | | | 20525 | | | 25 | 12 | Tested | | | | 20600 | | | | | Tested | | | | 20450 | | | | | Reduced ¹ | | | | 20525 | | | 50 | 0 | Reduced ¹ | | | | 20600 | | ODOK | | | Reduced ¹ | | | | 20450 | | QPSK | | | Tested | | | | 20525 | | | | 0 | Tested | | | | 20600 | | | 1 | | Tested | | | | 20450 | | | · · | | Reduced ² | | | | 20525 | | | | 24 | Reduced ² | | | | 20600 | 10 MHz | | | | Reduced ² | | | Back | 20450 | 10 101112 | | | | Reduced ³ | | | | 20525 | | | 25 | 12 | Reduced ³ | | | | 20600 | | | | | Reduced ³ | | | | 20450 | | | | | Reduced ¹ | | | | 20525 | | | 50 | 0 | Reduced ¹ | | | | 20600 | | 16QAM | | | Reduced ¹ | | | | 20450 | | | | | Reduced ⁴ | | | | 20525 | | | | 0 | Reduced ⁴ | | | | 20600 | | | 1 | | Reduced ⁴ | | | | 20450 | | | | 0.4 | Reduced ⁴ | | | | 20525 | | | | 24 | Reduced ⁴ | | | | 20600 | All lowe | r bandwidths (5 MHz) | | | Reduced ⁴
Reduced ⁵ | | Band 5 | | 20450 | Alliowe | bandwidths (5 Wi 12) | | | Reduced ⁶ | | 824-849 MHz | | 20525 | | | 25 | 12 | Tested | | | | 20600 | | | 25 | 12 | Reduced ⁶ | | | | 20450 | | QPSK - | 50 | | Reduced ¹ | | | | 20525 | | | | 0 | Reduced ¹ | | | | 20600 | | | | | Reduced ¹ | | | | 20450 | | | | | Reduced ⁶ | | | | 20525 | | | | 0 | Tested | | | | 20600 | | | | | Reduced ⁶ | | | | 20450 | | | 1 | | Reduced ² | | | | 20525 | | | | 24 | Reduced ² | | | | 20600 | 10 MHz | | | | Reduced ² | | | Right | 20450 | 10 IVITZ
| | | | Reduced ³ | | | _ | 20525 | | | 25 | 12 | Reduced ³ | | | | 20600 | | | | | Reduced ³ | | | | 20450 | | | | | Reduced ¹ | | | | 20525 | | | 50 | 0 | Reduced ¹ | | | | 20600 | | 16QAM | | | Reduced ¹ | | | | 20450 | | IOQAW | | | Reduced ⁴ | | | | 20525 | | | | 0 | Reduced ⁴ | | | | 20600 | | | 1 | | Reduced ⁴ | | | | 20450 | | | 1 | 24 | Reduced ⁴ | | | - | 20525 | | | | | Reduced ⁴ | | | | 20600 | | | | | Reduced⁴ | | | | All lower bandwidths (5 MHz) | | | Reduced ⁵ | | | | | | | All rema | ining sides | | | Reduced ⁷ | Reduced¹ – If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4. Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4. Maximum power: 199.53 mW Closest Distance to Left: 117.0 mm Closest Distance to Bottom: 67.0 mm Closest Distance to Top: 82 mm The closest distance is from the bottom side. Therefore, if the bottom side is excluded the top and left sides would also be excluded. $[\{[(3.0)/(\sqrt{0.849})]*50 \text{ mm}\}]+[\{67-50 \text{ mm}\}*10]=332 \text{ mW}$ which is greater than 199.53 mW Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4. Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5. Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5. Reduced⁶- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2. Reduced⁷ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations. | Band/
Frequency (MHz) | Side | Required Test Channel | Bandwidth | Modulation | RB
Allocation | RB
Offset | Tested/
Reduced | |--------------------------|-------|------------------------------|----------------------|-------------|------------------|--------------|----------------------| | - | | 23095 | | | 25 | 12 | Tested | | | Back | 23095 | 1 | QPSK | 50 | 0 | Reduced ¹ | | | | 23095 | | QFSN | 4 | 0 | Tested | | | | 23095 | 10 MHz | | ı | 24 | Reduced ² | | | | 23095 | All lower | | 25 | 12 | Reduced ³ | | | | 23095 | | 16QAM | 50 | 0 | Reduced ¹ | | | | 23095 | | TOQAIVI | 1 | 0 | Reduced⁴ | | | | 23095 | | | ı | 24 | Reduced⁴ | | Band 13 | | | Reduced ⁵ | | | | | | 777-787 MHz | | 23095 | | QPSK | 25 | 12 | Tested | | 777-787 WII IZ | | 23095 | | | 50 | 0 | Reduced ¹ | | | | 23095 | | | 4 | 0 | Tested | | | | 23095 | 10 MHz | | ı | 24 | Reduced ² | | | Right | 23095 | TO MINZ | | 25 | 12 | Reduced ³ | | | | 23095 | | 16QAM | 50 | 0 | Reduced ¹ | | | | 23095 | | TOQAM | 1 | 0 | Reduced ⁴ | | | | 23095 | | | I | 24 | Reduced ⁴ | | | | All lower bandwidths (5 MHz) | | | | | Reduced⁵ | | | | | All rema | ining sides | | | Reduced ⁷ | Reduced¹ – If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4. Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4. Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4. Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5. Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) page 5. Reduced⁶- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2. Reduced⁷ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations. Maximum power: 199.53 mW Closest Distance to Left: 117.0 mm Closest Distance to Bottom: 67.0 mm Closest Distance to Top: 82 mm The closest distance is from the bottom side. Therefore, if the bottom side is excluded the top and left sides would also be excluded. $[\{[(3.0)/(\sqrt{0.787})]*50 \text{ mm}\}]+[\{67-50 \text{ mm}\}*10]=339 \text{ mW}$ which is greater than 199.53 mW | Band/ | | Required | | | RB | RB | Tested/ | |---------------------|-------|--------------|------------|-----------------------|------------|--------|----------------------| | Frequency (MHz) | Side | Test Channel | Bandwidth | Modulation | Allocation | Offset | Reduced | | 1 requericy (Miriz) | | 23780 | | | Allocation | Oliset | Tested | | | | 23780 | | | 25 | 12 | Tested | | | | 23800 | | | 25 | 12 | Tested | | | | 23780 | | | | | Reduced ¹ | | | | 23790 | | | 50 | 0 | Reduced ¹ | | | | 23800 | | | 30 | U | Reduced ¹ | | | | 23780 | | QPSK | | | Tested | | | | 23790 | | | | 0 | Tested | | | | 23800 | | | | U | Tested | | | | 23780 | | | 1 | 24 | Reduced ² | | | | 23790 | | | | | Reduced ² | | | Back | 23800 | | | | 24 | Reduced ² | | | | 23780 | 10 MHz | | | | Reduced ³ | | | | 23790 | | | 25 | 12 | Reduced ³ | | | | 23800 | | | 25 | 12 | Reduced ³ | | | | 23780 | | | | | Reduced ¹ | | | | 23790 | | | 50 | 0 | Reduced ¹ | | | | 23800 | | | 00 | · · | Reduced ¹ | | | | 23780 | | 16QAM | | | Reduced ⁴ | | | | 23790 | | | | 0 | Reduced ⁴ | | | | 23800 | | | | · · | Reduced ⁴ | | | | 23780 | | | 1 | | Reduced ⁴ | | | | 23790 | | | | 24 | Reduced ⁴ | | | | 23800 | | | | | Reduced ⁴ | | | | | All lowe | er bandwidths (5 MHz) | | | Reduced ⁵ | | Band 17 | | 23780 | | | 25 | 12 | Reduced ⁶ | | 704-716 MHz | | 23790 | | | | | Tested | | | | 23800 | | | | | Reduced ⁶ | | | | 23780 | | QPSK | 50 | 0 | Reduced ¹ | | | | 23790 | | | | | Reduced ¹ | | | | 23800 | | | | | Reduced ¹ | | | | 23780 | | | 1 | 0 | Reduced ⁶ | | | | 23790 | | | | | Tested | | | | 23800 | | | | | Reduced ⁶ | | | | 23780 | | | ı | | Reduced ² | | | | 23790 | | | | 24 | Reduced ² | | | | 23800 | 10 MHz | | | | Reduced ² | | | Right | 23780 | 10 1011 12 | | | | Reduced ³ | | | | 23790 | | | 25 | 12 | Reduced ³ | | | | 23800 | | | | | Reduced ³ | | | | 23780 | | | | | Reduced ¹ | | | | 23790 | | | 50 | 0 | Reduced ¹ | | | | 23800 | | 100414 | | | Reduced ¹ | | | | 23780 | | 16QAM | | _ | Reduced⁴ | | | | 23790 | | | | 0 | Reduced⁴ | | | | 23800 | | | 1 | | Reduced⁴ | | | | 23780 | | | | | Reduced⁴ | | | | 23790 | | | | 24 | Reduced⁴ | | | | 23800 | | | | | Reduced⁴ | | | | | All lowe | r bandwidths (5 MHz) | | | Reduced ⁵ | | 1 | | | | ining sides | | | Reduced ⁷ | Reduced¹ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the 100% RB testing is reduced per KDB941225 D05 3) A) I) page 4. Reduced² - If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 3) B) I) page 4. Reduced³ - If the SAR value in the 50% RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) A) I) page 4. Reduced⁴- If the SAR value in the 1 RB testing is less than 1.45 W/kg, the remaining channels are reduced per KDB941225 D05 4) B) I) page 5. Reduced⁵- If the conducted power is within ±0.5 dB, all testing where the SAR value is less than 1.45 W/kg is reduced per KDB941225 D05 5) B) I) nage 5 Reduced⁶- If the SAR value measured on the middle channel is less than 0.8 W/kg and the conducted power is within ±0.5 dB, the remaining channels are reduced per KDB941225 D05 page 4 footnote 2. Reduced⁷ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v06 section 4.3.1 1) page 11. See below for calculations. Maximum power: 199.53 mW Closest Distance to Left: 117.0 mm Closest Distance to Bottom: 67.0 mm Closest Distance to Top: 82 mm The closest distance is from the bottom side. Therefore, if the bottom side is excluded the top and left sides would also be excluded. [{[(3.0)/($\sqrt{0.716}$)]*50 mm}]+[{67-50 mm}*10]=347 mW which is greater than 199.53 mW ### SAR Data Summary – 750 MHz Body – LTE Band 17 ### **MEASUREMENT RESULTS** End Frequency BW/ RB RB **MPR** Measured Reported Gap **Plot Position** Power Modulation Size Offset Target SAR (W/kg) SAR (W/kg) Ch. MHz (dBm) 1 710.0 23790 10 MHz/QPSK 1 0 0 23.00 0.392 0.39 Back 0 710.0 23790 10 MHz/QPSK 25 12 1 23.00 0.218 0.22 0 mm 710.0 23790 10 MHz/QPSK 0 23.00 0.147 0.15 Right 23.00 -----710.0 23790 10 MHz/QPSK 25 0 1 0.120 0.12 Body 1.6 W/kg (mW/g) averaged over 1 gram | 1. | SAR Measurement | | | |----|----------------------------------|--------------------|------------| | | Phantom Configuration Left Head | ⊠Eli4 | Right Head | | | SAR Configuration Head | \boxtimes Body | | | 2. | Test Signal Call Mode Test Code | | lator | | 3. | Test Configuration | ☐Without Belt Clip | ⊠N/A | | 4. | Tissue Depth is at least 15.0 cm | | | Right 782.0 23230 ----- Report Number: SAR.20151211 ### SAR Data Summary – 750 MHz Body – LTE Band 13 10 MHz/QPSK ### **MEASUREMENT RESULTS** End Frequency BW/ RB RB **MPR** Measured Reported Gap **Plot Position** Power Modulation Size Offset Target SAR (W/kg) SAR (W/kg) Ch. MHz (dBm) 2 782.0 23230 10 MHz/QPSK 1 0 0 23.00 0.721 0.72 Back 0 782.0 23230 10 MHz/QPSK 25 12 1 23.00 0.577 0.58 0 mm 782.0 23230 10 MHz/QPSK 0 23.00 0.572 0.57 25 0 Body 1.6 W/kg (mW/g) averaged over 1 gram 23.00 0.458 0.46 1 | 1. | SAR Measurement | | |----|------------------------------------|---------------------------------| | | Phantom Configuration Left Head | ⊠Eli4 | | | SAR Configuration Head | ⊠Body | | 2. | Test Signal Call Mode Test Code | ⊠ Base Station Simulator | | 3. | Test Configuration With Belt Clip | ☐Without Belt Clip | | 4. | Tissue
Depth is at least 15.0 cm | | ## SAR Data Summary – 835 MHz Body - CDMA # MEASUREMENT RESULTS | Gap | Plot | Frequency | | Modulation | Position End Power | Reverse
Channel | Forward
Channel | Measured
SAR (W/kg) | Reported
SAR (W/kg) | | |---------|------|-----------|-----|------------|--------------------|--------------------|--------------------|------------------------|------------------------|-------------| | | | MHz | Ch. | <u> </u> | | (dBm) | Onamici | Onamici | OAII (W/kg) | OAII (W/Kg) | | | 3 | 817.25 | 450 | CDMA | | 23.40 | 153.6 kbps | 2 Slot 307.2 kbps | 1.11 | 1.27 | | _ | | 833.01 | 267 | CDMA | Back | 23.35 | 153.6 kbps | 2 Slot 307.2 kbps | 1.00 | 1.16 | | 0
mm | | 848.31 | 777 | CDMA | | 23.40 | 153.6 kbps | 2 Slot 307.2 kbps | 0.893 | 1.03 | | | | 833.01 | 267 | CDMA | Right | 23.35 | 153.6 kbps | 2 Slot 307.2 kbps | 0.597 | 0.69 | | | | 817.25 | 450 | CDMA | Repeat | 23.40 | 153.6 kbps | 2 Slot 307.2 kbps | 1.08 | 1.24 | Body 1.6 W/kg (mW/g) averaged over 1 gram | 1. | SAR Measurement | | | |----|-----------------------|-----------------|---------------------------------| | | Phantom Configuration | Left Head | ⊠Eli4 | | | SAR Configuration | Head | ⊠Body | | 2. | Test Signal Call Mode | Test Code | ⊠ Base Station Simulator | | 3. | Test Configuration | ☐With Belt Clip | ☐Without Belt Clip ☒N/A | | | | = | | 4. Tissue Depth is at least 15.0 cm ## SAR Data Summary – 835 MHz Body - GPRS # MEASUREMENT RESULTS | Gap | Plot | Frequ | ency | Rev Level/
Modulation | Position | End
Power | TX
Level | Multislot
Configuration | Measured
SAR | Reported
SAR | |-----|------|-------|------|--------------------------|----------|--------------|-------------|----------------------------|-----------------|-----------------| | | | MHz | Ch. | Modulation | | (dBm) | Level | Comiguration | (W/kg) | (W/kg) | | | 4 | 824.2 | 128 | GMSK | Back | 29.87 | 5 | 2 Slot | 1.16 | 1.20 | | 0 | | 836.6 | 190 | GMSK | | 29.87 | 5 | 2 Slot | 1.09 | 1.12 | | 0 | | 848.8 | 251 | GMSK | | 29.85 | 5 | 2 Slot | 0.945 | 0.98 | | mm | | 836.6 | 190 | GMSK | Right | 29.87 | 5 | 2 Slot | 0.583 | 0.60 | | | | 824.2 | 128 | GMSK | Repeat | 29.87 | 5 | 2 Slot | 1.11 | 1.14 | Body 1.6 W/kg (mW/g) averaged over 1 gram | 1. | SAR Measurement | | | | |----|-----------------------|-----------------|---------------------|------------| | | Phantom Configuration | Left Head | ⊠Eli4 | Right Head | | | SAR Configuration | Head | ⊠Body | | | 2. | Test Signal Call Mode | Test Code | ⊠Base Station Simul | ator | | 3. | Test Configuration | ☐With Belt Clip | ☐Without Belt Clip | ⊠N/A | | | | - | - | | 4. Tissue Depth is at least 15.0 cm ## SAR Data Summary – 835 MHz Body - WCDMA # MEASUREMENT RESULTS | Gap | Plot | Frequency | | Modulation | Position | End
Power RMC | | Test Set Up | Measured
SAR | Reported
SAR | |---------|------|-----------|------|------------|----------|------------------|-----------|-------------|-----------------|-----------------| | | | MHz | Ch. | | | (dBm) | | | (W/kg) | (W/kg) | | | | 826.4 | 4132 | WCDMA | | 22.99 | 12.2 kbps | Test Loop 1 | 0.918 | 0.92 | | 0
mm | 5 | 836.6 | 4183 | WCDMA | Back | 22.98 | 12.2 kbps | Test Loop 1 | 0.936 | 0.94 | | | | 846.6 | 4233 | WCDMA | | 22.99 | 12.2 kbps | Test Loop 1 | 0.804 | 0.81 | | | | 836.6 | 4183 | WCDMA | Right | 22.98 | 12.2 kbps | Test Loop 1 | 0.645 | 0.65 | | | | 836.6 | 4183 | WCDMA | Repeat | 22.98 | 12.2 kbps | Test Loop 1 | 0.922 | 0.93 | Body 1.6 W/kg (mW/g) averaged over 1 gram | 1. | SAR Measurement | | | |----|-----------------------|-----------------|---------------------------------| | | Phantom Configuration | Left Head | ⊠Eli4 | | | SAR Configuration | Head | ⊠Body | | 2. | Test Signal Call Mode | Test Code | ⊠ Base Station Simulator | | 3. | Test Configuration | ☐With Belt Clip | ☐Without Belt Clip ☐N/A | 4. Tissue Depth is at least 15.0 cm ### SAR Data Summary – 835 MHz Body – LTE Band 5 | MEASUREMENT RESULTS | | | | | | | | | | | | |---------------------|------|----------|-----------|-------|-------------|------|--------|--------|-----------|-----------------|-----------------| | Gap | Plot | Position | Frequency | | BW/ | RB | RB | MPR | End Power | Measured
SAR | Reported
SAR | | - | | | MHz | Ch. | Modulation | Size | Offset | Target | (dBm) | (W/kg) | (W/kg) | | | | - Back | 829.0 | 20450 | 10 MHz/QPSK | 1 | 0 | 0 | 22.91 | 0.812 | 0.83 | | | | | 829.0 | 20450 | 10 MHz/QPSK | 25 | 0 | 1 | 22.76 | 0.718 | 0.76 | | | 6 | | 836.5 | 20525 | 10 MHz/QPSK | 1 | 0 | 0 | 22.97 | 0.885 | 0.89 | | _ | | | 836.5 | 20525 | 10 MHz/QPSK | 25 | 0 | 1 | 22.85 | 0.712 | 0.74 | | mm | | | 844.0 | 20600 | 10 MHz/QPSK | 1 | 0 | 0 | 23.00 | 0.830 | 0.83 | | 111111 | | | 844.0 | 20600 | 10 MHz/QPSK | 25 | 0 | 1 | 22.97 | 0.671 | 0.68 | | | | Right | 836.5 | 20525 | 10 MHz/QPSK | 1 | 0 | 0 | 22.97 | 0.530 | 0.53 | | | | | 836.5 | 20525 | 10 MHz/QPSK | 25 | 0 | 1 | 22.85 | 0.403 | 0.42 | | | | Repeat | 836.5 | 20525 | 10 MHz/QPSK | 1 | 0 | 0 | 22.97 | 0.846 | 0.85 | Body 1.6 W/kg (mW/g) averaged over 1 gram Right Head \square N/A | 1. | SAR Measurement | | | | | | | | |----|-----------------------|--|--|--|--|--|--|--| | | Phantom Configuration | | | | | | | | | | SAR Configuration | | | | | | | | Left Head Head ⊠Eli4 ⊠Body. ☐Without Belt Clip Test Code 2. Test Signal Call Mode 3. Test Configuration ☐With Belt Clip ⊠Base Station Simulator 4. Tissue Depth is at least 15.0 cm ## SAR Data Summary – 1750 MHz Body - WCDMA ## MEASUREMENT RESULTS | Gap | Plot | Freque | ency | Rev Level/
Modulation | Docition | | RMC | Test Set Up | Measured
SAR | Reported
SAR | |-----|------|--------|------|--------------------------|----------|-------|-----------|-------------|-----------------|-----------------| | | | MHz | Ch. | Wodulation | | (dBm) | | | (W/kg) | (W/kg) | | | | 1712.4 | 1312 | WCDMA | | 18.88 | 12.2 kbps | Test Loop 1 | 1.24 | 1.28 | | | 7 | 1732.6 | 1413 | WCDMA | Back | 18.90 | 12.2 kbps | Test Loop 1 | 1.27 | 1.30 | | 0 | | 1752.6 | 1513 | WCDMA | | 18.95 | 12.2 kbps | Test Loop 1 | 1.18 | 1.19 | | _ | | 1712.4 | 1312 | WCDMA | | 18.88 | 12.2 kbps | Test Loop 1 | 0.815 | 0.84 | | mm | | 1732.6 | 1413 | WCDMA | Right | 18.90 | 12.2 kbps | Test Loop 1 | 0.882 | 0.90 | | | | 1752.6 | 1513 | WCDMA | | 18.95 | 12.2 kbps | Test Loop 1 | 0.864 | 0.87 | | | | 1732.6 | 1413 | WCDMA | Repeat | 18.90 | 12.2 kbps | Test Loop 1 | 1.25 | 1.28 | Body 1.6 W/kg (mW/g) averaged over 1 gram | 1. | SAR Measurement | | | | |----|-----------------------|----------------|--------------------|------------| | | Phantom Configuration | Left Head | ⊠Eli4 | Right Head | | | SAR Configuration | Head | ⊠Body | _ | | 2. | Test Signal Call Mode | Test Code | ⊠Base Station Simu | ılator | | 3. | Test Configuration | With Belt Clip | Without Belt Clip | ⊠N/A | | 4 | m: D 41 - 1 - 150 | | | | 4. Tissue Depth is at least 15.0 cm ## SAR Data Summary – 1750 MHz Body – LTE Band 4 | MEA | MEASUREMENT RESULTS | | | | | | | | | | | | |--------|---------------------|----------|-----------|-------|--------------|------------|--------------|---------------|--------------|------------------------|------------------------|--| | Gap | Plot | Position | Frequency | | BW/ | RB
Size | RB
Offset | MPR
Target | End
Power | Measured
SAR (W/kg) | Reported SAR
(W/kg) | | | _ | | | MHz | Ch. | Modulation | Size | Oliset | rarget | (dBm) | SAN (W/kg) | (W/Kg) | | | | | | 1720.0 | 20050 | 20 MHz/QPSK | 1 | 0 | 0 | 19.00 | 1.12 | 1.12 | | | | | | 1720.0 | 20050 | 20 MHz/QPSK | 50 | 0 | 1 | 17.81 | 1.13 | 1.18 | | | | 8 | Back | 1732.5 | 20175 | 20 MHz/QPSK | 1 | 0 | 0 | 18.90 | 1.24 | 1.27 | | | | | - Back | 1732.5 | 20175 | 20 MHz/QPSK | 50 | 0 | 1 | 18.00 | 1.13 | 1.13 | | | | | | 1745.0 | 20300 | 20 MHz/QPSK | 1 | 0 | 0 | 18.98 | 1.16 | 1.17 | | | 0 | | | 1745.0 | 20300 | 20 MHz//QPSK | 50 | 0 | 1 | 17.91 | 1.14 | 1.16 | | | mm | | | 1720.0 | 20050 | 20 MHz/QPSK | 1 | 0 | 0 | 19.00 | 0.860 | 0.86 | | | 111111 | | | 1720.0 | 20050 | 20 MHz/QPSK | 50 | 0 | 1 | 17.81 | 0.868 | 0.91 | | | | | Diabt | 1732.5 | 20175 | 20 MHz/QPSK | 1 | 0 | 0 | 18.90 | 0.912 | 0.93 | | | | | Right | 1732.5 | 20175 | 20 MHz/QPSK | 50 | 0 | 1 | 18.00 | 0.888 | 0.89 | | | | | | 1745.0 | 20300 | 20 MHz/QPSK | 1 | 0 | 0 | 18.98 | 0.909 | 0.91 | | | | | | 1745.0 | 20300 | 20 MHz//QPSK | 50 | 0 | 1 | 17.91 | 0.928 | 0.95 | | | | | Repeat | 1732.5 | 20175 | 20 MHz/QPSK | 1 | 0 | 0 | 18.90 | 1.22 | 1.25 | | Body 1.6 W/kg (mW/g) averaged over 1 gram | 1. | SAR Measurement | |----|-----------------------| | | Phantom Configuration | | | SAR Configuration | Left Head Head Right Head Test Signal Call Mode Test Configuration ☐Test Code ☐With Belt Clip Base Station Simulator Without Belt Clip N/A ⊠Eli4 Body 4. Tissue Depth is at least 15.0 cm ## SAR Data Summary – 1900 MHz Body - CDMA ## MEASUREMENT RESULTS | Gap | ap Plot F | | ency | Modulation | Position | End
Power | Reverse
Channel | Forward
Channel | Measured
SAR | Reported
SAR | |------|-----------|---------|------|------------|----------|--------------|--------------------|--------------------|-----------------|-----------------| | | | MHz | Ch. | | | (dBm) | Chamilei | Chamie | (W/kg) | (W/kg) | | | | 1851.25 | 25 | CDMA | | 18.70 | 153.6 kbps | 2 Slot 307.2 kbps | 1.19 | 1.28 | | | 9 | 1880.00 | 600 | CDMA | Back | 18.70 | 153.6 kbps | 2 Slot 307.2 kbps | 1.23 | 1.32 | | 0 | | 1908.75 | 1175 | CDMA | | 18.71 | 153.6 kbps | 2 Slot 307.2 kbps | 1.15 | 1.23 | | 0 | | 1851.25 | 25 | CDMA | | 18.70 | 153.6 kbps | 2 Slot 307.2 kbps | 0.850 | 0.91 | | mm - | | 1880.00 | 600 | CDMA | Right | 18.70 | 153.6 kbps | 2 Slot 307.2 kbps | 0.815 | 0.87 | | | | 1908.75 | 1175 | CDMA | | 18.71 | 153.6 kbps | 2 Slot 307.2 kbps | 0.761 | 0.81 | | | | 1880.00 | 600 | CDMA | Repeat | 18.70 | 153.6 kbps | 2 Slot 307.2 kbps | 1.21 | 1.30 | Body 1.6 W/kg (mW/g) averaged over 1 gram | 1. | SAR Measurement | | | | |----
------------------------|----------------|-------------------------|----| | | Phantom Configuration | Left Head | ⊠Eli4 | ad | | | SAR Configuration | Head | Body | | | 2. | Test Signal Call Mode | Test Code | Base Station Simulator | | | 3. | Test Configuration | With Belt Clip | ☐Without Belt Clip ⊠N/A | | | 4 | Ti Daniel is at 1 15 0 | | - - | | 4. Tissue Depth is at least 15.0 cm ## SAR Data Summary – 1900 MHz Body - GPRS ## MEASUREMENT RESULTS | Gap | Plot | Freque | Frequency Rev Level/ | | Position | End
Power | TX
Level | Multislot
Configuration | Measured
SAR | Reported
SAR | |-----|------|--------|----------------------|------------|----------|--------------|-------------|----------------------------|-----------------|-----------------| | | | MHz | Ch. | Wodulation | | (dBm) | Level | Comiguration | (W/kg) | (W/kg) | | | 10 | 1850.2 | 512 | GMSK | | 24.96 | 0 | 2 Slot | 1.21 | 1.22 | | _ | | 1880.0 | 661 | GMSK | Back | 24.91 | 0 | 2 Slot | 1.13 | 1.15 | | 0 | | 1909.8 | 810 | GMSK | | 24.95 | 0 | 2 Slot | 1.01 | 1.02 | | mm | | 1880.0 | 661 | GMSK | Right | 24.91 | 0 | 2 Slot | 0.658 | 0.67 | | | | 1850.2 | 512 | GMSK | Repeat | 24.96 | 0 | 2 Slot | 1.19 | 1.20 | Body 1.6 W/kg (mW/g) averaged over 1 gram | 1. | SAR Measurement | | | | |----|-----------------------|-----------------|-------------------------|------------| | | Phantom Configuration | Left Head | ⊠Eli4 | Right Head | | | SAR Configuration | Head | ⊠Body | | | 2. | Test Signal Call Mode | Test Code | ⊠Base Station Simulator | or | | 3. | Test Configuration | ☐With Belt Clip | ☐Without Belt Clip ∑ | 〗N/A | | | | - | - | | 4. Tissue Depth is at least 15.0 cm ## SAR Data Summary – 1900 MHz Body - WCDMA ## MEASUREMENT RESULTS | Gap | Plot | Freque | ency | Rev Level/
Modulation | Position | End
Power | RMC | Test Set Up | Measured
SAR | Reported
SAR | |-----|------|--------|------|--------------------------|----------|--------------|-----------|-------------|-----------------|-----------------| | | | MHz | Ch. | Wodulation | | (dBm) | | | (W/kg) | (W/kg) | | | | 1852.4 | 9262 | WCDMA | | 18.92 | 12.2 kbps | Test Loop 1 | 1.25 | 1.27 | | | 11 | 1880.0 | 9400 | WCDMA | Back | 18.97 | 12.2 kbps | Test Loop 1 | 1.27 | 1.28 | | | | 1907.6 | 9538 | WCDMA | | 18.95 | 12.2 kbps | Test Loop 1 | 1.23 | 1.24 | | 0 | | 1852.4 | 9262 | WCDMA | | 18.92 | 12.2 kbps | Test Loop 1 | 0.871 | 0.89 | | mm | | 1880.0 | 9400 | WCDMA | Right | 18.97 | 12.2 kbps | Test Loop 1 | 0.828 | 0.83 | | | | 1907.6 | 9538 | WCDMA | | 18.95 | 12.2 kbps | Test Loop 1 | 0.807 | 0.82 | | | | 1880.0 | 9400 | WCDMA | Repeat | 18.97 | 12.2 kbps | Test Loop 1 | 1.25 | 1.26 | Body 1.6 W/kg (mW/g) averaged over 1 gram | 1. | SAR Measurement | | | | |----|-----------------------|----------------|---------------------------------|---| | | Phantom Configuration | Left Head | ⊠Eli4 | d | | | SAR Configuration | Head | Body | | | 2. | Test Signal Call Mode | Test Code | ⊠ Base Station Simulator | | | 3. | Test Configuration | With Belt Clip | ☐Without Belt Clip ⊠N/A | | | 4 | T' D 41 ' 41 4150 | | | | 4. Tissue Depth is at least 15.0 cm ## SAR Data Summary – 1900 MHz Body – LTE Band 2 | MEA | MEASUREMENT RESULTS | | | | | | | | | | | |--------|---------------------|-----------|-----------|-------|-------------|------|--------------|--------|-----------|-----------------|-----------------| | Gap | Plot | Position | Frequency | | BW/ | RB | RB
Offset | MPR | End Power | Measured
SAR | Reported
SAR | | | | | MHz | Ch. | Modulation | Size | Oliset | Target | (dBm) | (W/kg) | (W/kg) | | | | | 1860.0 | 18700 | 20 MHz/QPSK | 1 | 0 | 0 | 18.98 | 1.16 | 1.17 | | | | | 1860.0 | 18700 | 20 MHz/QPSK | 50 | 0 | 0 | 17.89 | 1.13 | 1.16 | | | 12 | Back | 1880.0 | 18900 | 20 MHz/QPSK | 1 | 0 | 0 | 18.97 | 1.21 | 1.22 | | | | Back | 1880.0 | 18900 | 20 MHz/QPSK | 50 | 0 | 1 | 17.91 | 1.11 | 1.13 | | | | | 1900.0 | 19100 | 20 MHz/QPSK | 1 | 0 | 0 | 18.94 | 1.19 | 1.21 | | 0 | | | 1900.0 | 19100 | 20 MHz/QPSK | 50 | 0 | 1 | 17.92 | 1.15 | 1.17 | | mm | | | 1860.0 | 18700 | 20 MHz/QPSK | 1 | 0 | 0 | 18.98 | 0.856 | 0.86 | | 111111 | | | 1860.0 | 18700 | 20 MHz/QPSK | 50 | 0 | 0 | 17.89 | 0.869 | 0.89 | | | | Right | 1880.0 | 18900 | 20 MHz/QPSK | 1 | 0 | 0 | 18.97 | 0.828 | 0.83 | | | | - Right - | 1880.0 | 18900 | 20 MHz/QPSK | 50 | 0 | 1 | 17.91 | 0.826 | 0.84 | | | | | 1900.0 | 19100 | 20 MHz/QPSK | 1 | 0 | 0 | 18.94 | 0.802 | 0.81 | | | | | 1900.0 | 19100 | 20 MHz/QPSK | 50 | 0 | 1 | 17.92 | 0.806 | 0.82 | | | | Repeat | 1880.0 | 18900 | 20 MHz/QPSK | 1 | 0 | 0 | 18.97 | 1.19 | 1.20 | Body 1.6 W/kg (mW/g) averaged over 1 gram $\sum N/A$ | 1. | SAR Me | easurement | |----|--------|------------| | | | | Phantom Configuration **SAR** Configuration Left Head Head ⊠Eli4 Right Head ⊠Body ⊠Base Station Simulator ☐Without Belt Clip 2. Test Signal Call Mode Test Code ☐With Belt Clip 3. Test Configuration 4. Tissue Depth is at least 15.0 cm ## SAR Data Summary - 2450 MHz Body 802.11b | ME | MEASUREMENT RESULTS | | | | | | | | | | | |-----|---------------------|----------|-----------|-----|------------|---------|-------------------|-----------------|-----------------|--|--| | Gap | Plot | Position | Frequency | | Modulation | Antenna | End Power | Measured
SAR | Reported
SAR | | | | Сар | | | MHz | Ch. | Woddiation | Antenna | (dBm) (W/kg) (W/k | | (W/kg) | | | | | | Back | 2437 | 6 | DSSS | | 18.00 | 0.0338 | 0.03 | | | | 0 | | Top | 2437 | 6 | DSSS | Main | 18.00 | 0.0191 | 0.02 | | | | _ | | Left | 2437 | 6 | DSSS | | 18.00 | 0.0246 | 0.02 | | | | mm | 13 | Back | 2437 | 6 | OFDM | Aux | 17.98 | 0.0564 | 0.06 | | | | | | Right | 2437 | 6 | OFDM | Aux | 17.98 | 0.0383 | 0.04 | | | Body 1.6 W/kg (mW/g) averaged over 1 gram | 1. | SAR Measurement | | | | |----|-------------------------------|-----------------|--------------------|------------| | | Phantom Configuration | Left Head | ⊠Eli4 | Right Head | | | SAR Configuration | Head | \boxtimes Body | | | 2. | Test Signal Call Mode | ⊠Test Code | ☐Base Station Simu | ılator | | 3. | Test Configuration | ☐With Belt Clip | ☐Without Belt Clip | N/A | | 4. | Tissue Depth is at least 15.0 | cm | | | ## SAR Data Summary – 5250 MHz Body 802.11a | MEASUREMENT RESULTS | | | | | | | | | | |---------------------|------|----------|-----------|-----|------------|---------|-----------|-----------------|-----------------| | Gap | Plot | Danitian | Frequency | | Modulation | Antenna | End Power | Measured
SAR | Reported
SAR | | Сар | FIOL | Position | MHz | Ch. | Wodulation | Antenna | (dBm) | (W/kg) | (W/kg) | | | | Hack —— | 5280 | 56 | OFDM | | 15.96 | 0.735 | 0.74 | | | 14 | | 5300 | 60 | OFDM | | 16.00 | 0.749 | 0.75 | | 0 | | Top | 5300 | 60 | OFDM | Main | 16.00 | 0.370 | 0.37 | | _ | | Left | 5280 | 56 | OFDM | | 15.96 | 0.609 | 0.62 | | mm | | Leit | 5300 | 60 | OFDM | | 16.00 | 0.604 | 0.60 | | | | Back | 5300 | 60 | OFDM | Aux | 16.00 | 0.245 | 0.25 | | | | Right | 5300 | 60 | OFDM | Aux | 16.00 | 0.180 | 0.18 | Body 1.6 W/kg (mW/g) averaged over 1 gram | 1. | SAR Measurement | | | | |----|-------------------------------|-----------------|------------------|------------| | | Phantom Configuration | Left Head | ⊠Eli4 | Right Head | | | SAR Configuration | Head | \boxtimes Body | _ | | 2. | Test Signal Call Mode | ⊠Test Code | ☐Base Station Si | mulator | | 3. | Test Configuration | ☐With Belt Clip | ☐Without Belt C | lip 🔲 N/A | | 4. | Tissue Depth is at least 15.0 | cm | | _ | The second of the second secon ## SAR Data Summary - 5600 MHz Body 802.11a | ME | MEASUREMENT RESULTS | | | | | | | | | | |---------|---------------------|----------|-------|------|------------|------------|-----------|-----------------|-----------------|--| | Gap | Plot | Position | Frequ | ency | Modulation | Antenna | End Power | Measured
SAR | Reported
SAR | | | Сар | FIOL | Position | MHz | Ch. | Wodulation | Ainteillia | (dBm) | (W/kg) | (W/kg) | | | | | Back | 5580 | 116 | OFDM | Main | 16.00 | 0.919 | 0.92 | | | | 15 | | 5620 | 124 | OFDM | | 16.00 | 0.933 | 0.93 | | | | | Тор | 5580 | 116 | OFDM | | 16.00 | 0.468 | 0.47 | | | 0 | | | 5620 | 124 | OFDM | | 16.00 | 0.474 | 0.47 | | | mm | | Left | 5580 | 116 | OFDM | | 16.00 | 0.751 | 0.75 | | | 1111111 | | Leit | 5620 | 124 | OFDM | | 16.00 | 0.782 | 0.78 | | | | | Back | 5620 | 124 | OFDM | Aux | 16.00 | 0.212 | 0.21 | | | | | Right | 5620 | 124 | OFDM | Aux | 16.00 | 0.172 | 0.17 | | | | | Repeat | 5620 | 124 | OFDM | Main | 16.00 | 0.927 | 0.93 | | Body 1.6 W/kg (mW/g) averaged over 1 gram | 1. | SAR Measurement | | | | |----|-------------------------------|-----------------|------------------|------------| | | Phantom Configuration | Left Head | ⊠Eli4 | Right Head | | | SAR Configuration | Head | \boxtimes Body | | | 2. | Test Signal Call Mode | ⊠Test Code | ☐Base Station Si | mulator | | 3. | Test Configuration | ☐With Belt Clip | ☐Without Belt C | lip N/A | | 4. | Tissue Depth is at least 15.0 | cm | | | ## SAR Data Summary – 5800 MHz Body 802.11a | MEASUREMENT RESULTS | |---------------------| |---------------------| | Gap | Plot | Position | Frequency | | Modulation Antenna | End Power | Measured
SAR | Reported
SAR | | |-----|------|----------|-----------|-----|--------------------|-----------|-----------------|-----------------|--------| | Сар | Piot | | MHz | Ch. | Wodulation | Antenna | (dBm) | (W/kg) | (W/kg) | | | | Back | 5785 | 157 | OFDM | | 16.00 | 0.805 | 0.81 | | | 16 | | 5825 | 165 | OFDM | | 16.00 | 0.836 | 0.84 | | | | Top | 5785 | 157 | OFDM | Main | 16.00 | 0.398 | 0.40 | | 0 | | 1.64 | 5785 | 157 | OFDM | | 16.00 | 0.704 | 0.70 | | mm | | Left | 5825 | 165 | OFDM | | 16.00 | 0.744 | 0.74 | | | | Back | 5785 | 157 | OFDM | Aux | 16.00 | 0.209 | 0.21 | | | | Right | 5785 | 157 | OFDM | Aux | 16.00 | 0.169 | 0.17 | | | | Repeat | 5825 | 165 | OFDM | Main | 16.00 | 0.825 | 0.83 | Body 1.6 W/kg (mW/g) averaged over
1 gram | Ι. | SAR Measurement | | | |----|-----------------------|-----------------|-------------------------| | | Phantom Configuration | Left Head | ⊠Eli4 | | | SAR Configuration | Head | ⊠Body | | 2. | Test Signal Call Mode | ⊠Test Code | ☐Base Station Simulator | | 3. | Test Configuration | ☐With Belt Clip | ☐Without Belt Clip ☑N/A | 4. Tissue Depth is at least 15.0 cm ## SAR Data Summary – 900 MHz Body RFID | ME | MEASUREMENT RESULTS | | | | | | | | | | |-----|---------------------|----------|-----------|-----|------------|---------|-----------|-----------------|-----------------|--| | Gap | Plot | Position | Frequency | | Modulation | Antenna | End Power | Measured
SAR | Reported
SAR | | | Сар | | | MHz | Ch. | Woddiation | Antenna | (dBm) | (W/kg) | | | | | | Back | 922.4 | Mid | FHSS | | 19.95 | 1.14 | 1.16 | | | 0 | | Left | 922.4 | Mid | FHSS | | 19.95 | 0.335 | 0.34 | | | _ | | Right | 922.4 | Mid | FHSS | Main | 19.95 | 0.0212 | 0.02 | | | mm | | Top | 922.4 | Mid | FHSS | | 19.95 | 0.236 | 0.24 | | | | | Repeat | 922.4 | Mid | FHSS | | 19.95 | 1.12 | 1.14 | | Body 1.6 W/kg (mW/g) averaged over 1 gram | 1. | SAR Measurement | | | | |----|-------------------------------|-----------------|--------------------|------------| | | Phantom Configuration | Left Head | ⊠Eli4 | Right Head | | | SAR Configuration | Head | \boxtimes Body | | | 2. | Test Signal Call Mode | ⊠Test Code | ☐Base Station Simu | ılator | | 3. | Test Configuration | ☐With Belt Clip | ☐Without Belt Clip | ⊠N/A | | 4. | Tissue Depth is at least 15.0 | cm | | | _ ## SAR Data Summary – Simultaneous Transmit (WWAN-WLAN Main) | MEASUREMENT RESULTS | | | | | | | | | | |--|------|------|--|------|------|--|--|--|--| | Plot Position SAR (W/kg) WLAN SAR (W/kg) WWAN Total SAR (W/kg) | | | | | | | | | | | | Back | 0.93 | | 1.32 | 2.25 | | | | | | Body 1.6 W/kg (mW/g) averaged over 1 gram | | | | | | | | | | The WWAN and WLAN Main antennas are a minimum of 112.85 mm apart. Using the highest reported SAR to calculate the simultaneous Tx using peak separation ratio, the highest ratio would be 0.03 which meets the requirements of KDB 447498 D01 v06 section 4.3.2 3) on page 13. The calculation is shown below. Simultaneous Separation Ratio Calculation $(SAR_1 + SAR_2)^{1.5}/R_i \le 0.04$ rounded to two digits $(0.93 + 1.32)^{1.5}/112.85 = 0.03$ ## **SAR Data Summary – Simultaneous Transmit (WWAN-WLAN Aux)** | MEASUREMENT RESULTS | | | | | | | | | |---------------------|----------|-----------------|---|---------------------|--|--|--|--| | Plot | Position | SAR (W/kg) WLAI | SAR (W/kg) WWAN | Total
SAR (W/kg) | | | | | | | Back | 0.25 | 1.32 | 1.57 | | | | | | | | | Body
1.6 W/kg (mW/g)
averaged over 1 gram | | | | | | The sum of the two transmitters is less than the limit; therefore, the simultaneous transmission meets the requirements of KDB447498 D01 v06 section 4.3.2 page 11. ## **SAR Data Summary – Simultaneous Transmit (RFID)** | MEASUREMENT RESULTS | | | | | | | |---------------------|-------------|-------------------------|-----------------|---------------------|--|--| | Plot | Transmitter | SAR (W/kg)
WLAN/WWAN | SAR (W/kg) RFID | Total
SAR (W/kg) | | | | | WWAN | 1.32 | 1.16 | 2.48 | | | | | WLAN Main | 0.93 | 1.16 | 2.09 | | | | | WLAN Aux | 0.25 | 1.16 | 1.41 | | | Body 1.6 W/kg (mW/g) averaged over 1 gram The RFID and WWAN antennas are a minimum of 96 mm apart. Using the highest reported SAR to calculate the simultaneous Tx using peak separation ratio, the highest ratio would be 0.04 which meets the requirements of KDB 447498 D01 v06 section 4.3.2 3) on page 13. The calculation is shown below. Simultaneous Separation Ratio Calculation $(SAR_1 + SAR_2)^{1.5}/R_i \le 0.04$ rounded to two digits $(1.32 + 1.16)^{1.5}/96 = 0.04$ The RFID and WLAN Main antennas are a minimum of 71 mm apart. Using the highest reported SAR to calculate the simultaneous Tx using peak separation ratio, the highest ratio would be 0.04 which meets the requirements of KDB 447498 D01 v06 section 4.3.2 3) on page 13. The calculation is shown below. Simultaneous Separation Ratio Calculation $(SAR_1 + SAR_2)^{1.5}/R_i \le 0.04$ rounded to two digits $(0.93 + 1.16)^{1.5}/71 = 0.04$ The sum of the two transmitters (RFID and WLAN Aux) is less than the limit; therefore, the simultaneous transmission meets the requirements of KDB447498 D01 v06 section 4.3.2 page 11. All three transmitters can transmit simultaneously. Each pair is evaluated individually per KDB447498 v06 section 4.3.2 c) on page 15. ## 11. Test Equipment List **Table 11.1 Equipment Specifications** | Туре | Calibration Due Date | Calibration Done Date | Serial Number | |--|----------------------|-----------------------|-----------------| | Staubli Robot TX60L | N/A | N/A | F07/55M6A1/A/01 | | Measurement Controller CS8c | N/A | N/A | 1012 | | ELI4 Flat Phantom | N/A | N/A | 1065 | | Device Holder | N/A | N/A | N/A | | Data Acquisition Electronics 4 | 04/15/2016 | 04/15/2015 | 1416 | | Data Acquisition Electronics 4 | 08/13/2016 | 08/13/2015 | 759 | | SPEAG E-Field Probe EX3DV4 | 04/27/2016 | 04/27/2016 | 3662 | | SPEAG E-Field Probe EX3DV4 | 08/20/2016 | 08/20/2015 | 3693 | | Speag Validation Dipole D750V2 | 08/10/2016 | 08/10/2015 | 1053 | | Speag Validation Dipole D835V2 | 08/10/2016 | 08/10/2015 | 4d131 | | Speag Validation Dipole D900V2 | 08/10/2016 | 08/10/2015 | 1d128 | | Speag Validation Dipole D1750V2 | 08/13/2016 | 08/13/2015 | 1061 | | Speag Validation Dipole D1900V2 | 08/13/2016 | 08/13/2015 | 5d147 | | Speag Validation Dipole D2450V2 | 08/10/2016 | 08/10/2015 | 881 | | Speag Validation Dipole D5GHzV2 | 08/11/2016 | 08/11/2015 | 1119 | | Agilent N1911A Power Meter | 05/20/2017 | 05/20/2015 | GB45100254 | | Agilent N1922A Power Sensor | 06/25/2017 | 06/25/2015 | MY45240464 | | Advantest R3261A Spectrum Analyzer | 03/26/2017 | 03/26/2015 | 31720068 | | Agilent (HP) 8350B Signal Generator | 03/26/2017 | 03/26/2015 | 2749A10226 | | Agilent (HP) 83525A RF Plug-In | 03/26/2017 | 03/26/2015 | 2647A01172 | | Agilent (HP) 8753C Vector Network Analyzer | 03/26/2017 | 03/26/2015 | 3135A01724 | | Agilent (HP) 85047A S-Parameter Test Set | 03/26/2017 | 03/26/2015 | 2904A00595 | | Agilent (HP) 8960 Base Station Sim. | 03/31/2017 | 03/31/2015 | MY48360364 | | Anritsu MT8820C | 07/28/2017 | 07/28/2015 | 6201176199 | | Aprel Dielectric Probe Assembly | N/A | N/A | 0011 | | Body Equivalent Matter (750 MHz) | N/A | N/A | N/A | | Body Equivalent Matter (835/900 MHz) | N/A | N/A | N/A | | Body Equivalent Matter (1750 MHz) | N/A | N/A | N/A | | Body Equivalent Matter (1900 MHz) | N/A | N/A | N/A | | Body Equivalent Matter (2450 MHz) | N/A | N/A | N/A | | Body Equivalent Matter (5 GHz) | N/A | N/A | N/A | ### 12. Conclusion The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the FCC/IC. These measurements are taken to simulate the RF effects exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters subject to the test. The test results and statements relate only to the item(s) tested. Please note that the absorption and distribution of electromagnetic energy in the body is a very complex phenomena that depends on the mass, shape, and size of the body; the orientation of the body with respect to the field vectors; and, the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because innumerable factors may interact to determine the specific biological outcome of an exposure to electromagnetic fields, any protection guide shall consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. ### 13. References - [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radio Frequency Radiation, August 1996 - [2] ANSI/IEEE C95.1 1992, American National Standard Safety Levels with respect to Human Exposure to Radio Frequency Electromagnetic Fields, 300kHz to 100GHz, New York: IEEE, 1992. - [3] ANSI/IEEE C95.3 1992, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, 1992. - [4] International Electrotechnical Commission, IEC 62209-2 (Edition 1.0), Human Exposure to radio frequency fields from hand-held and body mounted wireless communication devices Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), March 2010. - [5] IEEE Standard 1528 2013, IEEE Recommended Practice for Determining the Peak-Spatial Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques, June 2013. - [6] Industry Canada, RSS 102 Issue 5, Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands), March 2015. - [7] Health Canada, Safety Code 6, Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3kHz to 300 GHz, 2009. ## Appendix A – System Validation Plots and Data ``` Test Result for UIM Dielectric Parameter Wed 30/Dec/2015 Freq Frequency (GHz) FCC_eH Limits for Head Epsilon FCC_sH Limits for Head Sigma FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test_e Epsilon of UIM Test_s
Sigma of UIM ********** Freq FCC_sB FCC_sB Test_s 0.7000 55.73 0.96 54.98 0.89 0.7090 55.694 0.96 54.92 0.90 0.7110 55.686 0.96 54.915 0.901* 0.7200 55.65 0.96 54.87 0.91 0.7300 55.61 0.96 54.81 0.92 0.7400 55.57 0.96 54.87 0.93 0.7500 55.53 0.96 54.62 0.95 0.7700 55.45 0.96 54.58 0.96 0.7800 55.41 0.97 54.55 0.972* 0.7820 55.38 0.97 54.55 0.972* 0.7900 55.38 0.97 54.50 0.98 Freq FCC_eB FCC_sB Test_e Test_s * value interpolated Test Result for UIM Dielectric Parameter Tue 29/Dec/2015 Freq Frequency (GHz) FCC_eH Limits for Head Epsilon FCC_sH Limits for Head Sigma FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM ********** ``` ^{*} value interpolated ``` Test Result for UIM Dielectric Parameter Mon 28/Dec/2015 Freq Frequency (GHz) FCC_eH Limits for Head Epsilon FCC_sH Limits for Head Sigma FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM ***** FCC_eB FCC_sB Test_e Test_s 53.59 1.45 52.89 1.51 Freq 53.56 1.46 52.85 1.52 1.7000 1.7100 53.54 1.46 52.81 1.53 1.7124 53.533 1.462 52.803 1.532* 1.7200 53.51 1.47 52.78 1.54 1.7300 53.48 1.48 52.74 1.55 1.7325 53.475 1.48 52.73 1.55* 1.7326 53.475 1.48 52.73 1.55* 1.7400 53.46 1.48 52.70 1.55 1.7450 53.445 1.485 52.69 1.555* 1.7500 53.43 1.49 52.68 1.56* 1.7526 53.425 1.49 52.66 1.56* 1.7600 53.341 1.49 52.66 1.56* 1.7700 53.38 1.50 52.65 1.57 1.7800 53.35 1.51 52.58 1.59 1.7100 53.54 1.46 52.81 1.53 * value interpolated Test Result for UIM Dielectric Parameter Mon 21/Dec/2015 Freq Frequency (GHz) FCC_eH Limits for Head Epsilon FCC_sH Limits for Head Sigma FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM Freq FCC_eB FCC_sB Test_e Test_s 1.8500 53.30 1.52 53.27 1.49 1.8502 53.30 1.52 53.27 1.49* 1.8513 53.30 1.52 53.267 1.491* 1.8524 53.30 1.52 53.265 1.492* 1.8600 53.30 1.52 53.25 1.50 1.8700 53.30 1.52 53.23 1.51 1.8800 53.30 1.52 53.21 1.52 1.8900 53.30 1.52 53.21 1.52 1.8900 53.30 1.52 53.17 1.54 1.9076 53.30 1.52 53.15 1.548* 1.9088 53.30 1.52 53.15 1.549* 1.9098 53.30 1.52 53.15 1.55* 1.9100 53.30 1.52 53.15 1.55* Freq FCC_eB FCC_sB Test_e Test_s 1.9100 1.9200 1.9300 53.30 1.52 53.15 1.55 53.30 1.52 53.14 1.57 53.30 1.52 53.12 1.58 ``` ********** $^{^{\}star}$ value interpolated ^{*} value interpolated Test Result for UIM Dielectric Parameter Fri 18/Dec/2015 Freq Frequency (GHz) FCC_eH Limits for Head Epsilon FCC_sH Limits for Head Sigma FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM *********** FCC_eB FCC_sB Test_e Test_s 49.15 5.18 49.22 5.10 49.12 5.21 49.19 5.12 Freq 5.1000 5.1200 49.10 5.23 49.16 5.14 5.1400 *********** ^{*} value interpolated ^{*} value interpolated # **RF Exposure Lab** ### Plot 1 DUT: Dipole 750 MHz D750V3; Type: D750V3; Serial: D750V3 - SN:1053 Communication System: CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: MSL750; Medium parameters used: f = 750 MHz; σ = 0.94 S/m; ϵ_r = 54.69; ρ = 1000 kg/m³ Phantom section: Flat Section Test Date: Date: 12/30/2015; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3662; ConvF(8.92, 8.92, 8.92); Calibrated: 4/27/2015; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/15/2015 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) #### **Procedure Notes:** **750 MHz/Verification/Area Scan (5x11x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.08 W/kg 750 MHz/Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 31.227 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 1.30 W/kg SAR(1 g) = 0.865 W/kg; SAR(10 g) = 0.569 W/kg Maximum value of SAR (measured) = 1.10 W/kg # RF Exposure Lab ### Plot 2 DUT: Dipole 835 MHz D835V2; Type: D835V2; Serial: D835V2 - SN:4d131 Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: MSL835; Medium parameters used: f = 835 MHz; $\sigma = 0.98$ S/m; $\varepsilon_r = 54.37$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Test Date: Date: 12/29/2015; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3662; ConvF(8.86, 8.86, 8.86); Calibrated: 4/27/2015; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/15/2015 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) #### **Procedure Notes:** **835 MHz/Verification/Area Scan (5x11x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.18 W/kg 835 MHz/Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 31.227 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 1.47 W/kg SAR(1 g) = 0.943 W/kg; SAR(10 g) = 0.619 W/kg Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.19 W/kg # RF Exposure Lab ### Plot 3 DUT: Dipole 1750 MHz D1750V2; Type: D1750V2; Serial: D1750V2 - SN:1061 Communication System: CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: MSL1750; Medium parameters used: f = 1750 MHz, σ = 1.56 S/m; ε_r = 52.68; ρ = 1000 kg/m³ Phantom section: Flat Section Test Date: Date: 12/28/2015; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3662; ConvF(7.49, 7.49, 7.49); Calibrated: 4/27/2015; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/15/2015 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) #### **Procedure Notes:** **1750 MHz/Verification/Area Scan (5x7x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 5.33 W/kg **1750 MHz/Verification/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 31.227 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 6.89 W/kg SAR(1 g) = 3.85 W/kg; SAR(10 g) = 2.03 W/kg Maximum value of SAR (measured) = 5.49 W/kg # RF Exposure Lab ### Plot 4 DUT: Dipole 1900 MHz D1900V2; Type: D1900V2; Serial: D1900V2 - SN:5d147 Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: MSL1900; Medium parameters used: f = 1900 MHz, σ = 1.54 S/m; ε_r = 53.17; ρ = 1000 kg/m³ Phantom section: Flat Section Test Date: Date: 12/21/2015; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3662; ConvF(7.31, 7.31, 7.31); Calibrated: 4/27/2015; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/15/2015 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) #### **Procedure Notes:** **1900 MHz/Verification/Area Scan (5x7x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 5.44 W/kg **1900 MHz/Verification/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 31.227 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 7.22 W/kg SAR(1 g) = 4.02 W/kg; SAR(10 g) = 2.1 W/kg Maximum value of SAR (measured) = 5.77 W/kg # **RF Exposure Lab** ### Plot 5 DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN: 881 Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: MSL2450; Medium parameters used: f = 2450 MHz; $\sigma = 1.92 \text{ S/m}$; $\epsilon_r = 52.77$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Test Date: Date: 12/17/2015; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3662; ConvF(7.08, 7.08, 7.08); Calibrated: 4/27/2015; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/15/2015 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) #### **Procedure Notes:** **Body Verification/2450 MHz/Area Scan (61x101x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 8.92 W/kg Body Verification/2450 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 53.359 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 11.04 W/kg **SAR(1 g) = 5.12 W/kg; SAR(10 g) = 2.37 W/kg** Maximum value of SAR (measured) = 8.79 W/kg # **RF Exposure Lab** ### Plot 6 DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1119 Communication System: CW; Frequency: 5200 MHz; Duty Cycle: 1:1 Medium: MSL 3-6 GHz; Medium parameters used: f = 5200 MHz; $\sigma = 5.21$ S/m; $\epsilon_r = 49.07$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Test Date: Date: 12/18/2015; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3662; ConvF(4.45, 4.45, 4.45); Calibrated: 4/27/2015; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/15/2015 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) #### **Procedure Notes:** **5200 MHz Body/Verification/Area Scan (7x9x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 1.58 W/kg 5200 MHz Body/Verification/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 11.705 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.75 W/kg SAR(1 g) = 0.763 W/kg; SAR(10 g) = 0.211 W/kg Maximum value of SAR (measured) = 1.65 W/kg # RF Exposure Lab ### Plot 7 DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1119 Communication System: CW; Frequency: 5600 MHz; Duty Cycle: 1:1 Medium: MSL 3-6 GHz; Medium parameters used: f = 5600 MHz; $\sigma = 5.73$ S/m; $\epsilon_r = 48.47$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Test Date: Date: 12/18/2015; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3662; ConvF(3.8, 3.8, 3.8); Calibrated: 4/27/2015; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated:
4/15/2015 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) #### **Procedure Notes:** **5600 MHz Body/Verification/Area Scan (7x9x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 1.64 W/kg 5600 MHz Body/Verification/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 11.892 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.63 W/kg **SAR(1 g) = 0.783 W/kg; SAR(10 g) = 0.216 W/kg** Maximum value of SAR (measured) = 1.70 W/kg # RF Exposure Lab ### Plot 8 DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1119 Communication System: CW; Frequency: 5800 MHz; Duty Cycle: 1:1 Medium: MSL 3-6 GHz; Medium parameters used: f = 5800 MHz; $\sigma = 5.99$ S/m; $\epsilon_r = 48.17$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Test Date: Date: 12/18/2015; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3662; ConvF(3.99, 3.99, 3.99); Calibrated: 4/27/2015; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/15/2015 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) #### **Procedure Notes:** **5800 MHz Body/Verification/Area Scan (7x9x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 1.56 W/kg 5800 MHz Body/Verification/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 11.621 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.47 W/kg SAR(1 g) = 0.749 W/kg; SAR(10 g) = 0.208 W/kg Maximum value of SAR (measured) = 1.63 W/kg # **RF Exposure Lab** ### Plot 9 DUT: Dipole 900 MHz D900V2; Type: D900V2; Serial: D900V2 - SN: 1d128 Communication System: CW; Frequency: 900 MHz; Duty Cycle: 1:1 Medium: MSL900; Medium parameters used: f = 900 MHz; σ = 1.03 S/m; ϵ_r = 55.39; ρ = 1000 kg/m³ Phantom section: Flat Section Test Date: Date: 3/22/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3693: ConvF(8.79, 8.79, 8.79); Calibrated: 8/20/2015: Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn759; Calibrated: 8/13/2015 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 2037 Measurement SW: DASY52, Version 4.7 (80); SEMCAD X Version 14.6.10 (7331) #### **Procedure Notes:** **900 MHz Body/Verification/Area Scan (41x81x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.10 W/kg 900 MHz Body/Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 33.278 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 1.46 W/kg **SAR(1 g) = 1.09 W/kg; SAR(10 g) = 0.647 W/kg** Maximum value of SAR (measured) = 1.08 W/kg ## **Appendix B – SAR Test Data Plots** # **RF Exposure Lab** ### Plot 1 DUT: MS2; Type: Tablet Computer; Serial: MS2P41 Communication System: LTE (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 710 MHz; Duty Cycle: 1:1 Medium: MSL750; Medium parameters used (interpolated): f = 710 MHz; $\sigma = 0.9$ S/m; $\epsilon_r = 54.92$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Test Date: Date: 12/30/2015; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3662; ConvF(9.42, 9.42, 9.42); Calibrated: 4/27/2015; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/15/2015 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) #### **Procedure Notes:** 750 MHz LTE B17/Back Mid 1RB 0 Offset/Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.402 W/kg 750 MHz LTE B17/Back Mid 1RB 0 Offset/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 20.73 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 0.728 W/kg SAR(1 g) = 0.392 W/kg; SAR(10 g) = 0.225 W/kg Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.557 W/kg