

TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval.

1 Table of Contents

1	Table of Contents	2						
2	Report Modification Record	Report Modification Record						
3	Details about the Test Laboratory & Report Modification Record							
4	Description of the Equipment Under Test4							
5	Summary of Test Standards							
6	Summary of Test Results	6						
7	General Remarks	7						
8	Test Setups							
9	Test Methodology	10						
9.	1 Conducted Emission	10						
9.	2 Radiated Emission	15						
9.	3 Bandwidth Measurement	19						
9.	4 Deactivation Time	20						
10	Systems test configuration	21						
11	Test Equipment List	22						
12	System Measurement Uncertainty	23						
13	Photographs of Test Set-ups	24						
14	Photographs of EUT	25						

2 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

Issue	Description of Change	Date of Issue
709502407378-00A	First Issue	01/15/2025

3 Details about the Test Laboratory & Report Modification Record

Details about the Test Laboratory

Test Site 1

Company name:	TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch No.16 Lane, 1951 Du Hui Road, Shanghai 201108, P.R. China
Telephone:	+86 21 6141 0123
Fax:	+86 21 6140 8600
FCC Registration No.:	820234
FCC Designation Number:	CN1183

4 Description of the Equipment Under Test

Product:	Tubular Motor
Model no./HVIN:	R2130-DC, R2135-DCM, R2120-DC, R2125-DCM
FCC ID: Options and accessories: Rating:	2BK6HR2130-DC AC adaptor: KA12C-0502000US (The AC/DC adapter provided by lab, not included the EUR) DC 5V (by USB Type-C port) DC 12V (build-in 3 rechargeable lithium batteries)
RF Transmission Frequency:	433.92 MHz
No. of Operated Channel:	1
Modulation:	FSK
Antenna Type:	Ceramic Antenna
Description of the EUT:	The Equipment Under Test (EUT) is a Tubular Motor with SRD function. We tested it and listed the worst data in this report.
Test sample no .:	SHA-849298-1

The sample's mentioned in this report is/are submitted/ supplied/ manufactured by client. The laboratory therefore assumes no responsibility for accuracy of information on the brand name, model number, origin of manufacture, consignment, antenna gain or any information supplied.

5 Summary of Test Standards

	Test Standards
FCC Part 15 Subpart C	RADIO FREQUENCY DEVICES
10-1-2023 Edition	Subpart C - Intentional Radiators

All the test methods were according to ANSI C63.10-2020.

6 Summary of Test Results

Technical Requirements								
	FCC Part 15 Subpart C							
Test Condition		Pages	Test Site	Test Result				
§15.207	Conducted emission AC power port	10-14	Shield room	Pass				
§15.205, §15.209, 15.35 (c)§15.231(b),	The Field strength of Emissions	15-18	3m chamber	Pass				
§15.231(c)	20dB Bandwidth Measurement	19	Shield room	Pass				
§15.231(a)(1)	Deactivation Time	20	Shield room	Pass				
§15.203	Antenna requirement		See Note 2	Pass				

Note 1: N/A=Not Applicable. Conducted emission is not apply for battery operated device. Note 2: The EUT uses a Ceramic Antenna. In accordance to §15.203, It is considered sufficiently to comply with the provisions of this section.

7 General Remarks

Remarks

This submittal(s) (test report) is intended for FCC ID:2BK6HR2130-DC complies with Section 15.207, 15.205, 15.209, 15.231 of the FCC Part 15, Subpart C Rules.

According to client's declaration, for models R2130-DC, R2135-DCM, R2120-DC and R2125-DCM, there is no difference between the electrical schematic diagram and PCB Layout except for the different model name, so model R2135-DCM was chosen to perform all the tests, the other models R2130-DC, R2120-DC and R2125-DCM are deemed to fulfill all the requirement without further testing.

SUMMARY:

All tests according to the regulations cited on page 5 were

- Performed
- □ Not Performed

The Equipment Under Test

- - Fulfills the general approval requirements.
- □ **Does not** fulfill the general approval requirements.

Sample Received Date:

_____·

Testing Start Date: September 29, 2024

Testing End Date:

October 22, 2024

September 28, 2024

-TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch

Reviewed by:

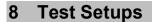
Prepared by:

Tested by:

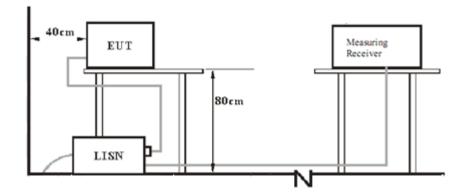
Fluri Jone

Hui TONG EMC Section Manager

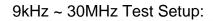
EMC_SHA_F_R_02.01E

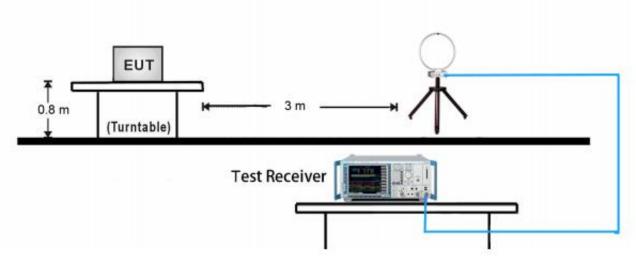

Yongqing ZHENG EMC Project Engineer Tianji XU EMC Test Engineer

Tianli XU


TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch 3-13, No.151, Heng Tong Road, Shanghai, 200070, P.R. China Phone: +86 21 61410123, Fax:+86 21 61408600

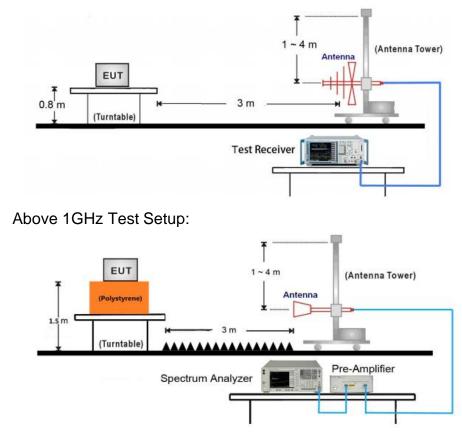
Page 7 of 25 Rev. 23.00

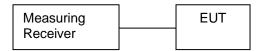




8.1 AC Power Line Conducted Emission test setups

8.2 Radiated test setups





30MHz ~ 1GHz Test Setup:

8.3 Conducted RF test setups

9.1 Conducted Emission

Test Method

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

Limit

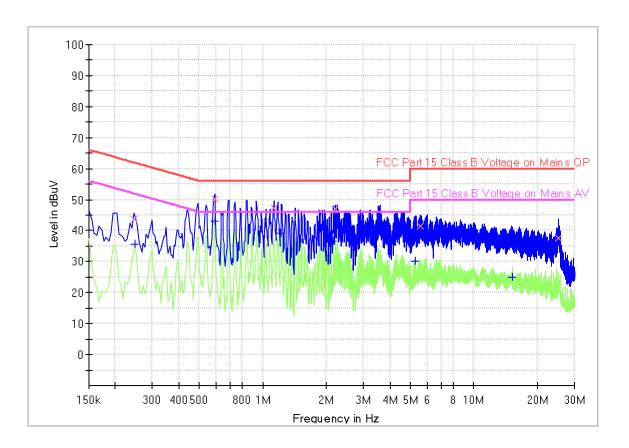
According to §15.207, conducted emissions limit as below:

Frequency MHz	QP Limit dBµV	AV Limit dBµV
 0.150-0.500	66-56*	56-46*
0.500-5	56	46
5-30	60	50

*Decreasing linearly with logarithm of the frequency.

Conducted Emission Test 0.15MHz – 30MHz

150k-30MHz Conducted Emission Test


EUT Information

EUT Name: Model: Client: Op Cond: Operator: Test Spec: Comment: Sample No: Tubular Motor R2135-DCM Zhejiang Jiecang Linear Motion Technology Co.,Ltd. Power on, Continuous Transmitting Tianji XU FCC Part 15.231 L SHA-851865-1

Scan Setup: Voltage with 2-Line-LISN pre [EMI conducted]

Hardware Setup: Receiver: Level Unit:	Voltage [ESR 3] dBuV	with 2-Line-LIS	SN		

Subrange	Step Size	Detectors	IF BW	Meas. Time	Preamp
9 kHz - 150 kHz	100 Hz	PK+	200 Hz	0.02 s	0 dB
150 kHz - 30 MHz	4.5 kHz	PK+; AVG	9 kHz	0.01 s	0 dB

EMC_SHA_F_R_02.01E

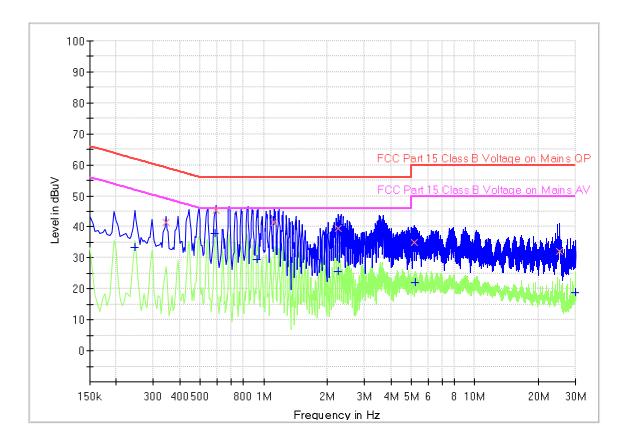
TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch 3-13, No.151, Heng Tong Road, Shanghai, 200070, P.R. China Phone: +86 21 61410123, Fax:+86 21 61408600

Page 11 of 25 Rev. 23.00 Report Number: 709502407378-00A

Final_Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Meas.	Bandwidth	Line	Corr.
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dB)	Time	(kHz)		(dB)
					(ms)			
0.244500	43.78		61.94	18.16	1000.0	9.000	L1	19.4
0.249000		35.74	51.79	16.05	1000.0	9.000	L1	19.4
0.591000		42.96	46.00	3.04	1000.0	9.000	L1	19.4
0.591000	50.11		56.00	5.89	1000.0	9.000	L1	19.4
1.131000	47.24		56.00	8.76	1000.0	9.000	L1	19.5
1.225500		39.21	46.00	6.79	1000.0	9.000	L1	19.5
2.161500		36.56	46.00	9.44	1000.0	9.000	L1	19.5
2.211000	46.88		56.00	9.12	1000.0	9.000	L1	19.5
5.302500		30.05	50.00	19.95	1000.0	9.000	L1	19.6
5.595000	41.60		60.00	18.40	1000.0	9.000	L1	19.6
15.247500		25.03	50.00	24.97	1000.0	9.000	L1	20.1
25.309500	37.69		60.00	22.31	1000.0	9.000	L1	21.0

150k-30MHz Conducted Emission Test


EUT Information

EUT Name: Model: Client: Op Cond: Operator: Test Spec: Comment: Sample No: Tubular Motor R2135-DCM Zhejiang Jiecang Linear Motion Technology Co.,Ltd. Power on, Continuous Transmitting Tianji XU FCC Part 15.231 Vertical SHA-851865-1

Scan Setup: Voltage with 2-Line-LISN pre [EMI conducted]

Subranga	Stop Size	Detectors		Moas Timo	Broom
Hardware Setup: Receiver: Level Unit:	Voltag [ESR dBuV	- 1			

Subrange	Step Size	Detectors	IF BW	Meas. Time	Preamp
9 kHz - 150 kHz	100 Hz	PK+	200 Hz	0.02 s	0 dB
150 kHz - 30 MHz	4.5 kHz	PK+; AVG	9 kHz	0.01 s	0 dB

EMC_SHA_F_R_02.01E

TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch 3-13, No.151, Heng Tong Road, Shanghai, 200070, P.R. China Phone: +86 21 61410123, Fax:+86 21 61408600

Page 13 of 25 Rev. 23.00

Final_Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Meas.	Bandwidth	Line	Corr.
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dB)	Time	(kHz)		(dB)
					(ms)			
0.244500		33.45	51.94	18.49	1000.0	9.000	Ν	19.4
0.343500	41.34		59.12	17.78	1000.0	9.000	Ν	19.5
0.586500		37.95	46.00	8.05	1000.0	9.000	Ν	19.4
0.591000	45.23		56.00	10.77	1000.0	9.000	Ν	19.4
0.928500		29.35	46.00	16.65	1000.0	9.000	Ν	19.5
1.122000	41.44		56.00	14.56	1000.0	9.000	Ν	19.5
2.251500		25.70	46.00	20.30	1000.0	9.000	Ν	19.5
2.260500	39.44		56.00	16.56	1000.0	9.000	Ν	19.5
5.181000	34.89		60.00	25.11	1000.0	9.000	Ν	19.6
5.230500		22.08	50.00	27.92	1000.0	9.000	Ν	19.6
25.233000	32.00		60.00	28.00	1000.0	9.000	Ν	20.6
29.931000		18.90	50.00	31.10	1000.0	9.000	Ν	20.7

Remark:

Level=Reading Level + Correction Factor

Correction Factor=Cable Loss + LISN Factor

(The Reading Level is recorded by software which is not shown in the sheet)

9.2 Radiated Emission

Test Method

1: The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.

2: The EUT was set 3 meters away from the interference – receiving antenna, which was mounted on the top of a variable – height antenna tower.

3: The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

4: For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

5: Use the following spectrum analyzer settings According to C63.10: 9kHz -150kHz RBW = 200Hz, VBW = 1kHz for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold. 150kHz - 30MHz RBW = 10 kHz, VBW = 30 kHz for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold. 30MHz - 1GHz RBW = 100 kHz, VBW = 300 kHz for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold. For Above 1GHz RBW = 1MHz, VBW≥3RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

FCC Limit: In addition to the provisions of § 15.205, the field strength of emissions from intentional radiators operated under this section shall not exceed the following:

Fundamental frequency (MHz)	Field Strength of Fundamental (Microvolts /meter)	Field Strength of spurious emissions ((Microvolts /meter)				
40.66-40.70	2,250	225				
70-130	1,250	125				
130-174	1,250 to 3,750 *	125 to 375 *				
174-260	3,750	375				
260-470	3,750 to 12, 500*	375 to 1,250*				
Above 470	12,500	1,250				
*Linear interpolation with frequency						

(a) The above field strength limits are specified at a distance of 3 meters. The tighter limits apply at the band edges.

(b) Intentional radiators operating under the provisions of this section shall demonstrate compliance with the limits on the field strength of emissions, as shown in the above table, based on the average value of the measured emissions. As an alternative, compliance with the limits in the above table may be based on the use of measurement instrumentation with a CISPR quasi-peak detector. The specific method of measurement employed shall be specified in the application for equipment authorization. If average emissions and for limiting peak emissions apply. Further, compliance with the provisions of § 15.205 shall be demonstrated using the measurement instrumentation specified in that section.

(c) The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in § 15.209, whichever limit permits a higher field strength.

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Limits for 15.209 Radiated emission limits

Note 1: Limit $3m(dB\mu V/m)=Limit 300m(dB\mu V/m)+40Log(300m/3m)$ (Below 30MHz) Note 2: Limit $3m(dB\mu V/m)=Limit 30m(dB\mu V/m)+40Log(30m/3m)$ (Below 30MHz) Note 3: $dB\mu V/m = 20log(\mu V/m)$, $dB\mu A/m = 20log(\mu A/m)$

Field strength of Emissions

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

Antenna polarization	Frequency (MHz)	Duty Cycle Factor(dB)	Corrected Reading (dBuV/m)	Emission Type	Limit (dBuV/m)	Margin	Detector
Н	433.956	0	73.71	Fundamental	100.80	27.09	PK
Н	433.956	-20.25	53.46	Fundamental	80.80	27.34	AV
Н	*1301.765	0	41.45	Harmonics	74.00	32.55	PK
Н	*1301.765	-20.25	21.20	Harmonics	54.00	32.80	AV
Н	2169.656	0	44.58	Harmonics	80.80	36.22	PK
Н	2169.656	-20.25	24.33	Harmonics	60.80	36.47	AV
Н	2603.765	0	42.61	Harmonics	80.80	38.19	PK
Н	2603.765	-20.25	22.36	Harmonics	60.80	38.44	AV
Н	*4339.218	0	48.62	Harmonics	74.00	25.38	PK
Н	*4339.218	-20.25	28.37	Harmonics	54.00	25.63	AV
V	433.956	0	64.83	Fundamental	100.80	35.97	PK
V	433.956	-20.25	44.58	Fundamental	80.80	36.22	AV
V	867.837	0	39.17	Harmonics	80.80	41.63	PK
V	867.837	-20.25	18.92	Harmonics	60.80	41.88	AV
V	2169.875	0	51.26	Harmonics	80.80	29.54	PK
V	2169.875	-20.25	31.01	Harmonics	60.80	29.79	AV
V	2603.546	0	52.05	Harmonics	80.80	28.75	PK
V	2603.546	-20.25	31.80	Harmonics	60.80	29.00	AV
V	3037.765	0	44.09	Harmonics	80.80	36.71	PK
V	3037.765	-20.25	23.84	Harmonics	60.80	36.96	AV
V	*4339.656	0	47.36	Harmonics	74.00	26.64	PK
V	*4339.656	-20.25	27.11	Harmonics	54.00	26.89	AV

Remark:

1: AV Emission Level= PK Emission Level+20log (duty cycle)

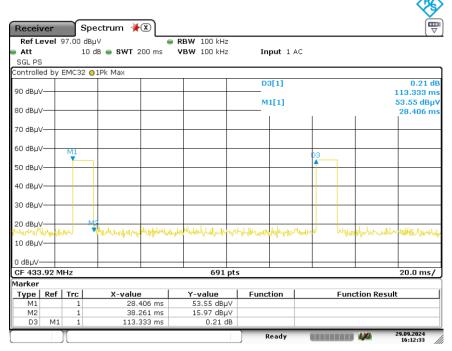
2: Other than listed in the table are attenuated more than 20dB below the permissible limit of the field strength, therefore no data appear in the report. 3: "*" means the emission(s) appear within the restrict bands shall follow the requirement of section 15.205.

4: Corrected Amplitude = Read level + Corrector factor

Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain Below 1GHz: Corrector factor = Antenna Factor + Cable Loss

TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch 3-13, No.151, Heng Tong Road, Shanghai, 200070, P.R. China Phone: +86 21 61410123, Fax:+86 21 61408600

Report Number: 709502407378-00A



 $\widehat{}$

Duty Cycle = 9.71ms/100 ms =9.71%. Duty Cycle Factor =20log (Duty Cycle) =-20.25.

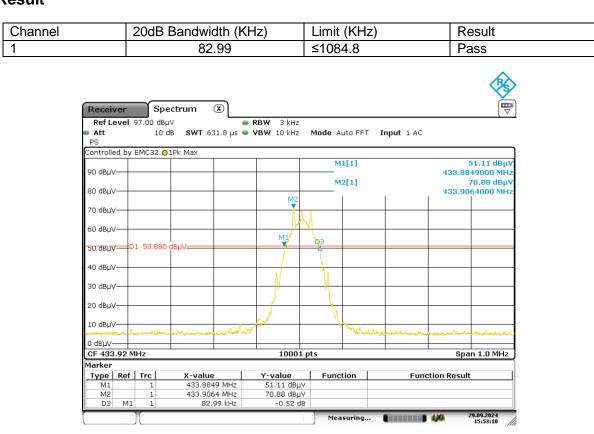
Receiv	/er	-	spectrum 🧩	×						
Ref Le	evel	97.00	dBµ∨		RBW 100 kH:	2				(-
🗕 Att		1	.0 dB 👄 SWT 1	.00 ms	VBW 100 kH:	2 I	nput 1 /	AC		
SGL PS										
Controlle	d by	EMC32	01Pk Max							
						- I	02[1]			0.01 dB
90 dBμV										9.710 ms
80 dBµV	.						M1[1]			64.71 dBµV 31.739 ms
80 UBµV							1	1	1	31.739 115
70 dBuV										
70 abpv					D2					
60 dBµV	-						_			
50 dBµV							-			
40 dBµV	· — +						+	_		
30 dBµV	' -									
20 dBuV										
	ed by	MANA	all alough the ship	Ju)	Halle March 18	INHALAR J	u Mal Maal	and the state water	where have been been a series of the series	A LANDING AND
10 dBµV		alla, as a	a Manada na		south show	a and a - A	ed ny isa.	a damon	and constitution	diana n. Inta
10 0001										
0 dBµV-	_									
CF 433	.92 🕅	IHz			691	pts	_			10.0 ms/
Marker										
Туре	Ref	Trc	X-value		Y-value	Fun	ction	F	unction Resul	t
M1		1		739 ms	64.71 dBj					
D2	M1	1	9	.71 ms	0.01 (ib				
							Ready		111 4 /0	29.09.2024 16:14:31

Date: 29.SEP.2024 16:14:30

Date: 29.SEP.2024 16:12:33

9.3 Bandwidth Measurement

Test Method


- 1. The EUT was placed on 0.8m height table, the RF output of EUT was connected to the test receiver by RF cable. The path loss was compensated to the results for each measurement.
- Set to the maximum power setting and enable the EUT transmit continuously. Use the following test receiver settings: RBW = 1% to 5% of the OBW, VBW≥3RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 3. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth. Record the results.

Limit

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70MHz and below 900MHz. For devices operating above 900MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20dB down from the modulated carrier.

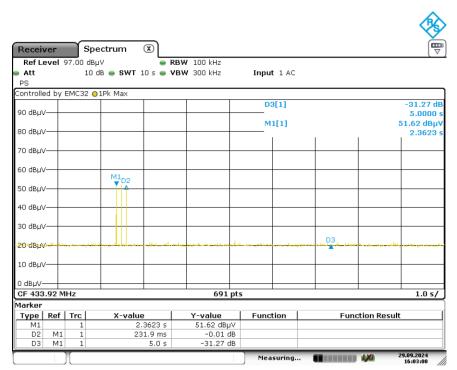
The limit for the EUT = 0.25% * 433.92 MHz = 1084.8 kHz

Test Result

Date: 29.SEP.2024 15:53:11

9.4 Deactivation Time

Test Method


- 1. The EUT was placed on 0.8m height table, the RF output of EUT was connected to the test receiver by RF cable. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT in transmitting mode.
- 3. Set center frequency of spectrum analyzer=operating frequency.
- 4. Set the spectrum analyzer as RBW≥OBW, VBW≥RBW, Span=0Hz, detector=peak.
- 5. Repeat above procedures until all frequency measured was complete.

Limit

According to FCC Part 15.231 (a), the transmitter shall be complied the following requirements: (\checkmark) (1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

Test Result

Channel	Frequency	Deactivation Time	Limit	Result
1	433.92MHz	231.9ms	≤5s	Pass

Date: 29.SEP.2024 16:03:01

10 Systems test configuration

Auxiliary Equipment Used during Test:

DESCRIPTION	MANUFACTURER	MODEL NO.(SHIELD)	S/N(LENGTH)

11 Test Equipment List

List of Test Instruments Test Site1

RF Conductive Test					
Description	Manufacturer	Model no.	Serial no.	Calibration Date	Calibration Due
Signal and spectrum analyzer	R&S	FSV40	S1503003-YQ-EMC	2024-8-01	2025-7-31

Conducted Emission

Description	Model no.	Manufacturer	Equipment ID.	Calibration Date	Calibration Due
EMI test receiver	ESR3	R&S	S1503001-YQ-EMC	2024-8-01	2025-7-31
2-Line V-network	ENV216	R & S	S1503103-YQ-EMC	2024-8-01	2025-7-31

Radiated Emission Test

USED	Equipment Name	Model	Manufacturer	Equipment ID.	Calibration Date	Calibration Due
\boxtimes	EMI test receiver	ESR3	R&S	S1503109-YQ-EMC	2024-8-01	2025-7-31
\boxtimes	Trilog super broadband test antenna	SCHWARZBE CK	VULB9168	S1808296-YQ-EMC	2024-8-30	2025-8-29
\boxtimes	Double-ridged waveguide horn antenna	HF907	R&S	S1503009-YQ-EMC	2024-4-14	2025-4-13
\square	Pre-amplifier	HPAP- 9K0130	Shenzhen HzEMC	S2110423b-YQ-EMC	2024-8-01	2025-7-31
\boxtimes	Signal and spectrum analyzer	FSV40	R&S	S1503003-YQ-EMC	2024-8-01	2025-7-31
\square	Loop antenna	HFH2-Z2	R&S	S1503013-YQ-EMC	2024-6-26	2025-6-25

	Measurement Software Information						
Test Item	Software	Manufacturer	Version				
RE	EMC 32	Rohde & Schwarz	V10.50.40				
CE	EMC 32	Rohde & Schwarz	V9.15.03				

12 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

Items	Extended Uncertainty
Conducted Disturbance at Mains Terminals	150kHz to 30MHz, LISN, 3.16dB
Radiated Disturbance	9kHz to 30MHz, 3.52dB 30MHz to 1GHz, 5.03dB (Horizontal) 5.11dB (Vertical) 1GHz to 18GHz, 5.15dB (Horizontal) 5.12dB (Vertical)

Measurement Uncertainty Decision Rule:

Determination of conformity with the specification limits is based on the decision rule according to IEC Guide 115: 2023, clause 4.3.3.

13 Photographs of Test Set-ups

Refer to the < Test Setup photos >.

Report Number: 709502407378-00A

SUD

14 Photographs of EUT

Refer to the < External Photos > & < Internal Photos >.

THE END

EMC_SHA_F_R_02.01E

TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch 3-13, No.151, Heng Tong Road, Shanghai, 200070, P.R. China Phone: +86 21 61410123, Fax:+86 21 61408600

Page 25 of 25 Rev. 23.00