

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE200600703

FCC REPORT

Applicant: SWAGTEK

Address of Applicant: 10205 NW 19th St. Suite 101, Miami, FL, 33172

Equipment Under Test (EUT)

Product Name: 5.0 inch 4G Smart Phone

Model No.: L50, UN50, BRAVE

Trade mark: LOGIC, iSWAG, UNONU

FCC ID: 055502220

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 01 Jun., 2020

Date of Test: 02 Jun., to 16 Jun., 2020

Date of report issued: 17 Jun., 2020

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	17 Jun., 2020	Original

Tested by:	Mike ou	Date:	17 Jun., 2020	
	Test Engineer			

Reviewed by: Date: 17 Jun., 2020

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3		ITENTS	
		T SUMMARY	
4			
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	5
	5.3	TEST ENVIRONMENT AND TEST MODE	6
	5.4	DESCRIPTION OF SUPPORT UNITS	_
	5.5	MEASUREMENT UNCERTAINTY	
	5.6	ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	
	5.7	LABORATORY FACILITY	
	5.8	LABORATORY LOCATION	
	5.9	TEST INSTRUMENTS LIST	7
6	TES	T RESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT:	8
	6.2	CONDUCTED EMISSION	9
	6.3	CONDUCTED OUTPUT POWER	12
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	
	6.6.1		
	6.6.2		_
	6.7 6.7.1	SPURIOUS EMISSION Conducted Emission Method	
	6.7.2		
_	· · · · · ·		
7	TES	T SETUP PHOTO	32
0	EUT	CONSTRUCTIONAL DETAILS	22

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna requirement	15.203 & 15.247 (b)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247 (d)	Pass
Spurious Emission	15.205 & 15.209	Pass

Remark:

Test Method:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

ANSI C63.4-2014 ANSI C63.10-2013

KDB 558074 D01 <u>15.247 Meas Guidance v05r02</u>

5 General Information

5.1 Client Information

Applicant:	SWAGTEK	
Address:	10205 NW 19th St. Suite 101, Miami, FL, 33172	
Manufacturer/ Factory:	SWAGTEK	
Address:	10205 NW 19th St. Suite 101, Miami, FL, 33172	

5.2 General Description of E.U.T.

J.Z General Description	6. 2.6
Product Name:	5.0 inch 4G Smart Phone
Model No.:	L50, UN50, BRAVE
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	0 dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V-1900mAh
AC adapter:	Input:100-240V AC,50/60Hz 0.2A
	Output:5.0V DC 550mA
Remark:	L50, UN50, BRAVE, were identical inside, the electrical circuit design, layout, components used and internal wiring.
	L50 model corresponds to the trademark LOGIC.
	BRAVE model correspond to the trademark iSWAG.
	UN50 model corresponds to the trademark UNONU.
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

5.3 Test environment and test mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Transmitting mode	Keep the EUT in continuous transmitting with modulation			

Report No: CCISE200600703

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

5.6 Additions to, deviations, or exclusions from the method

No

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.8 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.110~116, Building B, Jinyuan Business Building, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.110~116, Building B, Jinyuan Business Building, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.9 Test Instruments list

Radiated Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020	
Loop Antenna	SCHWARZBECK	FMZB1519B	044	03-07-2020	03-06-2021	
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-07-2020	03-06-2021	
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-07-2020	03-06-2021	
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020	
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2019	11-17-2020	
EMI Test Software	AUDIX	E3	\	ersion: 6.110919t/)	
Pre-amplifier	HP	8447D	2944A09358	03-07-2020	03-06-2021	
Pre-amplifier	CD	PAP-1G18	11804	03-07-2020	03-06-2021	
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-05-2020	03-04-2021	
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2019	11-17-2020	
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-05-2020	03-04-2021	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2020	03-06-2021	
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2020	03-06-2021	
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2020	03-06-2021	
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A	
Test Software	MWRFTEST	MTS8200	Version: 2.0.0.0			

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-05-2020	03-04-2021
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-05-2020	03-04-2021
LISN	CHASE	MN2050D	1447	03-05-2020	03-04-2021
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2017	07-20-2020
Cable	HP	10503A	N/A	03-05-2020	03-04-2021
EMI Test Software	AUDIX	E3	Version: 6.110919b		

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The BLE antenna is an Internal antenna which cannot replace by end-user, the best-case gain of the antenna is 0 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207	7			
Test Frequency Range:	150 kHz to 30 MHz				
Class / Severity:	Class B	Class B			
Receiver setup:	RBW=9kHz, VBW=30kHz				
Limit:	·	Limit (dBuV)		
	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the logarithm	n of the frequency.			
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10(latest version) on conducted measurement. 				
Test setup:	Reference LISN 40cm AUX Equipment E.U.T Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization New Test table height=0.8m	80cm Filter Filter Receiver	– AC power		
Test Instruments:	Refer to section 5.9 for details	Refer to section 5.9 for details			
Test mode:	Refer to section 5.3 for details	}			
Test results:	Passed				

Measurement Data:

Product name:	5.0 inch 4G Smart Phone	Product model:	L50
Test by:	Mike	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line		Remark
	MHz	dBu∀	<u>ab</u>	<u>ab</u>	dBu₹	dBu∜	<u>ab</u>	
1 2 3 4 5 6 7 8 9	0. 206 0. 206 0. 274 0. 277 2. 608 2. 809 3. 025 3. 190 3. 472	33.56 21.35 21.94 33.75	-0.59 -0.56 -0.56 -0.46 -0.44 -0.43 -0.43 -0.42	10.74 10.74 10.93 10.93 10.92 10.92 10.91 10.91	27.66 30.24 43.63 43.84 31.63 32.26 44.11	53.36 60.98 50.90 46.00 56.00 46.00 46.00 56.00	-23.51 -23.24 -15.76 -12.37 -12.16 -14.37 -13.74 -11.89	Average QP Average Average QP QP Average Average QP
11 12	3.623 3.779	20.47 34.24	-0.42 -0.41	10.90 10.90	30.85 44.65		-15.15 -11.35	Average QP

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

Product name:	5.0 inch 4G Smart Phone	Product model:	L50
Test by:	Mike	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
<u>=</u>	MHz	dBu∜	<u>ab</u>		dBu∀	dBu∜	<u>ab</u>	
1	0.206	34.59	-0.67	10.76	44.68	63.36	-18.68	QP
2	0.206	24.72	-0.67	10.76	34.81	53.36	-18.55	Average
3	0.274	17.91	-0.67	10.74	27.99	50.98	-22.99	Average
2 3 4 5 6	0.282	27.32	-0.67	10.74	37.40	60.76	-23.36	QP
5	0.481	16.07	-0.65	10.75	26.19	46.32	-20.13	Average
6	2.581	33.46	-0.67	10.93	43.98	56.00	-12.02	QP
7	3.258	35.00	-0.65	10.91	45.63		-10.37	
8	3.258	21.81	-0.65	10.91	32.44	46.00	-13.56	Average
7 8 9	3.759	35.40	-0.65	10.90	46.12	56.00		
10	4.027	21.59	-0.64	10.89	32.36	46.00		Average
11	4.224	21.39	-0.64	10.88	32.18			Average
12	4.292	34.53	-0.64	10.88	45.33		-10.67	

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

6.3 Conducted Output Power

Measurement Data:

			-	
Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result	
Lowest	4.51			
Middle	6.43	30.00	Pass	
Highest	5.30			

Test plot as follows:

6.4 Occupy Bandwidth

Measurement Data:

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result	
Lowest	0.714			
Middle	0.696	>500	Pass	
Highest	0.702			
Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result	
Lowest	1.032			
Middle	1.038	N/A	N/A	
Highest	1.038			

Test plot as follows:

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)		
Limit:	8 dBm/3kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.9 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data:

modedi omont Bata.			
Test CH	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
Lowest	-10.74		
Middle	-9.10	8.00	Pass
Highest	-9.88		

Test plots as follow:

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Test plots as follow:

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.20	05 and 15.209				
Test Frequency Range:	2310 MHz to 2	2390 MHz and	2483.5MHz to 2	2500 MHz			
Test Distance:	3m						
Receiver setup:	Frequency	Detector	RBW	VBW	Remark		
	Above 1GHz	Peak	1MHz	3MHz	Peak Value		
		RMS	1MHz	3MHz	Average Value		
Limit:	Frequer	ncy Li	mit (dBuV/m @3		Remark		
	Above 10	GHz	54.00		verage Value		
Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degree to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenr tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degree to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB lower that the limit specified, then testing could be stopped and the peak value of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, qua peak or average method as specified and then reported in a data sheet. 						
Test setup:	AE WIND A TOTAL AND A TOTAL AN	Test Receiver	Horn Antenna Reference Plane Pre- Amplifer Cont	Antenna Tower			
Test Instruments:	Refer to section	n 5.9 for detai	ls				
Test mode:	Refer to section	Refer to section 5.3 for details					
Test results:	Passed						

Product Name:	5.0 inch 4G Smart Phone	Product Model:	L50
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

Freq		Intenna Factor						
MHz	dBu∀		 <u>ab</u>	<u>q</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>d</u> B	
2390.000 2390.000								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss + Aux Factor Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	5.0 inch 4G Smart Phone	Product Model:	L50
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

				Cable Aux Preamp Loss Factor Factor				Limit Line		Remark
	MHz	dBu∜	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	dB	
1 2	2390.000 2390.000									

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss + Aux Factor Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	5.0 inch 4G Smart Phone	Product Model:	L50
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq	ReadAnteni q Level Facto		Cable Loss	Aux Factor	Preamp Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	— <u>d</u> B/m		<u>d</u> B	<u>ab</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500									

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss + Aux Factor Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	5.0 inch 4G Smart Phone	Product Model:	L50
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

			Cable Aux Preamp Loss Factor Factor						
MHz	dBu₹	<u>dB</u> /m	₫B	dB	dB	dBuV/m	dBuV/m	<u>dB</u>	
2483.500 2483.500									

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss + Aux Factor Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

O.7.1 Oolidaotea Ellik	
Test Requirement:	FCC Part 15 C Section 15.247 (d)
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Test plot as follows:

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.20	5 and 15.209			
Test Frequency Range:	9kHz to 25GHz					
Test Distance:	3m					
Receiver setup:	Frequency	Detector	RBW	VB	SW	Remark
	30MHz-1GHz	Quasi-peak	120KHz	300	KHz	Quasi-peak Value
	Above 1GHz	Peak	1MHz 3M		Hz	Peak Value
	Above Toriz	RMS	1MHz	3M	Hz	Average Value
Limit:	Frequency		mit (dBuV/m @	23m)		Remark
	30MHz-88M		40.0			Quasi-peak Value
	88MHz-216M		43.5			Quasi-peak Value
	216MHz-960N		46.0			Quasi-peak Value
	960MHz-1G	HZ	54.0 54.0			Quasi-peak Value
	Above 1GH	lz 🗀	74.0			Average Value Peak Value
	The table of highest rad 2. The EUT antenna, we tower. 3. The antenre the ground Both horizon make the make the make the make the meters and to find the meters and	was rotated 3 ination. was set 3 m hich was more managed in the interest in t	neters away intended on the transport of the maximutical polarizations was turned ding. In Maximum Hamilton was set in Maximum Hamilton H	from the top of a me met um valitions of the EUT was do not be from 0 to Pealold Mocak mocoe stop wise the done be	rmine ne inter to varial ter to the ue of the a as arra eights degree uk Det de. de was ped ar ue emis y one	a 3 meter camber. the position of the efference-receiving ble-height antenna four meters above the field strength. antenna are set to anged to its worst from 1 meter to 4 tes to 360 degrees tect Function and a 10 dB lower than and the peak values ssions that did not using peak, quasi-reported in a data
Test setup:	EUT	3m 4m 4m V 0.8m Im			Antenna Search Antenn Test eiver —	1

Measurement Data (worst case):

Below 1GHz:

Product Name:	5.0 inch 4G Smart Phone	Product Model:	L50
Test By:	Mike	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

Fred							Limit	Over	Remark
rroq	LOVET								TCMAIR
MHz	dBu∀	dB/m	dB	dB	dB	dBuV/m	dBuV/m	dВ	
33.095	52.45	12.31	0.36	0.00	29.96	35.16	40.00	-4.84	QP
38.752	41.39	12.75	0.35	0.00	29.91	24.58	40.00	-15.42	QP
171.995	35.80	16.61	0.66	0.00	29.03	24.04	43.50	-19.46	QP
202.810	37.36	18.31	0.72	0.00	28.81	27.58	43.50	-15.92	QP
315.481	34.45	18.73	0.88	0.00	28.49	25.57	46.00	-20.43	QP
383.932	50.19	19.01	0.97	0.00	28.71	41.46	46.00	-4.54	QP
	33.095 38.752 171.995 202.810 315.481	Freq Level MHz dBuV 33.095 52.45 38.752 41.39 171.995 35.80 202.810 37.36 315.481 34.45	### Revel Factor MHz dBuV dB/m 33.095 52.45 12.31 38.752 41.39 12.75 171.995 35.80 16.61 202.810 37.36 18.31 315.481 34.45 18.73	MHz dBuV dB/m dB 33.095 52.45 12.31 0.36 38.752 41.39 12.75 0.35 171.995 35.80 16.61 0.66 202.810 37.36 18.31 0.72 315.481 34.45 18.73 0.88	Freq Level Factor Loss Factor MHz dBuV dB/m dB dB 33.095 52.45 12.31 0.36 0.00 38.752 41.39 12.75 0.35 0.00 171.995 35.80 16.61 0.66 0.00 202.810 37.36 18.31 0.72 0.00 315.481 34.45 18.73 0.88 0.00	Freq Level Factor Loss Factor Factor MHz dBuV dB/m dB dB dB 33.095 52.45 12.31 0.36 0.00 29.96 38.752 41.39 12.75 0.35 0.00 29.91 171.995 35.80 16.61 0.66 0.00 29.03 202.810 37.36 18.31 0.72 0.00 28.81 315.481 34.45 18.73 0.88 0.00 28.49	Freq Level Factor Loss Factor Factor Level MHz dBuV dB/m dB dB dB dB dBuV/m 33.095 52.45 12.31 0.36 0.00 29.96 35.16 38.752 41.39 12.75 0.35 0.00 29.91 24.58 171.995 35.80 16.61 0.66 0.00 29.03 24.04 202.810 37.36 18.31 0.72 0.00 28.81 27.58 315.481 34.45 18.73 0.88 0.00 28.49 25.57	MHz dBuV dB/m dB dB dB dB dBuV/m dBuV/m dBuV/m 33.095 52.45 12.31 0.36 0.00 29.96 35.16 40.00 38.752 41.39 12.75 0.35 0.00 29.91 24.58 40.00 171.995 35.80 16.61 0.66 0.00 29.03 24.04 43.50 202.810 37.36 18.31 0.72 0.00 28.81 27.58 43.50 315.481 34.45 18.73 0.88 0.00 28.49 25.57 46.00	MHz dBuV dB/m dB dB dB dB dB uV/m dBuV/m dBuV/m dB uV/m dB dB dBuV/m dB d

Remark

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss + Aux Factor - Preamplifier Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

oduct N	Name:	5.0	inch 4G S	mart Pho	one	F	Product Model:			L50		
st By:		Mike	е			1	Test mode	e:	BLI	E Tx mode		
st Freq	juency:	30 1	MHz ~ 1 G	Hz		F	Polarizati	on:	Ho	rizontal		
st Volta	age:	AC	120/60Hz			E	Environm	ent:	Ter	mp: 24 ℃	Huni: 57%	
80 Lev	vel (dBuV/n	n)										
80	100											
70												
60				-						FCC DA	RT 15.247	
50										FCC PA	R1 15.247	
40												
40												
30					-	2	4	5	6		140	
					1	2	4	Market Jane	6 Manual	anner Marked and	white all book white	
20 20	lake and bear a front	haved		at and a	were direct	N 2 3	Marine Links	h had jara	6 Munus	anner-Madeland	Marine back white	
30 20 10		have been been been been been been been be	hydrod Mary Ly	observed MA	your dead	W 2 3	Manyah Janka	htichten (m.	6 Munual	Annes Application	a the stand of the standard of	
20 20		harding any	hadrid desired by	100	Lux-lux	20	0	Marine S	5	OO	1000	
30 20 10			hadrold and the		Lux-lux	20 quency (M	0	hterital	6 Munusy	dentes dependent	1000	
30 20 10			hardend design of the		Lux-lux		0	hthe had para	Mumust.	dentes dependent	1000	
30 20 10		50 Read/	Ant enna	100 Cable	Fred	quency (M Preamp	00 IHz)	Limit	Over		1000	
30 20 10	Freq	50 Read/ Level	Antenna Factor	100 Cable	Fred Aux Factor	Preamp Factor	00 1Hz)	Limit Line	Over Limit	Remark	1000	
20 10 0 30	Freq MHz	Read/ Level dBuV	Antenna Factor ——dB/m	100 Cable Loss	Fred Aux Factor	Preamp Factor dB	OO IHz) Level	Limit Line dBuV/m	Over Limit ———————————————————————————————————	Remark	1000	
20 10 0 30	Freq MHz 144.842 181.920	Read/ Level dBuV 37.09 37.56	Antenna Factor — dB/m 13.90 17.01	100 Cable Loss dB 0.61 0.68	Aux Factor dB	Preamp Factor 	00 1Hz) Level dBuV/m 22.35 26.29	Limit Line dBuV/m 43.50 43.50	Over Limit dB -21.15 -17.21	Remark 	1000	
20 10 0 30	Freq MHz 144.842 181.920 202.810 242.525	Read/ Level dBuV 37.09 37.56 38.17 34.03	Antenna Factor —dB/m 13.90 17.01 18.31 18.47	Cable Loss dB 0.61 0.68 0.72 0.77	Aux Factor ————————————————————————————————————	Preamp Factor 	Level dBuV/m 22.35 26.29 28.39 24.69	Limit Line dBuV/m 43.50 43.50 43.50 46.00	Over Limit dB -21.15 -17.21 -15.11 -21.31	Remark QP QP QP QP	1000	
30 20 10		50 Read/	Ant enna	100 Cable	Fred	quency (M Preamp	00 IHz)	Limit	Over		100	
20 10 0 30	Freq MHz 144.842 181.920 202.810	Read/ Level dBuV 37.09 37.56 38.17	Antenna Factor —dB/m 13.90 17.01 18.31	100 Cable Loss dB 0.61 0.68 0.72	Aux Factor dB 0.00 0.00	Preamp Factor 	Level dBuV/m 22.35 26.29 28.39	Limit Line dBuV/m 43.50 43.50 43.50	Over Limit dB -21.15 -17.21 -15.11	Remark QP QP QP	1000	
20 10 0 30	Freq MHz 144.842 181.920 202.810	Read/ Level dBuV 37.09 37.56 38.17	Antenna Factor —dB/m 13.90 17.01 18.31	100 Cable Loss dB 0.61 0.68 0.72	Aux Factor 	Preamp Factor 	Level dBuV/m 22.35 26.29 28.39	Limit Line dBuV/m 43.50 43.50 43.50 46.00	Over Limit dB -21.15 -17.21 -15.11	Remark QP QP QP QP QP QP	1000	

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss + Aux Factor - Preamplifier Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Above 1GHz

	Test channel: Lowest channel										
Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4804.00	46.86	30.78	6.80	2.44	41.81	45.07	74.00	-28.93	Vertical		
4804.00	46.70	30.78	6.80	2.44	41.81	44.91	74.00	-29.09	Horizontal		
				Detector:	Average Va	alue					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4804.00	40.05	30.78	6.80	2.44	41.81	38.26	54.00	-15.74	Vertical		
4804.00	40.62	30.78	6.80	2.44	41.81	38.83	54.00	-15.17	Horizontal		

Test channel: Middle channel										
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4884.00	47.59	30.96	6.86	2.47	41.84	46.04	74.00	-27.96	Vertical	
4884.00	48.53	30.96	6.86	2.47	41.84	46.98	74.00	-27.02	Horizontal	
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4884.00	43.17	30.96	6.86	2.47	41.84	41.62	54.00	-12.38	Vertical	
4884.00	44.85	30.96	6.86	2.47	41.84	43.30	54.00	-10.70	Horizontal	

Test channel: Highest channel											
Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4960.00	47.94	31.11	6.91	2.49	41.87	46.58	74.00	-27.42	Vertical		
4960.00	48.38	31.11	6.91	2.49	41.87	47.02	74.00	-26.98	Horizontal		
Detector: Average Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4960.00	42.72	31.11	6.91	2.49	41.87	41.36	54.00	-12.64	Vertical		
4960.00	45.31	31.11	6.91	2.49	41.87	43.95	54.00	-10.05	Horizontal		

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss + Aux Factor - Preamplifier Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.