SAR EVALUATION REPORT For # **b** Mobile HK Limited Flat 18 14/F, Block 1, Golden Industrial Building, 16-26 Kwai Tak Street, Kwai Chung, New Territories, Hong Kong FCC ID: ZSW-30-025 Report Type: Product Type: CIIPC Report 2G/3G/4G LTE Mobile Phone Jin Yang **Prepared By:** Test Engineer **Report Number:** R1703288-SAR **Report Date:** 2017-04-06 Bo Li **Reviewed By:** RF Supervisor Bay Area Compliance Laboratories Corp. 1274 Anvilwood Avenue, Sunnyvale, CA 94089, USA Tel: (408) 732-9162 Fax: (408) 732-9164 Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report must not be used by the customer to claim product certification, approval, or endorsement by A2LA* or any agency of the Federal Government. * This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "*" (mex) FCC ID: ZSW-30-025 b Mobile.HK Limited | | Summary of Test Results | | | | | |--|---|--|--|--|--| | Rule Part(s): | FCC §2.1093 | | | | | | Test Procedure(s): | IEEE 1528: 2013 KDB 447498 D01 General RF Exposure Guidance v06 KDB 648474 D04 Handset SAR v01r03 KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 KDB 865664 D02 RF Exposure Reporting v01r02 KDB 941225 D01 3G SAR Procedures v03r01 KDB 941225 D05 SAR for LTE Devices v02r05 KDB 941225 D06 Hotspot Mode v02r01, IEC 62209-2: 2010 | | | | | | Device Category:
Exposure Category: | Portable Device
General Population/Uncontrolled Exposure | | | | | | Device Type: | Portable Device | | | | | | Operation Mode: | GSM Voice, GPRS/EDGE Data,
WCDMA (R99, HSUPA, HSDPA, DC-HSDPA, HSPA+), LTE,
Wi-Fi and Bluetooth | | | | | | Frequency Range: | GSM850: 824-849 MHz (TX); 869-894 MHz (RX) PCS1900: 1850-1910 MHz (TX); 1930-1990 MHz (RX) WCDMA Band 5: 824-849 MHz (TX); 869-894 MHz (RX) WCDMA Band 2: 1850-1910 MHz (TX); 1930-1990 MHz (RX) LTE Band 2: 1850-1910 MHz (TX); 1930-1990 MHz (RX) LTE Band 4: 1710-1755 MHz (TX); 2110-2155 MHz (RX) LTE Band 5: 824-849 MHz (TX); 869-894 MHz (RX) LTE Band 7: 2500-2570 MHz (TX); 2620-2690 MHz (RX) WLAN (802.11b/g/n20): 2412-2472 MHz (TX/RX) WLAN (802.11n40): 2422-2462 MHz (TX/RX) Bluetooth/BLE: 2402-2480 MHz (TX/RX) | | | | | | Maximum Average Conducted
Power: | GSM850: 31.8 dBm; PCS1900: 28.76 dBm
WCDMA Band 5: 22.07 dBm; WCDMA Band 2: 21.49 dBm
LTE Band 2: 22.68 dBm; LTE Band 4: 22.56 dBm
LTE Band 5: 22.7 dBm; LTE Band 7: 22.68 dBm
WLAN (802.11b/g/n20): 9.42 dBm
WLAN (802.11n40): 9.39 dBm
Bluetooth: 6.47 dBm
BLE: -0.89 dBm | | | | | | Antenna Type(s) Tested: | Internal Antennas | | | | | | Body-Worn Accessories: | Headset | | | | | | Battery Type (s) Tested: | 3.7 VDC Rechargeable Battery | | | | | |------------------------------|------------------------------|----------|------------------|--|--| | | Level (W/Kg) | Position | Operational Mode | | | | | 0.838 | Body | GSM850 | | | | | 0.44 | Head | GSM830 | | | | | 0.149 | Body | PCS1900 | | | | | 0.303 | Head | PCS1900 | | | | | 0.398 | Body | WCDMA Band 5 | | | | | 0.379 | Head | | | | | | 0.316 | Body | WCDMA Band 2 | | | | | 0.673 | Head | WCDMA Band 2 | | | | Man CAD Land (a) Maganada | 0.293 | Body | LTE Band 2 | | | | Max. SAR Level (s) Measured: | 0.429 | Head | LIE Band 2 | | | | | 0.33 | Body | LTE Band 4 | | | | | 0.478 | Head | LIE Baild 4 | | | | | 0.513 | Body | LTE Band 5 | | | | | 0.445 | Head | LIE Baild 3 | | | | | 1.346 | Body | LTE Band 7 | | | | | 0.608 | Head | LIE Balla / | | | | | 1.533 | Body | Simultaneous | | | | | 1.047 | Head | Simultaneous | | | | | 1.533 | Body | Hot-Spot | | | Note: SAR measurements only performed to the worst case position and configurations that was reported in the original SAR report, Report Number: RSZ160405005-20, issued by BACL (Shenzhen) on 04-20-2016. ## **TABLE OF CONTENTS** | 1 | GE | ENERAL DESCRIPTION | 7 | |----|------------|---|----| | | 1.1
1.2 | PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)EUT TECHNICAL SPECIFICATION | | | 2 | TE | ST FACILITY | 8 | | | 2.1
2.2 | TEST FACILITY REGISTRATIONS TEST FACILITY ACCREDITATIONS | | | 3 | RE | EFERENCE, STANDARDS AND GUIDELINES | 11 | | | 3.1 | SAR LIMITS | | | 4 | EQ | QUIPMENT LIST AND CALIBRATION | 13 | | 5 | SA | R MEASUREMENT SYSTEM VERIFICATION | 14 | | | 5.1 | System Accuracy Verification | | | | 5.2 | SAR SYSTEM VERIFICATION SETUP AND PROCEDURE | | | | 5.3 | LIQUID AND SYSTEM VALIDATION | | | 6 | | TT TEST STRATEGY AND METHODOLOGY | | | | 6.1 | TEST POSITIONS FOR DEVICE OPERATING NEXT TO A PERSON'S EAR | | | | 6.2
6.3 | EAR/TILT POSITION | | | | 6.4 | TEST POSITIONS FOR BODY-WORN AND OTHER CONFIGURATIONS | | | | 6.5 | SAR EVALUATION PROCEDURE | | | | 6.6 | TEST METHODOLOGY | | | 7 | | ASY4 SAR EVALUATION PROCEDURE | | | | 7.1
7.2 | Power Reference Measurement | | | | 7.3 | ZOOM SCAN | | | | 7.4 | POWER DRIFT MEASUREMENT | 22 | | | 7.5 | Z-SCAN | | | 8 | DE | ESCRIPTION OF TEST SYSTEM | | | | 8.1 | IEEE SCC-34/SC-2 P1528 RECOMMENDED TISSUE DIELECTRIC PARAMETERS | | | | 8.2
8.3 | DASY4 user's Manual Recommended Tissue Dielectric Parameters | | | | 8.4 | SYSTEM COMPONENTS | | | 9 | SA | R MEASUREMENT CONSIDERATION AND REDUCTION | 34 | | | 9.1 | BT/WLAN AND GSM/WCDMA/LTE ANTENNA LOCATION | | | | 9.2 | SAR TEST CONSIDERATION | | | 10 | SA | R MEASUREMENT RESULTS | 36 | | | 10.1 | TEST ENVIRONMENTAL CONDITIONS | 36 | | | 10.2 | STANDALONE SAR RESULTS | | | | 10.3 | MULTI-TX AND ANTENNA SAR CONSIDERATIONS | | | 11 | AP | PPENDIX A - MEASUREMENT UNCERTAINTY | 41 | | 12 | AP | PPENDIX B - PROBE CALIBRATION CERTIFICATES | 42 | | 13 | AP | PPENDIX C - DIPOLE CALIBRATION CERTIFICATES | 53 | | 14 | AP | PPENDIX D - TEST SYSTEM VERIFICATIONS SCANS | 84 | | | | | | | 15 A | APPENDIX E - EUT SCAN RESULTS | 92 | |------|--|-----| | 16 A | PPENDIX F- RF OUTPUT POWER MEASUREMENT | 108 | | 17 A | APPENDIX G - TEST SETUP PHOTOS | 110 | | 17.1 | EUT BACK SIDE 10MM TO THE TWIN PHANTOM SETUP PHOTO | 110 | | 17.2 | | 110 | | 18 A | APPENDIX H - EUT PHOTOS | 111 | | 18.1 | EUT Front View | 111 | | 18.2 | EUT BACK VIEW | 111 | | 18.3 | B EUT LEFT VIEW | 112 | | 18.4 | EUT RIGHT VIEW | 112 | | 18.5 | EUT TOP VIEW | 113 | | 18.6 | | 113 | | 18.7 | EUT OPEN CASE-1 | 114 | | 18.8 | | 114 | | 19 A | PPENDIX I - INFORMATIVE REFERENCES | 115 | ### DOCUMENT REVISION HISTORY | Revision Number | Report Number | Description of Revision | Date of Revision | | |-----------------|----------------|-------------------------|------------------|--| | 0 | 0 R1703288-SAR | | 2017-04-06 | | Report Number: R1703288-SAR Page 6 of 115 SAR Evaluation Report ## 1 General Description ### 1.1 Product Description for Equipment under Test (EUT) This report has been prepared on behalf of *b Mobile HK Limited* and their product 2G/3G/4G LTE *Mobile Phone*, Model: *AX1035*, FCC ID: ZSW-30-025 or the EUT (Equipment under Test) as referred to in the rest of this report. ### 1.2 EUT Technical Specification | Item | Description | |------------------------------------|---| | Operation Mode: | GSM Voice, GPRS/EDGE Data, WCDMA (R99, HSUPA, HSDPA, DC-HSDPA, HSPA+), LTE, Wi-Fi and Bluetooth | | Frequency Range | GSM850: 824-849 MHz (TX); 869-894 MHz (RX) PCS1900: 1850-1910 MHz (TX); 1930-1990 MHz (RX) WCDMA Band 5: 824-849 MHz (TX); 869-894 MHz (RX) WCDMA Band 2: 1850-1910 MHz (TX); 1930-1990 MHz (RX) LTE Band 2: 1850-1910 MHz (TX); 1930-1990 MHz (RX) LTE Band 4: 1710-1755 MHz (TX); 2110-2155 MHz (RX) LTE Band 5: 824-849 MHz (TX); 869-894 MHz (RX) LTE Band 7: 2500-2570 MHz (TX); 2620-2690 MHz (RX) WLAN (802.11b/g/n20): 2412-2472 MHz (TX/RX) WLAN (802.11n40): 2422-2462 MHz (TX/RX) Bluetooth/BLE: 2402-2480 MHz (TX/RX) | | Maximum Conducted
Power Tested: | GSM850: 31.8 dBm PCS1900: 28.76 dBm WCDMA Band 5: 22.07 dBm WCDMA Band 2: 21.49 dBm LTE Band 2: 22.68 dBm LTE Band 4: 22.56 dBm LTE Band 5: 22.7 dBm LTE Band 7: 22.68 dBm LTE Band 7: 22.68 dBm WLAN (802.11b/g/n20): 9.42 dBm WLAN(802.11n40): 9.39 dBm Bluetooth: 6.47 dBm BLE: -0.89 dBm | | Dimensions (L*W*H): | 136 mm (L) × 67 mm (W) × 10 mm (H) | | Power Source: | 3.7 VDC Rechargeable Battery | | Normal Operation: | Head and Body-worn | ### 2 Test Facility #### 2.1 Test Facility Registrations BACLs test facilities that are used to perform Radiated and Conducted Emissions tests are currently recognized by the Federal Communications Commission as Accredited with NIST Designation Number US1129. BACL's test facilities that are used to perform Radiated and Conducted Emissions tests are currently registered with Industry Canada under Registration Numbers: 3062A-1, 3062A-2, and 3062A-3. BACL is a Chinese Taipei Bureau of Standards Metrology and Inspection (BSMI) validated Conformity
Assessment Body (CAB), under Appendix B, Phase I Procedures of the APEC Mutual Recognition Arrangement (MRA). BACL's BSMI Lab Code Number is: SL2-IN-E-1002R BACL's test facilities that are used to perform AC Line Conducted Emissions, Telecommunications Line Conducted Emissions, Radiated Emissions from 30 MHz to 1 GHz, and Radiated Emissions from 1 GHz to 6 GHz are currently recognized as Accredited in accordance with the Voluntary Control Council for Interference [VCCI] Article 15 procedures under Registration Number A-0027. #### 2.2 Test Facility Accreditations Bay Area Compliance Laboratories Corp. (BACL) is: **A-** An independent, 3rd-Party, Commercial Test Laboratory accredited to ISO/IEC 17025:2005 by A2LA (Test Laboratory Accreditation Certificate Number 3279.02), in the fields of: Electromagnetic Compatibility and Telecommunications. Unless noted by an Asterisk (*) in the Compliance Matrix (See Section 3 of this Test Report), BACL's ISO/IEC 17025:2005 Scope of Accreditation includes all of the Test Method Standards and/or the Product Family Standards detailed in this Test Report.. BACL's ISO/IEC 17025:2005 Scope of Accreditation includes a comprehensive suite of EMC Emissions, EMC Immunity, Radio, RF Exposure, Safety and wireline Telecommunications test methods applicable to a wide range of product categories. These product categories include Central Office Telecommunications Equipment [including NEBS - Network Equipment Building Systems], Unlicensed and Licensed Wireless and RF devices, Information Technology Equipment (ITE); Telecommunications Terminal Equipment (TTE); Medical Electrical Equipment; Industrial, Scientific and Medical Test Equipment; Professional Audio and Video Equipment; Industrial and Scientific Instruments and Laboratory Apparatus; Cable Distribution Systems, and Energy Efficient Lighting. # B- A Product Certification Body accredited to ISO/IEC 17065:2012 by A2LA (Product Certification Body - - For the USA (Federal Communications Commission): - 1- All Unlicensed radio frequency devices within FCC Scopes A1, A2, A3, and A4; - 2- All Licensed radio frequency devices within FCC Scopes B1, B2, B3, and B4; - 3- All Telephone Terminal Equipment within FCC Scope C. - For the Canada (Industry Canada): - 1- All Scope 1-Licence-Exempt Radio Frequency Devices; - 2- All Scope 2-Licensed Personal Mobile Radio Services; - 3- All Scope 3-Licensed General Mobile & Fixed Radio Services; - 4- All Scope 4-Licensed Maritime & Aviation Radio Services; - 5- All Scope 5-Licensed Fixed Microwave Radio Services - 6- All Broadcasting Technical Standards (BETS) in the Category I Equipment Standards List. For Singapore (Info-Communications Development Authority (IDA)): All Line Terminal Equipment: All Technical Specifications for Line Terminal Equipment - Table 1 of IDA MRA Recognition Scheme: 2011, Annex 2 - 2. All Radio-Communication Equipment: All Technical Specifications for Radio-Communication Equipment Table 2 of IDA MRA Recognition Scheme: 2011, Annex 2 - For the Hong Kong Special Administrative Region: - 1 All Radio Equipment, per KHCA 10XX-series Specifications; - 2 All GMDSS Marine Radio Equipment, per HKCA 12XX-series Specifications; - 3 All Fixed Network Equipment, per HKCA 20XX-series Specifications. - For Japan: - 1 MIC Telecommunication Business Law (Terminal Equipment): - All Scope A1 Terminal Equipment for the Purpose of Calls; - All Scope A2 Other Terminal Equipment - 2 Radio Law (Radio Equipment): - All Scope B1 Specified Radio Equipment specified in Article 38-2-2, paragraph 1, item 1 of the Radio Law - All Scope B2 Specified Radio Equipment specified in Article 38-2-2, paragraph 1, item 2 of the Radio Law - All Scope B3 Specified Radio Equipment specified in Article 38-2-2, paragraph 1, item 3 of the Radio Law - C- A Product Certification Body accredited to ISO/IEC 17065:2012 by A2LA (Product Certification Body Accreditation Certificate Number 3279.01) to certify Products to USA's Environmental Protection Agency (EPA) ENERGY STAR Product Specifications for: - 1 Electronics and Office Equipment: - for Telephony (ver. 3.0) - for Audio/Video (ver. 3.0) - for Battery Charging Systems (ver. 1.1) - for Set-top Boxes & Cable Boxes (ver. 4.1) - for Televisions (ver. 6.1) - for Computers (ver. 6.0) - for Displays (ver. 6.0) - for Imaging Equipment (ver. 2.0) - for Computer Servers (ver. 2.0) - 2 Commercial Food Service Equipment - for Commercial Dishwashers (ver. 2.0) - for Commercial Ice Machines (ver. 2.0) - for Commercial Ovens (ver. 2.1) - for Commercial Refrigerators and Freezers - 3 Lighting Products - For Decorative Light Strings (ver. 1.5) - For Luminaires (including sub-components) and Lamps (ver. 1.2) - For Compact Fluorescent Lamps (CFLs) (ver. 4.3) - For Integral LED Lamps (ver. 1.4) - 4 Heating, Ventilation, and AC Products - for Residential Ceiling Fans (ver. 3.0) - for Residential Ventilating Fans (ver. 3.2) - 5 Other - For Water Coolers (ver. 3.0) - D. A NIST Designated Phase-I and Phase-II Conformity Assessment Body (CAB) for the following economies and regulatory authorities under the terms of the stated MRAs/Treaties: - Australia: ACMA (Australian Communication and Media Authority) APEC Tel MRA -Phase I; - Canada: (Industry Canada IC) Foreign Certification Body FCB APEC Tel MRA -Phase I & Phase II; - Chinese Taipei (Republic of China Taiwan): - o BSMI (Bureau of Standards, Metrology and Inspection) APEC Tel MRA -Phase I; - o NCC (National Communications Commission) APEC Tel MRA -Phase I; - European Union: - EMC Directive 2014/30/EU US-EU EMC & Telecom MRA CAB (NB) - Radio & Teleterminal Equipment (R&TTE) Directive 1995/5/EC US -EU EMC & Telecom MRA CAB (NB) - o Radio Equipment (RE) Directive 2014/53/EU US-EU EMC & Telecom MRA CAB (NB) - o Low Voltage Directive (LVD) 2014/35/EU - Hong Kong Special Administrative Region: (Office of the Telecommunications Authority OFTA) - APEC Tel MRA -Phase I & Phase II - Israel US-Israel MRA Phase I - Republic of Korea (Ministry of Communications Radio Research Laboratory) APEC Tel MRA -Phase I - Singapore: (Infocomm Development Authority IDA) APEC Tel MRA -Phase I & Phase II; - Japan: VCCI Voluntary Control Council for Interference US-Japan Telecom Treaty VCCI Side Letter - USA: - ENERGY STAR Recognized Test Laboratory US EPA - o Telecommunications Certification Body (TCB) US FCC; - o Nationally Recognized Test Laboratory (NRTL) US OSHA Vietnam: APEC Tel MRA -Phase I; ### 3 Reference, Standards and Guidelines #### FCC: The Report and Order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mW/g as recommended by the ANSI/IEEE standard C95.1-1992 [6] for an uncontrolled environment (Paragraph 65). According to the Supplement C of OET Bulletin 65 "Evaluating Compliance with FCC Guide-lines for Human Exposure to Radio frequency Electromagnetic Fields", released on Jun 29, 2001 by the FCC, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling. This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits. SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) – to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in North America is 1.6 mW/g average over 1 gram of tissue mass. #### CE: The CE requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 2 mW/g as recommended by the EN50360 for an uncontrolled environment. According to the Standard, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling. This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits? SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) – to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in Europe is 2 mW/g average over 10 gram of tissue mass. The test configurations were laid out on a specially designed test fixture to ensure the reproducibility of measurements. Each configuration was scanned for SAR. Analysis of each scan was carried out to characterize the above effects in the device. #### 3.1 SAR Limits #### FCC/IC Limit | | SAR (W/kg) | | | | |--|--|--|--|--| | EXPOSURE LIMITS | (General Population /
Uncontrolled Exposure
Environment) | (Occupational /
Controlled Exposure
Environment) | | | | Spatial Average (averaged over the whole body) | 0.08 | 0.4 | | | | Spatial Peak
(averaged over any 1 g of tissue) | 1.60 | 8.0 | | | | Spatial Peak
(hands/wrists/feet/ankles
averaged over 10 g) | 4.0
| 20.0 | | | #### **CE Limit** | | SAR (W/kg) | | | | |--|--|--|--|--| | EXPOSURE LIMITS | (General Population /
Uncontrolled Exposure
Environment) | (Occupational /
Controlled Exposure
Environment) | | | | Spatial Average
(averaged over the whole body) | 0.08 | 0.4 | | | | Spatial Peak
(averaged over any 10 g of tissue) | 2.0 | 10 | | | | Spatial Peak
(hands/wrists/feet/ankles
averaged over 10 g) | 4.0 | 20.0 | | | Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure. Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation). General Population/Uncontrolled environments Spatial Peak limit 1.6 W/kg (FCC) & 2 W/kg (CE) applied to the EUT. Report Number: R1703288-SAR Page 12 of 115 SAR Evaluation Report # 4 Equipment List and Calibration | Type/Model | Cal. Due Date | S/N | |--------------------------------------|---------------|-----------------| | DASY4 Professional Dosimetric System | N/A | N/A | | Robot RX60L | N/A | CS7MBSP/467 | | Robot Controller | N/A | F01/5J72A1/A/01 | | Dell Computer Dimension 3000 | N/A | N/A | | SPEAG EDC3 | N/A | N/A | | SPEAG DAE4 | 2017-09-21 | 530 | | DASY4 Measurement Server | N/A | 1176 | | SPEAG E-Field Probe EX3DV4 | 2017-09-23 | 3619 | | Antenna, Dipole, ALS-D-835-S-2 | 2017-10-27 | 180-00564 | | Antenna, Dipole, D1750V2 | 2018-07-09 | 1139 | | Antenna, Dipole, D1900V2 | 2018-10-19 | 5D003 | | Antenna, Dipole, D2600V2 | 2019-11-10 | 1133 | | SPEAG Twin SAM Phantom | N/A | TP-1032 | | Muscle Equivalent Matter (835 MHz) | Each Time | N/A | | Head Equivalent Matter (835 MHz) | Each Time | N/A | | Muscle Equivalent Matter (1750 MHz) | Each Time | N/A | | Head Equivalent Matter (1750 MHz) | Each Time | N/A | | Muscle Equivalent Matter (1900 MHz) | Each Time | N/A | | Head Equivalent Matter (1900 MHz) | Each Time | N/A | | Muscle Equivalent Matter (2600 MHz) | Each Time | N/A | | Head Equivalent Matter (2600 MHz) | Each Time | N/A | | Agilent, Spectrum Analyzer E4440A | 2018-02-24 | US45303156 | | Mini Circuits, AMPLIFIER ZHL-42 | 2017-11-03 | QA1326001 | | Power Sensor Agilent E9304A | 2017-08-31 | MY54280008 | | Power Sensor Agilent E9304A | 2017-08-31 | MY54280006 | | Dielectric Probe Kit HP85070A | N/A | US99360201 | | HP, Signal Generator, 83650B | 2017-09-09 | 3614A00276 | | Mini Circuits, AMPLIFIER ZVE-8G+ | 2017-11-03 | N605601404 | ### 5 SAR Measurement System Verification ### 5.1 System Accuracy Verification SAR system verification is required to confirm measurement accuracy. The system verification must be performed for each frequency band. A system verification must be performed before each series of SAR measurements. ### 5.2 SAR System Verification Setup and procedure #### **Procedure:** - 1) The SAR system verification measurements were performed in the flat section of TWIN SAM or flat phantom with shell thickness of 2±0.2mm filled with head or body liquid. - 2) The depth of liquid in phantom must be \geq 15 cm for SAR measurement less than 3 GHz and \geq 10 cm for SAR measurement above 3 GHz. - 3) The dipole was mounted below the center of flat phantom, and oriented parallel to the Y-Axis. The standard measurement distance is 15mm (below 1 GHz) and 10mm (above 1 GHz) from dipole center to the liquid surface. - 4) The dipole input power was 250 mW or 100 mW. - 5) The SAR results are normalized to 1 Watt input power. - 6) Compared the normalized the SAR results to the dipole calibration results. ## 5.3 Liquid and System Validation | Date | Simulant | Freq.
[MHz] | Parameters | Liquid
Temp
[°C] | Target
Value | Measured
Value | Deviation [%] | Limits [%] | |------------|----------|----------------|------------|------------------------|-----------------|-------------------|---------------|------------| | | | | ερ | 23 | 55.2 | 55 | -0.36 | ± 5 | | 03-02-2017 | Body | 835 | σ | 23 | 0.97 | 0.93 | -4.12 | ± 5 | | | | | 1g SAR | 23 | 9.76 | 10.4 | 6.56 | ± 10 | | Date | Simulant | Freq.
[MHz] | Parameters | Liquid
Temp
[°C] | Target
Value | Measured
Value | Deviation [%] | Limits [%] | |------------|----------|----------------|------------|------------------------|-----------------|-------------------|---------------|------------| | | | | ερ | 23 | 41.5 | 40.5 | -2.41 | ± 5 | | 03-09-2017 | Head | 835 | σ | 23 | 0.9 | 0.89 | -1.11 | ± 5 | | | | | 1g SAR | 23 | 9.78 | 8.9 | -8.99 | ± 10 | | Date | Simulant | Freq.
[MHz] | Parameters | Liquid
Temp
[°C] | Target
Value | Measured
Value | Deviation [%] | Limits [%] | |------------|----------|----------------|------------|------------------------|-----------------|-------------------|---------------|------------| | | | | ερ | 23 | 53.43 | 52.3 | -2.11 | ± 5 | | 03-07-2017 | Body | 1750 | σ | 23 | 1.49 | 1.46 | -2.01 | ± 5 | | | | | 1g SAR | 23 | 37.3 | 38.4 | 2.95 | ± 10 | | Date | Simulant | Freq.
[MHz] | Parameters | Liquid
Temp
[°C] | Target
Value | Measured
Value | Deviation [%] | Limits [%] | |------------|-----------------|----------------|------------|------------------------|-----------------|-------------------|---------------|------------| | | | 1750 | ερ | 23 | 40.08 | 38.7 | -3.44 | ± 5 | | 03-08-2017 | 03-08-2017 Head | | σ | 23 | 1.37 | 1.4 | 2.19 | ± 5 | | | | 1g SAR | 23 | 36.7 | 39.4 | 7.36 | ± 10 | | | Date | Simulant | Freq.
[MHz] | Parameters | Liquid
Temp
[°C] | Target
Value | Measured
Value | Deviation [%] | Limits [%] | |------------|-----------------|----------------|------------|------------------------|-----------------|-------------------|---------------|------------| | | | | ερ | 23 | 53.3 | 52.4 | -1.69 | ± 5 | | 03-07-2017 | 03-07-2017 Body | 1900 | σ | 23 | 1.52 | 1.55 | 1.97 | ± 5 | | | | | 1g SAR | 23 | 39.1 | 42.1 | 7.67 | ± 10 | | Date | Simulant | Freq.
[MHz] | Parameters | Liquid
Temp
[°C] | Target
Value | Measured
Value | Deviation [%] | Limits [%] | |-----------------|----------|----------------|------------|------------------------|-----------------|-------------------|---------------|------------| | 03-08-2017 Head | | | ερ | 23 | 40 | 41.2 | 3.00 | ± 5 | | | 1900 | σ | 23 | 1.4 | 1.42 | 1.43 | ± 5 | | | | | 1g SAR | 23 | 38.8 | 40.5 | 4.38 | ± 10 | | | Date | Simulant | Freq.
[MHz] | Parameters | Liquid
Temp
[°C] | Target
Value | Measured
Value | Deviation [%] | Limits [%] | |------------|-----------------|----------------|------------|------------------------|-----------------|-------------------|---------------|------------| | | | Body 2600 | ερ | 23 | 52.5 | 54.1 | 3.05 | ± 5 | | 11-16-2016 | 11-16-2016 Body | | σ | 23 | 2.16 | 2.14 | -0.93 | ± 5 | | | | 1g SAR | 23 | 53.6 | 56.6 | 5.60 | ± 10 | | | Date | Simulant | Freq.
[MHz] | Parameters | Liquid
Temp
[°C] | Target
Value | Measured
Value | Deviation [%] | Limits [%] | |------------|---------------|----------------|------------|------------------------|-----------------|-------------------|---------------|------------| | | | ερ | 23 | 39.0 | 40.1 | 2.82 | ± 5 | | | 12-02-2016 | -02-2016 Head | 2600 | σ | 23 | 1.96 | 2.01 | 2.55 | ± 5 | | | | 1g SAR | 23 | 56.1 | 57.6 | 2.67 | ± 10 | | $[\]varepsilon r = relative\ permittivity,\ \sigma = conductivity\ and\ \rho = 1000\ kg/m^3$ ### **6** EUT Test Strategy and Methodology ### 6.1 Test Positions for Device Operating Next to a Person's Ear This category includes most wireless handsets with fixed, retractable or internal antennas located toward the top half of the device, with or without a foldout, sliding or similar keypad cover. The handset should have its earpiece located within the upper ½ of the device, either along the centerline or off-centered, as perceived by its users. This type of handset should be positioned in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point". The "test device reference point" should be located at the same level as the center of the earpiece region. The "vertical centerline" should bisect the front surface of the handset at its top and bottom edges. An "ear reference point" is located on the outer surface of the head phantom on each ear spacer. It is located 1.5 cm above the center of the ear canal entrance in the "phantom reference plane" defined by the three lines joining the center of each "ear reference point" (left and right) and the tip of the mouth. A handset should be initially positioned with the earpiece region pressed against the ear spacer of a head phantom. For the SCC-34/SC-2 head phantom, the device should be positioned parallel to the "N-F" line defined along the base of the ear spacer that contains the "ear reference point". For interim head phantoms, the device should be positioned parallel to the cheek for maximum RF energy coupling. The "test device reference point" is aligned to the "ear reference point" on the head phantom and the "vertical centerline" is aligned to the "phantom reference plane". This is called the "initial ear position". While maintaining these three alignments, the body of the handset is gradually adjusted to each of the following positions for evaluating SAR: #### 6.2 **Cheek/Touch Position** The device is brought toward the mouth of the head phantom by pivoting against the "ear reference point" or along the "N-F" line for the SCC-34/SC-2 head phantom. This test position is established: - o When any point on the display, keypad or mouthpiece portions of the handset is in contact with the phantom. - (or) When any portion of a
foldout, sliding or similar keypad cover opened to its intended self-adjusting normal use position is in contact with the cheek or mouth of the phantom. For existing head phantoms – when the handset loses contact with the phantom at the pivoting point, rotation should continue until the device touches the cheek of the phantom or breaks its last contact from the ear spacer. #### 6.3 **Ear/Tilt Position** With the handset aligned in the "Cheek/Touch Position": 1) If the earpiece of the handset is not in full contact with the phantom's ear spacer (in the "Cheek/Touch position") and the peak SAR location for the "Cheek/Touch" position is located at the ear spacer region or corresponds to the earpiece region of the handset, the device should be returned to the "initial ear position" by rotating it away from the mouth until the earpiece is in full contact with the ear spacer. 2) (otherwise) The handset should be moved (translated) away from the cheek perpendicular to the line passes through both "ear reference points" (note: one of these ear reference points may not physically exist on a split head model) for approximate 2-3 cm. While it is in this position, the device handset is tilted away from the mouth with respect to the "test device reference point" until the inside angle between the vertical centerline on the front surface of the phone and the horizontal line passing through the ear reference point is by 15 80°. After the tilt, it is then moved (translated) back toward the head perpendicular to the line passes through both "ear reference points" until the device touches the phantom or the ear spacer. If the antenna touches the head first, the positioning process should be repeated with a tilt angle less than 15 80° so that the device and its antenna would touch the phantom simultaneously. This test position may require a device holder or positioner to achieve the translation and tilting with acceptable positioning repeatability. If a device is also designed to transmit with its keypad cover closed for operating in the head position, such positions should also be considered in the SAR evaluation. The device should be tested on the left and right side of the head phantom in the "Cheek/Touch" and "Ear/Tilt" positions. When applicable, each configuration should be tested with the antenna in its fully extended and fully retracted positions. These test configurations should be tested at the high, middle and low frequency channels of each operating mode; for example, AMPS, CDMA, and TDMA. If the SAR measured at the middle channel for each test configuration (left, right, Cheek/Touch, Tile/Ear, extended and retracted) is at least 2.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s). If the transmission band of the test device is less than 10 MHz, testing at the high and low frequency channels is optional. #### Ear /Tilt 15° Position #### 6.4 Test positions for body-worn and other configurations Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations. Devices with a headset output should be tested with a headset connected to the device. When multiple accessories that do not contain metallic components are supplied with the device, the device may be tested with only the accessory that dictates the closest spacing to the body. When multiple accessories that contain metallic components are supplied with the device, the device must be tested with each accessory that contains a unique metallic component. If multiple accessories share an identical metallic component (e.g., the same metallic belt-clip used with different holsters with no other metallic components), only the accessory that dictates the closest spacing to the body must be tested. Body-worn accessories may not always be supplied or available as options for some devices that are intended to be authorized for body-worn use. A separation distance of 1.5 cm between the back of the device and a flat phantom is recommended for testing body-worn SAR compliance under such circumstances. Other separation distances may be used, but they should not exceed 2.5 cm. In these cases, the device may use body-worn accessories that provide a separation distance greater than that tested for the device provided however that the accessory contains no metallic components. #### **6.5** SAR Evaluation Procedure The evaluation was performed with the following procedure: **Step 1:** Measurement of the SAR value at a fixed location above the ear point or central position was used as a reference value for assessing the power drop. The SAR at this point is measured at the start of the test and then again at the end of the testing. - **Step 2:** The SAR distribution at the exposed side of the head was measured at a distance of 4 mm from the inner surface of the shell. The area covered the entire dimension of the head or EUT and the horizontal grid spacing was 15 mm x 15 mm. Based on these data, the area of the maximum absorption was determined by line interpolation. The first Area Scan covers the entire dimension of the EUT to ensure that the hotspot was correctly identified. - **Step 3**: Around this point, a volume of 30 mm x 30 mm x 21 mm was assessed by measuring 5 x 5 x 7 points. On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure: - 1. The data at the surface were extrapolated, since the center of the dipoles is 1.2 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip. - 2. The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one dimensional splines with the "Not a knot"-condition (in x, y and z-directions). The volume was integrated with the trapezoidal-algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the averages. - 3. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found. - **Step 4**: Re-measurement of the SAR value at the same location as in Step 1. If the value changed by more than 5%, the evaluation was repeated. #### 6.6 Test Methodology KDB 447498 D01 General RF Exposure Guidance v06 KDB 648474 D04 Handset SAR v01r03 KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 KDB 865664 D02 RF Exposure Reporting v01r02 KDB 941225 D01 3G SAR Procedures v03r01 KDB 941225 D05 SAR for LTE Devices v02r05 KDB 941225 D06 Hotspot Mode v02r01 #### 7 DASY4 SAR Evaluation Procedure #### 7.1 Power Reference Measurement The Power Reference Measurement and Power Drift Measurement jobs are useful jobs for monitoring the power drift of the device under test in the batch process. Both jobs measure the field at a specified reference position, at a selectable distance from the phantom surface. The reference position can be either the selected section's grid reference point or a user point in this section. The reference job projects the selected point onto the phantom surface, orients the probe perpendicularly to the surface, and approaches the surface using the selected detection method. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. By default, the Minimum distance of probe sensors to surface is 4mm. This distance can be modified by the user, but cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties (for example, 2.7mm for an ET3DV6 probe type). #### 7.2 Area Scan The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a finer measurement around the hot spot. The sophisticated interpolation routines implemented in DASY4 software can find the maximum locations even in relatively coarse grids. The scanning area is defined by an editable grid. This grid is anchored at the grid reference point of the selected section in the phantom. When the Area Scan's property sheet is brought-up, grid settings can be edited by a user. When an Area Scan has measured all reachable points, it computes the field maxima found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE 1528-2003, EN 50361 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly. After measurement is completed, all maxima and their coordinates are listed in the Results property page. The maximum selected in the list is highlighted in the 3-D view. For the secondary maxima returned from an Area Scan, the user can specify a lower limit (peak SAR value), in addition to the Find secondary maxima within x dB condition. Only the primary maximum and any secondary maxima within x dB from the primary maximum and above this limit will be measured. #### 7.3 Zoom Scan Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan measures 5 x 5 x 7 points within a cube whose base faces are centered around the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan
evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label. #### 7.4 Power drift measurement The Power Drift Measurement job measures the field at the same location as the most recent power reference measurement job within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. Several drift measurements are possible for one reference measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1. #### 7.5 Z-Scan The Z Scan job measures points along a vertical straight line. The line runs along the Z axis of a one-dimensional grid. A user can anchor the grid to the section reference point, to any defined user point or to the current probe location. As with any other grids, the local Z axis of the anchor location establishes the Z axis of the grid. ### 8 Description of Test System These measurements were performed with the automated near-field scanning system DASY4 from Schmid & Partner Engineering AG (SPEAG) which is the fourth generation of the system shown in the figure hereinafter: The system is based on a high precision robot (working range greater than 0.9m), which positions the probes with a positional repeatability of better than $\pm 0.02mm$. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines to the data acquisition unit. The SAR measurements were conducted with the dosimetric probe ET3DV6 SN: 1604 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe has been calibrated according to the procedure with accuracy of better than $\pm 10\%$. The spherical isotropy was evaluated with the procedure and found to be better than ± 0.25 dB. ### 8.1 IEEE SCC-34/SC-2 P1528 Recommended Tissue Dielectric Parameters | Frequency | Head 7 | Гissue | Body Tissue | | | |-----------|--------|---------|-------------|---------|--| | (MHz) | εr | O (S/m) | εr | O (S/m) | | | 150 | 52.3 | 0.76 | 61.9 | 0.80 | | | 300 | 45.3 | 0.87 | 58.2 | 0.92 | | | 450 | 43.5 | 0.87 | 56.7 | 0.94 | | | 835 | 41.5 | 0.90 | 55.2 | 0.97 | | | 900 | 41.5 | 0.97 | 55.0 | 1.05 | | | 915 | 41.5 | 0.98 | 55.0 | 1.06 | | | 1450 | 40.5 | 1.20 | 54.0 | 1.30 | | | 1610 | 40.3 | 1.29 | 53.8 | 1.40 | | | 1800-2000 | 40.0 | 1.40 | 53.3 | 1.52 | | | 2450 | 39.2 | 1.80 | 52.7 | 1.95 | | | 3000 | 38.5 | 2.40 | 52.0 | 2.73 | | | 5800 | 35.3 | 5.27 | 48.2 | 6.00 | | ### 8.2 DASY4 user's Manual Recommended Tissue Dielectric Parameters | Frequency | Head 7 | Γissue | Body Tissue | | | |-----------|--------|---------|--------------------|---------|--| | (MHz) | εr | O (S/m) | εr | O (S/m) | | | 2450 | 39.2 | 1.8 | 52.7 | 1.95 | | | 5200 | 36.0 | 4.66 | 49.0 | 5.30 | | | 5500 | 35.6 | 4.96 | 48.6 | 5.65 | | | 5800 | 35.3 | 5.27 | 48.2 | 6.00 | | #### **8.3** Measurement System Diagram The DASY4 system for performing compliance tests consists of the following items: - A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE). - A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system. - A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC. - The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server. - The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts. - A probe alignment unit which improves the (absolute) accuracy of the probe positioning. - A computer operating Windows 2000 or Windows XP. - DASY4 software. - Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc. - The SAM twin phantom enabling testing left-hand and right-hand usage. - The device holder for handheld mobile phones. - Tissue simulating liquid mixed according to the given recipes. - Validation dipole kits allowing system validation. ### **8.4** System Components - DASY4 Measurement Server - Data Acquisition Electronics - Probes - Light Beam Unit - Medium - SAM Twin Phantom - Device Holder for SAM Twin Phantom - System Validation Kits - Robot #### **DASY4** Measurement Server The DASY4 measurement server is based on a PC/104 CPU board with a 166MHz low-power Pentium, 32MB chip disk and 64MB RAM. The necessary circuits for communication with either the DAE4 (or DAE3) electronic box as well as the 16-bit AD-converter system for optical detection and digital I/O interface are contained on the DASY4 I/O-board, which is directly connected to the PC/104 bus of the CPU board. The measurement server performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. The PC-operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with two expansion slots which are reserved for future applications. Please note that the expansion slots do not have a standardized pin out and therefore only the expansion cards provided by SPEAG can be inserted. Expansion cards from any other supplier could seriously damage the measurement server. #### **Data Acquisition Electronics** The data acquisition electronics DAE3 consists of a highly sensitive electrometer grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. #### **Probes** The DASY system can support many different probe types. **Dosimetric Probes:** These probes are specially designed and calibrated for use in liquids with high permittivities. They should not be used in air, since the spherical isotropy in air is poor (±2 dB). The dosimetric probes have special calibrations in various liquids at different frequencies. **Free Space Probes:** These are electric and magnetic field probes specially designed for measurements in free space. The z-sensor is aligned to the probe axis and the rotation angle of the x-sensor is specified. This allows the DASY system to automatically align the probe to the measurement grid for field component measurement. The free space probes are generally not calibrated in liquid. (The H-field probes can be used in liquids without any change of parameters.) **Temperature Probes:** Small and sensitive temperature probes for general use. They use a completely different parameter set and different evaluation procedures. Temperature rise features allow direct SAR evaluations with these probes. #### **ET3DV6 Probe Specification** Construction Symmetrical design with triangular core Built-in optical fiber for surface detection System Built-in shielding against static charges Calibration In air from 10 MHz to 2.5 GHz In brain and muscle simulating tissue at Frequencies of 450 MHz, 900 MHz and 1.8 GHz (accuracy ± 8%) Frequency 10 MHz to > 6 GHz; Linearity: ± 0.2 dB (30 MHz to 3 GHz) Directivity ± 0.2 dB in brain tissue (rotation around Directivity ± 0.2 dB in brain tissue (rotation around probe axis) \pm 0.4 dB in brain tissue (rotation normal probe axis) Dynamic 5 mW/g to > 100 mW/g; Range Linearity: ± 0.2 dB Surface ± 0.2 mm repeatability in air and clear liquids Detection over diffuse reflecting surfaces. Dimensions Overall length: 330 mm Tip length: 16 mm Photograph of the probe Body diameter: 12 mm Tip diameter: 6.8 mm Distance from probe tip to dipole centers: 2.7 mm Application General dosimetric up to 3 GHz Compliance tests of mobile phones Fast automatic scanning in arbitrary phantoms The SAR measurements were conducted with the dosimetric probe ET3DV6 designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multi-fiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY3 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is
stopped when reaching the maximum. Inside view of ET3DV6 E-field Probe #### **E-Field Probe Calibration Process** Each probe is calibrated according to a dosimetric assessment procedure described in [6] with accuracy better than +/- 10%. The spherical isotropy was evaluated with the procedure described in [7] and found to be better than +/-0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a waveguide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees. E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe. Report Number: R1703288-SAR Page 28 of 115 SAR Evaluation Report #### **Data Evaluation** The DASY4 post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software: Probe parameters: - Sensitivity Normi, ai0, ai1, ai2 Conversion factor ConvFiDiode compression point dcpi Device parameters: - Frequency f - Crest factor cf Media parameters: - Conductivity σ - Density These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as: $$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$ With Vi = compensated signal of channel i (i = x, y, z) Ui = input signal of channel i (i = x, y, z) cf = crest factor of exciting field (DASY parameter) dcp_i = diode compression point (DASY parameter) From the compensated input signals the primary field data for each channel can be evaluated: E – field probes : $$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$ $$\mbox{H} - \mbox{fieldprobes}: \qquad \ \ \, H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1} f + a_{i2} f^2}{f}$$ With Vi = compensated signal of channel i (i = x, y, z) $Norm_i = sensor sensitivity of channel i (i = x, y, z)$ $\mu V/(V/m)^2$ for E-field probes ConF = sensitivity enhancement in solution = sensor sensitivity factors for H-field probes f = carrier frequency [GHz] Ei = electric field strenggy of channel i in V/m H_i = diode compression point (DASY parameter) The RSS value of the field components gives the total field strength (Hermitian magnitude): $$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$ The primary field data are used to calculate the derived field units. $$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$ With SAR = local specific absorption rate in mW/g E_{tot} = total field strength in V/m σ = conductivity in [mho/meter] or [Siemens/meter] ρ = equivalent tissue density in g/cm³ Note that the density is normally set to 1, to account for actual brain density rather than the density of the simulation liquid. #### **Light Beam Unit** The light beam switch allows automatic "tooling" of the probe. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, so that the robot coordinates are valid for the probe tip. The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position. #### Medium #### **Parameters** The parameters of the tissue simulating liquid strongly influence the SAR in the liquid. The parameters for the different frequencies are defined in the corresponding compliance standards (e.g., EN 50361, IEEE 1528-2003). #### Parameter measurements Several measurement systems are available for measuring the dielectric parameters of liquids: - The open coax test method (e.g., HP85070 dielectric probe kit) is easy to use, but has only moderate acuracy. It is calibrated with open, short, and deionized water and the calibrations a critical process. - The transmission line method (e.g., model 1500T from DAMASKOS, INC.) measures the transmission and reflection in a liquid filled high precision line. It needs standard two port calibration and is probably more accurate than the open coax method. - The reflection line method measures the reflection in a liquid filled shorted precision lined. The method is not suitable for these liquids because of its low sensitivity. • The slotted line method scans the field magnitude and phase along a liquid filled line. The evaluation is straight forward and only needs a simple response calibration. The method is very accurate, but can only be used in high loss liquids and at frequencies above 100 to 200MHz. Cleaning the line can be tedious. #### **SAM Twin Phantom** The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas: - Left hand - Right hand - Flat phantom The phantom table comes in two sizes: A $100 \times 50 \times 85$ cm (L x W x H) table for use with free standing robots (DASY4 professional system option) or as a second phantom and a $100 \times 75 \times 85$ cm(L x W x H) table with reinforcements for table mounted robots (DASY4 compact system option). The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. Only one device holder is necessary if two phantoms are used (e.g., for different liquids) A white cover is provided to tap the phantom during o_-periods to prevent water evaporation and changes in the liquid parameters. Free space scans of devices on the cover are possible. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot. The phantom can be used with the following tissue simulating liquids: - Water-sugar based liquids can be left permanently in the phantom. Always cover the liquid if the system is not used, otherwise the parameters will change due to water evaporation. - Glycol based liquids should be used with care. As glycol is a softener for most plastics, the liquid should be taken out of the phantom and the phantom should be dried when the system is not used (desirable at least once a week). - Do not use other organic solvents without previously testing the phantom's compatibility. #### **Device Holder for SAM Twin Phantom** The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source in 5mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. An accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions, in which the devices must be measured, are defined by the standards. The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point ERP). Thus the device needs no repositioning when changing the angles. The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity "=3 and loss tangent _=0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered. #### **System Validation Kits** Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. For that purpose a well defined SAR distribution in the flat section of the SAM twin phantom is produced. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder. Dipoles are available for the variety of frequencies between 300MHz and 6 GHz (dipoles for other frequencies or media and other calibration conditions are available upon request). The dipoles are highly symmetric and matched at the center frequency for the specified liquid and distance to the flat phantom (or flat section of the SAM-twin phantom). The accurate distance between the liquid surface and the dipole center is achieved with a distance
holder that snaps on the dipole. #### Robot The DASY4 system uses the high precision industrial robots RX60L, RX90 and RX90L, as well as the RX60BL and RX90BL types out of the newer series from Stäubli SA (France). The RX robot series offers many features that are important for our application: - High precision (repeatability 0.02mm) - High reliability (industrial design) - Low maintenance costs (virtually maintenance-free due to direct drive gears; no belt drives) - Jerk-free straight movements (brushless synchronous motors; no stepper motors) - Low ELF interference (the closed metallic construction shields against motor control fields) For the newly delivered DASY4 systems as well as for the older DASY3 systems delivered since 1999, the CS7MB robot controller version from Stäubli is used. Previously delivered systems have either a CS7 or CS7M controller; the differences to the CS7MB are mainly in the hardware, but some procedures in the robot software from Stäubli are also not completely the same. The following descriptions about robot hard- and software correspond to CS7MB controller with software version 13.1 (edit S5). The actual commands, procedures and configurations, also including details in hardware, might differ if an older robot controller is in use. In this case please also refer to the Stäubli manuals for further information. ### 9 SAR Measurement Consideration and Reduction #### 9.1 BT/WLAN and GSM/WCDMA/LTE Antenna Location #### 9.2 SAR Test Consideration #### SAR test exclusion for the EUT edge considerations Result | SAR test exclusion for the EUT edge considerations | | | | | | | | |--|----------|----------|-----------|----------|----------|--|--| | Antenna Left Right Top Back Bottom | | | | | | | | | GSM/WCDMA/LTE | Required | Required | Exclusion | Required | Required | | | #### Note: Required: The distance is less than 2.5 cm; SAR test is required for Hotspot mode. Exclusion: The distance is more than 2.5 cm to the edge; SAR test is not required for Hotspot mode. Note: According to KDB 447498 D01 Section 4.1.1, Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is: a) \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz b) \leq 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz c) \leq 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \geq 200 MHz Please refer to Appendix F RF output power: **GSM/GPRS/EGPRS:** According to KDB941225 D01-SAR for EGPRS mode are not required when the source-based time-averaged output power for data mode is lower than that in the normal GPRS mode. **WCDMA:** KDB 941225 D01-Body SAR is not required for HSDPA/HSUPA/HSPA+/DC-HSDPA when the maximum average output of each RF channel is less than ½ dB higher than measured 12.2kbps RMC or the maximum SAR for 12.2kbps RMC is < 75% of SAR limit. LTE: KDB941225 D05- SAR for higher order modulation is required only when the highest maximum output power for the configuration in the higher order modulation is > ½ dB higher than the same configuration in QPSK or when the reported SAR for the QPSK configuration is > 1.45 W/kg #### **BT&WLAN SAR Consideration** According to 447498 Section 4.3.1 (a), for 100 MHz to 6 GHz and test separation distances \leq 50 mm, the 1-g and 10-g SAR test exclusion thresholds are determined by [(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \leq$ 3.0 for 1-g SAR. Calculation details are shown in the tables below. | Mode | Frequency
(MHz) | Test
Position | PAve (dBm) | Distance (mm) | Calculated
Value | Threshold (1-g) | SAR Test
Exclusion | |-----------|--------------------|------------------|------------|---------------|---------------------|-----------------|-----------------------| | Bluetooth | 2480 | Head | 6.5 | 0 | 1.4 | 3 | Yes | | Bluetooth | 2480 | Body | 6.5 | 10 | 0.7 | 3 | Yes | | Wi-Fi | 2472 | Head | 9.5 | 0 | 2.8 | 3 | Yes | | Wi-Fi | 2472 | Body | 9.5 | 10 | 1.4 | 3 | Yes | Report Number: R1703288-SAR Page 35 of 115 SAR Evaluation Report ### 10 SAR Measurement Results This page summarizes the results of the performed SAR evaluation. The plots with the corresponding SAR distributions, which reveal information about the location of the maximum SAR with respect to the device, could be found in Appendix E. ### **10.1 Test Environmental Conditions** | Temperature: | 22° C-25° C | |--------------------|-------------| | Relative Humidity: | 43 % | | ATM Pressure: | 101.9 kPa | Testing was performed by Jin Yang in SAR chamber from 11-16-2016 to 03-09-2017. #### 10.2 Standalone SAR Results Note: SAR measurements only performed to the worst case position and configurations that was reported in the original SAR report, Report Number: RSZ160405005-20, issued by BACL (Shenzhen) on 04-20-2016. Please refer to the following tables: | Frequency | Configuration | | Output Power (dBm) | | Max. 1-g SAR
Level(s) | Scaled 1g
SAR | Limit | Plot | |-----------|--------------------------|------------------------------|--------------------|--------|--------------------------|------------------|--------|------| | Band | Position | Comment | Measured | Target | Measured
(W/kg) | (W/kg) | (W/kg) | # | | GSM850 | Hot Spot
Back
10mm | GPRS
836.6 MHz
1DL+4UL | 28.66 | 28.9 | 0.793 | 0.838 | | 1 | | Mid CH | Left
Head
Cheek | GSM
836.6 MHz | 31.8 | 32.2 | 0.401 | 0.440 | 1.6 | 2 | | PCS1900 | Hot Spot
Back
10mm | GPRS
1880 MHz
1DL+4UL | 25.11 | 25.3 | 0.143 | 0.149 | 1.0 | 3 | | Mid CH | Left
Head
Cheek | GSM
1880 MHz | 28.76 | 28.9 | 0.293 | 0.303 | | 4 | | Frequency | Confi | guration | Output
(dB | | Max. 1-g SAR
Level(s) | Scaled 1g
SAR | Limit | Plot | |--------------|--------------------------|------------------------|---------------|--------|--------------------------|------------------|--------|------| | Band | Position | Comment | Measured | Target | Measured
(W/kg) | (W/kg) | (W/kg) | # | | WCDMA Band 5 | Hot Spot
Back
10mm | RMC 12.2k
836.6 MHz | 22.07 | 22.2 | 0.386 | 0.398 | | 5 | | Mid CH | Left
Head
Cheek | RMC 12.2k
836.6 MHz | 22.07 | 22.2 | 0.368 | 0.379 | 1.6 | 6 | | WCDMA Band 2 | Hot Spot
Back
10mm | RMC 12.2k
1880 MHz | 21.49 | 22 | 0.281 | 0.316 | 1.0 | 7 | | Mid CH | Left
Head
Cheek | RMC 12.2k
1880 MHz | 21.49 | 22 | 0.598 | 0.673 | | 8 | | Frequency | Con | figuration | Output 1
(dBi | | Max. 1-g
SAR | Scaled | Limit | Plot | |------------|--------------------------|--|------------------|--------|--------------------------------|------------------|--------|------| | Band | Position | Comment | Measured | Target | Level(s)
Measured
(W/kg) | 1g SAR
(W/kg) | (W/kg) | # | | LTE Band 2 | Hot Spot
Back
10mm | BW=20M
RB Size =1
RB offset = 49 | 22.68 | 23.2 | 0.26 | 0.293 | | 9 | | Low CH | Left Head
Cheek | BW=20M
RB Size =1
RB offset = 49 | 22.68 | 23.2 | 0.381 | 0.429 | | 10 | | LTE Band 4 | Hot Spot
Back
10mm | BW=20M
RB Size =1
RB offset = 49 | 22.56 | 23 | 0.298 | 0.330 | | 11 | | Low CH | Left Head
Cheek | BW=20M
RB Size =1
RB offset = 49 | 22.56 | 23 | 0.432 | 0.478 | 1.6 | 12 | | LTE Band 5 | Hot Spot
Back
10mm | BW=10M
RB Size =1
RB offset = 24 | 22.7 | 23.1 | 0.468 | 0.513 | 1.0 | 13 | | Mid CH | Left Head
Cheek | BW=10M
RB Size =1
RB offset = 24 | 22.7 | 23.1 | 0.406 | 0.445 | | 14 | | LTE Band 7 | Hot Spot
Back
10mm | BW=20M
RB Size =1
RB offset = 99 | 22.68 | 23 | 1.25 | 1.346 | | 15 | | Low CH | Left Head
Cheek | BW=20M
RB Size =1
RB offset = 99 | 22.68 | 23 | 0.565 | 0.608 | | 16 | # 10.3 Multi-TX and Antenna SAR Considerations #### BT/WLAN and GSM/WCDMA/LTE Antenna Location #### 10.3.1 Estimated SAR | Mode | Frequency (MHz) | Pavg
(dBm) | Pavg
(mW) | Distance (mm) | Estimated 1-g
(W/kg) | |----------------|-----------------|---------------|--------------|---------------|-------------------------| | WLAN 2.4G Head | 2472 | 9.5 | 8.91 | 0 | 0.374 | | WLAN 2.4G Body | 2472 | 9.5 | 8.91 | 10 | 0.187 | | BT Head | 2480 | 6.5 | 4.47 | 0 | 0.188 | | BT Body | 2480 | 6.5 | 4.47 | 10 | 0.094 | When standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion: [(max. power of channel, including tune-up tolerance , mW)/(min. test separation distance, mm)] $\cdot \sqrt{f(GHz)/x}$] W/kg for test separation distances ≤ 50 mm; where x = 7.5 for 1-g SAR. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion ### **Simultaneous Transmission:** | Description of Simulta | neous Transmit Capab | oilities | Antennas Distance | | | |-------------------------|----------------------|----------|-------------------|--|--| | Transmitter Combination | Simultaneous? | Hotspot? | (mm) | | | | GSM + WCDMA | × | × | 0 | | | | GSM+LTE | × | × | 0 | | | | GSM + Bluetooth | $\sqrt{}$ | × | 107 | | | | GSM + WLAN | √ | √ | 107 | | | | WCDMA+LTE | × | × | 0 | | | | WCDMA + Bluetooth | √ | × | 107 | | | | WCDMA + WLAN | √ | V | 107 | | | | LTE + Bluetooth | √ | × | 107 | | | | LTE + WLAN | √ | √ | 107 | | | # Simultaneous and Hotspot SAR test exclusion considerations: | E (CAD1+CAD2) | D. 24. | Reported S | SAR (W/kg) | ΣSAR | |----------------------------|-----------|------------|------------|--------| | Σ (SAR1+SAR2) | Position | SAR1 | SAR2 | (W/kg) | | GSM850+Bluetooth | Body-Back | 0.838 | 0.094 | 0.932 | | OSIMONADIACIONII |
Head-Left | 0.44 | 0.188 | 0.628 | | PCS1900+Bluetooth | Body-Back | 0.149 | 0.094 | 0.243 | | | Head-Left | 0.303 | 0.188 | 0.491 | | WCDMA Band 5+Bluetooth | Body-Back | 0.398 | 0.094 | 0.492 | | | Head-Left | 0.379 | 0.188 | 0.567 | | WCDMA Band 2+Bluetooth | Body-Back | 0.316 | 0.094 | 0.41 | | WCDIVIA Ballu 2+Bluetootii | Head-Left | 0.673 | 0.188 | 0.861 | | LTE Band 2+Bluetooth | Body-Back | 0.293 | 0.094 | 0.387 | | LIE Dand 2+Dideloom | Head-Left | 0.429 | 0.188 | 0.617 | | LTE Band 4+Bluetooth | Body-Back | 0.33 | 0.094 | 0.424 | | LIE Dand 4+Dideloom | Head-Left | 0.478 | 0.188 | 0.666 | | I TE Day d 5 Dhyata ath | Body-Back | 0.513 | 0.094 | 0.607 | | LTE Band 5+Bluetooth | Head-Left | 0.445 | 0.188 | 0.633 | | LTE Band 7+Bluetooth | Body-Back | 1.346 | 0.094 | 1.44 | | LIE Dand /+Didelooth | Head-Left | 0.647 | 0.188 | 0.835 | | E (CAD1 CAD2) | D 22 | Reported S | SAR (W/kg) | ΣSAR | |-------------------|-----------|------------|------------|--------| | Σ (SAR1+SAR2) | Position | SAR1 | SAR2 | (W/kg) | | CCM050+WI AN | Body-Back | 0.838 | 0.187 | 1.025 | | GSM850+WLAN | Head-Left | 0.44 | 0.374 | 0.814 | | PCS1900+WLAN | Body-Back | 0.149 | 0.187 | 0.336 | | | Head-Left | 0.303 | 0.374 | 0.677 | | WCDMA Band 5+WLAN | Body-Back | 0.398 | 0.187 | 0.585 | | | Head-Left | 0.379 | 0.374 | 0.753 | | WCDMA D. 12.WI AN | Body-Back | 0.316 | 0.187 | 0.503 | | WCDMA Band 2+WLAN | Head-Left | 0.673 | 0.374 | 1.047 | | LTE Band 2+WLAN | Body-Back | 0.293 | 0.187 | 0.48 | | LIE Daild 2+WLAIN | Head-Left | 0.429 | 0.374 | 0.803 | | LTE Band 4+WLAN | Body-Back | 0.33 | 0.187 | 0.517 | | LIE Dailg 4+WLAN | Head-Left | 0.478 | 0.374 | 0.852 | | LTE Band 5+WLAN | Body-Back | 0.513 | 0.187 | 0.7 | | LIE Band 5+WLAN | Head-Left | 0.445 | 0.374 | 0.819 | | LTE Band 7+WLAN | Body-Back | 1.346 | 0.187 | 1.533 | | LIE Danu /+WLAN | Head-Left | 0.647 | 0.374 | 1.021 | **Note:** 1. Hotspot mode SAR is only required for the edges within 25mm from the transmitting antenna located. 2. Hotspot Mode is not feasible during voice calls. #### Conclusion: Sum of SAR: Σ SAR < 1.6 W/kg therefore simultaneous transmission SAR with Volume Scans is **not required**. # 11 Appendix A - Measurement Uncertainty The uncertainty budget has been determined for the DASY4 measurement system and is given in the following Table. Below 3 GHz | | DASY4 Uncertainty Budget According to IEC 62209-2 | | | | | | | | | |------------------------------|---|----------------|------------|-------------|--------------|----------------|-----------------|---------------|--| | Error Description | Uncertainty
Value | Prob.
Dist. | Div. | (c i)
1g | (c i)
10g | Std. Unc. (1g) | Std. Unc. (10g) | (v i)
veff | | | | varue | | ement Sy | | 10g | (18) | (10g) | VCII | | | | | | <u> </u> | l | | | | | | | Probe Calibration | ± 6.00 % | N | 1 | 1 | 1 | ± 6.00 % | ± 6.00 % | ∞ | | | Isotropy | ± 0.94 % | R | $\sqrt{3}$ | 1 | 1 | ± 0.54 % | ± 0.54 % | ∞ | | | Linearity | ± 0.3 % | R | $\sqrt{3}$ | 1 | 1 | ± 0.17 % | ± 0.17 % | ∞ | | | Modulation Response | ± 1.65 % | R | $\sqrt{3}$ | 1 | 1 | ± 0.95 % | ± 0.95 % | ∞ | | | System Detection Limits | ± 1.0 % | R | $\sqrt{3}$ | 1 | 1 | ± 0.6 % | ± 0.6 % | ∞ | | | Boundary Effects | ± 0.5 % | R | $\sqrt{3}$ | 1 | 1 | ± 0.29 % | ± 0.29 % | ∞ | | | Readout Electronics | ± 0.3 % | N | 1 | 1 | 1 | ± 0.3 % | ± 0.3 % | ∞ | | | Response Time | ± 0.8 % | R | $\sqrt{3}$ | 1 | 1 | ± 0.5 % | ± 0.5 % | ∞ | | | Integration Time | ± 2.6 % | R | $\sqrt{3}$ | 1 | 1 | ± 1.5 % | ± 1.5 % | ∞ | | | RF Ambient Noise | ± 0.0 % | R | $\sqrt{3}$ | 1 | 1 | ± 0.0 % | ± 0.0 % | ∞ | | | RF Ambient Reflections | ± 3.0 % | R | $\sqrt{3}$ | 1 | 1 | ± 1.7 % | ± 1.7 % | ∞ | | | Probe Positioner | ± 0.4 % | R | $\sqrt{3}$ | 1 | 1 | ± 0.2 % | ± 0.2 % | ∞ | | | Probe Positioning | ± 2.9 % | R | $\sqrt{3}$ | 1 | 1 | ± 1.7 % | ± 1.7 % | ∞ | | | Post-processing | ± 1.0 % | R | $\sqrt{3}$ | 1 | 1 | ± 0.6 % | ± 0.6 % | ∞ | | | | | Test Sa | ımple Re | lated | | | | | | | Device Holder | ± 3.6 % | N | 1 | 1 | 1 | ± 3.6 % | ± 2.6 % | 5 | | | Device Positioning | ± 2.9 % | N | 1 | 1 | 1 | ± 2.9 % | ± 2.9 % | 145 | | | SAR Scaling | ± 0.0 % | R | $\sqrt{3}$ | 1 | 1 | ± 0.0 % | ± 0.0 % | ∞ | | | Power Drift | ± 5.0 % | R | $\sqrt{3}$ | 1 | 1 | ± 2.9 % | ± 2.9 % | ∞ | | | | | Phante | om and S | etup | | | | | | | Phantom Uncertainty | ± 4.0 % | R | $\sqrt{3}$ | 1 | 1 | ± 2.3 % | ± 2.3 % | ∞ | | | SAR Correction | ± 0.0 % | N | 1 | 1 | 1 | ± 0.0 % | ± 0.0 % | ∞ | | | Liquid Conductivity (Target) | ± 5.0 % | R | $\sqrt{3}$ | 0.64 | 0.43 | ± 1.8 % | ± 1.2 % | ∞ | | | Liquid Conductivity (meas.) | ± 2.5 % | N | 1 | 0.64 | 0.43 | ± 1.6 % | ± 1.1 % | œ | | | Liquid Permittivity (Target) | ± 5.0 % | R | $\sqrt{3}$ | 0.6 | 0.49 | ± 1.7 % | ± 1.4 % | ∞ | | | Liquid Permittivity (meas.) | ± 2.5 % | N | 1 | 0.6 | 0.49 | ± 1.5 % | ± 1.2 % | ∞ | | | Combined Std. Uncertainty | - | RSS | - | - | - | ± 9.32 % | ± 9.23 % | 330 | | | Expanded STD Uncertainty | - | 2 | - | - | - | ± 18.6 % | ± 18.5 % | - | | # 12 Appendix B - Probe Calibration Certificates Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client BACL Certificate No: EX3-3619_Sep16 # **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:3619 Calibration procedure(s) QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: September 23, 2016 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 06-Apr-16 (No. 217-02288/02289) | Apr-17 | | Power sensor NRP-Z91 | SN: 103244 | 06-Apr-16 (No. 217-02288) | Apr-17 | | Power sensor NRP-Z91 | SN: 103245 | 06-Apr-16 (No. 217-02289) | Apr-17 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 05-Apr-16 (No. 217-02293) | Apr-17 | | Reference Probe ES3DV2 | SN: 3013 | 31-Dec-15 (No. ES3-3013_Dec15) | Dec-16 | | DAE4 | SN: 660 | 23-Dec-15 (No. DAE4-660_Dec15) | Dec-16 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-16) | In house check: Jun-18 | | Network Analyzer HP 8753E | SN: US37390585 | 18-Oct-01 (in house check Oct-15) | In house check: Oct-16 | Name Function Signature Michael Weber Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: September 28, 2016 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: EX3-3619_Sep16 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 i) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z =
NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX3-3619_Sep16 EX3DV4 - SN:3619 September 23, 2016 # Probe EX3DV4 SN:3619 Manufactured: July 3, 2007 Calibrated: September 23, 2016 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) Certificate No: EX3-3619_Sep16 Page 3 of 11 EX3DV4-- SN:3619 September 23, 2016 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3619 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--------------------------|----------|----------|----------|-----------| | Norm $(\mu V/(V/m)^2)^A$ | 0.44 | 0.36 | 0.39 | ± 10.1 % | | DCP (mV) ⁸ | 101.0 | 98.1 | 99.9 | | #### **Modulation Calibration Parameters** | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Unc ^E
(k=2) | |-----|---------------------------|---|---------|------------|-----|---------|----------|---------------------------| | 0 | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 176.2 | ±3.3 % | | | | Y | 0.0 | 0.0 | 1.0 | | 178.2 | | | | | Z | 0.0 | 0.0 | 1.0 | | 177.1 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: EX3-3619_Sep16 Page 4 of 11 A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). 8 Numerical linearization parameter: uncertainty not required. E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. EX3DV4- SN:3619 September 23, 2016 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3619 #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 450 | 43.5 | 0.87 | 9.60 | 9.60 | 9.60 | 0.17 | 1.15 | ± 13.3 % | | 600 | 42.7 | 0.88 | 8.83 | 8.83 | 8.83 | 0.14 | 1.15 | ± 13.3 % | | 750 | 41.9 | 0.89 | 9.88 | 9.88 | 9.88 | 0.64 | 0.80 | ± 12.0 % | | 835 | 41.5 | 0.90 | 9.28 | 9.28 | 9.28 | 0.54 | 0.80 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 7.56 | 7.56 | 7.56 | 0.30 | 0.80 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 7.21 | 7.21 | 7.21 | 0.34 | 0.87 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 6.64 | 6.64 | 6.64 | 0.34 | 0.85 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 6.59 | 6.59 | 6.59 | 0.32 | 0.97 | ± 12.0 % | | 5250 | 35.9 | 4.71 | 4.52 | 4.52 | 4.52 | 0.40 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.00 | 4.00 | 4.00 | 0.50 | 1.80 | ± 13.1 % | | 5800 | 35.3 | 5.27 | 4.05 | 4.05 | 4.05 | 0.50 | 1.80 | ± 13.1 % | ^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. Certificate No: EX3-3619_Sep16 Page 5 of 11 validity can be extended to ± 110 MHz. At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvE uncertainty for indicated target issue parameters. The ConvF uncertainty for indicated target tissue parameters. (and of) is restricted to ± 5%. The uncertainty is the KSS of the ConvF uncertainty for indicated target tissue parameters. Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. FCC ID: ZSW-30-025 b Mobile.HK Limited EX3DV4-SN:3619 September 23, 2016 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3619 # Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 450 | 56.7 | 0.94 | 10.05 | 10.05 | 10.05 | 0.08 | 1.15 | ± 13.3 % | | 600 | 56.1 | 0.95 | 9.19 | 9.19 | 9.19 | 0.12 | 1.15 | ± 13.3 % | | 750 | 55.5 | 0.96 | 8.36 | 8.36 | 8.36 | 0.45 | 0.80 | ± 12.0 % | | 835 | 55.2 | 0.97 | 8.20 | 8.20 | 8.20 | 0.44 | 0.80 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 7.26 | 7.26 | 7.26 | 0.27 | 1.05 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 7.00 | 7.00 | 7.00 | 0.39 | 0.84 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 6.69 | 6.69 | 6.69 | 0.35 | 0.85 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 6.54 | 6.54 | 6.54 | 0.26 | 0.95 | ± 12.0 % | | 5250 | 48.9 | 5.36 | 4.05 | 4.05 | 4.05 | 0.50 | 1.90 | ± 13.1 % | | 5600 | 48.5 | 5.77 | 3.39 | 3.39 | 3.39 | 0.60 | 1.90 | ± 13.1 % | | 5800 | 48.2 | 6.00 | 3.68 | 3.68 | 3.68 | 0.60 | 1.90 | ± 13.1 % | ^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. FAt frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to Certificate No: EX3-3619_Sep16 Page 6 of 11 measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and o) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. EX3DV4-SN:3619 September 23, 2016 # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) Certificate No: EX3-3619_Sep16 Page 7 of 11 EX3DV4- SN:3619 September 23, 2016 # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) Certificate No: EX3-3619_Sep16 Page 8 of 11 EX3DV4- SN:3619 September 23, 2016 # Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) Certificate No: EX3-3619_Sep16 Page 9 of 11 ### **Conversion Factor Assessment** # Deviation from Isotropy in Liquid -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1. Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2) Certificate No: EX3-3619_Sep16 Page 10 of 11 September 23, 2016 EX3DV4- SN:3619 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3619 #### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 30 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe
Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | Certificate No: EX3-3619_Sep16 Page 11 of 11 # 13 Appendix C – Dipole Calibration Certificates #### NCL CALIBRATION LABORATORIES Calibration File No: DC-1604 Project Number: BACL-dipole cal-5780 # CERTIFICATE OF CALIBRATION It is certified that the equipment identified below has been calibrated in the NCL CALIBRATION LABORATORIES by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST. > Validation Dipole 835MHz Head & Body Manufacturer: APREL Laboratories Part number: ALS-D-835-S-2 Frequency: 835MHz Serial No: 180-00564 Customer: Bay Area Compliance (USA) Calibrated: 27th October 2014 Released on: 30th October 2014 This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary Released By: Art Brennan, Quality Manager NCL CALIBRATION LABORATORIES 303 Terry Fox Drive, Suite 102 Kanata, Ontario CANADA K2K 3J1 Division of APREL TEL: (613) 435-8300 FAX: (613) 435-8306 #### NCL Calibration Laboratories Division of APREL Inc. #### Conditions Dipole 180-00565 was a recalibration. Ambient Temperature of the Laboratory: 22 °C +/- 0.5 °C Temperature of the Tissue: 21 °C +/- 0.5 °C #### Attestation The below named signatories have conducted the calibration and review of the data which is presented in this calibration report. We the undersigned attest that to the best of our knowledge the calibration of this subject has been accurately conducted and that all information contained within the results pages have been reviewed for accuracy. Art Brennan, Quality Manager Maryna Nesterova Calibration Engineer **Primary Measurement Standards** Instrument Tektronix USB Power Meter Network Analyzer Anritsu 37347C Serial Number 11C940 002106 Cal due date May 14, 2015 Feb. 20, 2015 #### NCL Calibration Laboratories Division of APREL Inc. # **Calibration Results Summary** The following results relate the Calibrated Dipole and should be used as a quick reference for the user. #### Mechanical Dimensions and Mechanical Verification | APREL | APREL | Measured | Measured | |----------|---------|----------|----------| | Length | Height | Length | Height | | 161.0 mm | 89.8 mm | 161.0 mm | 89.8 mm | Electrical Specification 835MHz | Tissue Type | Return Loss: | Impedance: | SWR: | |-------------|--------------|------------|----------| | Head | -28.171 dB | 53.551 Ω | 1.084 U | | Body | -22.838 dB | 57.573 Ω | 1.1206 U | System Validation Results | Tissue | Frequency | 1 Gram | 10 Gram | |--------|-----------|--------|---------| | Head | 835 MHz | 9.78 | 6.21 | | Body | 835 MHz | 9.76 | 6.27 | | Tissue Type | Measured Epsilon
(permittivity) | Measured Sigma
(conductivity) | |-------------|------------------------------------|----------------------------------| | Head | 43.35 | 0.94 | | Body | 55.46 | 1.00 | 3 #### NCL Calibration Laboratories Division of APREL Inc. #### Introduction This Calibration Report has been produced in line with the SSI Dipole Calibration Procedure SSI-TP-018-ALSAS. The results contained within this report are for Validation Dipole 180-00565. The calibration routine consisted of a three-step process. Step 1 was a mechanical verification of the dipole to ensure that it meets the mechanical specifications. Step 2 was an Electrical Calibration for the Validation Dipole, where the SWR, Impedance, and the Return loss were assessed. Step 3 involved a System Validation using the ALSAS-10U, along with APREL E-020 30 MHz to 6 GHz E-Field Probe Serial Number 225. #### References - SSI-TP-018-ALSAS Dipole Calibration Procedure - · SSI-TP-016 Tissue Calibration Procedure - IEEE 1528:2013 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques" - IEC-62209-1:2006 "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures" Part 1: "Procedure to determine the Specific Absorption Rate (SAR) for hand-held devices used in close proximity of the ear (frequency range of 300 MHz to 3 GHz)" - IEC-62209-2:2010 "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures" Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for hand-held devices used in close proximity of the ear (frequency range of 30 MHz to 6 GHz)" - D28-002 Procedure for validation of SAR system using a dipole #### Conditions Ambient Temperature of the Laboratory: 22 °C +/- 0.5°C Temperature of the Tissue: 21 °C +/- 0.5°C #### Dipole Calibration uncertainty The calibration uncertainty for the dipole is made up of various parameters presented below. Mechanical 1% Positioning Error 1.22% Electrical 1.7% Tissue 2.2% Dipole Validation 2.2% TOTAL 8.32% (16.64% K=2) 4 ### NCL Calibration Laboratories Division of APREL Inc. #### **Electrical Calibration** #### **Electrical Specification 835MHz** #### Forward Reflection #### Head Tissue: Frequency Range 0.823 to 0.851 GHz #### Body Tissue: Frequency Range 0.829 to 0.853 GHz 5 #### **NCL Calibration Laboratories** Division of APREL Inc. #### Electrical Specification 835MHz Impedance This page has been reviewed for content and attested to by signature within this document. 6 #### **NCL Calibration Laboratories** Division of APREL Inc. #### Electrical Specification 835MHz Standing Wave Ratio #### **Body Tissue** This page has been reviewed for content and attested to by signature within this document. 7 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Issued: July 14, 2015 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA CALIBRATION CERTIFICATE Multilateral Agreement for the recognition of calibration certificates Client BACL Certificate No: D1750V2-1139_Jul15 #### D1750V2 - SN:1139 Object Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: July 09, 2015 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 07-Oct-14 (No. 217-02020) Oct-15 Power sensor HP 8481A US37292783 07-Oct-14 (No. 217-02020) Oct-15 Power sensor HP 8481A MY41092317 07-Oct-14 (No. 217-02021) Oct-15 Reference 20 dB Attenuator SN: 5058 (20k) 01-Apr-15 (No. 217-02131) Mar-16 SN: 5047.2 / 06327 Type-N mismatch combination 01-Apr-15 (No. 217-02134) Mar-16 Reference Probe ES3DV3 SN: 3205 30-Dec-14 (No. ES3-3205_Dec14) Dec-15 DAE4 SN: 601 18-Aug-14 (No. DAE4-601_Aug14) Aug-15 ID# Secondary Standards Check Date (in house) Scheduled Check RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-13) In house check: Oct-16 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-14) In house check: Oct-15 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Name Claudio Leubler Katja Pokovic Certificate No: D1750V2-1139_Jul15 Calibrated by: Approved by: Page 1 of 8 Function Laboratory Technician Technical Manager #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the
feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1750V2-1139_Jul15 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1750 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.1 | 1.37 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.8 ± 6 % | 1.38 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | **** | **** | #### **SAR result with Head TSL** | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.28 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 36.7 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 4.96 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 19.7 W/kg ± 16.5 % (k=2) | Body TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-------------------------------|---------------|--------------|--------------| | Nominal Body TSL parameters | 22.0 °C | 53.4 | 1.49 mho/m | | Managed Dash, TOL managed and | /aa a a a a a | | | | | Loo mitt input pomer | 2.00 ¥¥/ng | |-------------------------------------|----------------------|--------------------------| | SAR for nominal Body TSL parameters | normalized to 1W | 37.3 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.05 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.2 W/kg ± 16.5 % (k=2) | Certificate No: D1750V2-1139_Jul15 # Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 50.9 Ω - 0.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 40.9 dB | #### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | $46.4 \Omega + 0.2 j\Omega$ | |--------------------------------------|-----------------------------| | Return Loss | - 28.5 dB | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.223 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|--------------------| | Manufactured on | September 30, 2014 | Certificate No: D1750V2-1139_Jul15 # **DASY5 Validation Report for Head TSL** Date: 09.07.2015 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1139 Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.38$ S/m; $\epsilon_r = 38.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(5.2, 5.2, 5.2); Calibrated: 30.12.2014; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 18.08.2014 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 93.02 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 16.5 W/kg SAR(1 g) = 9.28 W/kg; SAR(10 g) = 4.96 W/kg Maximum value of SAR (measured) = 11.3 W/kg 0 dB = 11.3 W/kg = 10.53 dBW/kg # Impedance Measurement Plot for Head TSL Certificate No: D1750V2-1139_Jul15 Page 6 of 8 # **DASY5 Validation Report for Body TSL** Date: 09.07.2015 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1139 Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; σ = 1.48 S/m; ϵ_r = 52.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) # DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.88, 4.88, 4.88); Calibrated: 30.12.2014; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 18.08.2014 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) # Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 92.66 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 15.9 W/kg SAR(1 g) = 9.33 W/kg; SAR(10 g) = 5.05 W/kgMaximum value of SAR (measured) = 11.8 W/kg 0 dB = 11.8 W/kg = 10.72 dBW/kg # Impedance Measurement Plot for Body TSL Certificate No: D1750V2-1139_Jul15 Page 8 of 8 FCC ID: ZSW-30-025 b Mobile.HK Limited Asset # 00788 Calibration Laboratory of Schmid & Partner Engineering AG Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Zeughausstrasse 43, 8004 Zurich, Switzerland Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client BACL Certificate No: D1900V2-5d003_Oct15 # CALIBRATION CERTIFICATE Object D1900V2 - SN: 5d003 QA CAL-05.v9 Calibration procedure(s) Calibration procedure for dipole validation kits above 700 MHz Calibration date: October 19, 2015 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 07-Oct-15 (No. 217-02222) | Oct-16 | | Power sensor HP 8481A | US37292783 | 07-Oct-15 (No. 217-02222) | Oct-16 | | Power sensor HP 8481A | MY41092317 | 07-Oct-15 (No. 217-02223) | Oct-16 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 01-Apr-15 (No. 217-02131) | Mar-16 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 01-Apr-15 (No. 217-02134) | Mar-16 | | Reference Probe EX3DV4 | SN: 7349 | 30-Dec-14 (No. EX3-7349_Dec14) | Dec-15 | | DAE4 | SN: 601 | 17-Aug-15 (No. DAE4-601_Aug15) | Aug-16 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | RF generator R&S SMT-06 | 100972 | 15-Jun-15 (in house check Jun-15) | In house check: Jun-18 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-15) | In house check: Oct-16 | | | Name | Function | Signature | | Calibrated by: | Israe Elnaouq | Laboratory Technician | Meen Chaucy | | Approved by: | Katja Pokovic | Technical Manager | DM. | Issued: October 19, 2015 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D1900V2-5d003 Oct15 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL /
NORM x,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - · SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1900V2-5d003_Oct15 Page 2 of 8 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | - Opacoi | | Frequency | 1900 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.9 ± 6 % | 1.38 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | # SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.68 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 38.8 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.07 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.3 W/kg ± 16.5 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.3 ± 6 % | 1.51 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # **SAR result with Body TSL** | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.79 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 39.1 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.17 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.7 W/kg ± 16.5 % (k=2) | Certificate No: D1900V2-5d003_Oct15 # Appendix (Additional assessments outside the scope of SCS 0108) # Antenna Parameters with Head TSL | Impedance, transformed to feed point | $53.9 \Omega + 4.7 j\Omega$ | |--------------------------------------|-----------------------------| | Return Loss | - 24.6 dB | # **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 48.3 Ω + 5.0 jΩ | |--------------------------------------|-----------------| | Return Loss | - 25.4 dB | # **General Antenna Parameters and Design** | Floatrical Delevidana d'accident | | |----------------------------------|----------| | Electrical Delay (one direction) | 1 100 | | (one allocation) | 1.188 ns | | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------------------| | Manufactured on | February 14, 2002 | Certificate No: D1900V2-5d003_Oct15 # DASY5 Validation Report for Head TSL Date: 19.10.2015 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d003 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.38 S/m; ϵ_r = 38.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.14, 8.14, 8.14); Calibrated: 30.12.2014; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 17.08.2015 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 107.6 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 18.1 W/kg SAR(1 g) = 9.68 W/kg; SAR(10 g) = 5.07 W/kg Maximum value of SAR (measured) = 14.9 W/kg 0 dB = 14.9 W/kg = 11.73 dBW/kg # Impedance Measurement Plot for Head TSL Certificate No: D1900V2-5d003_Oct15 Page 6 of 8 # DASY5 Validation Report for Body TSL Date: 19.10.2015 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d003 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.51$ S/m; $\varepsilon_r = 52.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ## DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(7.9, 7.9, 7.9); Calibrated: 30.12.2014; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 17.08.2015 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) # Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 103.5 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 17.4 W/kg SAR(1 g) = 9.79 W/kg; SAR(10 g) = 5.17 W/kg Maximum value of SAR (measured) = 14.9 W/kg 0 dB = 14.9 W/kg = 11.73 dBW/kg Certificate No: D1900V2-5d003 Oct15 Page 7 of 8 # Impedance Measurement Plot for Body TSL Certificate No: D1900V2-5d003_Oct15 A45e6#852 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland C Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates | | CERTIFICATI | | | |--|---
--|---| | Object | D2600V2 - SN:1 | 133 | | | Calibration procedure(s) | QA CAL-05.v9
Calibration proce | edure for dipole validation kits abo | ove 700 MHz | | Calibration date: | November 10, 20 | 016 | | | The measurements and the unce | ertainties with confidence p | ional standards, which realize the physical un
probability are given on the following pages ar | nd are part of the certificate. | | All calibrations have been condu | | ry facility: environment temperature (22 ± 3)° | C and humidity < 70%. | | Calibration Equipment used (M& | TE critical for calibration) | | | | | TE critical for calibration) | Cal Date (Certificate No.) | Scheduled Calibration | | Primary Standards Power meter NRP | 1 | Cal Date (Certificate No.) 06-Apr-16 (No. 217-02288/02289) | Scheduled Calibration Apr-17 | | Primary Standards
Power meter NRP
Power sensor NRP-Z91 | ID# | | | | Primary Standards
Power meter NRP
Power sensor NRP-Z91 | ID #
SN: 104778 | 06-Apr-16 (No. 217-02288/02289) | Apr-17 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator | ID #
SN: 104778
SN: 103244 | 06-Apr-16 (No. 217-02288/02289)
06-Apr-16 (No. 217-02288) | Apr-17
Apr-17 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator | ID #
SN: 104778
SN: 103244
SN: 103245 | 06-Apr-16 (No. 217-02288/02289)
06-Apr-16 (No. 217-02288)
06-Apr-16 (No. 217-02289) | Apr-17
Apr-17
Apr-17 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination | ID #
SN: 104778
SN: 103244
SN: 103245
SN: 5058 (20k) | 06-Apr-16 (No. 217-02288/02289)
06-Apr-16 (No. 217-02288)
06-Apr-16 (No. 217-02289)
05-Apr-16 (No. 217-02292) | Apr-17
Apr-17
Apr-17
Apr-17 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 | 06-Apr-16 (No. 217-02288/02289)
06-Apr-16 (No. 217-02288)
06-Apr-16 (No. 217-02289)
05-Apr-16 (No. 217-02292)
05-Apr-16 (No. 217-02295) | Apr-17
Apr-17
Apr-17
Apr-17
Apr-17 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 | 06-Apr-16 (No. 217-02288/02289)
06-Apr-16 (No. 217-02288)
06-Apr-16 (No. 217-02289)
05-Apr-16 (No. 217-02292)
05-Apr-16 (No. 217-02295)
15-Jun-16 (No. EX3-7349_Jun16) | Apr-17
Apr-17
Apr-17
Apr-17
Apr-17
Jun-17 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 | 06-Apr-16 (No. 217-02288/02289)
06-Apr-16 (No. 217-02288)
06-Apr-16 (No. 217-02289)
05-Apr-16 (No. 217-02292)
05-Apr-16 (No. 217-02295)
15-Jun-16 (No. EX3-7349_Jun16)
30-Dec-15 (No. DAE4-601_Dec15) | Apr-17
Apr-17
Apr-17
Apr-17
Apr-17
Jun-17
Dec-16 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Fype-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter EPM-442A Power sensor HP 8481A | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 | 06-Apr-16 (No. 217-02288/02289)
06-Apr-16 (No. 217-02288)
06-Apr-16 (No. 217-02289)
05-Apr-16 (No. 217-02292)
05-Apr-16 (No. 217-02295)
15-Jun-16 (No. EX3-7349_Jun16)
30-Dec-15 (No. DAE4-601_Dec15) | Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Jun-17 Dec-16 Scheduled Check | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 | 06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02292) 15-Jun-16 (No. 217-02295) 15-Jun-16 (No. EX3-7349_Jun16) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (in house check Oct-16) | Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Jun-17 Dec-16 Scheduled Check In house check: Oct-18 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Fype-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 | 06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02292) 15-Jun-16 (No. 217-02295) 15-Jun-16 (No. EX3-7349_Jun16) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) | Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Jun-17 Dec-16 Scheduled Check In house check: Oct-18 In house check: Oct-18 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 | 06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 15-Jun-16 (No. EX3-7349_Jun16) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) | Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Jun-17 Dec-16 Scheduled Check In house check: Oct-18 In house check: Oct-18 | | Calibration Equipment used (M& Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 | 06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 15-Jun-16 (No. EX3-7349_Jun16) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) | Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Jun-17 Dec-16 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585 | 06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. EX3-7349_Jun16) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-16) | Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Jun-17 Dec-16 Scheduled Check In house check: Oct-18 | Certificate No: D2600V2-1133_Nov16 Page 1 of 8 # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for
wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2600V2-1133_Nov16 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2600 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.0 | 1.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.6 ± 6 % | 2.04 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 14.4 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 56.1 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.37 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 25.1 W/kg ± 16.5 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.5 | 2.16 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 50.8 ± 6 % | 2.20 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## **SAR result with Body TSL** | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.6 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 53.6 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.06 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 24.0 W/kg ± 16.5 % (k=2) | Certificate No: D2600V2-1133_Nov16 Page 3 of 8 # Appendix (Additional assessments outside the scope of SCS 0108) ## **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 48.2 Ω - 7.7 jΩ | |--------------------------------------|-----------------| | Return Loss | - 21.9 dB | ### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 44.4 Ω - 5.9 jΩ | |--------------------------------------|-----------------| | Return Loss | - 21.3 dB | # **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.153 ns | |----------------------------------|------------| | | V. 100 110 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|------------------| | Manufactured on | October 12, 2016 | Certificate No: D2600V2-1133_Nov16 # **DASY5 Validation Report for Head TSL** Date: 10.11.2016 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1133 Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.04$ S/m; $\varepsilon_r = 37.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(7.56, 7.56, 7.56); Calibrated: 15.06.2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 30.12.2015 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 114.5 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 30.4 W/kg SAR(1 g) = 14.4 W/kg; SAR(10 g) = 6.37 W/kg Maximum value of SAR (measured) = 24.2 W/kg 0 dB = 24.2 W/kg = 13.84 dBW/kg # Impedance Measurement Plot for Head TSL Certificate No: D2600V2-1133_Nov16 Page 6 of 8 ### **DASY5 Validation Report for Body TSL** Date: 10.11.2016 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1133 Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; σ = 2.2 S/m; ϵ_r = 50.8; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(7.48, 7.48, 7.48); Calibrated: 15.06.2016; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 30.12.2015 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372) # Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 107.2 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 27.9 W/kg SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.06 W/kg Maximum value of SAR (measured) = 22.7 W/kg 0 dB = 22.7 W/kg = 13.56 dBW/kg Certificate No: D2600V2-1133_Nov16 Page 7 of 8 ## Impedance Measurement Plot for Body TSL Certificate No: D2600V2-1133_Nov16 # 14 Appendix D - Test System Verifications Scans Test Laboratory: Bay Area Compliance Lab Corp. (BACL) 835 MHz Body System Validation DUT: Dipole 835 MHz; Type: 835 MHz Dipole; Serial: 180-00564 Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.93$ mho/m; $\varepsilon_r = 55$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) #### DASY4 Configuration: • Probe: EX3DV4 - SN3619; ConvF(8.2, 8.2, 8.2); Calibrated: 9/23/2016 • Sensor-Surface: 4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn530; Calibrated: 9/21/2016 • Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186 **d =15 mm, Pin = 100 mW/Area Scan (81x131x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.12 mW/g **d =15 mm, Pin = 100 mW/Zoom Scan (8x8x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 34.1 V/m; Power Drift = 0.091 dB Peak SAR (extrapolated) = 1.58 W/kg ## SAR(1 g) = 1.04 mW/g; SAR(10 g) = 0.684 mW/gMaximum value of SAR (measured) = 1.12 mW/g #### Test Laboratory: Bay Area Compliance Lab Corp. (BACL) 835 MHz Head System Validation DUT: Dipole 835 MHz; Type: 835 MHz Dipole; Serial: 180-00564 Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.89$ mho/m; $\varepsilon_r = 40.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) #### DASY4 Configuration: • Probe: EX3DV4 - SN3619; ConvF(9.28, 9.28, 9.28); Calibrated: 9/23/2016 • Sensor-Surface: 4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn530; Calibrated: 9/21/2016 • Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032 Measurement SW: DASY4, V4.7
Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186 **d =15 mm, Pin = 100 mW/Area Scan (81x131x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.974 mW/g **d =15 mm, Pin = 100 mW/Zoom Scan (8x8x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 32.4 V/m; Power Drift = 0.107 dB Peak SAR (extrapolated) = 1.36 W/kg SAR(1 g) = 0.890 mW/g; SAR(10 g) = 0.581 mW/gMaximum value of SAR (measured) = 0.959 mW/g #### Test Laboratory: Bay Area Compliance Lab Corp. (BACL) 1750 MHz Body System Validation DUT: Dipole 1750 MHz; Type: 1750 MHz Dipole; Serial: 1139 Communication System: CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; $\sigma = 1.46 \text{ mho/m}$; $\varepsilon_r = 52.3$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) #### DASY4 Configuration: • Probe: EX3DV4 - SN3619; ConvF(7.26, 7.26, 7.26); Calibrated: 9/23/2016 • Sensor-Surface: 4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn530; Calibrated: 9/21/2016 • Phantom: SAM with CRP; Type: SAM; Serial: TP-1032 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186 d = 10mm, Pin = 0.1W/Area Scan (81x81x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 4.38 mW/g **d = 10mm, Pin = 0.1W/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 51.7 V/m; Power Drift = 0.061 dB Peak SAR (extrapolated) = 7.40 W/kg SAR(1 g) = 3.84 mW/g; SAR(10 g) = 1.99 mW/gMaximum value of SAR (measured) = 4.27 mW/g #### Test Laboratory: Bay Area Compliance Lab Corp. (BACL) 1750 MHz Head System Validation DUT: Dipole 1750 MHz; Type: 1750 MHz Dipole; Serial: 1139 Communication System: CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; $\sigma = 1.4 \text{ mho/m}$; $\varepsilon_r = 38.7$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) #### DASY4 Configuration: • Probe: EX3DV4 - SN3619; ConvF(7.56, 7.56, 7.56); Calibrated: 9/23/2016 • Sensor-Surface: 4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn530; Calibrated: 9/21/2016 • Phantom: SAM with CRP; Type: SAM; Serial: TP-1032 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186 d = 10mm, Pin = 0.1W/Area Scan (81x81x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 4.38 mW/g **d = 10mm, Pin = 0.1W/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.6 V/m; Power Drift = 0.102 dB Peak SAR (extrapolated) = 7.86 W/kg SAR(1 g) = 3.94 mW/g; SAR(10 g) = 2 mW/gMaximum value of SAR (measured) = 4.35 mW/g #### Test Laboratory: Bay Area Compliance Lab Corp. (BACL) 1900 MHz Body System Validation DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d003 Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.55 \text{ mho/m}$; $\varepsilon_r = 52.4$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) #### DASY4 Configuration: • Probe: EX3DV4 - SN3619; ConvF(7, 7, 7); Calibrated: 9/23/2016 • Sensor-Surface: 4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn530; Calibrated: 9/21/2016 • Phantom: SAM with CRP; Type: SAM; Serial: TP-1032 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186 d = 10mm, Pin = 0.1W/Area Scan (81x81x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 4.68 mW/g **d = 10mm, Pin = 0.1W/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.8 V/m; Power Drift = 0.194 dB Peak SAR (extrapolated) = 7.84 W/kg SAR(1 g) = 4.21 mW/g; SAR(10 g) = 2.21 mW/gMaximum value of SAR (measured) = 4.77 mW/g #### Test Laboratory: Bay Area Compliance Lab Corp. (BACL) 1900 MHz Head System Validation DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d003 Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.42 \text{ mho/m}$; $\varepsilon_r = 41.2$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) #### DASY4 Configuration: • Probe: EX3DV4 - SN3619; ConvF(7.21, 7.21, 7.21); Calibrated: 9/23/2016 • Sensor-Surface: 4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn530; Calibrated: 9/21/2016 • Phantom: SAM with CRP; Type: SAM; Serial: TP-1032 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186 **d = 10mm, Pin = 0.1W/Area Scan (81x81x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 4.48 mW/g **d = 10mm, Pin = 0.1W/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.3 V/m; Power Drift = 0.110 dB Peak SAR (extrapolated) = 8.09 W/kg SAR(1 g) = 4.05 mW/g; SAR(10 g) = 2.05 mW/gMaximum value of SAR (measured) = 4.53 mW/g #### Test Laboratory: Bay Area Compliance Lab Corp. (BACL) 2600 MHz Body System Validation DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1133 Communication System: CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; $\sigma = 2.14 \text{ mho/m}$; $\varepsilon_r = 54.1$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) #### DASY4 Configuration: • Probe: EX3DV4 - SN3619; ConvF(6.54, 6.54, 6.54); Calibrated: 9/23/2016 • Sensor-Surface: 4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn530; Calibrated: 9/21/2016 • Phantom: SAM with CRP; Type: SAM; Serial: TP-1032 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186 **d = 10mm, Pin = 100mW/Area Scan (71x121x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 5.67 mW/g **d = 10mm, Pin = 100mW/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 49.9 V/m; Power Drift = 0.752 dB Peak SAR (extrapolated) = 13.9 W/kg SAR(1 g) = 5.66 mW/g; SAR(10 g) = 2.35 mW/gMaximum value of SAR (measured) = 6.48 mW/g ## Test Laboratory: Bay Area Compliance Lab Corp. (BACL) 2600 MHz Head System Validation DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1133 Communication System: CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; $\sigma = 2.01 \text{ mho/m}$; $\varepsilon_r = 40.1$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) #### DASY4 Configuration: • Probe: EX3DV4 - SN3619; ConvF(6.59, 6.59, 6.59); Calibrated: 9/23/2016 • Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn530; Calibrated: 9/21/2016 Phantom: SAM with CRP; Type: SAM; Serial: TP-1032 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186 **d = 10mm, Pin = 100mW/Area Scan (71x121x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 6.45 mW/g **d = 10mm, Pin = 100mW/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 60.1 V/m; Power Drift = 0.030 dB Peak SAR (extrapolated) = 13.4 W/kg SAR(1 g) = 5.76 mW/g; SAR(10 g) = 2.53 mW/gMaximum value of SAR (measured) = 6.52 mW/g # 15 Appendix E - EUT Scan Results Test Laboratory: Bay Area Compliance Lab Corp. (BACL) GSM850 GPRS Back 10mm Middle Channel (836.6 MHz) DUT: b Mobile; Type: Mobile; Serial: B1605034 Communication System: GSM 850 4 Slot; Frequency: 836.6 MHz; Duty Cycle: 1:2 Medium parameters used: f = 836.6 MHz; $\sigma = 0.93$ mho/m; $\varepsilon_r = 55.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) #### DASY4 Configuration: • Probe: EX3DV4 - SN3619; ConvF(8.2, 8.2, 8.2); Calibrated: 9/23/2016 • Sensor-Surface: 4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn530; Calibrated: 9/21/2016 • Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186 **Back to the Phantom (Middle Channel)/Area Scan (91x141x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.836 mW/g **Back to the Phantom (Middle Channel)/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 29.2 V/m; Power Drift = -0.137 dB Peak SAR (extrapolated) = 1.01 W/kg SAR(1 g) = 0.793 mW/g; SAR(10 g) = 0.606 mW/g Maximum value of SAR (measured) = 0.830 mW/g ### Test Laboratory: Bay Area Compliance Lab Corp. (BACL) GSM850 Left Cheek Middle Channel (836.6 MHz) DUT: b Mobile; Type: Mobile; Serial: B1605034 Communication System: GSM 835; Frequency: 836.6 MHz; Duty Cycle: 1:8 Medium parameters used: f = 836.6 MHz; $\sigma = 0.89 \text{ mho/m}$; $\varepsilon_r = 40.2$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section Measurement Standard: DASY4 (High Precision Assessment) #### DASY4 Configuration: • Probe: EX3DV4 - SN3619; ConvF(9.28, 9.28, 9.28); Calibrated: 9/23/2016 • Sensor-Surface: 4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn530; Calibrated: 9/21/2016 • Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186 **Left Cheek to the Phantom (Middle Channel)/Area Scan (111x131x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.422 mW/g **Left Cheek to the Phantom (Middle Channel)/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.14 V/m; Power Drift = 0.532 dB Peak SAR (extrapolated) = 0.479 W/kg # SAR(1 g) = 0.401 mW/g; SAR(10 g) = 0.312 mW/g Maximum value of SAR (measured) = 0.423 mW/g Test Laboratory: Bay Area Compliance Lab Corp. (BACL) GPRS PCS Back 10mm Middle Channel (1880 MHz) DUT: b Mobile; Type: Mobile; Serial: B1605034 Communication System: PCS 1900 4 Slot; Frequency: 1880 MHz; Duty Cycle: 1:2 Medium parameters used: f = 1880 MHz;
$\sigma = 1.54$ mho/m; $\varepsilon_r = 52.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) #### DASY4 Configuration: • Probe: EX3DV4 - SN3619; ConvF(7, 7, 7); Calibrated: 9/23/2016 • Sensor-Surface: 4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn530; Calibrated: 9/21/2016 • Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186 Back to the Phantom (Middle Channel)/Area Scan (91x141x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.156 mW/g **Back to the Phantom (Middle Channel)/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.71 V/m; Power Drift = -0.245 dB Peak SAR (extrapolated) = 0.252 W/kg ## SAR(1 g) = 0.143 mW/g; SAR(10 g) = 0.086 mW/gMaximum value of SAR (measured) = 0.153 mW/g #### Test Laboratory: Bay Area Compliance Lab Corp. (BACL) GSM PCS Left Cheek Middle Channel (1880 MHz) DUT: b Mobile; Type: Mobile; Serial: B1605034 Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:8 Medium parameters used: f = 1880 MHz; $\sigma = 1.41$ mho/m; $\epsilon_r = 41.6$; $\rho = 1000$ kg/m³ Phantom section: Left Section Measurement Standard: DASY4 (High Precision Assessment) #### DASY4 Configuration: • Probe: EX3DV4 - SN3619; ConvF(7.21, 7.21, 7.21); Calibrated: 9/23/2016 • Sensor-Surface: 4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn530; Calibrated: 9/21/2016 • Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186 **Left Cheek to the Phantom (Middle Channel)/Area Scan (111x131x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.321 mW/g **Left Cheek to the Phantom (Middle Channel)/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.57 V/m; Power Drift = 0.219 dB Peak SAR (extrapolated) = 0.472 W/kg # SAR(1 g) = 0.293 mW/g; SAR(10 g) = 0.175 mW/g Maximum value of SAR (measured) = 0.323 mW/g Test Laboratory: Bay Area Compliance Lab Corp. (BACL) WCDMA B5 Back 10mm Middle Channel (836.6 MHz) DUT: b Mobile; Type: Mobile; Serial: B1605034 Communication System: WCDMA-850MHz; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium parameters used: f = 836.6 MHz; $\sigma = 0.93$ mho/m; $\varepsilon_r = 55.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) #### DASY4 Configuration: Probe: EX3DV4 - SN3619; ConvF(8.2, 8.2, 8.2); Calibrated: 9/23/2016 • Sensor-Surface: 4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn530; Calibrated: 9/21/2016 • Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186 Back to the Phantom (Middle Channel)/Area Scan (91x141x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.345 mW/g **Back to the Phantom (Middle Channel)/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 18.1 V/m; Power Drift = 0.005 dB Peak SAR (extrapolated) = 0.881 W/kg ## SAR(1 g) = 0.386 mW/g; SAR(10 g) = 0.257 mW/gMaximum value of SAR (measured) = 0.351 mW/g #### Test Laboratory: Bay Area Compliance Lab Corp. (BACL) WCDMA B5 Left Cheek Middle Channel (836.6 MHz) DUT: b Mobile; Type: Mobile; Serial: B1605034 Communication System: WCDMA-850MHz; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium parameters used: f = 836.6 MHz; $\sigma = 0.89$ mho/m; $\varepsilon_r = 40.2$; $\rho = 1000$ kg/m³ Phantom section: Left Section Measurement Standard: DASY4 (High Precision Assessment) #### DASY4 Configuration: • Probe: EX3DV4 - SN3619; ConvF(9.28, 9.28, 9.28); Calibrated: 9/23/2016 • Sensor-Surface: 4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn530; Calibrated: 9/21/2016 • Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186 **Left Cheek to the Phantom (Middle Channel)/Area Scan (111x131x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.424 mW/g Left Cheek to the Phantom (Middle Channel)/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.28 V/m; Power Drift = -0.084 dB Peak SAR (extrapolated) = 0.439 W/kg # SAR(1 g) = 0.368 mW/g; SAR(10 g) = 0.288 mW/g Maximum value of SAR (measured) = 0.385 mW/g Test Laboratory: Bay Area Compliance Lab Corp. (BACL) WCDMA B2 Back 10mm Middle Channel (1880 MHz) DUT: b Mobile; Type: Mobile; Serial: B1605034 Communication System: WCDMA-1900MHz; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.54$ mho/m; $\varepsilon_r = 52.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) #### DASY4 Configuration: • Probe: EX3DV4 - SN3619; ConvF(7, 7, 7); Calibrated: 9/23/2016 • Sensor-Surface: 4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn530; Calibrated: 9/21/2016 • Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186 **Back to the Phantom (Middle Channel)/Area Scan (91x141x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.309 mW/g **Back to the Phantom (Middle Channel)/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.37 V/m; Power Drift = 0.086 dB Peak SAR (extrapolated) = 0.471 W/kg ## SAR(1 g) = 0.281 mW/g; SAR(10 g) = 0.171 mW/gMaximum value of SAR (measured) = 0.306 mW/g #### Test Laboratory: Bay Area Compliance Lab Corp. (BACL) WCDMA B2 Left Cheek Middle Channel (1880 MHz) DUT: b Mobile; Type: Mobile; Serial: B1605034 Communication System: WCDMA-1900MHz; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.41$ mho/m; $\varepsilon_r = 41.6$; $\rho = 1000$ kg/m³ Phantom section: Left Section Measurement Standard: DASY4 (High Precision Assessment) #### DASY4 Configuration: • Probe: EX3DV4 - SN3619; ConvF(7.21, 7.21, 7.21); Calibrated: 9/23/2016 • Sensor-Surface: 4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn530; Calibrated: 9/21/2016 • Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186 **Left Cheek to the Phantom (Middle Channel)/Area Scan (111x131x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.642 mW/g Left Cheek to the Phantom (Middle Channel)/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.07 V/m; Power Drift = -0.064 dB Peak SAR (extrapolated) = 0.976 W/kg # SAR(1 g) = 0.598 mW/g; SAR(10 g) = 0.351 mW/g Maximum value of SAR (measured) = 0.665 mW/g #8 #### Test Laboratory: Bay Area Compliance Lab Corp. (BACL) LTE B2 Back 10mm Low Channel (1860 MHz) DUT: b Mobile; Type: Mobile; Serial: B1605034 Communication System: LTE-Band 2 @20MHz; Frequency: 1860 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1860 MHz; $\sigma = 1.53$ mho/m; $\varepsilon_r = 52.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) #### DASY4 Configuration: • Probe: EX3DV4 - SN3619; ConvF(7, 7, 7); Calibrated: 9/23/2016 • Sensor-Surface: 4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn530; Calibrated: 9/21/2016 • Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186 **Back to the Phantom (Low Channel)/Area Scan (91x141x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.285 mW/g **Back to the Phantom (Low Channel)/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.08 V/m; Power Drift = 0.103 dB Peak SAR (extrapolated) = 0.430 W/kg ## SAR(1 g) = 0.260 mW/g; SAR(10 g) = 0.159 mW/gMaximum value of SAR (measured) = 0.282 mW/g #### Test Laboratory: Bay Area Compliance Lab Corp. (BACL) LTE B2 Left Cheek Low Channel (1860 MHz) DUT: b Mobile; Type: Mobile; Serial: B1605034 Communication System: LTE-Band 2 @20MHz; Frequency: 1860 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 1860 MHz; $\sigma = 1.39 \text{ mho/m}$; $\varepsilon_r = 41.5$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section Measurement Standard: DASY4 (High Precision Assessment) #### DASY4 Configuration: • Probe: EX3DV4 - SN3619; ConvF(7.21, 7.21, 7.21); Calibrated: 9/23/2016 • Sensor-Surface: 4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn530; Calibrated: 9/21/2016 • Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186 **Left Cheek to the Phantom (Low Channel)/Area Scan (111x131x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.424 mW/g **Left Cheek to the Phantom (Low Channel)/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.40 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 0.590 W/kg ## SAR(1 g) = 0.381 mW/g; SAR(10 g) = 0.239 mW/gMaximum value of SAR (measured) = 0.413 mW/g Test Laboratory: Bay Area Compliance Lab Corp. (BACL) LTE B4 Back 10mm Low Channel (1720 MHz) DUT: b Mobile; Type: Mobile; Serial: B1605034 Communication System: LTE-Band 4 @20MHz; Frequency: 1720 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1720 MHz; $\sigma = 1.45$ mho/m; $\varepsilon_r = 52.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) #### DASY4 Configuration: • Probe: EX3DV4 - SN3619; ConvF(7.26, 7.26, 7.26); Calibrated: 9/23/2016 • Sensor-Surface: 4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn530; Calibrated: 9/21/2016 • Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032 Measurement SW: DASY4, V4.7 Build 80; Postprocessing
SW: SEMCAD, V1.8 Build 186 **Back to the Phantom (Low Channel)/Area Scan (91x141x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.326 mW/g **Back to the Phantom (Low Channel)/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 11.1 V/m; Power Drift = 0.168 dB Peak SAR (extrapolated) = 0.470 W/kg ## SAR(1 g) = 0.298 mW/g; SAR(10 g) = 0.187 mW/gMaximum value of SAR (measured) = 0.322 mW/g #### Test Laboratory: Bay Area Compliance Lab Corp. (BACL) LTE B4 Left Cheek Low Channel (1720 MHz) DUT: DDM; Type: Mobile; Serial: B1603017 Communication System: LTE-Band 4 @20MHz; Frequency: 1720 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 1720 MHz; $\sigma = 1.38 \text{ mho/m}$; $\varepsilon_r = 39.1$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section Measurement Standard: DASY4 (High Precision Assessment) #### DASY4 Configuration: • Probe: EX3DV4 - SN3619; ConvF(7.56, 7.56, 7.56); Calibrated: 9/23/2016 • Sensor-Surface: 4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn530; Calibrated: 9/21/2016 • Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186 **Left Cheek to the Phantom (Low Channel)/Area Scan (111x131x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.466 mW/g **Left Cheek to the Phantom (Low Channel)/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.17 V/m; Power Drift = -0.132 dB Peak SAR (extrapolated) = 0.654 W/kg ## SAR(1 g) = 0.432 mW/g; SAR(10 g) = 0.271 mW/gMaximum value of SAR (measured) = 0.468 mW/g Test Laboratory: Bay Area Compliance Lab Corp. (BACL) LTE B5 Back 10mm Middle Channel (836.5 MHz) DUT: b Mobile; Type: Mobile; Serial: B1605034 Communication System: LTE-Band 5; Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium parameters used: f = 836.5 MHz; $\sigma = 0.93$ mho/m; $\varepsilon_r = 55.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) #### DASY4 Configuration: Probe: EX3DV4 - SN3619; ConvF(8.2, 8.2, 8.2); Calibrated: 9/23/2016 • Sensor-Surface: 4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn530; Calibrated: 9/21/2016 • Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186 **Back to the Phantom (Middle Channel)/Area Scan (91x141x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.494 mW/g **Back to the Phantom (Middle Channel)/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 21.5 V/m; Power Drift = 0.023 dB Peak SAR (extrapolated) = 0.596 W/kg ## SAR(1 g) = 0.468 mW/g; SAR(10 g) = 0.356 mW/gMaximum value of SAR (measured) = 0.491 mW/g Test Laboratory: Bay Area Compliance Lab Corp. (BACL) LTE B5 Left Cheek Middle Channel (836.5 MHz) DUT: b Mobile; Type: Mobile; Serial: B1605034 Communication System: LTE-Band 5; Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium parameters used: f = 836.5 MHz; $\sigma = 0.89$ mho/m; $\varepsilon_r = 40.2$; $\rho = 1000$ kg/m³ Phantom section: Left Section Measurement Standard: DASY4 (High Precision Assessment) #### DASY4 Configuration: • Probe: EX3DV4 - SN3619; ConvF(9.28, 9.28, 9.28); Calibrated: 9/23/2016 • Sensor-Surface: 4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn530; Calibrated: 9/21/2016 • Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186 **Left Cheek to the Phantom (Middle Channel)/Area Scan (111x131x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.427 mW/g **Left Cheek to the Phantom (Middle Channel)/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.15 V/m; Power Drift = 0.229 dB Peak SAR (extrapolated) = 0.483 W/kg ## SAR(1 g) = 0.406 mW/g; SAR(10 g) = 0.318 mW/gMaximum value of SAR (measured) = 0.424 mW/g 0.424 0.352 0.280 0.208 0.136 # Test Laboratory: Bay Area Compliance Lab Corp. (BACL) LTE Band 7 Body Back 10mm Low Channel (2510 MHz) 1RB 20BW DUT: b mobile; Type: Mobile; Serial: B1605034 Communication System: LTE Band 7@20MHz; Frequency: 2510 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2510 MHz; $\sigma = 2.02$ mho/m; $\epsilon_r = 53.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) #### DASY4 Configuration: • Probe: EX3DV4 - SN3619; ConvF(6.54, 6.54, 6.54); Calibrated: 9/23/2016 • Sensor-Surface: 4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn530; Calibrated: 9/21/2016 • Phantom: SAM with CRP; Type: SAM; Serial: TP-1032 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186 **Back 10mm to Phantom(Low Channel)/Area Scan (101x151x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.42 mW/g **Back 10mm to Phantom(Low Channel)/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.17 V/m; Power Drift = -0.358 dB Peak SAR (extrapolated) = 2.42 W/kg ## SAR(1 g) = 1.25 mW/g; SAR(10 g) = 0.585 mW/gMaximum value of SAR (measured) = 1.42 mW/g Test Laboratory: Bay Area Compliance Lab Corp. (BACL) LTE Band 7 Left Cheek Middle Channel (2510 MHz) DUT: b mobile; Type: Mobile; Serial: B1605034 Communication System: LTE Band 7@20MHz; Frequency: 2510 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2510 MHz; $\sigma = 1.89$ mho/m; $\varepsilon_r = 40.6$; $\rho = 1000$ kg/m³ Phantom section: Left Section Measurement Standard: DASY4 (High Precision Assessment) #### DASY4 Configuration: • Probe: EX3DV4 - SN3619; ConvF(6.59, 6.59, 6.59); Calibrated: 9/23/2016 • Sensor-Surface: 4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn530; Calibrated: 9/21/2016 • Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186 **Left Cheek to the Phantom (Low Channel)/Area Scan (91x131x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.634 mW/g **Left Cheek to the Phantom (Low Channel)/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.47 V/m; Power Drift = -0.048 dB Peak SAR (extrapolated) = 0.929 W/kg ## SAR(1 g) = 0.565 mW/g; SAR(10 g) = 0.329 mW/gMaximum value of SAR (measured) = 0.626 mW/g # 16 Appendix F- RF Output Power Measurement ## WWAN: | Band | Frequency
(MHz) | Configuration | Measured Power (dBm) | Target Power (dBm) | |---------------------------|--------------------|----------------|----------------------|--------------------| | GSM850 | 836.6 | - | 31.8 | 32.2 | | PCS1900 | 1880 | - | 28.76 | 28.9 | | GPRS850 | 836.6 | 4 slot | 28.66 | 28.9 | | GPRS1900 | 1880 | 4 slot | 25.11 | 25.3 | | WCDMA 850 | 836.6 | RMC 12.2k | 22.07 | 22.2 | | WCDMA 1900 | 1880 | RMC 12.2k | 21.49 | 22 | | LTE Band2
(BW: 20 MHz) | 1860 | 1RB, Offset=49 | 22.68 | 23.2 | | LTE Band4
(BW: 20 MHz) | 1720 | 1RB, Offset=49 | 22.56 | 23 | | LTE Band5
(BW: 10 MHz) | 836.5 | 1RB, Offset=24 | 22.7 | 23.1 | | LTE Band7
(BW: 20 MHz) | 2510 | 1RB, Offset=99 | 22.68 | 23 | ## WLAN: | Mode | Channel
Frequency
(MHz) | Measured Power (dBm) | | Target Power | |-----------|-------------------------------|----------------------|-------|--------------| | | | (dBm) | (mW) | (dBm) | | 802.11b | 2412 | 9.07 | 8.072 | 9.5 | | | 2437 | 9.28 | 8.472 | 9.5 | | | 2472 | 9.42 | 8.750 | 9.5 | | 802.11g | 2412 | 8.81 | 7.603 | 9.0 | | | 2437 | 8.87 | 7.709 | 9.0 | | | 2472 | 8.84 | 7.656 | 9.0 | | 802.11n20 | 2412 | 8.91 | 7.780 | 9.0 | | | 2437 | 8.88 | 7.727 | 9.0 | | | 2472 | 8.97 | 7.889 | 9.0 | | 802.11n40 | 2422 | 9.15 | 8.222 | 9.5 | | | 2437 | 9.30 | 8.511 | 9.5 | | | 2462 | 9.39 | 8.690 | 9.5 | ## Bluetooth: | Mode | Channel
Frequency
(MHz) | Measured Power (dBm) | | Target Power | |----------|-------------------------------|----------------------|-------|--------------| | | | (dBm) | (mW) | (dBm) | | GFSK | 2402 | 6.23 | 4.198 | 6.5 | | | 2441 | 6.47 | 4.436 | 6.5 | | | 2480 | 6.45 | 4.416 | 6.5 | | π/4DQPSK | 2402 | 4.84 | 3.048 | 5.5 | | | 2441 | 5.15 | 3.273 | 5.5 | | | 2480 | 5.02 | 3.177 | 5.5 | | 8-DPSK | 2402 | 5.02 | 3.177 | 5.5 | | | 2441 | 5.44 | 3.499 | 5.5 | | | 2480 | 5.19 | 3.304 | 5.5 | | BLE | 2402 | -1.14 | 0.769 | -0.5 | | | 2440 | -0.89 | 0.815 | -0.5 | | | 2480 | -1.20 | 0.759 | -0.5 | # 17 Appendix G - Test Setup Photos # 17.1 EUT Back Side 10mm to the Twin Phantom Setup Photo # 17.2 EUT Left Head Touch to the Twin Phantom Setup Photo # 18 Appendix H - EUT Photos ## **18.1 EUT Front View** ## 18.2 EUT Back View ## 18.3 EUT Left View # 18.4 EUT Right View # 18.5 EUT Top View # 18.6 EUT Bottom View # 18.7 EUT Open Case-1 # 18.8 EUT Open Case-2 # 19 Appendix I - Informative References - [1] Federal Communications Commission, \Report and order: Guidelines for evaluating the environmental effects of radiofrequency radiation", Tech. Rep. FCC 96-326, FCC, Washington, D.C. 20554, 1996. - [2] David L. Means Kwok Chan, Robert F. Cleveland, \Evaluating compliance with FCC guidelines for human exposure to radiofrequency electromagnetic fields", Tech. Rep., Federal Communication Commission, O_ce of Engineering & Technology, Washington, DC, 1997. - [3] Thomas Schmid, Oliver Egger, and Niels Kuster, \Automated E-_eld scanning system for dosimetric assessments", IEEE Transactions on Microwave Theory and Techniques, vol. 44, pp. 105{113, Jan. 1996. - [4] Niels Kuster, Ralph K.astle, and Thomas Schmid, \Dosimetric evaluation of mobile communications equipment with known precision", IEICE Transactions on Communications, vol. E80-B, no. 5, pp. 645{652, May 1997. - [5] CENELEC, \Considerations for evaluating of human exposure to electromagnetic fields (EMFs) from mobile telecommunication equipment (MTE) in the frequency range 30MHz 6GHz", Tech. Rep.,
CENELEC, European Committee for Electrotechnical Standardization, Brussels, 1997. - [6] ANSI, ANSI/IEEE C95.1-1992: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, The Institute of Electrical and Electronics Engineers, Inc., New York, NY 10017, 1992. - [7] Katja Pokovic, Thomas Schmid, and Niels Kuster, \Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies", in ICECOM _ 97, Dubrovnik, October 15{17, 1997, pp. 120-24. - [8] Katja Pokovic, Thomas Schmid, and Niels Kuster, \E-field probe with improved isotropy in brain simulating liquids", in Proceedings of the ELMAR, Zadar, Croatia, 23{25 June, 1996, pp. 172-175. - [9] Volker Hombach, Klaus Meier, Michael Burkhardt, Eberhard K. uhn, and Niels Kuster, \The dependence of EM energy absorption upon human head modeling at 900 MHz", IEEE Transactions on Microwave Theory and Techniques, vol. 44, no. 10, pp. 1865-1873, Oct. 1996. - [10] Klaus Meier, Ralf Kastle, Volker Hombach, Roger Tay, and Niels Kuster, \The dependence of EM energy absorption upon human head modeling at 1800 MHz", IEEE Transactions on Microwave Theory and Techniques, Oct. 1997, in press. - [11] W. Gander, Computermathematik, Birkhaeuser, Basel, 1992. - [12] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recepies in C, The Art of Scientific Computing, Second Edition, Cambridge University Press, 1992. Dosimetric Evaluation of Sample device, month 1998 9 - [13] NIS81 NAMAS, \The treatment of uncertainty in EMC measurement", Tech. Rep., NAMAS Executive, National Physical Laboratory, Teddington, Middlesex, England, 1994. - [14] Barry N. Taylor and Christ E. Kuyatt, \Guidelines for evaluating and expressing the uncertainty of NIST measurement results", Tech. Rep., National Institute of Standards and Technology, 1994. Dosimetric Evaluation of Sample device, month 1998 10. #### --- END OF REPORT ---