

Test Report

Report No.: MTi240722001-02E1

Date of issue: 2024-08-01

Applicant: ASAP Technology(Jiangxi) Co., Ltd.

Product name: Wireless Charger

Model(s): L338WC006-CS-R

FCC ID: 2APXNL338WC006

Shenzhen Microtest Co., Ltd. http://www.mtitest.cn

Instructions

- 1. This test report shall not be partially reproduced without the written consent of the laboratory.
- 2. The test results in this test report are only responsible for the samples submitted
- 3. This test report is invalid without the seal and signature of the laboratory.
- 4. This test report is invalid if transferred, altered, or tampered with in any form without authorization.
- 5. Any objection to this test report shall be submitted to the laboratory within 15 days from the date of receipt of the report.

Table of contents

1	Gene	eral Description	5
	1.1 1.2 1.3 1.4 1.5	Description of the EUT Description of test modes Environmental Conditions Description of support units Measurement uncertainty	5 6 6
2	Sum	mary of Test Result	7
3	Test	Facilities and accreditations	8
	3.1	Test laboratory	8
4	List	of test equipment	9
5	Eval	uation Results (Evaluation)	10
	5.1	Antenna requirement	10
6	Radi	io Spectrum Matter Test Results (RF)	11
	6.1 6.2 6.3 6.4	Conducted Emission at AC power line	14 17
Ph	otogr	aphs of the test setup	25
Ph	otogr	aphs of the EUT	26

Test Result Certification					
Applicant:	Applicant: ASAP Technology (Jiangxi) Co., Ltd.				
Address:	Ji'an Industrial Park, Ji'an, Jiangxi, 343100 China				
Manufacturer:	LUXSHARE-ICT(NGHE AN) LIMITED				
Address:	No.18 Street 03, VSIP Nghe An Industrial Park, Hung Tay Commune,Hung Nguyen District, Nghe An Province, Vietnam				
Product description					
Product name:	Wireless Charger				
Trademark:	UTILITECH				
Model name:	L338WC006-CS-R				
Series Model(s):	Item#6305718				
Standards:	47 CFR Part 15C				
Test Method:	ANSI C63.10-2013				
Date of Test					
Date of test:	2024-07-29 to 2024-07-31				
Test result:	Pass				

Test Engineer	:	letter.lan.
		(Letter Lan)
Reviewed By		David. Cel
		(David Lee)
Approved By		leon chen
		(Leon Chen)

1 General Description

1.1 Description of the EUT

	-		
Product name:	Wireless Charger		
Model name:	L338WC006-CS-R		
Series Model(s):	Item#6305718		
Model difference:	Both the models are the same circuit and module, It's just that Item#6305718 is the customer's Item number.		
Electrical rating:	Input: 5VDC 3A 9DCV 2.22A Wireless output: 15W Max		
Accessories:	Cable: Type-C to Type-C cable 1m Adapter: Model: L338WC006-CS-R2 Input: 100-240V~50/60Hz 0.5A Output: 5V=3A, 9V=2.22A		
Hardware version:	A		
Software version:	A1		
Test sample(s) number:	MTi240722001-02S1001		
RF specification			
Operating frequency range:	115-205kHz: 5W, 7.5W 360kHz: 10W, 15W		
Modulation type:	ASK		
Antenna(s) type:	Coil		

1.2 Description of test modes

No.	Emission test modes
Mode1	Wireless Output (5W)
Mode2	Wireless Output (10W)
Mode3	Wireless Output (7.5W)
Mode4	Wireless Output (15W)
Mode5	Stand by

1.3 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15°C ~ 35°C
Humidity:	20% RH ~ 75% RH
Atmospheric pressure:	98 kPa ~ 101 kPa

1.4 Description of support units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Support equipment list					
Description Model Serial No. Manufacturer					
wireless charging load YBZ1.1 / YBZ		YBZ			
wireless charging load YBZ3.0 / YBZ		YBZ			
Support cable list					
Description Length (m) From To					
/	/	1	1		

1.5 Measurement uncertainty

Measurement	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	±3.1dB
Occupied channel bandwidth	±3 %
Radiated spurious emissions (9kHz~30MHz)	±4.3dB
Radiated spurious emissions (30MHz~1GHz)	±4.7dB
Temperature	±1 °C
Humidity	± 5 %

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2 Summary of Test Result

No.	Item	Standard	Requirement	Result
1	Antenna requirement	47 CFR Part 15C	47 CFR Part 15.203	Pass
2	Conducted Emission at AC power line	47 CFR Part 15C	47 CFR Part 15.207(a)	Pass
3	20dB Occupied Bandwidth	47 CFR Part 15C	47 CFR Part 15.215(c)	Pass
4	Emissions in frequency bands (below 30MHz)	47 CFR Part 15C	47 CFR Part 15.209	Pass
5	Emissions in frequency bands (30MHz - 1GHz)	47 CFR Part 15C	47 CFR Part 15.209	Pass

3 Test Facilities and accreditations

3.1 Test laboratory

Test laboratory:	Shenzhen Microtest Co., Ltd.			
Test site location:	101, No.7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China			
Telephone:	(86-755)88850135			
Fax:	(86-755)88850136			
CNAS Registration No.:	CNAS L5868			
FCC Registration No.:	448573			
IC Registration No.:	21760			
CABID:	CN0093			

4 List of test equipment

No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due
Conducted Emission at AC power line						
1	EMI Test Receiver	Rohde&schwarz	ESCI3	101368	2024-03-20	2025-03-19
2	Artificial mains network	Schwarzbeck	NSLK 8127	183	2024-03-21	2025-03-20
3	Artificial Mains Network	Rohde & Schwarz	ESH2-Z5	100263	2024-03-20	2025-03-19
		20dB Od	cupied Bandwid	th		
1	Wideband Radio Communication Tester	Rohde&schwarz	CMW500	149155	2024-03-20	2025-03-19
2	ESG Series Analog Ssignal Generator	Agilent	E4421B	GB40051240	2024-03-21	2025-03-20
3	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2024-03-21	2025-03-20
4	Synthesized Sweeper	Agilent	83752A	3610A01957	2024-03-21	2025-03-20
5	MXA Signal Analyzer	Agilent	N9020A	MY50143483	2024-03-21	2025-03-20
6	RF Control Unit	Tonscend	JS0806-1	19D8060152	2024-03-21	2025-03-20
7	Band Reject Filter Group	Tonscend	JS0806-F	19D8060160	2024-03-21	2025-03-20
8	ESG Vector Signal Generator	Agilent	N5182A	MY50143762	2024-03-20	2025-03-19
9	DC Power Supply	Agilent	E3632A	MY40027695	2024-03-21	2025-03-20
		Emissions in frequ	ency bands (bel	ow 30MHz)		
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03-20	2025-03-19
2	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2024-03-23	2025-03-22
3	Amplifier	Hewlett-Packard	8447F	3113A06184	2024-03-20	2025-03-19
Emissions in frequency bands (30MHz - 1GHz)						
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03-20	2025-03-19
2	TRILOG Broadband Antenna	schwarabeck	VULB 9163	9163-1338	2023-06-11	2025-06-10
3	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2024-03-23	2025-03-22
4	Amplifier	Hewlett-Packard	8447F	3113A06184	2024-03-20	2025-03-19
_						

5 Evaluation Results (Evaluation)

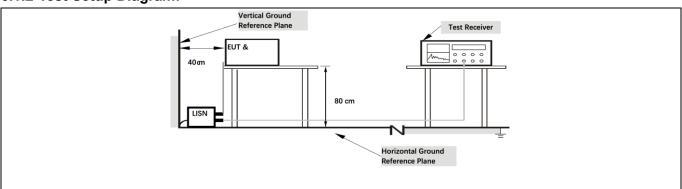
5.1 Antenna requirement

Test Requirement:	Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.
-------------------	---

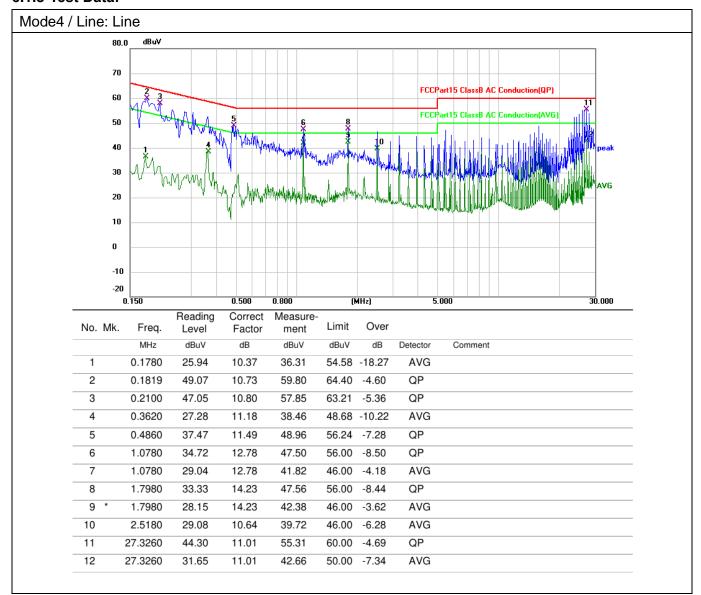
5.1.1 Conclusion:

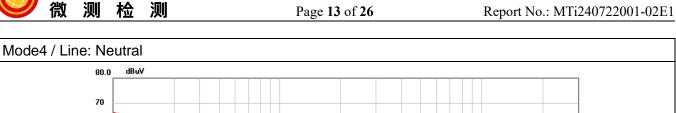
The antenna of the EUT is permanently attached.
The EUT complies with the requirement of FCC PART 15.203.

6 Radio Spectrum Matter Test Results (RF)


6.1 Conducted Emission at AC power line

Test Requirement:	Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 µH/50 ohms line impedance stabilization network (LISN).						
Test Limit:	Frequency of emission (MHz)	Conducted limit (dBµV	<u>'</u>)				
		Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	*Decreases with the logarithm of	the frequency.					
Test Method:	ANSI C63.10-2013 section 6.2						
Procedure:	Refer to ANSI C63.10-2013 secti line conducted emissions from un			ver-			


6.1.1 E.U.T. Operation:


Operating Environment:									
Temperature: 26 °C Humidity: 41 % Atmospheric Pressure: 101 kPa									
Pre test mode:	Pre test mode: Mode1, Mode2, Mode3, Mode4, Mode5								
Final test mode	Final test mode: All of the listed pre-test mode were tested, only the data of the worst mode (Mode4) is recorded in the report								

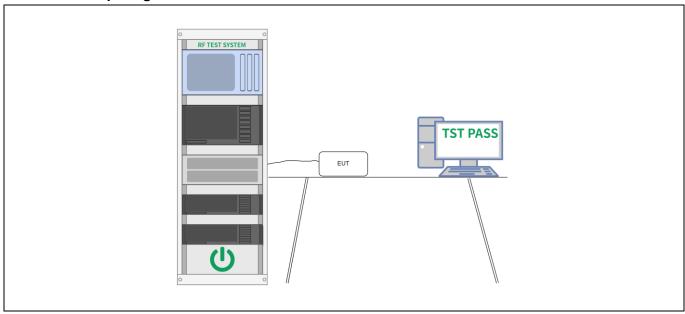
6.1.2 Test Setup Diagram:

6.1.3 Test Data:

70																
60	1 3								F	ССРа	art1	5 Clas	sB AC	Conduction(QP)	11	
50	ANT LINK	M. du-					6 8 X X		F	CCPa	art1	5 Clas	sB AC	Conduction(AVI		
0	3	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	W	W	Lyphydd	m/\/n	A Property of the second	10 W			ı	1.1.1				peak
0	W 1. MM	MA	JN I	١,	N. Justin	Taur o	1	W WANT	MANAGE	₩	M,					AVG
0	VV *	**	W \	\rightarrow \right	Mark	የጣንያ	الملك المدارسيان المالحة كالمالم الم	Mharylangha	بالر <u>اليالي</u>		A.A.		IIII		A STATE OF THE PARTY OF THE PAR	Avu
0																
																-
20																-
0.	150		0.	500	0	800	(H	IHz)		5.0	000				3	0.000

No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1660	47.91	10.38	58.29	65.16	-6.87	QP	
2	0.1819	23.46	10.73	34.19	54.40	-20.21	AVG	
3	0.1860	46.90	10.76	57.66	64.21	-6.55	QP	
4	0.2779	39.78	10.99	50.77	60.88	-10.11	QP	
5	0.3620	25.11	11.18	36.29	48.68	-12.39	AVG	
6	1.0780	34.61	12.78	47.39	56.00	-8.61	QP	
7	1.0780	28.10	12.78	40.88	46.00	-5.12	AVG	
8	1.7980	32.38	14.23	46.61	56.00	-9.39	QP	
9	1.7980	26.53	14.23	40.76	46.00	-5.24	AVG	
10	2.5180	28.34	10.64	38.98	46.00	-7.02	AVG	
11 *	25.8900	44.46	11.03	55.49	60.00	-4.51	QP	
12	25.8900	29.94	11.03	40.97	50.00	-9.03	AVG	

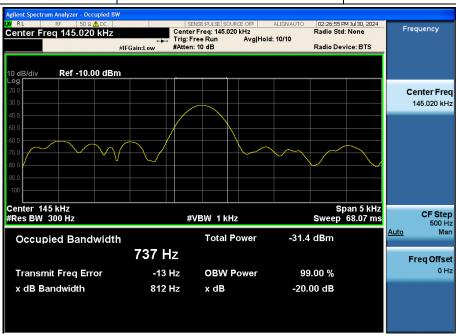
6.2 20dB Occupied Bandwidth


Test Requirement:	47 CFR Part 15.215(c)
Test Limit:	Refer to 47 CFR 15.215(c), intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.
Test Method:	ANSI C63.10-2013, section 6.9.2
Procedure:	a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW, unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2. d) Steps a) through c) might require iteration to adjust within the specified tolerances. e) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below the target "-xx dB down" requirement; that is, if the requirement calls for measuring the -20 dB OBW, the instrument noise floor at the selected RBW shall be at least 30 dB below the reference value. f) Set detection mode to peak and trace mode to max hold. g) Determine the reference value: Set the EUT to transmit an unmodulated carrier or modulated signal, as applicable. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value). h) Determine the "-xx dB down amplitude" using [(reference value) - xx]. Alternatively, this calculation may be made by using the marker-delta function of the instrument. i) If the reference value is determined by an unmodulated carrier, then turn the EUT modulation ON, and either clear the existing trace or start a new trace on the spectrum analyzer and allow the new trace to stabilize. Otherwise, the trace from step g) shall be used for step j). j) Place two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "-xx dB do
	shall be clearly labeled. Tabular data may be reported in addition to the

6.2.1 E.U.T. Operation:

Operating Environment:									
Temperature:	Temperature: 25 °C Humidity: 56 % Atmospheric Pressure: 101 kPa								
Pre test mode:	Pre test mode: Mode1, Mode2, Mode3, Mode4, Mode5								
Final test mode	Final test mode: All of the listed pre-test mode were tested, only the data of the worst mode (Mode4, , Mode2) is recorded in the report								

6.2.2 Test Setup Diagram:



6.2.3 Test Data:

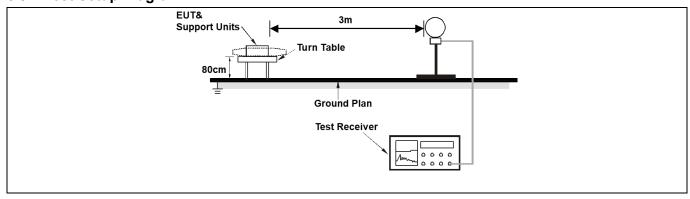
Note: Because the measured signal is CW-like, adjusting the RBW per C63.10 would not be practical since measurement bandwidth will always follow the RBW. The RBW is set to 300 Hz to perform the occupied bandwidth test.

7.5W

Frequency kHz	20 dB occupied bandwidth	99% occupied bandwidth
145.02	812	Hz 737

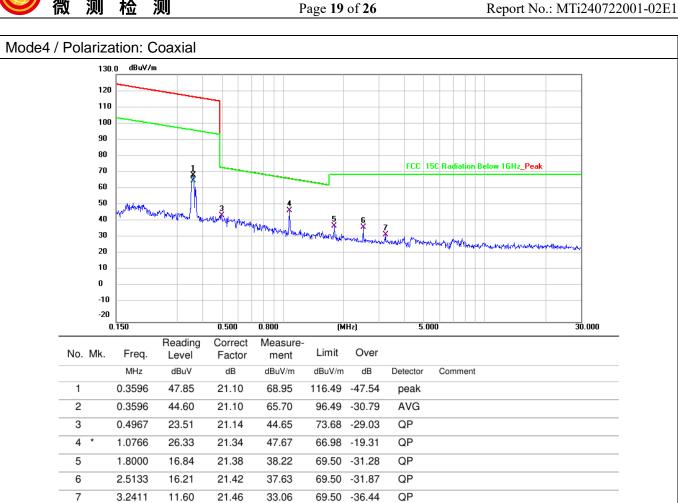
15W

VV				
Frequency	20 dB occupied band	99% occupied bandw Hz	/idth	
kHz	Hz	Hz		
360	803		728	
Aglient Spectrum Analyzer - Occupied B RE SO A OC Center Freq 360.000 kHz 10 dB/div Ref 0.00 dBm Log 100 200 300 400 500 500 600 700 Center 360 kHz #Res BW 300 Hz Occupied Bandwidt	SENSEPULS SOURCE OFF AL Center Freq: 380.000 kHz Trig: Free Run Avg Hold: 1 #Atten: 10 dB #VBW 1 kHz	Radio Std: Non Radio Device: E Span: Sweep 68.0 -18.0 dBm	Swept SA Channel Power Occupied BW ACP	
x dB Bandwidth	803 Hz x dB	-20.00 dB	More 1 of 2	
MSG		STATUS ! DC Coupled		


6.3 Emissions in frequency bands (below 30MHz)

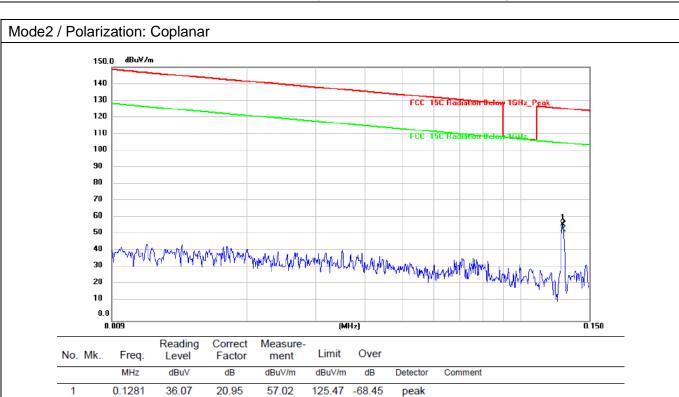
Test Requirement:	47 CFR Part 15.209		
Test Limit:	Frequency (MHz)	Field strength	Measuremen
		(microvolts/meter)	t distance
			(meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500 n paragraph (g), fundamenta	3
	frequency bands 54-72 However, operation with sections of this part, e.g. In the emission table at The emission limits show that three bands are based As shown in § 15.35(b) limits in paragraphs (a) However, the peak field maximum permitted avant condition of modula (b) of this section, the permillivolts/meter at 3 merms of the permillivolts/meter at 3 merms.	erating under this section she MHz, 76-88 MHz, 174-216 hin these frequency bands is g., §§ 15.231 and 15.241. Dove, the tighter limit applies own in the above table are basi-peak detector except for above 1000 MHz. Radiated on measurements employin, for frequencies above 1000 and (b)of this section are ball strength of any emission sherage limits specified above ation. For point-to-point oper eak field strength shall not eters along the antenna azim	MHz or 470-806 MHz. s permitted under other s at the band edges. ased on measurements the frequency bands 9–90 emission limits in these g an average detector. O MHz, the field strength sed on average limits. The hall not exceed the by more than 20 dB under ration under paragraph exceed 2500
Test Method:	ANSI C63.10-2013 sec		
Procedure:	ANSI C63.10-2013 sec	tion 6.4	


6.3.1 E.U.T. Operation:


Operating Environment:									
Temperature:	22.5 °C Humidity: 43 % Atmospheric Pressure: 101 kPa								
Pre test mode:	Pre test mode: Mode1, Mode2, Mode3, Mode4, Mode5								
Final test mode: All of the listed pre-test mode were tested, only the data of the worst mode (Mode4, Mode2) is recorded in the report						of the worst mode			

6.3.2 Test Setup Diagram:

6.3.3 Test Data:


2

0.1281

33.15

20.95

54.10

105.47 -51.37

AVG

17.79

18.25

13.70

21.25

21.30

21.36

39.04

39.55

35.06

69.92

-30.88

68.54 -28.99

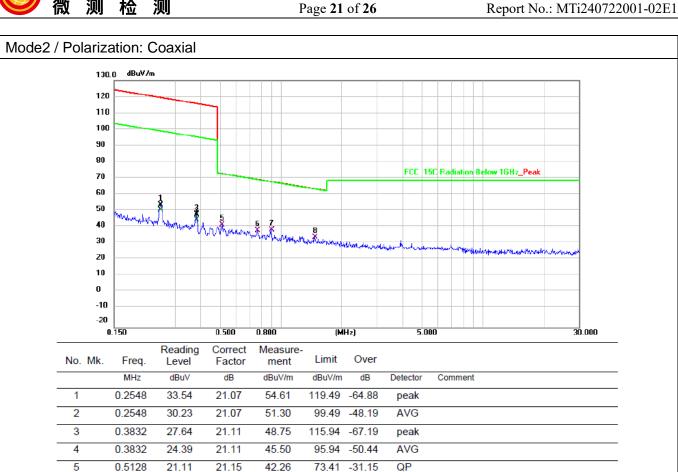
64.27 -29.21

QP

QP

QP

0.7669

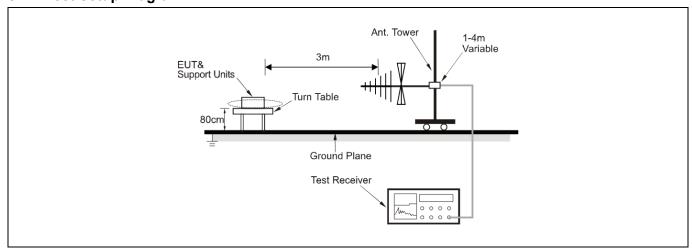

0.8992

1.4718

6

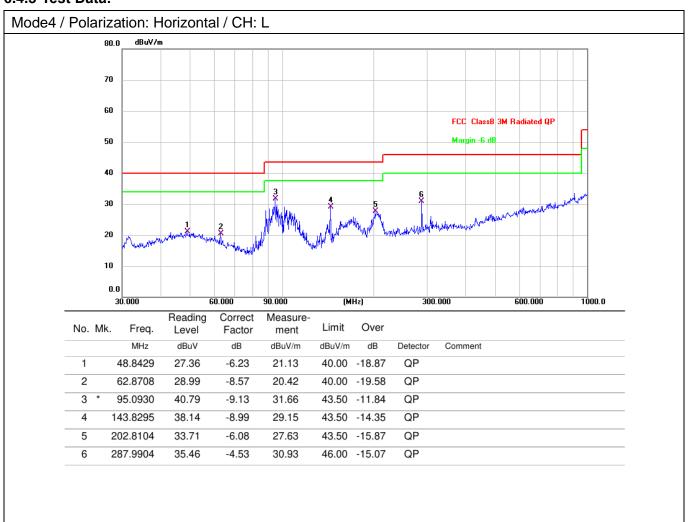
7

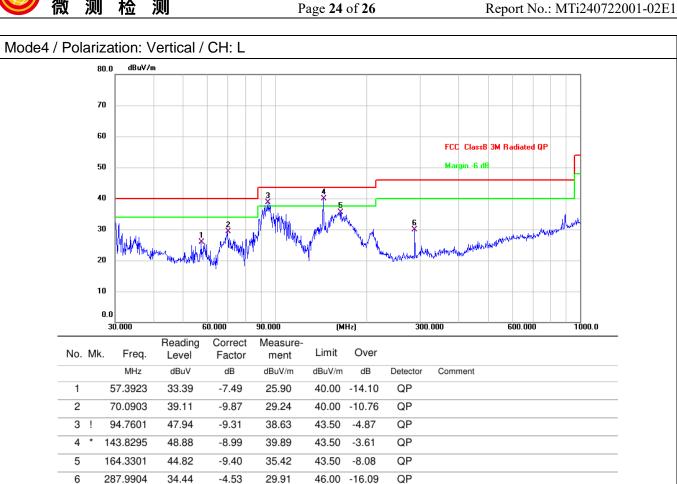
8


6.4 Emissions in frequency bands (30MHz - 1GHz)

Test Requirement:	47 CFR Part 15.209		
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	However, operation with sections of this part, e.g. In the emission table at The emission limits sho employing a CISPR quakHz, 110–490 kHz and three bands are based As shown in § 15.35(b) limits in paragraphs (a) However, the peak field maximum permitted ave any condition of modula (b) of this section, the permillivolts/meter at 3 meters	MHz, 76-88 MHz, 174-216 Main these frequency bands is J., §§ 15.231 and 15.241. Hove, the tighter limit applies with in the above table are basi-peak detector except for tabove 1000 MHz. Radiated from measurements employing for frequencies above 1000 and (b)of this section are basistrength of any emission shart and the section for point-to-point operates along the antenna azimuters.	at the band edges. sed on measurements the frequency bands 9–90 emission limits in these g an average detector. MHz, the field strength sed on average limits. all not exceed the by more than 20 dB under ation under paragraph sceed 2500
Test Method:	ANSI C63.10-2013 sec	ion 6.5	
Procedure:	ANSI C63.10-2013 sec	ion 6.5	

6.4.1 E.U.T. Operation:


Operating Environment:								
Temperature:	mperature: 22.5 °C Humidity: 43 % Atmospheric Pressure: 101 kPa							
Pre test mode:	Pre test mode: Mode1, Mode2, Mode3, Mode4, Mode5							
Final test mode	Final test mode: All of the listed pre-test mode were tested, only the data of the worst mode (Mode4) is recorded in the report							


6.4.2 Test Setup Diagram:

6.4.3 Test Data:

Photographs of the test setup

Refer to Appendix - Test Setup Photos

Photographs of the EUT

Refer to Appendix - EUT Photos

----End of Report----