

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE200709201V01

FCC REPORT

Applicant: C&A Marketing Inc.

Address of Applicant: 114 Tived Lane East Edison New Jersey 08837 United States

Equipment Under Test (EUT)

Product Name: Smart Photo Frame

Model No.: LPWPF100B, LPWPF100W

Trade mark: Lifeprint

FCC ID: 2AD2W-LPWPF100B

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 27 Jul., 2020

Date of Test: 28 Jul., to 12 Oct., 2020

Date of report issued: 03 Nov., 2020

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	12 Oct., 2020	Original
01	03 Nov., 2020	Add equipment and update test setup diagram

	(given then		
Tested by:		Date:	03 Nov., 2020

1

Test Engineer

Reviewed by:

Date: 03 Nov. 2020

Reviewed by: Date: 03 Nov., 2020
Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VFR	RSION	2
3	CON	NTENTS	3
4	TES	T SUMMARY	4
5	GEN	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	MEASUREMENT UNCERTAINTY	
	5.6	LABORATORY FACILITY	
	5.7	LABORATORY LOCATION	6
	5.8	TEST INSTRUMENTS LIST	7
6	TES	T RESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT:	8
	6.2	CONDUCTED EMISSION	9
	6.3	CONDUCTED OUTPUT POWER	12
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	
	6.6.		
	6.6.2		
	6.7	SPURIOUS EMISSION	
	6.7.		
	6.7.2		
7	TES	T SETUP PHOTO	27
8	EUT	CONSTRUCTIONAL DETAILS	29
ΑF	PPENDIX	A - BLE	44

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna requirement	15.203 & 15.247 (b)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247 (d)	Pass
Spurious Emission	15.205 & 15.209	Pass

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method: ANSI C63.10-2013 KDB 558074 D01 15.247 Meas Guidance v05r02

5 General Information

5.1 Client Information

Applicant:	C&A Marketing Inc.
Address:	114 Tived Lane East Edison New Jersey 08837 United States
Manufacturer:	CHITECH SHENZHEN TECHNOLOGY CO., LTD
Address:	Chitech industrial Park, NO. 48, Xiashijia Road, Gongming Town, Guangming New Dist., Shenzhen, China

5.2 General Description of E.U.T.

Product Name:	Smart Photo Frame
Model No.:	LPWPF100B, LPWPF100W
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	0.27 dBi
Power supply:	DC 5V
AC adapter:	Model: JK050150-S86USD Input: AC100-240V, 50/60Hz, 0.5A Output: DC 5.0V, 1.5A
Remark:	Model: LPWPF100B and LPWPF100W are the same internally, the circuit design, layout, components used and internal wiring are the same, but the model name and color are different. The model corresponding to black is LPWPF100B, and the model corresponding to white is LPWPF100W.
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note.

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

Report No: CCISE200709201V01

5.3 Test environment and mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.110~116, Building B, Jinyuan Business Building, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No.110~116, Building B, Jinyuan Business Building, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 6 of 55

5.8 Test Instruments list

Radiated Emission:	Radiated Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
3m SAC	SAEMC	9m*6m*6m	966	07-21-2020	07-20-2021		
Loop Antenna	SCHWARZBECK	FMZB1519B	044	03-07-2020	03-06-2021		
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-07-2020	03-06-2021		
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-07-2020	03-06-2021		
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-20-2020	06-19-2021		
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2019	11-17-2020		
EMI Test Software	AUDIX	E3	V	Version: 6.110919b			
Pre-amplifier	HP	8447D	2944A09358	03-07-2020	03-06-2021		
Pre-amplifier	CD	PAP-1G18	11804	03-07-2020	03-06-2021		
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-05-2020	03-04-2021		
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2019	11-17-2020		
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-05-2020	03-04-2021		
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2020	03-06-2021		
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2020	03-06-2021		
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2020	03-06-2021		
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A		
Test Software	MWRFTEST	MTS8200		Version: 2.0.0.0			

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-05-2020	03-04-2021	
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-05-2020	03-04-2021	
LISN	CHASE	MN2050D	1447	03-05-2020	03-04-2021	
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	06-18-2020	07-17-2021	
Cable	HP	10503A	N/A	03-05-2020	03-04-2021	
EMI Test Software	AUDIX	E3	V	ersion: 6.110919l)	

Conducted method:						
Test Equipment	Manufacturer	urer Model No.	Serial No.	Cal. Date	Cal. Due date	
rest Equipment	Wallulacturei			(mm-dd-yy)	(mm-dd-yy)	
Power Sensor	D.A.R.E	RPR3006W	15I00041SNO12	11-25-2019	11-24-2020	
Spectrum Analyzer	Agilent	N9020A	MY50510123	11-18-2019	11-17-2020	

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

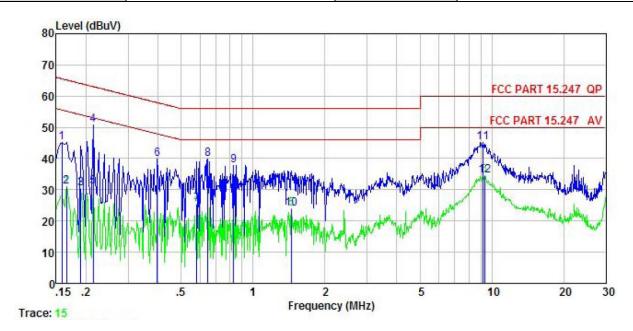
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

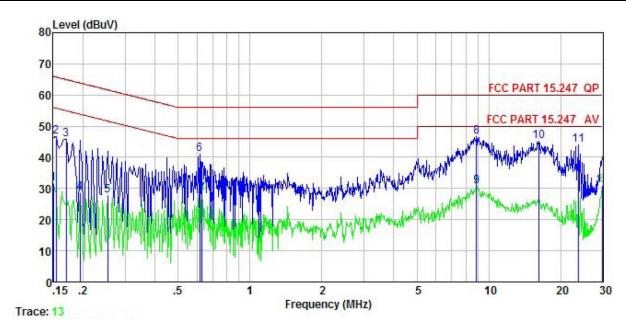
The BLE antenna is an Internal antenna which cannot replace by end-user, the best-case gain of the antenna is 0.27 dBi.


6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207	,						
Test Frequency Range:	150 kHz to 30 MHz	150 kHz to 30 MHz						
Class / Severity:	Class B							
Receiver setup:	RBW=9kHz, VBW=30kHz							
Limit:	Frequency range (MHz)	Limit (dBuV)					
	, , ,	Quasi-peak	Average					
	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5	56	46					
	5-30	60	50					
Test procedure:	 * Decreases with the logarithm of the frequency. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10(latest version) on conducted measurement. 							
Test setup:	Reference LISN 40cm AUX Equipment E.U.T Test table/Insulation plane Remarkc E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Net Test table height=0.8m	BOCM Filter Filter Fundamental Filter	– AC power					
Took looks we out a								
Test Instruments:	Refer to section 5.9 for details							
Test mode:	Refer to section 5.9 for details Refer to section 5.3 for details							

Measurement Data:

Product name:	Smart Photo Frame	Product model:	LPWPF100B
Test by:	Carey	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5 °C Huni: 55%

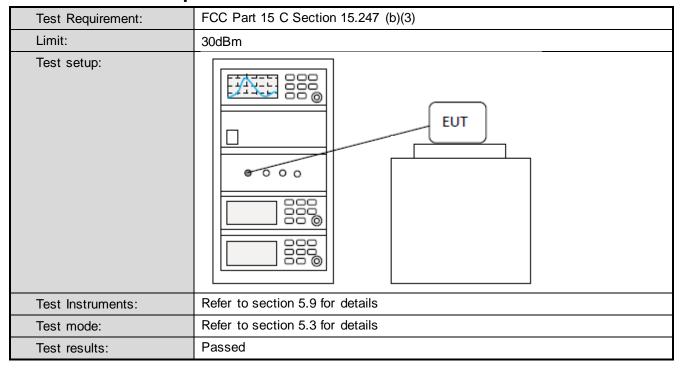

	Freq	Read Level	LISN Factor	Cable Loss	Aux Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBu∇	<u>d</u> B		<u>dB</u>	—dBu₹	āBu₹	<u>d</u> B	
1	0.158	35.11	-0.57	10.77	-0.07	45.24	65.56	-20.32	QP
2	0.166	20.98	-0.58	10.77	-0.09	31.08	55.16	-24.08	Average
3	0.190	20.39	-0.59	10.76	-0.14	30.42	54.02	-23.60	Average
4	0.214	40.69	-0.58	10.76	-0.18	50.69	63.05	-12.36	QP
2 3 4 5 6 7	0.214	20.90	-0.58	10.76	-0.18	30.90	53.05	-22.15	Average
6	0.398	29.16	-0.48	10.72	0.40	39.80	57.90	-18.10	QP
7	0.582	15.61	-0.48	10.76	-0.37	25.52	46.00	-20.48	Average
8	0.647	30.08	-0.51	10.77	-0.39	39.95	56.00	-16.05	QP
8	0.830	27.55	-0.57	10.82	0.01	37.81	56.00	-18.19	QP
10	1.449	13.47	-0.56	10.92	0.05	23.88	46.00	-22.12	Average
11	9.156	33.24	-0.69	10.91	1.80	45.26	60.00	-14.74	QP
12	9.302	22.37	-0.70	10.91	1.82	34.40	50.00	-15.60	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

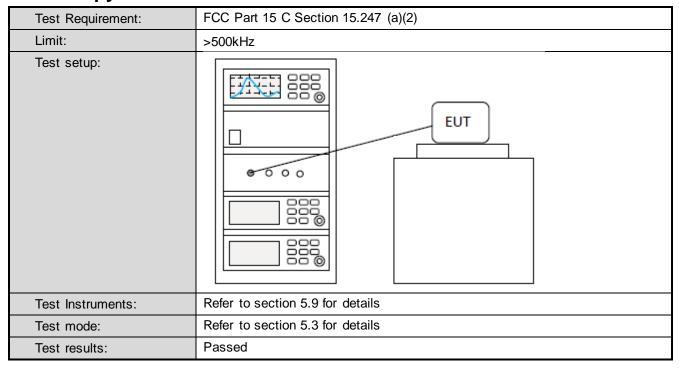
Product name:	Smart Photo Frame	Product model:	LPWPF100B
Test by:	Carey	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5 [℃] Huni: 55%

	Freq	Read Level	LISN Factor	Cable Loss	Aux Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBu∇	₫₿	<u>ab</u>	<u>dB</u>	dBu₹	dBu₹	<u>d</u> B	
1	0.150	21.57	-0.69	10.78		31.67			Average
1 2 3	0.154 0.170	36.56 35.58		10.78 10.77	0.01 0.01	46.66 45.68		-19.12 -19.26	
4 5 6	0.194 0.253	18.63	-0.67 -0.67	10.76	45.00(27.15)	28.72			Average
6	0.253	17.54 30.75	-0.64	10.75 10.77	0.01 0.04	27.63 40.92		-24.01 -15.08	Average QP
7	0.630	18.06		10.77	0.04	28.23			Average
7 8 9	8.869 8.869	35.26 19.45	C	10.89 10.89	1.21	46.58 30.77		-13.42 -19.23	Average
10	16.140	32.92	-0.93	10.91	2.38	45.28		-14.72	
11 12	23.636 30.000	33.67 20.37	-1.32 -1.37	10.89 10.87	0.61 1.13	43.85 31.00		-16.15 -19.00	QP Average


Notes:

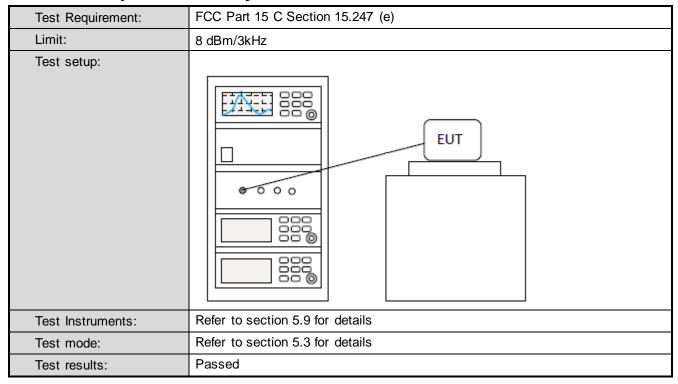
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- $2. \ \ \, {\it Quasi-Peak} \ and \ {\it Average} \ {\it measurement} \ {\it were} \ per formed \ at \ the \ frequencies \ with \ maximized \ peak \ emission.$
- 3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

6.3 Conducted Output Power



Measurement Data: Refer to Appendix A - BLE

6.4 Occupy Bandwidth



Measurement Data: Refer to Appendix A - BLE

6.5 Power Spectral Density

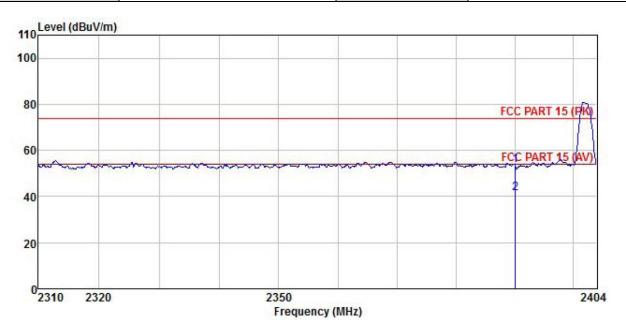
Measurement Data: Refer to Appendix A - BLE

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	EUT EUT					
Test Instruments:	Refer to section 5.9 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

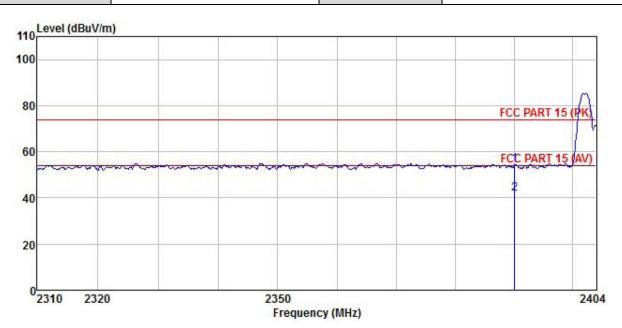
Measurement Data: Refer to Appendix A - BLE



6.6.2 Radiated Emission Method

0.0.2 Natiated Lillission	Wethou									
Test Requirement:	FCC Part 15 C Section 15.205 and 15.209									
Test Frequency Range:	2310 MHz to 2	2390 MHz and	2483.5MHz to 2	2500 MHz						
Test Distance:	3m	3m								
Receiver setup:	Frequency	Detector	RBW	VBW	Remark					
·	Above 1GHz	Peak	1MHz	3MHz	Peak Value					
		RMS	1MHz	3MHz	Average Value					
Limit:	Frequer	ncy Li	mit (dBuV/m @3		Remark					
	Above 10	GHz -	54.00 74.00		verage Value Peak Value					
Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 									
Test setup:	AE (1	furntable) Ground Test Receiver	Hern Antenna Reference Plane Pre- Amplifier Control	Antenna Tower						
Test Instruments:	Refer to section	on 5.9 for detai	ls							
Test mode:	Refer to section	on 5.3 for detai	ls							
Test results:	Passed									

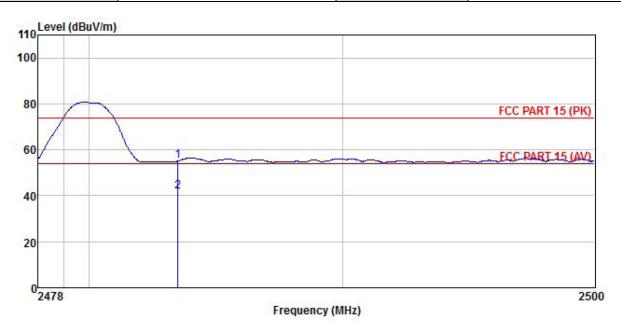
Product Name:	Smart Photo Frame	Product Model:	LPWPF100B
Test By:	Carey	Test mode:	BLE Tx mode
Test Channel:	Lowestchannel	Polarization:	Vertical
Test Voltage:	AC 120V/60Hz	Environment:	Temp:24 [°] C Huni:57%



	Freq		Antenna Factor						Over Limit	
	MHz	dBu₹		<u>d</u> B	<u>dB</u>	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	
1 2	2390.000 2390.000									

- $1. \ \ \textit{Final Level} = \textit{Receiver Read level} + \textit{Antenna Factor} + \textit{Cable Loss} \textit{Preamplifier Factor}.$
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

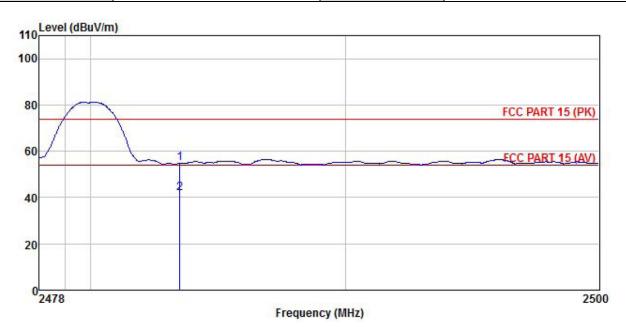
Product Name:	Smart Photo Frame	Product Model:	LPWPF100B
Test By:	Carey	Test mode:	BLE Tx mode
Test Channel:	Lowestchannel	Polarization:	Horizontal
Test Voltage:	AC 120V/60Hz	Environment:	Temp:24℃ Huni:57%



	Freq		Antenna Factor						
	MHz	−dBuV	— <u>d</u> B/π	 <u>ab</u>	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Smart Photo Frame	Product Model:	LPWPF100B
Test By:	Carey	Test mode:	BLE Tx mode
Test Channel:	Highestchannel	Polarization:	Vertical
Test Voltage:	AC 120V/60Hz	Environment:	Temp:24 [℃] Huni:57%



	Freq		Antenna Factor				Limit Line		Remark
	MHz	dBu₹		 <u>ab</u>	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2483.500 2483.500								

- $1. \ \ \textit{Final Level} = \textit{Receiver Read level} + \textit{Antenna Factor} + \textit{Cable Loss} \textit{Preamplifier Factor}.$
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Smart Photo Frame	Product Model:	LPWPF100B
Test By:	Carey	Test mode:	BLE Tx mode
Test Channel:	Highestchannel	Polarization:	Horizontal
Test Voltage:	AC 120V/60Hz	Environment:	Temp: 24°C Huni: 57%

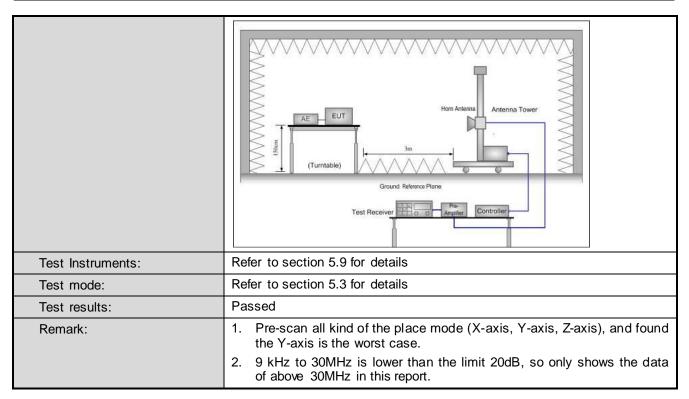
	Freq		Antenna Factor				Limit Line		
	MHz	dBu₹		 <u>ab</u>	<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	B	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

6.7 Spurious Emission

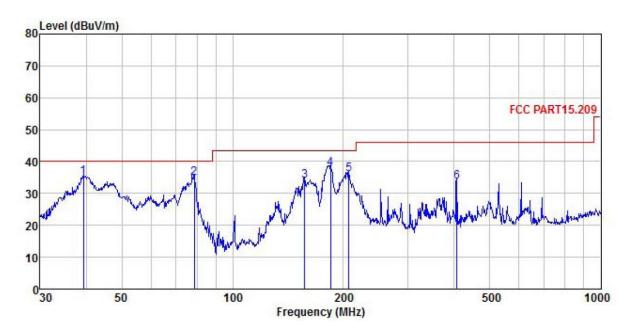
6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)								
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.								
Test setup:	EUT EUT								
Test Instruments:	Refer to section 5.9 for details								
Test mode:	Refer to section 5.3 for details								
Test results:	Passed								


Measurement Data: Refer to Appendix A - BLE

6.7.2 Radiated Emission Method

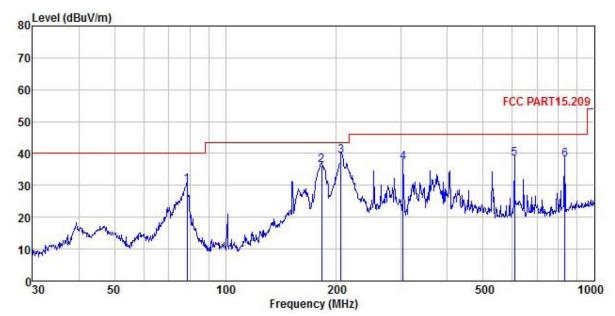
Test Requirement:	FCC Part 15 C	Section 15.20	05 and 15.209			
Test Frequency Range:	9kHz to 25GHz					
Test Distance:	3m					
Receiver setup:	Frequency	Detector	RBW	VBW		Remark
	30MHz-1GHz	Quasi-peak	120KHz	300	KHz	Quasi-peak Value
	Above 1GHz	Peak	1MHz	3MHz		Peak Value
	Above 1G112	RMS	1MHz	3M	Hz Average Value	
Limit:	Frequency	y L	imit (dBuV/m @	3m)		Remark
	30MHz-88M	Hz	40.0		C	Quasi-peak Value
	88MHz-216N		43.5			Quasi-peak Value
	216MHz-960I		46.0			Quasi-peak Value
	960MHz-1G	Hz	54.0		C	Quasi-peak Value
	Above 1GH	łz 🖳	54.0			Average Value
			74.0			Peak Value table 0.8m(below
	highest rad 2. The EUT antenna, w tower. 3. The antenr the ground Both horize make the n 4. For each s case and t meters and to find the r 5. The test-re Specified E 6. If the emiss the limit sp of the EUT have 10 dB	iation. was set 3 in thich was more and height is and to determine the antique and the interest of the interes	meters away united on the to varied from one the maximuritical polarization. The enna was tuned ading. The Europe was set the Europe could be ported. Other lid be re-tested	from the cop of a me met um valucions of EUT was ed to he from 0 to Pea lold Models ak models estop wise the done be	er to for the action as arranged to degree the action as a company and the action as arranged to the action as arranged to the action as a company and the action as a company as a comp	the position of the erference-receiving ble-height antenna four meters above the field strength. Antenna are set to anged to its worst from 1 meter to 4 tes to 360 degrees tect Function and as 10 dB lower than and the peak values ssions that did not using peak, quasi-reported in a data
Test setup:	EUT	4m 4m 0.8m lm			Antenna Search Antenn Test ceiver —	1



Measurement Data (worst case):

Below 1GHz:

Product Name:	Smart Photo Frame	Product Model:	LPWPF100B		
Test By:	Carey	Test mode:	BLE Tx mode		
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical		
Test Voltage:	AC 120V/60Hz	Environment:	Temp:24 [°] C Huni:57%		


	ReadAntenna		Cable	Aux	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Factor	Level	Line	Limit	Remark
-	MHz	dBu∜	<u>dB</u> /π		<u>dB</u>	<u>d</u> B	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>	
1	39.299	51.94	12.77	0.35	0.00	29.91	35.15	40.00	-4.85	QP
2	78.689	51.63	12.46	0.47	0.00	29.65	34.91	40.00	-5.09	QP
2	157.007	47.46	14.89	0.63	0.00	29.16	33.82	43.50	-9.68	QP
4	184.490	49.01	17.16	0.69	0.00	28.94	37.92	43.50	-5.58	QP
5	207.123	45.61	18.33	0.73	0.00	28.78	35.89	43.50	-7.61	QP
6	406.088	42.23	19.11	1.00		28.79	33.55	46.00	-12.45	QP

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Product Name:	Smart Photo Frame	Product Model:	LPWPF100B
Test By:	Carey	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120V/60Hz	Environment:	Temp:24 [°] C Huni:57%

	Freq		Antenna Factor			Preamp Factor		Limit Line	Over Limit	Remark
	MHz	dBu∜	$-\overline{dB}/\overline{m}$	dB	<u>d</u> B	dB	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1	78.689	46.93	12.46	0.47	0.00	29.65	30.21	40.00	-9.79	QP
1 2	182.559	47.42	17.05	0.69	0.00	28.95	36.21	43.50	-7.29	QP
3	205.675	49.10	18.32	0.73	0.00	28.79	39.36	43.50	-4.14	QP
4	303.544	46.19	18.71	0.86	0.00	28.46	37.30	46.00	-8.70	QP
5	607.787	46.08	19.93	1.22	0.00	28.91	38.32	46.00	-7.68	QP
6	833.317	43.62	21.23	1.42	0.00	28.07	38.20	46.00	-7.80	QP

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Above 1GHz

			Te	est channe	el: Lowest c	hannel						
Detector: Peak Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4804.00	48.57	30.78	6.80	2.44	41.81	46.78	74.00	-27.22	Vertical			
4804.00	49.26	30.78	6.80	2.44	41.81	47.47	74.00	-26.53	Horizontal			
Detector: Average Value												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4804.00	40.72	30.78	6.80	2.44	41.81	38.93	54.00	-15.07	Vertical			
4804.00	41.76	30.78	6.80	2.44	41.81	39.97	54.00	-14.03	Horizontal			
	Test channel: Middle channel											
			<u>'</u>		or: Peak Val							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4884.00	48.71	30.96	6.86	2.47	41.84	47.16	74.00	-26.84	Vertical			
4884.00	49.33	30.96	6.86	2.47	41.84	47.78	74.00	-26.22	Horizontal			
					: Average V							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4884.00	40.57	30.96	6.86	2.47	41.84	39.02	54.00	-14.98	Vertical			
4884.00	42.02	30.96	6.86	2.47	41.84	40.47	54.00	-13.53	Horizontal			
			Te	est channe	el: Highest d	hannel						
		1			or: Peak Val	ue	I	1	T			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4960.00	48.24	31.11	6.91	2.49	41.87	46.88	74.00	-27.12	Vertical			
4960.00	49.70	31.11	6.91	2.49	41.87	48.34	74.00	-25.66	Horizontal			
				Detector:	Average V	alue						
Frequency	Read Level	Antenna Factor	Cable Loss	Aux Factor	Preamp Factor	Level	Limit Line	Over Limit	Polarization			

Remark:

(MHz)

4960.00

4960.00

Factor

(dB)

2.49

2.49

Factor

(dB)

41.87

41.87

Factor

(dB/m)

31.11

31.11

Level

(dBuV)

40.20

41.87

Loss

(dB)

6.91

6.91

Project No.: CCISE2007092

Vertical

Horizontal

Limit

(dB)

-15.16

-13.49

Line

(dBuV/m)

54.00

54.00

(dBuV/m)

38.84

40.51

 $^{1. \}quad \textit{Final Level} = \textit{Receiver Read level} + \textit{Antenna Factor} + \textit{Cable Loss} + \textit{Aux Factor} - \textit{Preamplifier Factor}.$

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.