TEST REPORT DT&C Co., Ltd. 42, Yurim-ro, 154Beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 17042 Tel: 031-321-2664, Fax: 031-321-1664 1. Report No: DRTFCC2108-0079 2. Customer • Name (FCC): DASAN Networks, Inc. / Name (IC): DASAN Networks, Inc. · Address (FCC): DASAN Tower, 49, Daewangpangyo-ro644Beon-gil, Bundang-gu Seongnam-si South Korea 13493 Address (IC) : DASAN Tower, 49, Daewangpangyo-ro644Beon-gil, Bundang-gu Seongnam-si/ Gyeonggi-do 13493 Korea (Republic Of) 3. Use of Report: FCC & IC Certification 4. Product Name / Model Name: Vehicle Control Terminal / TMS3.0 (300611-01929) FCC ID: 2AXDMTMS30CELLTYPEA IC: 26419-TMS30TYPEA 5. FCC Regulation(s): Part 22, 24, 27 IC Standard(s): RSS-132 Issue 3, 133 Issue 6, 139 Issue 3 Test Method Used: KDB971168 D01v03, ANSI/TIA-603-E-2016, ANSI C63.26-2015 6. Date of Test: 2021.06.21 ~ 2021.07.30 7. Location of Test: Permanent Testing Lab On Site Testing 8. Testing Environment: See appended test report. 9. Test Result: Refer to attached test result. The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report is not related to KOLAS accreditation. Affirmation Tested by Name: JaeHyeok Bang Reviewed by Name: JaeJin Lee (Signature) 2021.08.04. DT&C Co., Ltd. If this report is required to confirmation of authenticity, please contact to report@dtnc.net # **Test Report Version** | Test Report No. | Date | Description | Revised by | Reviewed by | |-----------------|---------------|---------------|---------------|-------------| | DRTFCC2108-0079 | Aug. 04, 2021 | Initial issue | JaeHyeok Bang | JaeJin Lee | TRF-RF-210(12)210316 Pages: 2 / 61 # **Table of Contents** Report No.: DRTFCC2108-0079 | 1. GENERAL INFORMATION | | |--|----------| | 2.1 EUT DESCRIPTION | | | 2.2 TESTING ENVIRONMENT | | | 2.3 MEASURING INSTRUMENT CALIBRATION | | | 2.4 MEASUREMENT UNCERTAINTY | | | 2.5 TEST FACILITY | | | 3. DESCRIPTION OF TESTS | | | 3.1 ERP & EIRP (Effective Radiated Power & Equivalent Isotropic Radiated Pow | /er) 6 | | 3.2 PEAK TO AVERAGE RATIO | 8 | | 3.3 OCCUPIED BANDWIDTH (99 % Bandwidth) | 10 | | 3.4 SPURIOUS EMISSIONS AT ANTENNA TERMINAL | 11 | | 3.5 BAND EDGE EMISSIONS AT ANTENNA TERMINAL | 12 | | 3.6 RADIATED SPURIOUS EMISSIONS | 13 | | 3.7 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE | | | 4. LIST OF TEST EQUIPMENT | | | 5. SUMMARY OF TEST RESULTS | | | 6. EMISSION DESIGNATOR AND SAMPLE CALCULATION 7. TEST DATA | | | 7.1 Conducted OUTPUT POWER | 19 | | 7.2 PEAK TO AVERAGE RATIO | 20 | | 7.3 OCCUPIED BANDWIDTH (99 % Bandwidth) | 20 | | 7.4 SPURIOUS MISSIONS AT ANTENNA TERMINAL | 20 | | 7.5 BAND EDGE EMISSIONS AT ANTENNA TERMINAL | | | 7.6 EFFECTIVE RADIATED POWER | | | 7.7 EQUIVALENT ISOTROPIC RADIATED POWER | | | 7.8 RADIATED SPURIOUS EMISSIONS | 24 | | 7.9 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE | _ | | 7.9.1 FREQUENCY STABILITY (GPRS1900) | 28 | | | | | 8. TEST PLOTS | | | 8.1 PEAK TO AVERAGE RATIO | | | 8.1 PEAK TO AVERAGE RATIO | 34 | | 8.1 PEAK TO AVERAGE RATIO | 34
42 | Pages: 4 / 61 Report No.: DRTFCC2108-0079 # 1. GENERAL INFORMATION | FCC Classification | PCS Licensed Transmitter (PCB) | |--|---| | FCC ID | 2AXDMTMS30CELLTYPEA | | IC | 26419-TMS30TYPEA | | Product Name | Vehicle Control Terminal | | Model Name | TMS3.0 (300611-01929) | | Add Model Name | - | | FVIN(Firmware Version Identification Number) | 2 | | EUT Serial Number | Undesignated | | Supplying power | DC 12 V,24 V | | Antenna Information | Antenna Type: Chip Antenna
Gain: 1.84 dBi (Band 850), 2.50 dBi (Band 1700), 2.98 dBi (Band 1900) | | Mode | Tx Frequency | Emission | ERP (Max | ERP (Max. Power) | | EIRP (Max. Power) | | |-----------|-------------------|-----------------------------------|----------|------------------|-------|-------------------|--| | | (MHz) | Designator ^{Note} | dBm | w | dBm | W | | | GPRS850 | 824.2 ~ 848.8 | - | 29.57 | 0.906 | 31.72 | 1.486 | | | EDGE850 | 824.2 ~ 848.8 | - | 21.20 | 0.132 | 23.35 | 0.216 | | | WCDMA850 | 826.4 ~ 846.6 | - | 17.78 | 0.060 | 19.93 | 0.098 | | | WCDMA1700 | 1 712.4 ~ 1 752.6 | - | - | - | 25.13 | 0.326 | | | GPRS1900 | 1 850.2 ~ 1 909.8 | 248KGXW | - | - | 31.43 | 1.390 | | | EDGE1900 | 1 850.2 ~ 1 909.8 | 244KG7W | - | - | 29.66 | 0.925 | | | WCDMA1900 | 1 852.4 ~ 1 907.6 | - | - | - | 25.68 | 0.370 | | Note: This device uses the certified module.(FCC ID: XMR201903EG25G) Please refer to the certified module report for GSM/EDGE 850 and WCDMA 850/1700/1900 emission designator. For GSM/EDGE 1900, emission designator was reported based on the new test result. This test report is prohibited to copy or reissue in whole or in part without the approval of DT&C Co., Ltd. TRF-RF-210(12)210316 IC: 26419-TMS30TYPEA Report No.: DRTFCC2108-0079 #### 2. INTRODUCTION #### 2.1 EUT DESCRIPTION This EUT contains the following capabilities: 850/1900 GPRS/EDGE, 850/1700/1900 WCDMA/HSUPA, Multi-band LTE. #### Operation test setup for EUT - The call simulator was used to control the transmit parameters during test. And power control setting of simulator is set to "ALL up bits" to get the maximum power for EUT. #### 2.2 TESTING ENVIRONMENT | Ambient Condition | | | |-------------------|-----------------|--| | Temperature | +20 °C ~ +23 °C | | | Relative Humidity | 43 % ~ 46 % | | #### 2.3 MEASURING INSTRUMENT CALIBRATION The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards. #### 2.4 MEASUREMENT UNCERTAINTY The measurement uncertainties shown below were calculated in accordance with requirements of ANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence. | Parameter | Measurement uncertainty | |--|--| | Radiated Disturbance
(Below 1 GHz) | 4.9 dB (The confidence level is about 95 %, k = 2) | | Radiated Disturbance
(1 GHz ~ 18 GHz) | 5.0 dB (The confidence level is about 95 %, k = 2) | | Radiated Disturbance
(Above 18 GHz) | 5.3 dB (The confidence level is about 95 %, k = 2) | ## 2.5 TEST FACILITY #### DT&C Co., Ltd. The 3 m test site and conducted measurement facility used to collect the radiated data are located at the 42, Yurim-ro, 154beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 17042. The test site complies with the requirements of § 2.948 according to ANSI C63.4-2014. - FCC & IC MRA Designation No.: KR0034 - ISED #: 5740A | www.dtnc.net | | | |--------------|---|------------------| | Telephone | : | + 82-31-321-2664 | | FAX | : | + 82-31-321-1664 | TRF-RF-210(12)210316 Pages: 5 / 61 ## 3. DESCRIPTION OF TESTS ## 3.1 ERP & EIRP (Effective Radiated Power & Equivalent Isotropic Radiated Power) Test Set-up These measurements were performed at 3 m test site. The equipment under test is placed on a non-conductive table 0.8 m or 1.5 m above a turntable which is flush with the ground plane and 3 meters from the receive antenna. For measurements above 1 GHz absorbers are placed on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1 GHz, the absorbers are removed. ## Test Procedure - ANSI/TIA-603-E-2016 Section 2.2.17 - KDB971168 D01v03 Section 5.2.2 - ANSI 63.26-2015 Section 5.2.4.4.1 #### Test setting - 1. Set span to 2 x to 3 x the OBW. - 2. Set RBW = 1 % to 5 % of the OBW. - 3. Set VBW \geq 3 x RBW. - 4. Set number of points in sweep ≥ 2 x span / RBW. - 5. Sweep time: - 1) Set = auto-couple, or - 2) Set \geq [10 \times (number of points in sweep) \times (transmission period)] for single sweep (automation-compatible) measurement. Transmission period is the on and off time of the transmitter. - 6. Detector = power averaging (rms). - 7. If the EUT can be configured to transmit continuously, then set the trigger to free run. - 8. If the EUT cannot be configured to transmit continuously, then use a sweep trigger with the level set to enable triggering only on full power bursts and configure the EUT to transmit at full power for the entire duration of each sweep. Verify that the sweep time is less than or equal to the transmission burst duration. Time gating can also be used under similar constraints (i.e., configured such that measurement data is collected only during active fullpower transmissions). - 9. Trace average at least 100 traces in power averaging (rms) mode if sweep is set to auto-couple. To accurately determine the average power over multiple symbols, it can be necessary to increase the number of traces to be TRF-RF-210(12)210316 Pages: 6 / 61 FCC ID: 2AXDMTMS30CELLTYPEA Report No.: DRTFCC2108-0079 IC: 26419-TMS30TYPEA averaged above 100 or, if using a manually configured sweep time, increase the sweep time. 10. Compute the power by integrating the spectrum across the OBW of the signal using the instrument's band or channel power measurement function, with the band/channel limits set equal to the OBW band edges. If the instrument does not have a band or channel power function, then sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the entire OBW of the spectrum. The receiver antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted
to obtain the same receive spectrum analyzer reading. The conducted power at the terminal of the substitute antenna is measured. The ERP/EIRP is calculated using the following formula: ERP/EIRP = The conducted power at the substitute antenna's terminal [dBm] + Substitute Antenna gain [dBd for ERP, dBi for EIRP] For readings above 1 GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn antenna and an isotropic antenna are taken into consideration. TRF-RF-210(12)210316 Pages: 7 / 61 #### 3.2 PEAK TO AVERAGE RATIO ## Test set-up Report No.: DRTFCC2108-0079 #### Test Procedure - KDB971168 D01v03 Section 5.7.2 - ANSI C63.26-2015 Section 5.2.3.4 A peak to average ratio measurement is performed at the conducted port of the EUT. The spectrum analyzers Complementary Cumulative Distribution Function (CCDF) measurement profile is used to determine the largest deviation between the average and the peak power of the EUT in a given bandwidth. The CCDF curve shows how much time the peak waveform spends at or above a given average power level. The present of time the signal spends at or above the level defines the probability for that particular power level. #### Test setting The spectrum Analyzer's CCDF measurement function is enabled. - 1. Set resolution/measurement bandwidth ≥ OBW or specified reference bandwidth. - 2. Set the number of counts to a value that stabilizes the measured CCDF curve. - 3. Set the measurement interval as follows: - 1) For continuous transmissions, set to the greater of $[10 \times (number of points in sweep) \times (transmission symbol period)]$ or 1 ms. - 2) For burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize. Set the measurement interval to a time that is less than or equal to the burst duration. - 3) If there are several carriers in a single antenna port, the peak power shall be determined for each individual carrier (by disabling the other carriers while measuring the required carrier) and the total peak power calculated from the sum of the individual carrier peak powers. - 4. Record the maximum PAPR level associated with a probability of 0.1 %. - 5. The peak power level is calculated form the sum of the PAPR value from step d) to the measured average power. This test report is prohibited to copy or reissue in whole or in part without the approval of DT&C Co., Ltd. TRF-RF-210(12)210316 Pages: 8 / 61 Report No.: **DRTFCC2108-0079** IC : **26419-TMS30TYPEA** FCC ID: 2AXDMTMS30CELLTYPEA ## Alternate Procedure - KDB971168 D01v03 Section 5.7.3 - ANSI C63.26-2015 Section 5.2.6 Use one of the measurement procedures of the peak power and record as P_{Pk}. Use one of the measurement procedures of the average power and record as PAvg. Both the peak and average power levels must be expressed in the same logarithmic units (e.g., dBm). Determine the PAPR from: ## PAPR (dB) = P_{Pk} (dBm or dBW) - P_{Avg} (dBm or dBW). Where, PAPR peak-to-average power ratio, in dB PPk measured peak power or peak PSD level, in dBm or dBW PAvg measured average power or average PSD level, in dBm or dBW #### - Peak Power Measurement - 1. Set the RBW ≥ OBW - 2. Set VBW ≥ 3 x RBW - 3. Set span ≥ 2 x RBW - 4. Sweep time ≥ 10 x (number of points in sweep) x (transmission symbol period). - 5. Detector = peak - 6. Trace mode = max hold - 8. Allow trace to fully stabilize. - 9. Use the peak marker function to determine the peak amplitude level. #### - Average Power Measurement - 1. Set span to 2 x to 3 x the OBW. - 2. Set RBW = 1 % to 5 % of the OBW. - 3. Set VBW \geq 3 x RBW. - 4. Set number of measurement points in sweep $\geq 2 \times \text{span} / \text{RBW}$.. - 5. Sweep time = 1) auto-couple, or - 2) set \geq [10 x (number of points in sweep) x (transmission period)] for single sweep (automation-compatible (measurement. Transmission period is the on and off time of the transmitter. - 6. Detector = power averaging (RMS). - 7. If the EUT can be configured to transmit continuously, then set the trigger to free run. - 8. If the EUT cannot be configured to transmit continuously, then use a sweep trigger with the level set to enable Triggering only on full power bursts and configure the EUT to transmit at full power for the entire duration of each Sweep. Verify that the sweep time is less than or equal to the transmission burst duration. Time gating can also be used under similar constraints (i.e., configured such that measurement data is collected only during active full-Power transmissions) - 9. Trace average at least 100 traces in power averaging (rms) mode if sweep is set to auto-couple. To accurately determine the average power over multiple symbols, it can be necessary to increase the number of traces to be averaged above 100 or, if using a manually configured sweep time, increase the sweep time. - 10. Compute the power by integrating the spectrum across the OBW of the signal using the instrument's band or channel power measurement function, with the band/channel limits set equal to the OBW band edges. If the instrument does not have a band or channel power function, then sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the entire OBW of the spectrum. This test report is prohibited to copy or reissue in whole or in part without the approval of DT&C Co., Ltd. TRF-RF-210(12)210316 Pages: 9 / 61 ## 3.3 OCCUPIED BANDWIDTH (99 % Bandwidth) ## Test set-up Report No.: DRTFCC2108-0079 #### Offset value information | Frequency
(MHz) | Offset Value
(dB) | Frequency
(MHz) | Offset Value
(dB) | |--------------------|----------------------|--------------------|----------------------| | 1 850.2 | 7.16 | - | - | | 1 880.0 | 7.19 | - | - | | 1 909.8 | 7.19 | - | - | Note. 1: The offset values from EUT to Spectrum analyzer were measured and used for test. #### Test Procedure - KDB971168 D01v03 Section 4.3 - ANSI C63.26-2015 Section 5.4.4 The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power of a given emission. ## Test setting - 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99 % occupied bandwidth and the 26 dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission. - 2. RBW = 1 % ~ 5 % of the expected OBW & VBW ≥ 3 X RBW - 3. Detector = Peak - 4. Trance mode = Max hold - 5. Sweep = Auto couple - 6. The trace was allowed to stabilize - 7. If necessary, step 2 ~ 6 were repeated after changing the RBW such that it would be within 1 % ~ 5 % of the 99 % occupied bandwidth observed in step 6. TRF-RF-210(12)210316 Pages: 10 / 61 IC: 26419-TMS30TYPEA Report No.: DRTFCC2108-0079 #### 3.4 SPURIOUS EMISSIONS AT ANTENNA TERMINAL ## Test set-up #### Offset value information | Frequency
(MHz) | Offset Value
(dB) | Frequency
(MHz) | Offset Value
(dB) | |--------------------|----------------------|--------------------|----------------------| | 10 000 | 7.74 | 20 000 | 8.93 | | - | - | = | - | Note. 1: The offset value from EUT to Spectrum analyzer was measured and used for test. #### Test Procedure - KDB971168 D01v03 Section 6 - ANSI C63.26-2015 Section 5.7 The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The EUT was setup to maximum output power at its low, middle, high channel with all bandwidths. The spectrum is scanned from 9 kHz up to a frequency including its 10th harmonic. The power of any spurious emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log(P) dB, where P is the transmitter power in Watts. ## Test setting - 1. RBW = 100 kHz(Below 1 GHz) or 1 MHz(Above 1 GHz) & VBW ≥ 3 X RBW (Refer to Note 1) - 2. Detector = RMS & Trace mode = Max hold - 3. Sweep time = Auto couple - 4. Number of sweep point ≥ 2 X span / RBW - 5. The trace was allowed to stabilize Note 1: Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater for Part 22 and 1 MHz or greater for Part 24, 27 TRF-RF-210(12)210316 Pages: 11 / 61 IC: 26419-TMS30TYPEA Report No.: DRTFCC2108-0079 #### 3.5 BAND EDGE EMISSIONS AT ANTENNA TERMINAL ## Test set-up #### Offset value information | Frequency
Range(MHz) | Offset Value
(dB) | Frequency
Range(MHz) | Offset Value
(dB) | |-------------------------|----------------------|-------------------------|----------------------| | 1 845 – 1 849 | 7.18 | - | - | | 1 849 – 1 851 | 7.18 | - | - | | 1 909 – 1 911 | 7.20 | - | - | | 1 911 – 1 915 | 7.20 | - | - | Note. 1: The offset value from EUT to Spectrum analyzer was measured and used for test. #### Test Procedure - KDB971168 D01v03 Section 6 - ANSI C63.26-2015 Section 5.7 All out of band emissions are measured by means of a calibrated spectrum analyzer. The EUT was setup to maximum output power at its lowest and highest channel with all modulations. The power of any spurious emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log(P) dB, where P is the transmitter power in Watts. #### Test setting - 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot - 2. Span was set large enough so as to capture all out of band emissions near the band edge - 3. RBW ≥ 1 % of the emission - 4. VBW ≥ 3 X RBW - 5. Detector = RMS & Trace mode = Max hold - 6. Sweep time = Auto couple or 1 s for band edge - 7. Number of sweep point ≥ 2 X span / RBW - 8. The trace was allowed to stabilize Note 1: In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one
percent of the emission bandwidth of the fundamental emission of the transmitter may be employed to demonstrate compliance with the out-of-band emissions limit. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power. TRF-RF-210(12)210316 Pages: 12 / 61 #### 3.6 RADIATED SPURIOUS EMISSIONS Test Set-up These measurements were performed at 3 m test site. The equipment under test is placed on a non-conductive table 0.8 m or 1.5 m above a turntable which is flush with the ground plane and 3 meters from the receive antenna. For measurements above 1 GHz absorbers are placed on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1 GHz, the absorbers are removed. #### **Test Procedure** - ANSI/TIA-603-E-2016 Section 2.2.12 - KDB971168 D01v03 Section 5.8 - ANSI C63.26-2015 Section 5.5 #### Test setting - RBW = 100 kHz for below 1 GHz and 1 MHz for above 1 GHz / VBW ≥ 3 X RBW - 2. Detector = RMS & Trace mode = Max hold - 3. Sweep time = Auto couple - 4. Number of sweep point ≥ 2 X span / RBW - 5. The trace was allowed to stabilize The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer. For radiated spurious emission measurements below 1 GHz, a half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. For radiated spurious emission measurements above 1 GHz, a Horn antenna was substituted in place of the EUT. This Horn antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. The difference between the gain of the horn and an isotropic antenna are taken into consideration. ## 3.7 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE ## Test Set-up ## Constant Temp & Humidity Chamber Report No.: DRTFCC2108-0079 #### Test Procedure - ANSI/TIA-603-E-2016 - KDB971168 D01v03 Section 9 The frequency stability of the transmitter is measured by: #### a.) Temperature: The temperature is varied from -30 °C to +50 °C in 10 °C increments using an environmental chamber. ## b.) Primary Supply Voltage: The primary supply voltage is varied from 85 % to 115 % of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer. #### **Specification:** The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block for Part 24, 27. The frequency stability of the transmitter shall be maintained within ±0.000 25 % (±2.5 ppm) of the center frequency for Part 22. ## **Time Period and Procedure:** - The carrier frequency of the transmitter is measured at room temperature. °C to provide a reference) - 2. The equipment is turned on in a "standby" condition for one minute before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter. - Frequency measurements are made at 10 °C intervals ranging from -30 °C to +50 °C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level. ## 4. LIST OF TEST EQUIPMENT This test report is prohibited to copy or reissue in whole or in part without the approval of DT&C Co., Ltd. TRF-RF-210(12)210316 Pages: 14 / 61 | Туре | Manufacturer | Model | Cal.Date
(yy/mm/dd) | Next.Cal. Date (yy/mm/dd) | S/N | |---------------------------------|----------------------|---------------------------------|------------------------|---------------------------|------------| | Spectrum Analyzer | Agilent Technologies | N9020A | 21/06/24 | 22/06/24 | US47360812 | | DC power supply | SM techno | SDP30-5D | 21/06/24 | 22/06/24 | 305DMG305 | | Multimeter | FLUKE | 17B+ | 20/12/16 | 21/12/16 | 36390701WS | | Radio Communication
Analyzer | Agilent Technologies | E5515C | 20/12/16 | 21/12/16 | GB43461134 | | Thermohygrometer | BODYCOM | BJ5478 | 20/12/16 | 21/12/16 | 120612-2 | | Signal Generator | Rohde Schwarz | SMBV100A | 20/12/16 | 21/12/16 | 255571 | | Signal Generator | ANRITSU | MG3695C | 20/12/16 | 21/12/16 | 173501 | | Loop Antenna | ETS-Lindgren | 6502 | 21/01/28 | 23/01/28 | 00226186 | | Bilog Antenna | Schwarzbeck | VULB 9160 | 20/12/16 | 21/12/16 | 9160-3362 | | Dipole Antenna | A.H.Systems Inc. | FCC-4 | 20/12/16 | 22/12/16 | 710A | | Dipole Antenna | Schwarzbeck | UHA9105 | 20/04/10 | 22/04/10 | 2262 | | HORN ANT | ETS | 3117 | 20/12/16 | 21/12/16 | 00140394 | | HORN ANT | ETS | 3117 | 21/06/24 | 22/06/24 | 00143278 | | HORN ANT | A.H.Systems | SAS-574 | 21/06/24 | 22/06/24 | 154 | | HORN ANT | A.H.Systems | SAS-574 | 21/06/24 | 22/06/24 | 155 | | Amplifier | EMPOWER | BBS3Q7ELU | 21/06/24 | 22/06/24 | 1020 | | PreAmplifier | H.P | 8447D | 20/12/16 | 21/12/16 | 2944A07774 | | PreAmplifier | Agilent | 8449B | 21/06/24 | 22/06/24 | 3008A02108 | | High-pass filter | Wainwright | WHKX12-935-1000-
15000-40SS | 21/06/24 | 22/06/24 | 7 | | High-pass filter | Wainwright | WHKX10-2838-3300-
18000-60SS | 21/06/24 | 22/06/24 | 2 | | High-pass filter | Wainwright | WHNX8.5/26.5G-6SS | 21/06/24 | 22/06/24 | 1 | | Cable | RADIALL | TESTPRO3 | 21/01/05 | 22/01/05 | RFC-03 | | Cable | HUBER+SUHNER | SUCOFLEX100 | 21/01/08 | 22/01/08 | M-01 | | Cable | HUBER+SUHNER | SUCOFLEX100 | 21/01/08 | 22/01/08 | M-02 | | Cable | JUNFLON | MWX241/B | 21/01/08 | 22/01/08 | M-03 | | Cable | JUNFLON | MWX221 | 21/01/08 | 22/01/08 | M-04 | | Cable | JUNFLON | MWX221 | 21/01/08 | 22/01/08 | M-05 | | Cable | DTNC | Cable | 21/01/08 | 22/01/08 | M-06 | | Cable | JUNFLON | J12J101757-00 | 21/01/08 | 22/01/08 | M-07 | | Cable | HUBER+SUHNER | SUCOFLEX104 | 21/01/08 | 22/01/08 | M-08 | | Cable | HUBER+SUHNER | SUCOFLEX106 | 21/01/08 | 22/01/08 | M-09 | Note1: The measurement antennas were calibrated in accordance to the requirements of ANSI C63.5-2017. Note2: The cable is not a regular calibration item, so it has been calibrated by DT & C itself. # 5. SUMMARY OF TEST RESULTS ## GSM850, WCMDA850/1700/1900 | FCC Part
Section(s) | RSS
Section(s) | Parameter | Status
Note 1 | |--|---|---|------------------| | 2.1046 | - | Conducted Output Power | NT Note2 | | 22.913(a)
24.232(c)
27.50(d.4) | RSS-132 [5.4]
RSS-133 [6.4]
RSS-139 [6.5] | Effective Radiated Power Equivalent Isotropic Radiated Power | С | | 2.1049 | RSS-Gen [6.7] | Occupied Bandwidth | NT Note2 | | 2.1051
22.917(a)
24.238(a)
27.53(h) | RSS-132 [5.5]
RSS-133 [6.5]
RSS-139 [6.6] | Band Edge Emissions at Antenna Terminal
Spurious Emissions at Antenna Terminal | NT Note2 | | 24.232(d)
27.50(d.5) | RSS-132 [5.4]
RSS-133 [6.4]
RSS-139 [6.5] | Peak to Average Ratio | NT Note2 | | 2.1053
22.917(a)
24.238(a)
27.53(h) | RSS-132 [5.5]
RSS-133 [6.5]
RSS-139 [6.6] | Radiated Spurious and Harmonic Emissions | С | | 2.1055
22.355
24.235
27.54 | RSS-132 [5.3]
RSS-133 [6.3]
RSS-139 [6.4] | Frequency Stability | NT Note2 | Report No.: DRTFCC2108-0079 Note 1: C=Comply NC=Not Comply NT=Not Tested NA=Not Applicable Note 2: For conducted test items, please refer to the test report of the granted module. (FCC ID: XMR201903EG25G, IC: 10224A-201903EG25G) Note 3: The radiated test items were performed at DC 12 V and DC 24 V. And the worst case data are reported. TRF-RF-210(12)210316 Pages: 16 / 61 ## - GSM1900 | FCC Part
Section(s) | RSS
Section(s) | Parameter | Status
Note 1 | |------------------------|-------------------|---|------------------| | 2.1046 | - | Conducted Output Power | С | | 24.232(c) | RSS-133 [6.4] | Effective Radiated Power Equivalent Isotropic Radiated Power | С | | 2.1049 | RSS-Gen [6.7] | Occupied Bandwidth | С | | 24.238(a) | RSS-133 [6.5] | Band Edge Emissions at Antenna Terminal
Spurious Emissions at Antenna Terminal | ပ | | 24.232(d) | RSS-133 [6.4] | Peak to Average Ratio | С | | 2.1053
24.238(a) | RSS-133 [6.5] | Radiated Spurious and Harmonic Emissions | С | | 2.1055
24.235 | RSS-133 [6.3] | Frequency Stability | С | Note 1: C=Comply NC=Not Comply NT=Not Tested NA=Not Applicable Note 2: The radiated test items were performed at DC 12 V and DC 24 V. And the worst case data are reported. IC: 26419-TMS30TYPEA Report No.: DRTFCC2108-0079 ## 6. EMISSION DESIGNATOR AND SAMPLE CALCULATION # A. Emission Designator ## **GPRS1900 Emission Designator** Emission Designator = 248KGXW GSM OBW = 247.99 kHz (Measured at the 99.75 % power bandwidth) G = Phase Modulation X = Cases not otherwise covered W = Combination (Audio/Data) #### **EDGE1900 Emission Designator** Emission Designator = 244KG7W EDGE OBW = 244.28 kHz (Measured at the 99.75 % power bandwidth) FCC ID: 2AXDMTMS30CELLTYPEA G = Phase Modulation 7 = Cases not otherwise covered W = Combination (Audio/Data) ## B. For substitution method - 1) The EUT was placed on a turntable with 0.8 meter height for frequency below 1GHz and 1.5 meter height for frequency above 1 GHz respectively above ground. - 2) The EUT was set 3 meters from the receiving antenna mounted on the antenna tower. - 3) During the test, the turn table is rotated until the maximum signal is found. - 4) Record the field strength meter's level. (ex. Spectrum reading level is -8.5 dBm) - 5) Replace the
EUT with dipole/Horn antenna that is connected to a calibrated signal generator. - 6) Increase the signal generator output till the field strength meter's level is equal to the item (4). (ex. Signal generator level is -18.04 dBm) - 7) The gain of the cable and amplifier between the signal generator and terminals of substituted antenna is 46.92 dB at test frequency. - 8) Record the level at substituted antenna terminal. (ex. 28.88dBm) - 9) The result is calculated as below; EIRP(dBm) = LEVLE@ANTENNA TERMINAL + TX Antenna Gain (dBi) ERP(dBm) = LEVLE@ANTENNA TERMINAL + TX Antenna Gain (dBd) Where, TX Antenna Gain (dBd) = TX Antenna Gain (dBi) - 2.15 dB TRF-RF-210(12)210316 Pages: 18 / 61 ## 7. TEST DATA ## 7.1 Conducted OUTPUT POWER A base station simulator was used to establish communication with the EUT. The base station simulator parameters were set to produce the maximum power from the EUT. This device was tested under all configurations and the highest power is reported. Conducted Output Powers of EUT are reported below. The output power was measured using the Agilent E5515E #### • GPRS/EDGE 1900 | | | Maximum Burst-Averaged Output Power(dBm) | | | | | | | | | | |-----------------|---------|--|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--|--| | Band | Channel | GPRS
1 TX
Slot | GPRS
2 TX
Slot | GPRS
3 TX
Slot | GPRS
4 TX
Slot | EDGE
1 TX
Slot | EDGE
2 TX
Slot | EDGE
3 TX
Slot | EDGE
4 TX
Slot | | | | | 512 | 26.82 | 26.56 | 25.87 | 24.52 | 25.31 | 24.61 | 23.45 | 21.85 | | | | PCS
(DC 24V) | 661 | 27.41 | 27.09 | 25.98 | 24.98 | 25.63 | 25.18 | 23.58 | 22.36 | | | | (= = = : :) | 810 | 27.59 | 27.23 | 26.49 | 25.03 | 25.93 | 25.28 | 23.56 | 22.46 | | | | | 512 | 26.85 | 26.62 | 25.97 | 24.48 | 25.44 | 24.79 | 23.36 | 21.93 | | | | PCS
(DC 12V) | 661 | 27.46 | 27.12 | 25.96 | 25.02 | 25.91 | 25.14 | 23.85 | 22.10 | | | | (=) | 810 | 27.76 | 27.45 | 26.61 | 25.22 | 26.21 | 25.38 | 24.11 | 22.31 | | | TRF-RF-210(12)210316 Pages: 19 / 61 ## 7.2 PEAK TO AVERAGE RATIO - Plots of the EUT's Peak- to- Average Ratio are shown in Clause 8.1 # 7.3 OCCUPIED BANDWIDTH (99 % Bandwidth) | Mode | Channel | Frequency(MHz) | Test Result (kHz) | |------------------|---------|----------------|-------------------| | | 512 | 1850.2 | 245.13 | | GPRS1900(DC 24V) | 661 | 1880.0 | 244.67 | | | 810 | 1909.8 | 244.64 | | | 512 | 1850.2 | 241.20 | | EDGE1900(DC 24V) | 661 | 1880.0 | 244.28 | | | 810 | 1909.8 | 243.23 | | | 512 | 1850.2 | 247.99 | | GPRS1900(DC 12V) | 661 | 1880.0 | 247.21 | | | 810 | 1909.8 | 245.74 | | | 512 | 1850.2 | 241.38 | | EDGE1900(DC 12V) | 661 | 1880.0 | 243.20 | | | 810 | 1909.8 | 243.99 | Report No.: DRTFCC2108-0079 ## 7.4 SPURIOUS MISSIONS AT ANTENNA TERMINAL - Plots of the EUT's Conducted Spurious Emissions are shown in Clause 8.3 ## 7.5 BAND EDGE EMISSIONS AT ANTENNA TERMINAL - Plots of the EUT's Band Edge are shown in Clause 8.4 TRF-RF-210(12)210316 Pages: 20 / 61 #### 7.6 EFFECTIVE RADIATED POWER #### - Test Notes This EUT was tested under all configurations and the highest power is reported in GSM mode and WCDMA mode with HSDPA inactive at 12.2 kbps RMC and TPC bits set to "1" and in GSM mode using a Power Control Level of "0" in PCS Band and "5" in the Cellular Band. This EUT was tested with the fully charged battery. Also, we have done x, y, z planes in EUT and horizontal and vertical polarization of detecting antenna. The worst case data is reported. - GPRS/EDGE 850 data(DC 24 V) | <u> </u> | | | | | | | | | |----------|-----|--------------------|--------------------|---|--------------------------|--------------|------------|-------| | Mode | СН | Frequency
(MHz) | Ant.
Pol. (H/V) | LEVEL@
TX ANTENNA
TERMINAL
(dBm) | Antenna
Gain
(dBd) | ERP
(dBm) | ERP
(W) | Note. | | GPRS850 | 128 | 824.2 | Н | 29.32 | -0.76 | 28.56 | 0.718 | - | | GPRS850 | 190 | 836.6 | Н | 30.42 | -0.85 | 29.57 | 0.906 | - | | EGPRS850 | 190 | 836.6 | Н | 22.05 | -0.85 | 21.20 | 0.132 | - | | GPRS850 | 251 | 848.8 | Н | 28.41 | -0.95 | 27.46 | 0.557 | | #### GPRS/EDGE 850 data(DC 12 V) | Mode | СН | Frequency
(MHz) | Ant.
Pol. (H/V) | LEVEL@
TX ANTENNA
TERMINAL
(dBm) | Antenna
Gain
(dBd) | ERP
(dBm) | ERP
(W) | Note. | |---------|-----|--------------------|--------------------|---|--------------------------|--------------|------------|-------| | GPRS850 | 190 | 836.6 | Н | 29.64 | -0.85 | 28.79 | 0.757 | - | | GPRS850 | 190 | 836.6 | Н | 21.88 | -0.85 | 21.03 | 0.127 | - | - WCDMA850 data(DC 24 V) | Mode | СН | Frequency
(MHz) | Ant.
Pol. (H/V) | LEVEL@
TX ANTENNA
TERMINAL
(dBm) | Antenna
Gain
(dBd) | ERP
(dBm) | ERP
(W) | Note. | |----------|-------|--------------------|--------------------|---|--------------------------|--------------|------------|-------| | WCDMA850 | 4 132 | 826.4 | Н | 18.48 | -0.77 | 17.71 | 0.059 | - | | WCDMA850 | 4 183 | 836.6 | Н | 18.63 | -0.85 | 17.78 | 0.060 | - | | WCDMA850 | 4 233 | 846.6 | Н | 17.15 | -0.93 | 16.22 | 0.042 | - | ## WCDMA850 data(DC 24 V) | Mode | СН | Frequency
(MHz) | Ant.
Pol. (H/V) | LEVEL@
TX ANTENNA
TERMINAL
(dBm) | Antenna
Gain
(dBd) | ERP
(dBm) | ERP
(W) | Note. | |----------|-------|--------------------|--------------------|---|--------------------------|--------------|------------|-------| | WCDMA850 | 4 183 | 836.6 | Н | 18.57 | -0.85 | 17.72 | 0.059 | ı | TRF-RF-210(12)210316 Pages: 21 / 61 ## 7.7 EQUIVALENT ISOTROPIC RADIATED POWER #### - Test Notes This EUT was tested under all configurations and the highest power is reported in GSM mode and WCDMA mode with HSDPA inactive at 12.2 kbps RMC and TPC bits set to "1" and in GSM mode using a Power Control Level of "0" in PCS Band and "5" in the Cellular Band. This EUT was tested with the fully charged battery. Also, we have done x, y, z planes in EUT and horizontal and vertical polarization of detecting antenna. The worst case data is reported. - WCDMA1700 data (DC 24 V) | Mode | СН | Frequency
(MHz) | Ant.
Pol. (H/V) | LEVEL@
TX ANTENNA
TERMINAL
(dBm) | Antenna
Gain
(dBi) | EIRP
(dBm) | EIRP
(W) | Note. | |-----------|-------|--------------------|--------------------|---|--------------------------|---------------|-------------|-------| | WCDMA1700 | 1 312 | 1 712.4 | V | 16.65 | 6.57 | 23.22 | 0.210 | - | | WCDMA1700 | 1 412 | 1 732.4 | V | 18.04 | 6.31 | 24.35 | 0.272 | - | | WCDMA1700 | 1 513 | 1 752.6 | V | 19.07 | 6.06 | 25.13 | 0.326 | - | ## - WCDMA1700 data (DC 12 V) | Mode | СН | Frequency
(MHz) | Ant.
Pol. (H/V) | LEVEL@
TX ANTENNA
TERMINAL
(dBm) | Antenna
Gain
(dBi) | EIRP
(dBm) | EIRP
(W) | Note. | |-----------|-------|--------------------|--------------------|---|--------------------------|---------------|-------------|-------| | WCDMA1700 | 1 513 | 1 752.6 | V | 19.04 | 6.06 | 25.10 | 0.324 | | - GPRS/EDGE 1900 data (DC 24 V) | Mode | СН | Frequency
(MHz) | Ant.
Pol. (H/V) | LEVEL@
TX ANTENNA
TERMINAL
(dBm) | Antenna
Gain
(dBi) | EIRP
(dBm) | EIRP
(W) | Note. | |-----------|-----|--------------------|--------------------|---|--------------------------|---------------|-------------|-------| | GPRS1900 | 512 | 1 850.2 | V | 25.70 | 5.35 | 31.05 | 1.274 | - | | GPRS1900 | 661 | 1 880.0 | V | 25.02 | 5.20 | 30.22 | 1.052 | - | | GPRS1900 | 810 | 1 909.8 | V | 26.35 | 5.08 | 31.43 | 1.390 | - | | EGPRS1900 | 810 | 1 909.8 | V | 24.58 | 5.08 | 29.66 | 0.925 | - | - GPRS/EDGE 1900 data (DC 12 V) | Mode | СН | Frequency
(MHz) | Ant.
Pol. (H/V) | LEVEL@
TX ANTENNA
TERMINAL
(dBm) | Antenna
Gain
(dBi) | EIRP
(dBm) | EIRP
(W) | Note. | |-----------|-----|--------------------|--------------------|---|--------------------------|---------------|-------------|-------| | GPRS1900 | 810 | 1 909.8 | V | 26.32 | 5.08 | 31.40 | 1.380 | - | | EGPRS1900 | 810 | 1 909.8 | V | 24.59 | 5.08 | 29.67 | 0.927 | - | ## - WCDMA1900 data (DC 24 V) | Mode | СН | Frequency
(MHz) | Ant.
Pol. (H/V) | LEVEL@
TX ANTENNA
TERMINAL
(dBm) | Antenna
Gain
(dBi) | EIRP
(dBm) | EIRP
(W) | Note. | |-----------|-------|--------------------|--------------------|---|--------------------------|---------------|-------------|-------| | WCDMA1900 | 9 262 | 1 852.4 | V | 20.34 | 5.34 | 25.68 | 0.370 | - | | WCDMA1900 | 9 400 | 1 880.0 | V | 20.09 | 5.20 | 25.29 | 0.338 | - | | WCDMA1900 | 9 538 | 1 907.6 | V | 19.90 | 5.08 | 24.98 | 0.315 | - | TRF-RF-210(12)210316 Pages: 22 / 61 Report No.: DRTFCC2108-0079 IC: 26419-TMS30TYPEA # - WCDMA1900 data (DC 12 V) | Mode | СН | Frequency
(MHz) | Ant.
Pol. (H/V) | LEVEL@
TX ANTENNA
TERMINAL
(dBm) | Antenna
Gain
(dBi) | EIRP
(dBm) | EIRP
(W) | Note. | |-----------|-------|--------------------|--------------------|---|--------------------------|---------------|-------------|-------| | WCDMA1900 | 9 262 | 1 852.4 | V | 20.30 | 5.34 | 25.64 | 0.366 | - | ## 7.8 RADIATED SPURIOUS EMISSIONS #### - Test Notes - 1. This EUT was tested under all configurations and the highest power is reported in GSM mode and WCDMA mode with HSDPA inactive at 12.2 kbps RMC and TPC bits set to "1" and in GSM mode using a Power Control Level of "0" in PCS Band and "5" in the Cellular Band. This EUT was tested with the fully charged battery. Also, we have done x, y, z planes in
EUT and horizontal and vertical polarization of detecting antenna. The worst case data is reported. - 2. Limit Calculation = 43 + 10 log₁₀(P[Watts]) - 3. The frequency spectrum is examined from 9 kHz to the 10th harmonic of the fundamental frequency of the transmitter. No other spurious and harmonic emissions were reported greater than listed emissions. - GPRS850 data (DC 24 V) | <u> </u> | - GF N3030 data (DC 24 V) | | | | | | | | | | | |----------|---------------------------|----------------|--------------|--|--|--|----------------|----------------|-------|--|--| | Channel | Tx Freq.
(MHz) | Freq.
(MHz) | POL
(H/V) | LEVEL@
ANTENNA
TERMINAL
(dBm) | Substitute
Antenna
Gain
(dBd) | Correct
Generator
Level
(dBm) | Limit
(dBm) | Margin
(dB) | Note. | | | | | | 1 648.58 | V | -48.22 | 4.51 | -43.71 | -13.00 | 30.71 | - | | | | 128 | 824.2 | 2 472.81 | Н | -35.30 | 4.14 | -31.16 | -13.00 | 18.16 | - | | | | | | 4 121.41 | Н | -44.26 | 7.67 | -36.59 | -13.00 | 23.59 | | | | | | | 1 637.18 | V | -43.34 | 4.40 | -38.94 | -13.00 | 25.94 | - | | | | 190 | 836.6 | 2 509.94 | Н | -33.71 | 4.14 | -29.57 | -13.00 | 16.57 | - | | | | | | 4 182.60 | Н | -45.43 | 7.73 | -37.70 | -13.00 | 24.70 | | | | | | | 1 697.36 | V | -43.80 | 4.58 | -39.22 | -13.00 | 26.22 | - | | | | 251 | 848.8 | 2 546.30 | Н | -41.14 | 4.19 | -36.95 | -13.00 | 23.95 | - | | | | | | 4 243.96 | Н | -45.35 | 7.83 | -37.52 | -13.00 | 24.52 | | | | ## - GPRS850 data (DC 12 V) | Channel | Tx Freq.
(MHz) | Freq.
(MHz) | POL
(H/V) | LEVEL@
ANTENNA
TERMINAL
(dBm) | Substitute
Antenna
Gain
(dBd) | Correct
Generator
Level
(dBm) | Limit
(dBm) | Margin
(dB) | Note. | |---------|-------------------|----------------|--------------|--|--|--|----------------|----------------|-------| | | | 1 673.36 | V | -43.80 | 4.58 | -39.22 | -13.00 | 26.22 | - | | 190 | 836.6 | 2 510.03 | Н | -41.14 | 4.19 | -36.95 | -13.00 | 23.95 | - | | | | 4 182.69 | Н | -45.35 | 7.83 | -37.52 | -13.00 | 24.52 | | TRF-RF-210(12)210316 Pages: 24 / 61 # - WCDMA850 data (DC 24 V) | Channel | Tx Freq.
(MHz) | Freq.
(MHz) | POL
(H/V) | LEVEL@
ANTENNA
TERMINAL
(dBm) | Substitute
Antenna
Gain
(dBd) | Correct
Generator
Level
(dBm) | Limit
(dBm) | Margin
(dB) | Note | |---------|-------------------|----------------|--------------|--|--|--|----------------|----------------|------| | | | 1 654.76 | Н | -54.52 | 4.53 | -49.99 | -13.00 | 36.99 | ı | | 4 132 | 826.4 | 2 473.44 | ٧ | -53.94 | 4.14 | -49.80 | -13.00 | 36.80 | - | | | | 3 310.22 | Н | -53.52 | 6.09 | -47.43 | -13.00 | 34.43 | - | | | | 1 674.99 | Н | -50.69 | 4.55 | -46.14 | -13.00 | 33.14 | - | | 4 183 | 836.6 | 2 500.85 | V | -55.18 | 4.13 | -51.05 | -13.00 | 38.05 | - | | | | 3 342.16 | Н | -53.83 | 6.23 | -47.60 | -13.00 | 34.60 | - | | | | 1 695.59 | Н | -54.00 | 4.57 | -49.43 | -13.00 | 36.43 | - | | 4 233 | 846.6 | 2 540.23 | V | -55.21 | 4.19 | -51.02 | -13.00 | 38.02 | - | | | | 3 391.00 | Н | -54.41 | 6.38 | -48.03 | -13.00 | 35.03 | - | # - WCDMA850 data (DC 12 V) | Channel | Tx Freq.
(MHz) | Freq.
(MHz) | POL
(H/V) | LEVEL@
ANTENNA
TERMINAL
(dBm) | Substitute
Antenna
Gain
(dBd) | Correct
Generator
Level
(dBm) | Limit
(dBm) | Margin
(dB) | Note | |---------|-------------------|----------------|--------------|--|--|--|----------------|----------------|------| | | | 1 675.11 | Н | -53.16 | 4.55 | -48.61 | -13.00 | 35.61 | - | | 4 183 | 836.6 | 2 513.49 | V | -54.77 | 4.15 | -50.62 | -13.00 | 37.62 | | | | | 3 342.19 | Н | -52.81 | 6.23 | -46.58 | -13.00 | 33.58 | - | ## - WCDMA1700 data (DC 24 V) | Channel | Tx Freq.
(MHz) | Freq.
(MHz) | POL
(H/V) | LEVEL@
ANTENNA
TERMINAL
(dBm) | Substitute
Antenna
Gain
(dBi) | Correct
Generator
Level
(dBm) | Limit
(dBm) | Margin
(dB) | Note | |---------|-------------------|----------------|--------------|--|--|--|----------------|----------------|------| | | | 3 426.58 | V | -52.04 | 8.67 | -43.37 | -13.00 | 30.37 | - | | 1 312 | 2 1 712.4 | 5 134.39 | V | -53.86 | 10.76 | -43.10 | -13.00 | 30.10 | - | | 1312 | 1712.4 | 6 853.46 | Н | -51.94 | 11.94 | -40.00 | -13.00 | 27.00 | - | | | | 8 567.22 | V | -53.52 | 13.54 | -39.98 | -13.00 | 26.98 | - | | | | 3 467.06 | V | -52.54 | 8.79 | -43.75 | -13.00 | 30.75 | - | | 1 412 | 1 732.4 | 5 200.40 | V | -53.12 | 10.94 | -42.18 | -13.00 | 29.18 | - | | 1412 | 1 732.4 | 6 933.84 | Н | -49.93 | 12.14 | -37.79 | -13.00 | 24.79 | - | | | | 8 656.12 | V | -52.16 | 13.67 | -38.49 | -13.00 | 25.49 | ı | | | | 3 503.36 | V | -53.69 | 8.80 | -44.89 | -13.00 | 31.89 | - | | 1 513 | 1 752.6 | 5 259.35 | V | -56.17 | 10.92 | -45.25 | -13.00 | 32.25 | - | | 1 313 | 1 / 32.0 | 7 014.47 | Н | -51.33 | 12.21 | -39.12 | -13.00 | 26.12 | | | | | 8 762.15 | V | -55.04 | 13.75 | -41.29 | -13.00 | 28.29 | - | TRF-RF-210(12)210316 Pages: 25 / 61 # - WCDMA1700 data (DC 12 V) | Channel | Tx Freq.
(MHz) | Freq.
(MHz) | POL
(H/V) | LEVEL@
ANTENNA
TERMINAL
(dBm) | Substitute
Antenna
Gain
(dBi) | Correct
Generator
Level
(dBm) | Limit
(dBm) | Margin
(dB) | Note | |-----------------|-------------------|----------------|--------------|--|--|--|----------------|----------------|------| | | | 3 503.42 | V | -53.86 | 8.80 | -45.06 | -13.00 | 32.06 | - | | 1 510 | 1 752.6 | 5 250.94 | V | -56.99 | 10.92 | -46.07 | -13.00 | 33.07 | - | | 1 513 1 752.6 | 7 006.44 | Н | -50.84 | 12.21 | -38.63 | -13.00 | 25.63 | - | | | | | 8 761.90 | V | -54.64 | 13.75 | -40.89 | -13.00 | 27.89 | - | # - GPRS1900 data (DC 24 V) | Channel | Tx Freq.
(MHz) | Freq.
(MHz) | POL
(H/V) | LEVEL@
ANTENNA
TERMINAL
(dBm) | Substitute
Antenna
Gain
(dBi) | Correct
Generator
Level
(dBm) | Limit
(dBm) | Margin
(dB) | Note | |---------|-------------------|----------------|--------------|--|--|--|----------------|----------------|------| | | | 3 700.35 | Н | -46.72 | 8.88 | -37.84 | -13.00 | 24.84 | - | | 512 | 1 850.2 | 5 551.10 | Н | -53.60 | 10.91 | -42.69 | -13.00 | 29.69 | - | | | | 7 400.50 | Н | -56.28 | 12.30 | -43.98 | -13.00 | 30.98 | - | | | | 3 760.07 | Н | -45.14 | 8.92 | -36.22 | -13.00 | 23.22 | - | | 661 | 1 880.0 | 5 639.84 | Н | -53.13 | 11.06 | -42.07 | -13.00 | 29.07 | - | | | | 7 520.06 | Н | -53.95 | 12.54 | -41.41 | -13.00 | 28.41 | - | | | | 3 819.74 | Н | -43.20 | 9.10 | -34.10 | -13.00 | 21.10 | - | | 810 | 1 909.8 | 5 729.45 | Н | -52.12 | 11.24 | -40.88 | -13.00 | 27.88 | - | | | | 7 638.91 | Н | -54.12 | 12.66 | -41.46 | -13.00 | 28.46 | - | # - GPRS1900 data (DC 12 V) | Channel | Tx Freq.
(MHz) | Freq.
(MHz) | POL
(H/V) | LEVEL@
ANTENNA
TERMINAL
(dBm) | Substitute
Antenna
Gain
(dBi) | Correct
Generator
Level
(dBm) | Limit
(dBm) | Margin
(dB) | Note | |---------|-------------------|----------------|--------------|--|--|--|----------------|----------------|------| | | | 3 819.78 | Н | -42.80 | 9.10 | -33.70 | -13.00 | 20.70 | - | | 810 | 1 909.8 | 5 729.49 | Η | -52.82 | 11.24 | -41.58 | -13.00 | 28.58 | - | | | | 7 639.07 | Н | -53.28 | 12.66 | -40.62 | -13.00 | 27.62 | - | TRF-RF-210(12)210316 Pages: 26 / 61 - WCDMA1900 data (DC 24 V) | Channel | Tx Freq.
(MHz) | Freq.
(MHz) | POL
(H/V) | LEVEL@
ANTENNA
TERMINAL
(dBm) | Substitute
Antenna
Gain
(dBi) | Correct
Generator
Level
(dBm) | Limit
(dBm) | Margin
(dB) | Note | |---------|-------------------|----------------|--------------|--|--|--|----------------|----------------|------| | | | 3 708.07 | V | -55.62 | 8.88 | -46.74 | -13.00 | 33.74 | - | | 0.262 | 1 050 / | 5 559.69 | Н | -55.03 | 10.94 | -44.09 | -13.00 | 31.09 | - | | 9 262 | 1 852.4 | 7 413.70 | V | -46.36 | 12.34 | -34.02 | -13.00 | 21.02 | - | | | | 9 267.30 | V | -52.03 | 13.76 | -38.27 | -13.00 | 25.27 | - | | | | 3 761.06 | V | -55.19 | 8.93 | -46.26 | -13.00 | 33.26 | - | | 0.400 | 4 000 0 | 5 636.57 | Н | -53.87 | 11.07 | -42.80 | -13.00 | 29.80 | - | | 9 400 | 1 880.0 | 7 515.90 | V | -50.07 | 12.54 | -37.53 | -13.00 | 24.53 | - | | | | 9 395.24 | V | -51.49 | 13.79 | -37.70 | -13.00 | 24.70 | - | | | | 3 805.64 | V | -54.60 | 9.04 | -45.56 | -13.00 | 32.56 | - | | 0.539 | 1 907.6 | 5 725.80 | Н | -53.67 | 11.23 | -42.44 | -13.00 | 29.44 | - | | 9 538 | 0.106 1 | 7 628.90 | V | -55.72 | 12.63 | -43.09 | -13.00 | 30.09 | - | | | | 9 543.12 | V | -51.12 | 13.73 | -37.39 | -13.00 | 24.39 | - | Report No.: DRTFCC2108-0079 # - WCDMA1900 data (DC 12 V) | Channel | Tx Freq.
(MHz) | Freq.
(MHz) | POL
(H/V) | LEVEL@
ANTENNA
TERMINAL
(dBm) | Substitute
Antenna
Gain
(dBi) | Correct
Generator
Level
(dBm) | Limit
(dBm) | Margin
(dB) | Note | |---------|-------------------|----------------|--------------|--
--|--|----------------|----------------|------| | | | 3 701.65 | V | -55.72 | 8.88 | -46.84 | -13.00 | 33.84 | - | | 9 262 | 1 852.4 | 5 559.84 | Н | -53.02 | 10.94 | -42.08 | -13.00 | 29.08 | - | | 9 202 | 1 002.4 | 7 413.68 | V | -46.71 | 12.34 | -34.37 | -13.00 | 21.37 | - | | | | 9 267.13 | V | -52.59 | 13.76 | -38.83 | -13.00 | 25.83 | - | TRF-RF-210(12)210316 Pages: 27 / 61 Report No.: DRTFCC2108-0079 IC: 26419-TMS30TYPEA #### 7.9 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE #### - Test Notes. Based on the results of the frequency stability test at the center channel the frequency deviation results measured are very small. As such it is determined that the channels at the band edge would remain in-band when the maximum measured frequency deviation noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested. ## 7.9.1 FREQUENCY STABILITY (GPRS1900) OPERATING FREQUENCY 1,880,000,000 Hz CHANNEL 661(Mid) REFERENCE VOLTAGE 24 V DC The frequency stability shall be sufficient to ensure that the LIMIT(FCC) fundamental emission stays within the authorized frequency block. LIMIT(IC) : ± 0.00025 % or 2.5 ppm | VOLTAGE | POWER | TEMP | FREQ | Dev | /iation | |---------|--------|----------|---------------|--------|---------------| | (%) | (V DC) | (℃) | (Hz) | (ppm) | (%) | | 100 % | | +20(Ref) | 1,880,000,016 | 0.009 | 0.000 000 85 | | 100 % | | -30 | 1,879,999,998 | -0.001 | -0.000 000 11 | | 100 % | | -20 | 1,880,000,009 | 0.005 | 0.000 000 48 | | 100 % | | -10 | 1,879,999,998 | -0.001 | -0.000 000 11 | | 100 % | 24.0 | 0 | 1,879,999,993 | -0.004 | -0.000 000 37 | | 100 % | 24.0 | +10 | 1,880,000,003 | 0.002 | 0.000 000 16 | | 100 % | | +20 | 1,880,000,016 | 0.009 | 0.000 000 85 | | 100 % | | +30 | 1,880,000,011 | 0.006 | 0.000 00 059 | | 100 % | | +40 | 1,879,999,999 | -0.001 | -0.000 000 05 | | 100 % | | +50 | 1,880,000,006 | 0.003 | 0.000 000 32 | | 115 % | 27.6 | +20 | 1,880,000,011 | 0.006 | 0.000 000 59 | | 85 % | 20.4 | +20 | 1,879,999,998 | -0.001 | -0.000 000 11 | TRF-RF-210(12)210316 Pages: 28 / 61 Report No.: DRTFCC2108-0079 IC: 26419-TMS30TYPEA OPERATING FREQUENCY : <u>1,880,000,000</u> Hz CHANNEL : <u>661(Mid)</u> REFERENCE VOLTAGE : <u>12 V DC</u> LIMIT(FCC) : The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. LIMIT(IC) : ± 0.00025 % or 2.5 ppm | VOLTAGE
(%) | POWER
(V DC) | TEMP
(℃) | FREQ
(Hz) | Deviation | | |----------------|-----------------|--------------------|---------------|-----------|---------------| | | | | | (ppm) | (%) | | 100 % | 12.0 | +20(Ref) | 1,879,999,999 | -0.001 | -0.000 000 05 | | 100 % | | -30 | 1,880,000,011 | 0.006 | 0.000 000 59 | | 100 % | | -20 | 1,879,999,997 | -0.002 | -0.000 000 16 | | 100 % | | -10 | 1,879,999,988 | -0.006 | -0.000 000 64 | | 100 % | | 0 | 1,880,000,006 | 0.003 | 0.000 000 32 | | 100 % | | +10 | 1,879,999,996 | -0.002 | -0.000 000 21 | | 100 % | | +20 | 1,879,999,999 | -0.001 | -0.000 000 05 | | 100 % | | +30 | 1,879,999,991 | -0.005 | -0.000 000 48 | | 100 % | | +40 | 1,880,000,002 | 0.001 | 0.000 000 11 | | 100 % | | +50 | 1,880,000,018 | 0.010 | 0.000 000 96 | | 115 % | 13.8 | +20 | 1,879,999,999 | -0.001 | -0.000 000 05 | | 85 % | 10.2 | +20 | 1,880,000,006 | 0.003 | 0.000 000 32 | ## 8. TEST PLOTS #### **8.1 PEAK TO AVERAGE RATIO** # GPRS1900 data (DC 24 V) -P_{Pk} (dBm) GPRS1900 & Channel: 661 #Avg Type: Log-Pwr Frequency Center Freq 1.880000000 GHz PNO: Fast Trig: Free Run IFGain:Low #Atten: 44 dB **Auto Tune** Mkr2 1.880 000 GHz 28.30 dBm Ref Offset 7.19 dB Ref 37.19 dBm Center Freq 1.880000000 GHz Start Fred 1.877500000 GHz والهاسيل Stop Freq 1.882500000 GHz Span 5.000 MHz Sweep 1.000 ms (1001 pts) Center 1.880000 GHz #Res BW 1.0 MHz CF Step 500.000 kHz **#VBW** 3.0 MHz Man Freq Offset Report No.: DRTFCC2108-0079 $PAPR (dB) = P_{Pk} (dBm) - P_{Avg} (dBm) = 28.35 dBm - 27.91 dBm = 0.44 dB$ $PAPR (dB) = P_{Pk} (dBm) - P_{Avg} (dBm) = 27.55 dBm - 24.10 dBm = 3.45 dB$ ## **GPRS1900 data (DC 12 V)** PAPR (dB) = P_{Pk} (dBm) - P_{Avg} (dBm) = 28.33 dBm - 27.95 dBm = 0.38 dB TRF-RF-210(12)210316 Pages: 32 / 61 $PAPR (dB) = P_{Pk} (dBm) - P_{Avg} (dBm) = 27.46 dBm - 24.08 dBm = 3.38 dB$ This test report is prohibited to copy or reissue in whole or in part without the approval of DT&C Co., Ltd. TRF-RF-210(12)210316 Pages: 33 / 61 ## 8.2 OCCUPIED BANDWIDTH (99 % Bandwidth) ## **GPRS1900 data (DC 24 V)** GPRS1900 & Channel: 512 ## GPRS1900 & Channel: 661 # GRPS1900 & Channel: 810 # EDGE1900 & Channel: 512 ## EDGE1900 & Channel: 661 ## **GPRS1900 data (DC 12 V)** # EDGE1900 & Channel: 512 #### 8.3 SPURIOUS EMISSIONS AT ANTENNA TERMINAL ## **GPRS1900 data (DC 24 V)** ## GPRS1900 & Channel: 661 ## GPRS1900 & Channel: 810 ## EDGE1900 & Channel: 512 ## EDGE1900 & Channel: 661 # EDGE1900 & Channel: 810 ## **GPRS1900 data (DC 12 V)** #### GPRS1900 & Channel: 512 ## GPRS1900 & Channel: 661 ## GPRS1900 & Channel: 810 ## EDGE1900 & Channel: 512 ## EDGE1900 & Channel: 661 # EDGE1900 & Channel: 810 #### 8.4 BAND EDGE EMISSIONS AT ANTENNA TERMINAL ## **GPRS1900 data (DC 24 V)** ## GPRS1900 & Channel: 810 ## EDGE1900 & Channel: 512 # EDGE1900 & Channel: 810 ## **GPRS1900 data (DC 12 V)** #### GPRS1900 & Channel: 512 ## GPRS1900 & Channel: 810 # EDGE1900 & Channel: 512 ## EDGE1900 & Channel: 810