FCC SAR EVALUATION REPORT # In accordance with the requirements of FCC 47 CFR Part 2(2.1093), ANSI/IEEE C95.1-1992 and IEEE Std 1528-2013 **Product Name:** Notebook Trademark: Azeyou Model Name: AL143UBU Family Model: HA142 **Report No.**: S23082101103001 **FCC ID**: 2A27O-AL143U ## **Prepared for** Dongguan Lianzhou Electronic Technology Co., Ltd. Building 1, No. 10, Feng Gang Technology Road, Feng Gang Town, DongGuan City, GuangDong Province, China. ## Prepared by Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R.China. Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn ## TEST RESULT CERTIFICATION Applicant's name Dongguan Lianzhou Electronic Technology Co., Ltd. Building 1, No. 10, Feng Gang Technology Road, Feng Gang Town, DongGuan City, GuangDong Province, China Manufacturer's Name Dongguan Lianzhou Electronic Technology Co., Ltd. Building 1, No. 10, Feng Gang Technology Road, Feng Gang Town, DongGuan City, Address..... GuangDong Province, China **Product description** Product name......Notebook Trademark Azeyou Model NameAL143UBU Family Model..... HA142 FCC 47 CFR Part 2(2.1093) ANSI/IEEE C95.1-1992 Standards..... IEEE Std 1528-2013 Published RF exposure KDB procedures This device described above has been tested by Shenzhen NTEK. In accordance with the measurement methods and procedures specified in IEEE Std 1528-2013 and KDB 865664 D01. Testing has shown that this device is capable of compliance with localized specific absorption rate (SAR) specified in FCC 47 CFR Part 2(2.1093) and ANSI/IEEE C95.1-1992. The test results in this report apply only to the tested sample of the stated device/equipment. Other similar device/equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties. This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK, this document may be altered or revised by Shenzhen NTEK, personal only, and shall be noted in the revision of the document. **Date of Test** Date (s) of performance of tests ... Aug. 23, 2023~ Sep. 06, 2023 Date of Issue...... Sep. 12, 2023 Prepared By (Test Engineer) Approved By (Lab Manager) ## % % Revision History % % | REV. | DESCRIPTION | ISSUED DATE | REMARK | |---------|-----------------------------|---------------|---------| | Rev.1.0 | Initial Test Report Release | Sep. 12, 2023 | Jack Li | | | | | | | | | | | | | | | | ## **TABLE OF CONTENTS** | 1. | General Information | 6 | |----|--|----| | | 1.1. RF exposure limits | 6 | | | 1.2. Statement of Compliance | 7 | | | 1.3. EUT Description | 7 | | | 1.4. Test specification(s) | 9 | | | 1.5. Ambient Condition | 9 | | 2. | SAR Measurement System | 10 | | | 2.1. SATIMO SAR Measurement Set-up Diagram | 10 | | | 2.2. Robot | 11 | | | 2.3. E-Field Probe | 12 | | | 2.3.1. E-Field Probe Calibration | 12 | | | 2.4. SAM phantoms | 13 | | | 2.4.1. Technical Data | 14 | | | 2.5. Device Holder | 15 | | | 2.6. Test Equipment List | 16 | | 3. | SAR Measurement Procedures | 18 | | | 3.1. Power Reference | 18 | | | 3.2. Area scan & Zoom scan | 18 | | | 3.3. Description of interpolation/extrapolation scheme | 20 | | | 3.4. Volumetric Scan | 20 | | | 3.5. Power Drift | 20 | | 4. | System Verification Procedure | 21 | | | 4.1. Tissue Verification | 21 | | | 4.1.1. Tissue Dielectric Parameter Check Results | 22 | | | 4.2. System Verification Procedure | 23 | | | 4.2.1. System Verification Results | 24 | | 5. | SAR Measurement variability and uncertainty | 25 | | | 5.1. SAR measurement variability | 25 | | | 5.2. SAR measurement uncertainty | 25 | | 6. | RF Exposure Positions | 26 | | | 6.1. Laptop host platform test requirements | 26 | | 7. | RF Output Power | 27 | | | 7.1. WLAN & Bluetooth Output Power | 27 | | | 7.1.1. Output Power Results Of WLAN | 27 | | 8. | Stand-alone SAR test exclusion | 30 | | 9. | SAR Results | 30 | | | 9.1. SAR measurement results | 30 | | | 9.1.1. SAR measurement Result of WLAN 2.4G | 30 | | | 9.1.2 SAR measurement Result of WLAN 5.2G | 30 | Page 5 of 90 Report No.: S23082101103001 ## 1. General Information ## 1.1. RF exposure limits (A).Limits for Occupational/Controlled Exposure (W/kg) | Whole-Body | | Partial-Body | Hands, Wrists, Feet and Ankles | | | |------------|-----|--------------|--------------------------------|--|--| | | 0.4 | 8.0 | 20.0 | | | (B).Limits for General Population/Uncontrolled Exposure (W/kg) | Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles | |------------|--------------|--------------------------------| | 0.08 | 1.6 | 4.0 | NOTE: Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube. ## **Occupational/Controlled Environments:** Are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation). ## **General Population/Uncontrolled Environments:** Are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. NOTE TRUNK LIMIT 1.6 W/kg APPLIED TO THIS EUT ## 1.2. Statement of Compliance The maximum results of Specific Absorption Rate (SAR) found during testing for AL143UBU are as follows. | | Max Reported SAR Value(W/kg) | | | | |-----------|------------------------------|--|--|--| | Band | 1-g Body | | | | | | (Separation distance of 0mm) | | | | | WLAN 2.4G | 0.587 | | | | | WLAN 5.2G | 0.100 | | | | | WLAN 5.3G | 0.092 | | | | | WLAN 5.6G | 0.087 | | | | | WLAN 5.8G | 0.067 | | | | Note: This device is in compliance with Specific Absorption Rate (SAR) for general population / uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR Part 2(2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE Std 1528-2013 & KDB 865664 D01. ## 1.3. EUT Description | Device Information | | | | | | |---------------------------------|---|---------------------|-----------------|--|--| | Product Name | Notebook | | | | | | Trade Name | Azeyou | | | | | | Model Name | AL143UBU | | | | | | Family Model | HA142 | | | | | | Model Difference | Appearance or color differen | ence, motherboard c | onfiguration is | | | | Model Dillerence | the same | | | | | | FCC ID | 2A27O-AL143U | | | | | | Device Phase | Identical Prototype | | | | | | Exposure Category | General population / Uncontrolled environment | | | | | | Antenna | PIFA Antenna | | | | | | Battery Information | DC 11.4V, 4000mAh | | | | | | Hardware version | N14TB REV:3.1 | | | | | | Software version | WINDOWS 11 | | | | | | Device Operating Configurations | | | | | | | Supporting Mode(s) | WLAN 2.4G/5G, Bluetooth | | | | | | Test Modulation | WLAN(DSSS/OFDM), Blue | tooth(GFSK, π/4-De | QPSK, 8DPSK) | | | | Device Class | В | | | | | | | Band | Tx (MHz) | Rx (MHz) | | | | Operating Frequency Range(s) | WLAN 2.4G | LAN 2.4G 2412-2462 | | | | | | WLAN 5.2G | 5180-5240 | | | | Page 8 of 90 Report No.: S23082101103001 | WLAN 5.3G | 5260-5320 | |-----------|-----------| | WLAN 5.6G | 5500-5700 | | WLAN 5.8G | 5745-5825 | | Bluetooth | 2402-2480 | 1.4. Test specification(s) | FCC 47 CFR Part 2(2.1093) | |---| | ANSI/IEEE C95.1-1992 | | IEEE Std 1528-2013 | | KDB 865664 D01 SAR measurement 100 MHz to 6 GHz | | KDB 865664 D02 RF Exposure Reporting | | KDB 447498 D01 General RF Exposure Guidance | | KDB 248227 D01 802.11 Wi-Fi SAR | | KDB 616217 D04 SAR for laptop and tablets | ## 1.5. Ambient Condition | Ambient temperature | 20°C – 24°C | |---------------------|-------------| | Relative Humidity | 30% – 70% | ## 2. SAR Measurement System ## 2.1. SATIMO SAR Measurement Set-up Diagram These measurements were performed with the automated near-field scanning system OPENSAR from SATIMO. The system is based on a high precision robot (working range: 901 mm), which positions the probes with a positional repeatability of better than ±0.03 mm. The SAR measurements were conducted with dosimetric probe (manufactured by SATIMO), designed in the classical triangular configuration and optimized for dosimetric evaluation. The first step of the field measurement is the evaluation of the voltages induced on the probe by the device under test. Probe diode detectors are nonlinear. Below the diode compression point, the output voltage is proportional to the square of the applied E-field; above the diode compression point, it is linear to the applied E-field. The compression point depends on the diode, and a calibration procedure is necessary for each sensor of the probe. The Keithley multimeter reads the voltage of each sensor and send these three values to the PC. The corresponding E field value is calculated using the probe calibration factors, which are stored in the working directory. This evaluation includes linearization of the diode characteristics. The field calculation is done separately for each sensor. Each component of the E field is displayed on the "Dipole Area Scan Interface" and the total E field is displayed on the "3D Interface" 2.2. Robot The SATIMO SAR system uses the high precision robots from KUKA. For the 6-axis controller system, the robot controller version (KUKA) from KUKA is used. The KUKA robot series have many features that are important for our application: - High precision (repeatability ±0.03 mm) - High reliability (industrial design) - · Jerk-free straight movements - Low ELF interference (the closed metallic construction shields against motor control fields) Report
No.: \$23082101103001 ## 2.3. E-Field Probe This E-field detection probe is composed of three orthogonal dipoles linked to special Schottky diodes with low detection thresholds. The probe allows the measurement of electric fields in liquids such as the one defined in the IEEE and CENELEC standards. For the measurements the Specific Dosimetric E-Field Probe SN 08/16 EPGO287 with following specifications is used - Dynamic range: 0.01-100 W/kg - Tip Diameter: 2.5 mm - Distance between probe tip and sensor center: 1 mm - Distance between sensor center and the inner phantom surface: 2 mm (repeatability better than ±1 mm). Probe linearity: ±0.08 dBAxial isotropy: ±0.01 dB - Hemispherical Isotropy: ±0.01 dB - Calibration range: 650MHz to 5900MHz for head & body simulating liquid. - Lower detection limit: 8mW/kg Angle between probe axis (evaluation axis) and surface normal line: less than 30°. #### 2.3.1. E-Field Probe Calibration Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than ±10%. The spherical isotropy shall be evaluated and within ±0.25dB. The sensitivity parameters (Norm X, Norm Y, and Norm Z), the diode compression parameter (DCP) and the conversion factor (Conv F) of the probe are tested. The calibration data can be referred to appendix D of this report. ## 2.4. SAM phantoms ## Photo of SAM phantom SN 16/15 SAM119 The SAM phantom is used to measure the SAR relative to people exposed to electro-magnetic field radiated by mobile phones. ## 2.4.1. Technical Data | Serial
Number | Shell thickness | Filling volume | Dimensions | Positionner
Material | Permittivity | Loss
Tangent | |--------------------|-----------------|----------------|---|-------------------------|--------------|-----------------| | SN 16/15
SAM119 | 2 mm ±0.2 mm | 27 liters | Length:1000 mm
Width:500 mm
Height:200 mm | Gelcoat with fiberglass | 3.4 | 0.02 | | Serial Number | Left Head(mm) | | Right Head(mm) | | Flat Part(mm) | | |-----------------|---------------|------|----------------|------|---------------|------| | | 2 | 2.02 | 2 | 2.08 | 1 | 2.09 | | | 3 | 2.05 | 3 | 2.06 | 2 | 2.06 | | | 4 | 2.07 | 4 | 2.07 | 3 | 2.08 | | | 5 | 2.08 | 5 | 2.08 | 4 | 2.10 | | SN 16/15 SAM119 | 6 | 2.05 | 6 | 2.07 | 5 | 2.10 | | | 7 | 2.05 | 7 | 2.05 | 6 | 2.07 | | | 8 | 2.07 | 8 | 2.06 | 7 | 2.07 | | | 9 | 2.08 | 9 | 2.06 | - | - | The test, based on ultrasonic system, allows measuring the thickness with an accuracy of 10 μ m. ## 2.5. Device Holder The positioning system allows obtaining cheek and tilting position with a very good accuracy. In compliance with CENELEC, the tilt angle uncertainty is lower than 1 degree. | Serial Number | Holder Material | Permittivity | Loss Tangent | |-----------------|-----------------|--------------|--------------| | SN 16/15 MSH100 | Delrin | 3.7 | 0.005 | 2.6. Test Equipment List This table gives a complete overview of the SAR measurement equipment. Devices used during the test described are marked \boxtimes | MVG | | Manufacturer | Name of | Type/Model | Serial Number | Calib | ration | |---|-----------|--------------|---------------------|---------------|--------------------|-----------|----------| | WWG E FIELD PROBE SSE2 SN 08/16 EPGC287 2023 2024 □ MVG 750 MHz Dipole SID750 SN 03/15 DIP 0G750-355 Mar. 01, 2024 Feb. 28, 2024 □ MVG 835 MHz Dipole SID835 SN 03/15 DIP Mar. 01, 5eb. 28, 2024 2024 □ MVG 900 MHz Dipole SID900 G990-348 2021 2024 □ MVG 1800 MHz Dipole SID1800 SN 03/15 DIP Mar. 01, 5eb. 28, 16800-349 2021 2024 □ MVG 1900 MHz Dipole SID1900 SN 03/15 DIP Mar. 01, 5eb. 28, 2021 2024 □ MVG 2000 MHz Dipole SID2000 SN 03/15 DIP Mar. 01, 5eb. 28, 2021 2024 □ MVG 2300 MHz Dipole SID2000 SN 03/15 DIP Mar. 01, 5eb. 28, 2021 2024 □ MVG 2300 MHz Dipole SID2300 SN 03/15 DIP Mar. 01, 5eb. 28, 2021 2024 □ MVG 2450 MHz Dipole SID2450 SN 03/15 DIP Mar. 01, 5eb. 28, 2021 2024 □ MVG 2600 MHz Dipole SID2600 | | Manufacturer | Equipment | i ype/iviodei | Serial Number | Last Cal. | Due Date | | MVG | | MVC | E FIEI D DRORE | SSE2 | SN 08/16 EPGO287 | Jan. 10, | Jan. 09, | | MVG | | WVO | ETILLETTROBL | JOLZ | 3N 00/10 E1 00207 | 2023 | 2024 | | MVG | | MVG | 750 MHz Dinole | SID750 | SN 03/15 DIP | Mar. 01, | Feb. 28, | | □ MVG 835 MHz Dipole SID835 0G835-347 2021 2024 □ MVG 900 MHz Dipole SID900 SN 03/15 DIP 0G900-348 2021 2024 □ MVG 1800 MHz Dipole SID1800 SN 03/15 DIP 1G800-349 2021 2024 □ MVG 1900 MHz Dipole SID1900 SN 03/15 DIP 1G900-350 2021 2024 □ MVG 2000 MHz Dipole SID2000 SN 03/15 DIP 1G900-350 2021 2024 □ MVG 2300 MHz Dipole SID2000 SN 03/15 DIP 2G000-351 2021 2024 □ MVG 2300 MHz Dipole SID2300 SN 03/15 DIP 3G00-358 2021 2024 □ MVG 2450 MHz Dipole SID2450 SN 03/15 DIP 3G00-358 2021 2024 □ MVG 2600 MHz Dipole SID2600 SN 03/15 DIP 3G00-356 2021 2024 □ MVG 2600 MHz Dipole SWG5500 SN 13/14 WGA 33 Mar. 01, 4G00-436 Peb. 28, 2021 □ <t< td=""><td></td><td>WIVO</td><td>700 WI IZ BIPOIC</td><td>010700</td><td>0G750-355</td><td>2021</td><td>2024</td></t<> | | WIVO | 700 WI IZ BIPOIC | 010700 | 0G750-355 | 2021 | 2024 | | MVG | | MVG | 835 MHz Dipole | SID835 | SN 03/15 DIP | Mar. 01, | Feb. 28, | | □ MVG 900 MHz Dipole SID900 0G900-348 2021 2024 □ MVG 1800 MHz Dipole SID1800 SN 03/15 DIP (16800-349) Mar. 01, Feb. 28, 2024 □ MVG 1900 MHz Dipole SID1900 SN 03/15 DIP (16900-350) Mar. 01, Feb. 28, 2024 □ MVG 2000 MHz Dipole SID2000 SN 03/15 DIP (16900-351) Mar. 01, Feb. 28, 2021 □ MVG 2300 MHz Dipole SID2300 SN 03/16 DIP (16900-358) Mar. 01, Feb. 28, 2021 □ MVG 2450 MHz Dipole SID2450 SN 03/15 DIP (16900-358) Mar. 01, Feb. 28, 2021 □ MVG 2600 MHz Dipole SID2600 SN 03/15 DIP (16900-358) Mar. 01, Feb. 28, 2024 □ MVG 2600 MHz Dipole SID2600 SN 03/15 DIP (16900-358) Mar. 01, Feb. 28, 2024 □ MVG 5000 MHz Dipole SWG5500 SN 13/14 WGA 33 Mar. 01, Feb. 28, 2024 □ MVG 5000 MHz Dipole SWG5500 SN 21/15 OCPG 72 NCR NCR □ MVG Power Ampliffier <td></td> <td>10100</td> <td>000 WH 12 Bipolo</td> <td>CIDOOO</td> <td>0G835-347</td> <td>2021</td> <td>2024</td> | | 10100 | 000 WH 12 Bipolo | CIDOOO | 0G835-347 | 2021 | 2024 | | MVG | | MVG | 900 MHz Dipole | SID900 | SN 03/15 DIP | Mar. 01, | Feb. 28, | | MVG | | 10100 | 000 WH 12 Bipolo | CIDOOO | 0G900-348 | 2021 | 2024 | | MVG | | MVG | 1800 MHz Dipole | SID1800 | SN 03/15 DIP | Mar. 01, | Feb. 28, | | □ MVG 1900 MHz Dipole SID1900 1G900-350 2021 2024 □ MVG 2000 MHz Dipole SID2000 SN 03/15 DIP Mar. 01, Feb. 28, 2021 2024 □ MVG 2300 MHz Dipole SID2300 SN 03/16 DIP Mar. 01, Feb. 28, 2021 2024 □ MVG 2450 MHz Dipole SID2450 SN 03/15 DIP Mar. 01, Feb. 28, 2024 2024 □ MVG 2600 MHz Dipole SID2600 SN 03/15 DIP Mar. 01, Feb. 28, 2024 2024 □ MVG 2600 MHz Dipole SID2600 SN 13/14 WGA 33 Mar. 01, Feb. 28, 2021 2024 □ MVG 5000 MHz Dipole SWG5500 SN 13/14 WGA 33 Mar. 01, Feb. 28, 2021 2024 □ MVG Liquid measurement Kit SCLMP SN 21/15 OCPG 72 NCR NCR □ MVG Power Amplifier N.A AMPLISAR_28/14_003 NCR NCR □ R&S Universal radio communication tester CMU200 117858 May 29, May 28, 2023 2024 □ | | | 1000 WH 12 B 15010 | 012 1000 | 1G800-349 | 2021 | 2024 | | | | MVG | 1900 MHz Dinole | SID1900 | SN 03/15 DIP | Mar. 01, | Feb. 28, | | □ MVG 2000 MHz Dipole SID2000 2G000-351 2021 2024 □ MVG 2300 MHz Dipole SID2300 SN 03/16 DIP 2G300-358 Mar. 01, 2024 Feb. 28, 2021 2024 □ MVG 2450 MHz Dipole SID2450 SN 03/15 DIP 2G450-352 2021 2024 □ MVG 2600 MHz Dipole SID2600 SN 03/15 DIP 2G600-356 Mar. 01, 2024 Feb. 28, 2021 2024 □ MVG 5000 MHz Dipole SWG5500 SN 13/14 WGA 33 Mar. 01, 2024 Feb. 28, 2021 2024 □ MVG Liquid measurement Kit SCLMP SN 21/15 OCPG 72 NCR NCR NCR □ MVG Power Amplifier N.A AMPLISAR_28/14_003 NCR NCR □ R&S Universal radio communication tester CMU200 117858 May 29, May 28, 2023 2024 □ R&S Wideband radio communication tester CMW500 103917 May 29, May 28, 2023 2024 □ HP Network Analyzer | | 10100 | 1000 Wii 12 Bipolo | 012 1000 | 1G900-350 | 2021 | 2024 | | MVG 2300 MHz Dipole SID2300 SN 03/16 DIP 2G300-358
2021 2024 | | MVG | 2000 MHz Dipole | SID2000 | SN 03/15 DIP | Mar. 01, | Feb. 28, | | □ MVG 2300 MHz Dipole SID2300 2G300-358 2021 2024 □ MVG 2450 MHz Dipole SID2450 SN 03/15 DIP 2G450-352 2021 2024 □ MVG 2600 MHz Dipole SID2600 SN 03/15 DIP 2G600-356 Mar. 01, 2024 Feb. 28, 2024 □ MVG 5000 MHz Dipole SWG5500 SN 13/14 WGA 33 Mar. 01, Feb. 28, 2021 2024 □ MVG Liquid measurement Kit SCLMP SN 21/15 OCPG 72 NCR NCR □ MVG Power Amplifier N.A AMPLISAR_28/14_003 NCR NCR □ KEITHLEY Millivoltmeter 2000 4072790 NCR NCR □ R&S Universal radio communication tester CMU200 117858 May 29, 2023 2024 □ R&S Wideband radio communication tester CMW500 103917 May 29, May 28, 2023 2024 □ HP Network Analyzer 8753D 3410J01136 May 29, May 28, 2024 | | WIVO | 2000 Wil 12 Dipole | OIDZOOO | 2G000-351 | 2021 | 2024 | | MVG | $ \Box $ | MVG | 2300 MHz Dipole | SID2300 | SN 03/16 DIP | Mar. 01, | Feb. 28, | | MVG 2450 MHz Dipole SID2450 2G450-352 2021 2024 MVG 2600 MHz Dipole SID2600 SN 03/15 DIP Mar. 01, 2G600-356 2021 2024 MVG 5000 MHz Dipole SWG5500 SN 13/14 WGA 33 Mar. 01, 2021 Feb. 28, 2024 MVG Liquid measurement Kit SCLMP SN 21/15 OCPG 72 NCR NCR MVG Power Amplifier N.A AMPLISAR_28/14_003 NCR NCR MKEITHLEY Millivoltmeter 2000 4072790 NCR NCR R&S Universal radio communication tester CMU200 117858 May 29, 2023 May 28, 2024 MR Wideband radio communication tester CMW500 103917 May 29, May 28, 2024 MR HP Network Analyzer 8753D 3410J01136 May 29, May 28, 2 | | WIVO | 2000 WI 12 Dipole | 0102000 | 2G300-358 | 2021 | 2024 | | MVG 2600 MHz Dipole SID2600 SN 03/15 DIP Mar. 01, Feb. 28, 2021 2024 MVG 5000 MHz Dipole SWG5500 SN 13/14 WGA 33 Mar. 01, Feb. 28, 2021 2024 MVG Liquid Measurement Kit SCLMP SN 21/15 OCPG 72 NCR NCR MVG Power Amplifier N.A AMPLISAR_28/14_003 NCR NCR KEITHLEY Millivoltmeter 2000 4072790 NCR NCR R&S Communication CMU200 117858 May 29, 2023 2024 R&S Wideband radio CMW500 103917 May 29, 2023 2024 May 29, May 28, | | MVG | 2450 MHz Dipole | SID2450 | SN 03/15 DIP | Mar. 01, | Feb. 28, | | □ MVG 2600 MHz Dipole SID2600 2G600-356 2021 2024 □ MVG 5000 MHz Dipole SWG5500 SN 13/14 WGA 33 Mar. 01, 2021 Feb. 28, 2021 2024 □ MVG Liquid measurement Kit SCLMP SN 21/15 OCPG 72 NCR NCR NCR □ MVG Power Amplifier N.A AMPLISAR_28/14_003 NCR NCR NCR □ KEITHLEY Millivoltmeter 2000 4072790 NCR NCR NCR □ R&S Universal radio communication tester CMU200 117858 May 29, May 28, 2023 2024 □ R&S Wideband radio communication tester CMW500 103917 May 29, May 28, 2023 2024 □ HP Network Analyzer 8753D 3410J01136 May 29, May 28, | | WIVO | 2400 Wil IZ Dipole | OIDZ-100 | 2G450-352 | 2021 | 2024 | | MVG 5000 MHz Dipole SWG5500 SN 13/14 WGA 33 Mar. 01, 2024 Feb. 28, 2024 MVG Liquid measurement Kit measurement Kit SCLMP SN 21/15 OCPG 72 NCR NCR MVG Power Amplifier N.A AMPLISAR_28/14_003 NCR NCR KEITHLEY Millivoltmeter 2000 4072790 NCR NCR R&S Universal radio communication tester CMU200 117858 May 29, 2023 May 28, 2024 R&S Wideband radio communication tester CMW500 103917 May 29, 2023 May 28, 2024 HP Network Analyzer 8753D 3410,J01136 May 29, May 28, May 28, 2024 | | MVG | 2600 MHz Dipole | SID2600 | SN 03/15 DIP | Mar. 01, | Feb. 28, | | MVG 5000 MHz Dipole SWG5500 SN 13/14 WGA 33 2021 2024 MVG Liquid measurement Kit SCLMP SN 21/15 OCPG 72 NCR NCR MVG Power Amplifier N.A AMPLISAR_28/14_003 NCR NCR KEITHLEY Millivoltmeter 2000 4072790 NCR NCR Universal radio communication tester CMU200 117858 May 29, 2023 May 28, 2024 R&S Wideband radio communication tester CMW500 103917 May 29, 2023 May 28, 2024 HP Network Analyzer 8753D 3410J01136 May 29, May 28, 2024 | | WIVO | 2000 WI 12 Dipole | OIDZOOO | 2G600-356 | 2021 | 2024 | | MVG | | MVG | 5000 MHz Dipole | SWG5500 | SN 13/14 WGA 33 | Mar. 01, | Feb. 28, | | MVG measurement Kit SCLMP SN 21/15 OCPG 72 NCR NCR MVG Power Amplifier N.A AMPLISAR_28/14_003 NCR NCR KEITHLEY Millivoltmeter 2000 4072790 NCR NCR Universal radio communication tester CMU200 117858 May 29, 2023 May 28, 2024 R&S Wideband radio communication tester CMW500 103917 May 29, 2023 May 28, 2024 May 29, 2023 May 29, 2024 May 29, 2024 May 29, 2024 May 29, 2024 | | 10100 | 3000 Wil 12 Dipole | 0110000 | ON 10/14 WO/100 | 2021 | 2024 | | ✓ MVG Power Amplifier N.A AMPLISAR_28/14_003 NCR NCR ✓ KEITHLEY Millivoltmeter 2000 4072790 NCR NCR ✓ R&S Universal radio communication tester CMU200 117858 May 29, 2023 May 28, 2024 ✓ R&S Wideband radio communication tester CMW500 103917 May 29, 2023 May 28, 2024 ✓ HP Network Analyzer 8753D 3410J01136 May 29, May 28, 2024 | | MVG | · | SCLMP | SN 21/15 OCPG 72 | NCR | NCR | | ☑ KEITHLEY Millivoltmeter 2000 4072790 NCR NCR ☐ R&S Universal radio communication tester CMU200 117858 May 29, 2023 May 28, 2023 ☐ R&S Wideband radio communication tester CMW500 103917 May 29, 2023 May 28, 2024 ☑ HP Network Analyzer 8753D 3410J01136 May 29, May 28, 2024 | | MVG | | N A | AMPLISAR 28/14 003 | NCR | NCR | | □ R&S Universal radio communication tester CMU200 117858 May 29, 2023 May 28, 2024 □ R&S Wideband radio communication tester CMW500 103917 May 29, 2023 May 28, 2024 □ HP Network Analyzer 8753D 3410J01136 May 29, May 28, 2024 | - | KEITHLEY | Millivoltmeter | | | | | | □ R&S communication tester CMU200 117858 May 29, 2023 May 28, 2024 □ R&S Wideband radio communication tester CMW500 103917 May 29, 2023 May 28, 2024 □ HP Network Analyzer 8753D 3410J01136 May 29, May 28, 2024 | | | Universal radio | 2000 | 1012100 | HOIX | ITOIT | | □ R&S Wideband radio communication tester CMW500 103917 May 29, 2023 May 28, 2024 □ HP Network Analyzer Network Analyzer 8753D 3410J01136 May 29, May 28, 2024 | | R&S | | CMU200 | 117858 | May 29, | May 28, | | □ R&S Wideband radio communication tester CMW500 103917 May 29, 2023 May 28, 2024 □ HP Network Analyzer 8753D 3410J01136 May 29, May 28, 3410J01136 | | | Oommaniod don | | | 2023 | 2024 | | □ R&S communication tester CMW500 103917 May 29, 2023 May 28, 2024 □ HP Network Analyzer 8753D 3410J01136 May 29, May 28, 2024 | | | | | | | | | 2023 2024 | | D00 | CMW500 | 103917 | | - | | | Image: Brown of the properties prop | | | | 3 | | 2023 | 2024 | | I △ I P I Network Analyzer I 8753D I 3410J01136 I I I I I | | Ш | | | | May 29, | May 28, | | , , , , , , , , , , , , , , , , , , , | | HP | HP Network Analyzer | | 3410J01136 | 2023 | 2024 | Page 17 of 90 Report No.: S23082101103001 | \boxtimes | Agilent | MXG Vector
Signal Generator | N5182A | MY47070317 | May 29,
2023 | May 28,
2024 | |-------------|----------|--------------------------------|---------|-----------------|------------------|------------------| | \boxtimes | Agilent | Power meter | E4419B | MY45102538 | May 29,
2023 | May 28,
2024 | | \boxtimes | Agilent | Power sensor | E9301A | MY41495644 | May 29,
2023 | May 28,
2024 | | \boxtimes | Agilent | Power sensor | E9301A | US39212148 | May 29,
2023 | May 28,
2024 | | \boxtimes | MCLI/USA | Directional
Coupler | CB11-20 | 0D2L51502 | Jul. 04,
2023 | Jul. 03,
2024 | | \boxtimes | N/A | Thermometer | N/A | LES-085 | Mar. 27,
2023 | Mar. 26,
2026 | | \boxtimes | MVG | SAM Phantom | SSM2 | SN 16/15 SAM119 | NCR | NCR | | \boxtimes | MVG | Device Holder | SMPPD | SN 16/15 MSH100 | NCR | NCR | ## 3. SAR Measurement Procedures The measurement procedures are as follows: ## <Conducted power measurement> - (a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band. - (b) Read the WWAN RF power level from the base station simulator. - (c) For WLAN/Bluetooth power measurement, use engineering software to configure EUT WLAN/Bluetooth continuously transmission, at maximum RF power in each supported wireless interface and frequency band. - (d) Connect EUT RF port through RF cable to the power meter, and measure WLAN/Bluetooth output power. #### <SAR measurement> - (a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/Bluetooth continuously transmission, at maximum RF power, in the highest power channel. - (b) Place the EUT in the positions as Appendix A demonstrates. - (c) Set scan area, grid size and other setting on the OPENSAR software. - (d) Measure SAR results for the highest power channel on each testing position. - (e) Find out the largest SAR result on these testing positions of each band. - Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg. According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps: - (a) Power reference measurement - (b) Area scan - (c) Zoom scan - (d) Power drift measurement #### 3.1. Power Reference The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties. ## 3.2. Area scan & Zoom scan The area scan is a 2D scan to find the hot spot location on the DUT. The zoom scan is a 3D scan above the hot spot to calculate the 1g and 10g SAR value. Measurement of the SAR distribution with a grid of 8 to 16 mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme. Around this point, a cube of 30 * 30 *30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8 * 4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated. From the scanned SAR
distribution, identify the position of the maximum SAR value, in addition identify the positions of any local maxima with SAR values within 2 dB of the maximum value that will not be within the zoom scan of other peaks; additional peaks shall be measured only when the primary peak is within 2 dB of the SAR compliance limit (e.g., 1 W/kg for 1,6 W/kg 1 g limit, or 1,26 W/kg for 2 W/kg, 10 g limit). Area scan & Zoom scan scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz. | 100 MHZ to 6 GHZ. | | | | | | |---|---|---|---|--|--| | | | | ≤ 3 GHz | > 3 GHz | | | Maximum distance from (geometric center of pro- | | | 5 ± 1 mm | $\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$ | | | Maximum probe angle from probe axis to phantom surface normal at the measurement location | | 30° ± 1° | 20° ± 1° | | | | Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area} | | | ≤ 2 GHz: ≤ 15 mm
2 – 3 GHz: ≤ 12 mm | $3 - 4 \text{ GHz:} \le 12 \text{ mm}$
$4 - 6 \text{ GHz:} \le 10 \text{ mm}$ | | | | | | When the x or y dimension o measurement plane orientation the measurement resolution r x or y dimension of the test d measurement point on the test | on, is smaller than the above,
must be \leq the corresponding
evice with at least one | | | Maximum zoom scan s | patial reso | lution: Δx _{Zoom} , Δy _{Zoom} | \leq 2 GHz: \leq 8 mm
2 – 3 GHz: \leq 5 mm [*] | $3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$
$4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$ | | | | uniform s | grid: Δz _{Zoom} (n) | ≤ 5 mm | $3 - 4 \text{ GHz}: \le 4 \text{ mm}$
$4 - 5 \text{ GHz}: \le 3 \text{ mm}$
$5 - 6 \text{ GHz}: \le 2 \text{ mm}$ | | | Maximum zoom scan
spatial resolution,
normal to phantom
surface | graded | Δz _{Zoom} (1): between 1 st two points closest to phantom surface | ≤ 4 mm | $3 - 4 \text{ GHz: } \le 3 \text{ mm}$
$4 - 5 \text{ GHz: } \le 2.5 \text{ mm}$
$5 - 6 \text{ GHz: } \le 2 \text{ mm}$ | | | | grid $\Delta z_{Zoom}(n>1)$: between subsequent points | | $\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$ | | | | Minimum zoom scan
volume | x, y, z | | ≥ 30 mm | $3 - 4 \text{ GHz:} \ge 28 \text{ mm}$
$4 - 5 \text{ GHz:} \ge 25 \text{ mm}$
$5 - 6 \text{ GHz:} \ge 22 \text{ mm}$ | | Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details. ^{*} When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is $\leq 1.4 \text{ W/kg}$, $\leq 8 \text{ mm}$, $\leq 7 \text{ mm}$ and $\leq 5 \text{ mm}$ zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz. ## 3.3. Description of interpolation/extrapolation scheme The local SAR inside the phantom is measured using small dipole sensing elements inside a probe body. The probe tip must not be in contact with the phantom surface in order to minimise measurements errors, but the highest local SAR will occur at the surface of the phantom. An extrapolation is using to determinate this highest local SAR values. The extrapolation is based on a fourth-order least-square polynomial fit of measured data. The local SAR value is then extrapolated from the liquid surface with a 1 mm step. The measurements have to be performed over a limited time (due to the duration of the battery) so the step of measurement is high. It could vary between 5 and 8 mm. To obtain an accurate assessment of the maximum SAR averaged over 10 grams and 1 gram requires a very fine resolution in the three dimensional scanned data array. #### 3.4. Volumetric Scan The volumetric scan consists to a full 3D scan over a specific area. This 3D scan is useful form multi Tx SAR measurement. Indeed, it is possible with OpenSAR to add, point by point, several volumetric scan to calculate the SAR value of the combined measurement as it is define in the standard IEEE1528 and IEC62209. #### 3.5. Power Drift All SAR testing is under the EUT install full charged battery and transmit maximum output power. In OpenSAR measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in V/m. If the power drifts more than ±5%, the SAR will be retested. ## 4. System Verification Procedure ## 4.1. Tissue Verification The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation. | Ingredients (% of weight) | | | | | Head | Tissue | | | | | |---------------------------|-------|-------|-------|-------|-------------------|--------|-------|-------|-------|-------| | Frequency Band
(MHz) | 750 | 835 | 900 | 1800 | 1900 | 2000 | 2450 | 2600 | 5200 | 5800 | | Water | 34.40 | 34.40 | 34.40 | 55.36 | 55.36 | 57.87 | 57.87 | 57.87 | 65.53 | 65.53 | | NaCl | 0.79 | 0.79 | 0.79 | 0.35 | 0.35 | 0.16 | 0.16 | 0.16 | 0.00 | 0.00 | | 1,2-Propanediol | 64.81 | 64.81 | 64.81 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Triton X-100 | 0.00 | 0.00 | 0.00 | 30.45 | 30.45 | 19.97 | 19.97 | 19.97 | 24.24 | 24.24 | | DGBE | 0.00 | 0.00 | 0.00 | 13.84 | 13.84 | 22.00 | 22.00 | 22.00 | 10.23 | 10.23 | | Ingredients (% of weight) | | | | | Body ⁻ | Tissue | | | | | | Frequency Band
(MHz) | 750 | 835 | 900 | 1800 | 1900 | 2000 | 2450 | 2600 | 5200 | 5800 | | Water | 50.30 | 50.30 | 50.30 | 69.91 | 69.91 | 71.88 | 71.88 | 71.88 | 79.54 | 79.54 | | NaCl | 0.60 | 0.60 | 0.60 | 0.13 | 0.13 | 0.16 | 0.16 | 0.16 | 0.00 | 0.00 | | 1,2-Propanediol | 49.10 | 49.10 | 49.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Triton X-100 | 0.00 | 0.00 | 0.00 | 9.99 | 9.99 | 19.97 | 19.97 | 19.97 | 11.24 | 11.24 | | DGBE | 0.00 | 0.00 | 0.00 | 19.97 | 19.97 | 7.99 | 7.99 | 7.99 | 9.22 | 9.22 | For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For head SAR testing, the liquid depth from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm. 4.1.1. Tissue Dielectric Parameter Check Results The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameter are within the tolerances of the specified target values. The measured conductivity and relative permittivity should be within ±5% of the target values. | T : | Measured | Target T | issue | Measure | d Tissue | I dan dal | | |----------------|--------------------|------------------------|---------------------|---------|----------|-----------------|---------------| | Tissue
Type | Frequency
(MHz) | εr (±5%) | σ (S/m)
(±5%) | εr | σ (S/m) | Liquid
Temp. | Test Date | | Head
2450 | 2450 | 39.20
(37.24~41.16) | 1.80
(1.71~1.89) | 39.13 | 1.85 | 21.2 °C | Aug. 31, 2023 | | Head
5200 | 5200 | 36.00
(34.20~37.80) | 4.66
(4.43~4.89) | 34.75 | 4.58 | 21.7 °C | Aug. 23, 2023 | | Head
5400 | 5400 | 35.80
(34.01~37.59) | 4.86
(4.62~5.10) | 35.35 | 4.98 | 21.4 °C | Sep. 06, 2023 | | Head
5600 | 5600 | 35.50
(33.73~37.28) | 5.07
(4.82~5.32) | 35.40 | 5.11 | 21.9 °C | Aug. 29, 2023 | | Head
5800 | 5800 | 35.30
(33.54~37.07) | 5.27
(5.01~5.53) | 35.45 | 5.21 | 21.3 °C | Aug. 30, 2023 | NOTE: The dielectric parameters of the tissue-equivalent liquid should be measured under similar ambient conditions and within 2 °C of the conditions expected during the SAR evaluation to satisfy protocol requirements. ## 4.2. System Verification Procedure The system verification is performed for verifying the accuracy of the complete measurement system and performance of the software. The dipole is connected to the signal source consisting of signal generator and amplifier via a directional coupler, N-connector cable and adaption to SMA. It is fed with a power of 100mW (below 5GHz) or 100mW (above 5GHz). To adjust this power a power meter is used. The power sensor is connected to the cable before the system verification to measure the power at this point and do adjustments at the signal generator. At the outputs of the directional coupler both return loss as well as forward power are controlled during the system verification to make sure that emitted power at the dipole is kept constant. This can also be checked by the power drift measurement after the test (result on plot). The system verification is shown as below picture: 4.2.1. System Verification Results Comparing to the original SAR value provided by SATIMO, the verification data should be within its specification of ±10%. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance verification can meet the variation criterion and the plots can be referred to Appendix B of this report. | | | | · · | · | | | | | |--------------|-----------------|---------------|--------------|-----------|---------|---------------|----------------|------------------| | | Target S. | AR (1W) | Measured SAR | | | Delta (%) | | | | System | (±10 | 0%)
 (Normaliz | ed to 1W) | Liquid | | | | | Verification | 1-g (W/Kg) | 10-g (W/Kg) | 1-g | 10-g | Temp. | 1-g
(±10%) | 10-g
(±10%) | Test Date | | | | | (W/Kg) | (W/Kg) | | | | | | 2450MHz | 53.69 | 23.94 | 56.06 | 22.69 | 21.2 °C | 4.41% | -3.65% | Aug. 31, | | Z4JUIVII IZ | (48.33~59.05) | (21.55~26.33) | | | | | | 2023 | | 5200MHz | 162.34 | 55.42 | 159.70 | 54.61 | 21.7 °C | -1.63% | -1.46% | Aug. 23,
2023 | | | (146.11~178.57) | (49.88~60.96) | | | | | | 2020 | | 5400MHz | 168.48 | 57.03 | 183.24 | 60.50 | 21.4 °C | 8.76% | 6.08% | Sep. 06, | | | (151.64~185.32) | (51.33~62.73) | 100.21 | 00.00 | 2 0 | 0.70 | 0.0070 | 2023 | | 5600MHz | 174.92 | 58.63 | 165.26 | 62.25 | 21.9 °C | -5.52% | 6.17% | Aug. 29, | | | (157.43~192.41) | (52.77~64.49) | 100.20 | 02.20 | 21.9 0 | -5.52% | 0.17% | 2023 | | 5800MHz | 178.89 | 59.32 | 194.30 | 55.21 | 21.3 °C | 8.61% | -6.93% | Aug. 30,
2023 | | | (161.01~196.77) | (53.39~65.25) | | | | | | 2020 | ## 5. SAR Measurement variability and uncertainty ## 5.1. SAR measurement variability Per KDB865664 D01 SAR measurement 100 MHz to 6 GHz, SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. The additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results. - 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply. - 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once. - 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit). - 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20. ## 5.2. SAR measurement uncertainty Per KDB865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. The equivalent ratio (1.5/1.6) is applied to extremity and occupational exposure conditions. ## 6. RF Exposure Positions ## 6.1. Laptop host platform test requirements The required minimum test separation distance for incorporating transmitters and antennas into laptop, notebook and netbook computer displays is determined with the display screen opened at an angle of 90° to the keyboard compartment. When antennas are incorporated in the keyboard section of a laptop computer, SAR is required for the bottom surface of the keyboard. Provided tablet use conditions are not supported by the laptop computer, SAR tests for bystander exposure from the edges of the keyboard and display screen of laptop computers are generally not required. Figure 6.1 – Test positions for Laptop ## 7. RF Output Power #### **WLAN & Bluetooth Output Power** 7.1. #### **Output Power Results Of WLAN** 7.1.1. | Mode | Channel | Frequency
(MHz) | Tune-up | Output
Power
(dBm) | |----------|---------|--------------------|---------|--------------------------| | | 1 | 2412 | 16.50 | 16.17 | | 802.11b | 6 | 2437 | 16.50 | 16.27 | | | 11 | 2462 | 16.50 | 15.99 | | | 1 | 2412 | 13.50 | 13.01 | | 802.11g | 6 | 2437 | 13.50 | 13.19 | | | 11 | 2462 | 13.50 | 13.14 | | 000 44 = | 1 | 2412 | 12.00 | 11.37 | | 802.11n | 6 | 2437 | 12.00 | 11.51 | | (HT20) | 11 | 2462 | 12.00 | 11.43 | | 000.44 | 3 | 2422 | 11.00 | 10.44 | | 802.11n | 6 | 2437 | 11.00 | 10.61 | | (HT40) | 9 | 2452 | 11.00 | 10.50 | NOTE: Power measurement results of WLAN 2.4G. | Mode | Channel | Frequency
(MHz) | Tune-up | Output
Power
(dBm) | |----------------|---------|--------------------|---------|--------------------------| | | 36 | 5180 | 11.00 | 10.95 | | 802.11a | 40 | 5200 | 11.00 | 10.80 | | | 48 | 5240 | 11.00 | 10.76 | | | 36 | 5180 | 11.00 | 10.83 | | 802.11n HT20 | 40 | 5200 | 11.00 | 10.78 | | | 48 | 5240 | 11.00 | 10.66 | | 000 44 - 11740 | 38 | 5190 | 11.50 | 11.10 | | 802.11n HT40 | 46 | 5230 | 11.50 | 11.05 | | | 36 | 5180 | 11.00 | 10.75 | | 802.11ac VHT20 | 40 | 5200 | 11.00 | 10.69 | | | 48 | 5240 | 11.00 | 10.69 | | | 38 | 5190 | 11.50 | 11.07 | | 802.11ac VHT40 | 46 | 5230 | 11.50 | 10.95 | Page 28 of 90 Report No.: S23082101103001 802.11ac VHT80 42 5210 11.50 11.02 NOTE: Power measurement results of WLAN 5.2G. | Mode | Channel | Frequency
(MHz) | Tune-up
(dBm) | Output
Power
(dBm) | |----------------|---------|--------------------|------------------|--------------------------| | | 52 | 5260 | 11.50 | 10.58 | | 802.11a | 56 | 5280 | 11.50 | 10.80 | | | 64 | 5320 | 11.50 | 11.07 | | | 52 | 5260 | 11.50 | 10.54 | | 802.11n HT20 | 56 | 5280 | 11.50 | 10.64 | | | 64 | 5320 | 11.50 | 11.03 | | 802.11n HT40 | 54 | 5270 | 11.50 | 10.97 | | 002.111111140 | 62 | 5310 | 11.50 | 11.25 | | | 52 | 5260 | 11.00 | 10.48 | | 802.11ac VHT20 | 56 | 5280 | 11.00 | 10.66 | | | 64 | 5320 | 11.00 | 11.00 | | 802.11ac VHT40 | 54 | 5270 | 11.50 | 11.01 | | | 62 | 5310 | 11.50 | 11.23 | | 802.11ac VHT80 | 58 | 5290 | 11.00 | 10.95 | NOTE: Power measurement results of WLAN 5.3G. | | | Fraguency | Tune-up | Output | |----------|---------|--------------------|---------|--------| | Mode | Channel | Frequency
(MHz) | | Power | | | | (IVIF1Z) | (dBm) | (dBm) | | | 100 | 5500 | 11.00 | 10.83 | | 802.11a | 120 | 5600 | 11.00 | 10.58 | | | 140 | 5700 | 11.00 | 10.82 | | | 100 | 5500 | 11.00 | 10.67 | | 802.11n | 120 | 5600 | 11.00 | 10.60 | | | 140 | 5700 | 11.00 | 10.78 | | | 102 | 5510 | 11.00 | 10.97 | | 802.11n | 118 | 5590 | 11.00 | 11.00 | | | 134 | 5670 | 11.00 | 10.98 | | 802.11ac | 100 | 5500 | 11.00 | 10.70 | | | 120 | 5600 | 11.00 | 10.53 | | (VHT20) | 140 | 5700 | 11.00 | 10.79 | | 802.11ac | 102 | 5510 | 11.50 | 11.00 | | (VHT40) | 118 | 5590 | 11.50 | 10.96 | Page 29 of 90 Report No.: S23082101103001 | | 134 | 5670 | 11.50 | 11.02 | |----------|-----|------|-------|-------| | 802.11ac | 106 | 5530 | 11.00 | 10.79 | | (VHT80) | 122 | 5610 | 11.00 | 10.58 | NOTE: Power measurement results of WLAN 5.6G. | Mode | Channel | Frequency
(MHz) | Tune-up | Output
Power
(dBm) | |-------------------|---------|--------------------|---------|--------------------------| | | 149 | 5745 | 10.50 | 9.95 | | 802.11a | 157 | 5785 | 10.50 | 9.80 | | | 165 | 5825 | 10.50 | 10.10 | | | 149 | 5745 | 10.00 | 9.81 | | 802.11n HT20 | 157 | 5785 | 10.00 | 9.89 | | | 165 | 5825 | 10.00 | 9.98 | | 000 44 11740 | 151 | 5755 | 10.50 | 10.38 | | 802.11n HT40 | 159 | 5795 | 10.50 | 10.38 | | 000.44 | 149 | 5745 | 10.00 | 9.81 | | 802.11ac | 157 | 5785 | 10.00 | 9.96 | | VHT20 | 165 | 5825 | 10.00 | 9.94 | | 802.11ac | 151 | 5755 | 10.50 | 10.34 | | VHT40 | 159 | 5795 | 10.50 | 10.39 | | 802.11ac
VHT80 | 155 | 5775 | 10.50 | 10.27 | NOTE: Power measurement results of WLAN 5.8G. | | Output Power (dBm) | | | | | | | | | | |--------|--------------------|----------------|---------|------|------|--|--|--|--|--| | | Data Rates | Tune-up | Channel | | | | | | | | | BR+EDR | Dala Rales | (dBm) | 0CH | 39CH | 78CH | | | | | | | DK+EDK | 1M | 7.00/5.00/5.00 | 6.62 | 4.91 | 4.99 | | | | | | | | 2M | 8.00/6.00/6.50 | 7.72 | 5.99 | 6.04 | | | | | | | | ЗМ | 9.00/7.00/7.00 | 8.17 | 6.33 | 6.37 | | | | | | | | Observati | T | Output Power (dBm) | | | | |-----|-----------|---------|--------------------|------|--|--| | | Channel | Tune-up | 1M | 2M | | | | BLE | 0CH | 7.00 | 6.25 | 6.29 | | | | | 19CH | 8.00 | 7.04 | 7.06 | | | | | 39CH | 8.00 | 7.35 | 7.30 | | | NOTE: Power measurement results of Bluetooth. # ACCREDITED Certificate #4298.01 ## 8. Stand-alone SAR test exclusion Refer to FCC KDB 447498D01, the 1-g SAR and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by: [(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f_{(GHZ)}}$] ≤ 3.0 for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where: - f_(GHZ) is the RF channel transmit frequency in GHz - · Power and distance are rounded to the nearest mW and mm before calculation - The result is rounded to one decimal place for comparison When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion. | Mode | P _{max} | P _{max} | Distance f | | Calculation | SAR Exclusion | SAR test | |-----------|------------------|------------------|------------|-------|-------------|---------------|-----------| | Mode | (dBm) | (mW) | (mm) | (GHz) | Result | threshold | exclusion | | Bluetooth | 9.00 | 7.94 | 5 | 2.480 | 2.49 | 3.0 | Yes | NOTE: Standalone SAR test exclusion for Bluetooth. ## 9. SAR Results #### 9.1. SAR measurement results #### 9.1.1. SAR measurement Result of WLAN 2.4G | Test Position | Test | Mode | | Value
/kg) | Power | Conducted | Tune-up
Power | Scaled
SAR | Data | Plot | |---|--------|---------|-------|---------------|----------|----------------|------------------|---------------|-----------|------| | rest Position | /Freq. | Mode | 1-g | 10-g | Drift(%) | Power
(dBm) | (dBm) | 1-g
(W/Kg) | Date | Piol | | Bottom surface of the keyboard with 0mm | 6/2437 | 802.11b | 0.557 | 0.272 | 0.35 | 16.27 | 16.50 | 0.587 | 2023/8/31 | 5# | NOTE: Body SAR test results
of WLAN 2.4G #### 9.1.2. SAR measurement Result of WLAN 5.2G | Test Position | Test | Mode | | Value
/kg) | Power | Conducted
Power | Tune-up
Power | Scaled
SAR | Date | Plot | |---|---------|-----------------|-------|---------------|----------|--------------------|------------------|---------------|-----------|------| | Test i Osition | /Freq. | Wiode | 1-g | 10-g | Drift(%) | (dBm) | (dBm) | 1-g
(W/Kg) | Date | Tiot | | Bottom surface of the keyboard with 0mm | 38/5190 | 802.11n
HT40 | 0.091 | 0.067 | -3.15 | 11.10 | 11.50 | 0.100 | 2023/8/23 | 1# | NOTE: Body SAR test results of WLAN 5.2G ## 9.1.3. SAR measurement Result of WLAN 5.3G | Test Position | Test
channel | est | | SAR Value (W/kg) Power | | Conducted Tune-u | | Scaled
SAR | Date | Plot | |-------------------------|-----------------|-----------------|----------|------------------------|-------|------------------|---------------|---------------|-----------|------| | Test Fosition | /Freq. | Mode | 1-g 10-g | Drift(%) | (dBm) | (dBm) | 1-g
(W/Kg) | Dale | FIOL | | | Bottom | | | | | | | | | | | | surface of the keyboard | 62/5310 | 802.11n
HT40 | 0.087 | 0.065 | 0.22 | 11.25 | 11.50 | 0.092 | 2023/9/06 | 2# | | with 0mm | | | | | | | | | | | NOTE: Body SAR test results of WLAN 5.3G ## 9.1.4. SAR measurement Result of WLAN 5.6G | | Test | Mada | SAR Value
(W/kg) | | Power | Conducted | Tune-up | Scaled
SAR | Date | Plot | |---|-------------------|---------------------|---------------------|-------|----------|----------------|----------------|---------------|-----------|------| | Test Position | channel
/Freq. | Mode | 1-g | 10-g | Drift(%) | Power
(dBm) | Power
(dBm) | 1-g
(W/Kg) | Date | PIOL | | Bottom surface of the keyboard with 0mm | 134/5670 | 802.11ac
(VHT40) | 0.078 | 0.057 | -2.86 | 11.02 | 11.50 | 0.087 | 2023/8/29 | 3# | NOTE: Body SAR test results of WLAN 5.6G ## 9.1.5. SAR measurement Result of WLAN 5.8G | Test Position | Test
channel | Mode | | Value
/kg) | Power | Conducted | Tune-up
Power | Scaled
SAR | Date | Plot | |---|-----------------|-------------------|-------|---------------|----------|-----------|------------------|---------------|-----------|------| | | /Freq. | | 1-g | 10-g | Drift(%) | (dBm) | (dBm) | 1-g
(W/Kg) | - 200 | | | Bottom surface of the keyboard with 0mm | 159/5795 | 802.11ac
VHT40 | 0.065 | 0.052 | -4.47 | 10.39 | 10.50 | 0.067 | 2023/8/30 | 4# | NOTE: Body SAR test results of WLAN 5.8G ## 9.2. Simultaneous Transmission Analysis NO simultaneous transmissions are possible for this device of Bluetooth, 2.4G Wi-Fi, and 5G Wi-Fi, ## 10. Appendix A. Photo documentation Refer to appendix Test Setup photo---SAR ## 11. Appendix B. System Check Plots | Table of contents | |--| | MEASUREMENT 1 System Performance Check - 2450MHz | | MEASUREMENT 2 System Performance Check - 5200MHz | | MEASUREMENT 3 System Performance Check - 5400MHz | | MEASUREMENT 4 System Performance Check - 5600MHz | | MEASUREMENT 5 System Performance Check - 5800MHz | ## **MEASUREMENT 1** Date of measurement: 31/8/2023 A. Experimental conditions. | 7 ti Exportinomai contamona | <u> </u> | |-----------------------------|-----------------------------| | <u>Area Scan</u> | dx=12mm dy=12mm, h= 5.00 mm | | ZoomScan | 7x7x7,dx=5mm dy=5mm dz=5mm | | Phantom | Validation plane | | Device Position | <u>Dipole</u> | | <u>Band</u> | <u>CW2450</u> | | <u>Channels</u> | <u>Middle</u> | | Signal | CW (Crest factor: 1.0) | | ConvF | 1.98 | **B. SAR Measurement Results** | Alt Measurement Results | | |--|-------------| | Frequency (MHz) | 2450.000000 | | Relative permittivity (real part) | 39.131196 | | Relative permittivity (imaginary part) | 13.595063 | | Conductivity (S/m) | 1.850439 | | Variation (%) | 1.770000 | Maximum location: X=-1.00, Y=-1.00 SAR Peak: 9.83 W/kg | SAR 10g (W/Kg) | 2.269267 | |----------------|----------| | SAR 1g (W/Kg) | 5.606338 | ## **MEASUREMENT 2** Date of measurement: 23/8/2023 A. Experimental conditions. | 7 ti Experimental conditions | <u>91</u> | |------------------------------|-----------------------------| | <u>Area Scan</u> | dx=10mm dy=10mm, h= 2.00 mm | | ZoomScan | 7x7x12,dx=4mm dy=4mm dz=2mm | | <u>Phantom</u> | <u>Validation plane</u> | | Device Position | <u>Dipole</u> | | Band | <u>CW5200</u> | | <u>Channels</u> | <u>Middle</u> | | Signal | CW (Crest factor: 1.0) | | ConvF | 1.80 | **B. SAR Measurement Results** | Frequency (MHz) | 5200.000000 | |--|-------------| | Relative permittivity (real part) | 34.747545 | | Relative permittivity (imaginary part) | 15.846034 | | Conductivity (S/m) | 4.577743 | | Variation (%) | 1.750000 | | | | **VOLUME SAR** Maximum location: X=0.00, Y=6.00 SAR Peak: 40.06 W/kg | SAR 10g (W/Kg) | 5.461331 | |----------------|-----------| | SAR 1g (W/Kg) | 15.970173 | 0.00 2.00 4.00 6.00 8.00 10.0 12.0 14.0 16.0 18.0 20.0 22.0 Ζ (m 0 0 0 0 0 0 0 m) 0.05 37.8 22.3 11.3 5.66 2.82 1.40 0.71 0.10 SA 0.36 0.18 0.03 82 35 32 56 10 14 97 06 R 68 64 34 56 (W/ Kg) 37.84 30.00 25.00 · ¥¥ 20.00 · ¥5 10.00 · 25.00 10.00 5.00-0.02-12 14 16 18 20 22 24 26 10 Z (mm) MEASUREMENT 3 Report No.: S23082101103001 Date of measurement: 6/9/2023 A. Experimental conditions. | Area Scan | dx=10mm dy=10mm, h= 2.00 mm | |-----------------|-----------------------------| | <u>ZoomScan</u> | 7x7x12,dx=4mm dy=4mm dz=2mm | | <u>Phantom</u> | Validation plane | | Device Position | <u>Dipole</u> | | Band | CW5400 | | <u>Channels</u> | <u>Middle</u> | | Signal | CW (Crest factor: 1.0) | | ConvF | <u>2.05</u> | **B. SAR Measurement Results** | Frequency (MHz) | 5400.000000 | |--|-------------| | Relative permittivity (real part) | 35.354163 | | Relative permittivity (imaginary part) | 16.600161 | | Conductivity (S/m) | 4.980048 | | Variation (%) | -0.700000 | **VOLUME SAR** Maximum location: X=0.00, Y=1.00 SAR Peak: 46.18 W/kg | SAR 10g (W/Kg) | 6.050369 | |----------------|-----------| | SAR 1g (W/Kg) | 18.324356 | 0.00 2.00 4.00 6.00 8.00 Ζ 10.0 12.0 14.0 16.0 18.0 20.0 22.0 (m 0 0 0 0 0 0 0 m) SA 44.0 26.8 14.6 7.81 4.22 2.32 1.32 0.78 0.50 0.37 0.28 0.26 **74** 13 R **75** 12 09 26 38 37 13 04 45 03 (W/ Kg) 44.1-40.0-30.0 SAR (W/kg) 20.0 10.0 10 12 14 16 18 20 22 24 26 Z (mm) # **MEASUREMENT 4** Date of measurement: 29/8/2023 A. Experimental conditions. | - ti =2tp-0:::::0:::ta: | | |-------------------------|-----------------------------| | Area Scan | dx=10mm dy=10mm, h= 2.00 mm | | <u>ZoomScan</u> | 7x7x12,dx=4mm dy=4mm dz=2mm | | Phantom | Validation plane | | Device Position | <u>Dipole</u> | | Band | <u>CW5600</u> | | Channels | <u>Middle</u> | | Signal | CW (Crest factor: 1.0) | | ConvF | <u>2.16</u> | # **B. SAR Measurement Results** | Frequency (MHz) | 5600.000000 | |--|-------------| | Relative permittivity (real part) | 35.404460 | | Relative permittivity (imaginary part) | 16.412161 | | Conductivity (S/m) | 5.106006 | | Variation (%) | -2.480000 | **VOLUME SAR** Maximum location: X=0.00, Y=6.00 SAR Peak: 51.23 W/kg | SAR 10g (W/Kg) | 6.225030 | |----------------|-----------| | SAR 1g (W/Kg) | 16.526274 | 0.00 Z 2.00 4.00 6.00 8.00 10.0 12.0 14.0 16.0 18.0 20.0 22.0 0 0 0 0 0 (m 0 0 m) 54.1 31.9 16.3 8.17 4.08 3.81 1.03 0.46 0.27 0.13 0.07 0.05 SA 93 65 67 25 55 24 39 55 40 31 61 R **77** (W/ Kg) 54.1-40.0 SAR (#/kg) 10.0 0.0-12 14 16 18 20 22 24 26 10 Z (mm) # **MEASUREMENT 5** Date of measurement: 30/8/2023 A. Experimental conditions. | <u> </u> | = | |------------------------|-----------------------------| | <u>Area Scan</u> | dx=10mm dy=10mm, h= 2.00 mm | | <u>ZoomScan</u> | 7x7x12,dx=4mm dy=4mm dz=2mm | | <u>Phantom</u> | <u>Validation plane</u> | | Device Position | <u>Dipole</u> | | <u>Band</u> | <u>CW5800</u> | | <u>Channels</u> | <u>Middle</u> | | Signal | CW (Crest factor: 1.0) | | ConvF | 2.07 | **B. SAR Measurement Results** | Frequency (MHz) | 5800.000000 | |--|-------------| | Relative permittivity (real part) | 35.452416 | | Relative permittivity (imaginary part) | 16.176229 | | Conductivity (S/m) | 5.212340 | | Variation (%) | -0.630000 | **VOLUME SAR** Maximum location: X=0.00, Y=6.00 SAR Peak: 57.37 W/kg | SAR 10g (W/Kg) | 5.521102 | |----------------|-----------| | SAR 1g (W/Kg) | 19.430336 | Z 0.00 2.00 4.00 6.00 8.00 10.0 12.0 14.0 16.0 18.0 20.0 22.0 0 0 (m 0 0 0 0 0 m) 54.0 31.9 16.1 8.17 4.08 2.05 1.03 0.51 0.27 0.15 0.07 0.04 SA 37 20 80 47 **78** 24 88 44 32 85 56 07 R (W/ Kg) 54.0-40.0-30.0 뙻 20.0· 10.0-0.0-14 16 18 20 22 12 Z (mm) # 12. Appendix C. Plots of High SAR Measurement | Table of contents | | |------------------------------|--| | MEASUREMENT 1 WLAN 5.2G Body | | | MEASUREMENT 2 WLAN 5.3G Body | | | MEASUREMENT 3 WLAN 5.6G Body | | | MEASUREMENT 4 WLAN 5.8G Body | | | MEASUREMENT 5 WLAN 2.4G Body | | # **MEASUREMENT 1** Date of measurement: 23/8/2023 A. Experimental conditions. | ti Experimental certainer | <u>0.</u> | |---------------------------|---------------------------------| | Area Scan | dx=10mm dy=10mm, h= 2.00 mm | | ZoomScan | 7x7x12,dx=4mm dy=4mm dz=2mm | | <u>Phantom</u> | <u>Validation plane</u> | | Device Position | <u>Body</u> | | <u>Band</u> | <u>IEEE 802.11n U-NII</u> | | Channels | <u>Low</u> | | Signal | IEEE802.11n (Crest factor: 1.0) | | ConvF | 1.80 | **B. SAR Measurement Results** | WY INCOCAL CITICING IXCOCALIC | | |--|-------------| | Frequency (MHz) | 5190.000000 | | Relative permittivity (real part) | 34.661843 | | Relative permittivity (imaginary part) | 15.652457 | | Conductivity (S/m) | 4.513125 | | Variation (%) | -3.150000 | Maximum location: X=9.00, Y=-31.00
SAR Peak: 0.26 W/kg | SAR 10g (W/Kg) | 0.067318 | |----------------|----------| | SAR 1g (W/Kg) | 0.090801 | Z 0.00 2.00 4.00 6.00 8.00 10.0 12.0 14.0 16.0 18.0 20.0 22.0 (m 0 0 0 0 0 0 0 m) 0.21 0.13 0.06 80.0 0.07 0.06 0.07 0.07 0.07 0.02 0.06 0.03 SA 83 59 02 22 45 R 63 27 42 67 55 45 30 (W/ Kg) 0.218-0.200 -0.175 0.150 0. 150 0. 125 꽃 0.100· 0.075 0.050 0.023 Z (mm) # **MEASUREMENT 2** Date of measurement: 6/9/2023 A. Experimental conditions. | 11 = 21 0 1111 0 1101 0 1101 11 | | |---|---------------------------------| | Area Scan | dx=10mm dy=10mm, h= 2.00 mm | | <u>ZoomScan</u> | 7x7x12,dx=4mm dy=4mm dz=2mm | | <u>Phantom</u> | Validation plane | | <u>Device Position</u> | <u>Body</u> | | <u>Band</u> | <u>IEEE 802.11n U-NII</u> | | <u>Channels</u> | <u>High</u> | | Signal | IEEE802.11n (Crest factor: 1.0) | | ConvF | <u>2.05</u> | **B. SAR Measurement Results** | Frequency (MHz) | 5310.000000 | |--|-------------| | Relative permittivity (real part) | 35.620910 | | Relative permittivity (imaginary part) | 16.469065 | | Conductivity (S/m) | 4.858374 | | Variation (%) | 0.220000 | **VOLUME SAR** Maximum location: X=19.00, Y=-3.00 SAR Peak: 0.23 W/kg | SAR 10g (W/Kg) | 0.064577 | |----------------|----------| | SAR 1g (W/Kg) | 0.087179 | # **MEASUREMENT 3** Date of measurement: 29/8/2023 A. Experimental conditions. | Area Scan | dx=10mm dy=10mm, h= 2.00 mm | |------------------------|----------------------------------| | <u>ZoomScan</u> | 7x7x12,dx=4mm dy=4mm dz=2mm | | <u>Phantom</u> | Validation plane | | <u>Device Position</u> | <u>Body</u> | | <u>Band</u> | IEEE 802.11ac U-NII | | <u>Channels</u> | <u>High</u> | | Signal | IEEE802.11ac (Crest factor: 1.0) | | ConvF | <u>2.16</u> | **B. SAR Measurement Results** | Frequency (MHz) | 5670.000000 | |--|-------------| | Relative permittivity (real part) | 35.277949 | | Relative permittivity (imaginary part) | 16.489211 | | Conductivity (S/m) | 5.194101 | | Variation (%) | -2.860000 | **VOLUME SAR** Maximum location: X=18.00, Y=-12.00 SAR Peak: 0.18 W/kg | SAR 10g (W/Kg) | 0.057362 | |----------------|----------| | SAR 1g (W/Kg) | 0.078378 | Z 0.00 2.00 4.00 6.00 8.00 10.0 12.0 14.0 16.0 18.0 20.0 22.0 (m 0 0 0 0 0 0 0 m) 0.16 0.10 0.07 0.05 0.04 0.04 0.04 0.03 0.04 0.04 0.04 0.04 SA 16 **78** 16 33 31 12 97 55 07 **76** 14 R 53 (W/ Kg) 0.16-0.14 0.12-器 0.08 0.06 0.04-14 16 18 20 22 24 Z (mm) # **MEASUREMENT 4** Date of measurement: 30/8/2023 A. Experimental conditions. | 11 = 21 0 11 11 11 11 11 11 | | |---|----------------------------------| | <u>Area Scan</u> | dx=10mm dy=10mm, h= 2.00 mm | | <u>ZoomScan</u> | 7x7x12,dx=4mm dy=4mm dz=2mm | | Phantom | Validation plane | | Device Position | <u>Body</u> | | <u>Band</u> | IEEE 802.11ac U-NII | | <u>Channels</u> | <u>High</u> | | Signal | IEEE802.11ac (Crest factor: 1.0) | | ConvF | 2.07 | **B. SAR Measurement Results** | <u> </u> | | |--|-------------| | Frequency (MHz) | 5795.000000 | | Relative permittivity (real part) | 35.442624 | | Relative permittivity (imaginary part) | 16.222905 | | Conductivity (S/m) | 5.222874 | | Variation (%) | -4.470000 | **VOLUME SAR** Maximum location: X=9.00, Y=-13.00 SAR Peak: 0.13 W/kg | SAR 10g (W/Kg) | 0.051809 | |----------------|----------| | SAR 1g (W/Kg) | 0.064885 | Z 0.00 2.00 4.00 6.00 8.00 10.0 12.0 14.0 16.0 18.0 20.0 22.0 (m 0 0 0 0 0 0 0 m) 0.12 0.08 0.05 0.04 0.04 0.04 0.04 0.03 0.04 0.04 0.04 0.04 SA 23 80 02 91 16 15 28 24 78 **72** R 81 87 (W/ Kg) 0.12-0.11 0.10-(№ 0.09-(€ 0.08-뚫 0.07-0.06 0.05-0.04-Z (mm) # **MEASUREMENT 5** Date of measurement: 31/8/2023 A. Experimental conditions. | Area Scan | dx=12mm dy=12mm, h= 5.00 mm | |------------------------|---------------------------------| | <u>ZoomScan</u> | 7x7x7,dx=5mm dy=5mm dz=5mm | | Phantom | Validation plane | | <u>Device Position</u> | <u>Body</u> | | <u>Band</u> | <u>IEEE 802.11b ISM</u> | | <u>Channels</u> | <u>Middle</u> | | Signal | IEEE802.11b (Crest factor: 1.0) | | ConvF | <u>1.98</u> | **B. SAR Measurement Results** | Frequency (MHz) | 2437.000000 | |--|-------------| | Relative permittivity (real part) | 39.183296 | | Relative permittivity (imaginary part) | 13.513563 | | Conductivity (S/m) | 1.829586 | | Variation (%) | 0.350000 | **VOLUME SAR** Maximum location: X=9.00, Y=14.00 SAR Peak: 0.98 W/kg | SAR 10g (W/Kg) | 0.271928 | |----------------|----------| | SAR 1g (W/Kg) | 0.556758 | # 13. Appendix D. Calibration Certificate | Table of contents | |--| | E Field Probe - SN 08/16 EPGO287 | | 2450 MHz Dipole - SN 03/15 DIP 2G450-352 | | 5000-6000 MHz Dipole - SN 13/14 WGA 33 | | Extended Calibration Certificate | # **COMOSAR E-Field Probe Calibration Report** Ref: ACR.60.1.21.MVGB.A Report No.: S23082101103001 # SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD. BUILDING E, FENDA SCIENCE PARK, SANWEI COMMUNITY, XIXIANG STREET, BAO'AN DISTRICT, SHENZHEN GUANGDONG, CHINA MVG COMOSAR DOSIMETRIC E-FIELD PROBE SERIAL NO.: SN 08/16 EPGO287 #### Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE Calibration date: 01/10/2023 Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr #### Summary: This document presents the method and results from an accredited COMOSAR E-Field Probe calibration performed at MVG, using the CALIPROBE test bench, for use with a MVG COMOSAR system only. The test results covered by accreditation are traceable to the International System of Units (SI). ## COMOSAR E-FIELD PROBE CALIBRATION REPORT Ref: ACR.60.1.21.MVGB.A | | Name | Function | Date | Signature | |---------------|--------------|---------------------|-----------|--------------| | Prepared by : | Jérôme Luc | Technical Manager | 1/10/2023 | JE | | Checked by : | Jérôme Luc | Technical Manager | 1/10/2023 | JS | | Approved by : | Yann Toutain | Laboratory Director | 1/10/2023 | Gann Toutain | Mode d'emplei 2023.01.10 11:27:33 +01'00' | | Customer Name | |----------------|--------------------------| | | SHENZHEN NTEK
TESTING | | Distribution : | TECHNOLOGY | | | CO., LTD. | | Issue | Name | Date | Modifications | |-------|------------|-----------|-----------------| | A | Jérôme Luc | 1/10/2023 | Initial release | | | | | | | | | | | | | | | | Ref: ACR.60.1.21.MVGB.A Report No.: S23082101103001 #
TABLE OF CONTENTS | 1 | Dev | ice Under Test4 | | |---|------|-----------------------------|---| | 2 | Prod | luct Description | | | | 2.1 | General Information | 4 | | | | surement Method | | | | 3.1 | Linearity | 4 | | | 3.2 | Sensitivity | | | | 3.3 | Lower Detection Limit | 5 | | | 3.4 | Isotropy | 5 | | | 3.1 | Boundary Effect | 5 | | 1 | Mea | surement Uncertainty6 | | | 5 | Cali | bration Measurement Results | | | | 5.1 | Sensitivity in air | 6 | | | 5.2 | Linearity | 7 | | | 5.3 | Sensitivity in liquid | 8 | | | 5.4 | Isotropy | 9 | | 5 | List | of Equipment | | mvg Ref: ACR.60.1.21.MVGB.A Report No.: S23082101103001 #### 1 DEVICE UNDER TEST | Device Under Test | | | |--|----------------------------------|--| | Device Type | COMOSAR DOSIMETRIC E FIELD PROBE | | | Manufacturer | MVG | | | Model | SSE2 | | | Serial Number | SN 08/16 EPGO287 | | | Product Condition (new / used) | Used | | | Frequency Range of Probe | 0.15 GHz-6GHz | | | Resistance of Three Dipoles at Connector | Dipole 1: R1=0.211 MΩ | | | | Dipole 2: R2=0.199 MΩ | | | | Dipole 3: R3=0.199 MΩ | | ## 2 PRODUCT DESCRIPTION ## 2.1 GENERAL INFORMATION MVG's COMOSAR E field Probes are built in accordance to the IEEE 1528, FCC KDB865664 D01, CENELEC EN62209 and CEI/IEC 62209 standards. Figure 1 – MVG COMOSAR Dosimetric E field Dipole | Probe Length | 330 mm | |--|--------| | Length of Individual Dipoles | 2 mm | | Maximum external diameter | 8 mm | | Probe Tip External Diameter | 2.5 mm | | Distance between dipoles / probe extremity | 1 mm | ## 3 MEASUREMENT METHOD The IEEE 1528, FCC KDB865664 D01, CENELEC EN62209 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards. ## 3.1 LINEARITY The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg. Page 59 of 90 Report No.: S23082101103001 #### COMOSAR E-FIELD PROBE CALIBRATION REPORT Ref: ACR.60.1.21.MVGB.A #### **SENSITIVITY** The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards. ## LOWER DETECTION LIMIT The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg. #### 3.4 ISOTROPY The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 to 360 degrees in 15degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis (0°-180°) in 15° increments. At each step the probe is rotated about its axis (0°-360°). #### BOUNDARY EFFECT The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface. The boundary effect uncertainty can be estimated according to the following uncertainty approximation formula based on linear and exponential extrapolations between the surface and d_{be} + d_{step} along lines that are approximately normal to the surface: $$\mathrm{SAR}_{\mathrm{uncertainty}} \left[\%\right] = \delta \mathrm{SAR}_{\mathrm{be}} \, \frac{\left(d_{\mathrm{be}} + d_{\mathrm{step}}\right)^2}{2d_{\mathrm{step}}} \frac{\left(e^{-d_{\mathrm{be}}/(\delta \beta)}\right)}{\delta/2} \quad \text{for } \left(d_{\mathrm{be}} + d_{\mathrm{step}}\right) < 10 \; \mathrm{mm}$$ where is the uncertainty in percent of the probe boundary effect SARuncertainty is the distance between the surface and the closest zoom-scan measurement d_{be} point, in millimetre is the separation distance between the first and second measurement points that Δ_{step} are closest to the phantom surface, in millimetre, assuming the boundary effect at the second location is negligible δ is the minimum penetration depth in millimetres of the head tissue-equivalent liquids defined in this standard, i.e., $\delta \approx 14$ mm at 3 GHz; ⊿SAR_{be} in percent of SAR is the deviation between the measured SAR value, at the distance d_{be} from the boundary, and the analytical SAR value. Ref: ACR.60.1.21.MVGB.A Report No.: S23082101103001 The measured worst case boundary effect SARuncertainty[%] for scanning distances larger than 4mm is 1.0% Limit ,2%). #### MEASUREMENT UNCERTAINTY The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. | Uncertainty analysis of the probe cal | libration in wave | guide | | | | |--|--------------------------|-----------------------------|---------|----|-----------------------------| | ERROR SOURCES | Uncertainty
value (%) | Probability
Distribution | Divisor | ci | Standard
Uncertainty (%) | | Expanded uncertainty 95 % confidence level k = 2 | | | | | 14 % | ## CALIBRATION MEASUREMENT RESULTS | Calibration Parameters | | |------------------------|-------------| | Liquid Temperature | 20 +/- 1 °C | | Lab Temperature | 20 +/- 1 °C | | Lab Humidity | 30-70 % | #### SENSITIVITY IN AIR | | | Normz dipole | |---------------------|---------------------|---------------------| | $1 (\mu V/(V/m)^2)$ | $2 (\mu V/(V/m)^2)$ | $3 (\mu V/(V/m)^2)$ | | 0.72 | 0.66 | 0.77 | | DCP dipole 1 | DCP dipole 2 | DCP dipole 3 | |--------------|--------------|--------------| | (mV) | (mV) | (mV) | | 107 | 110 | 110 | Calibration curves ei=f(V) (i=1,2,3) allow to obtain E-field value using the formula: $$E = \sqrt{{E_1}^2 + {E_2}^2 + {E_3}^2}$$ Page: 6/10 Ref: ACR.60.1.21.MVGB.A Report No.: S23082101103001 # Calibration curves Dipole 1 Dipole 2 Dipole 3 ## 5.2 LINEARITY # Linearity Linearity:+/-1.90% (+/-0.08dB) Ref: ACR.60.1.21.MVGB.A Report No.: S23082101103001 #### SENSITIVITY IN LIQUID 5.3 | <u>Liquid</u> | Frequency
(MHz +/-
100MHz) | <u>ConvF</u> | |---------------|----------------------------------|--------------| | HL750 | 750 | 1.49 | | HL850 | 835 | 1.50 | | HL900 | 900 | 1.61 | | HL1800 | 1800 | 1.73 | | HL1900 | 1900 | 1.91 | | HL2000 | 2000 | 1.97 | | HL2300 | 2300 | 1.92 | | HL2450 | 2450 | 1.98 | | HL2600 | 2600 | 1.87 | | HL3300 | 3300 | 1.79 | | HL3500 | 3500 | 1.85 | | HL3700 | 3700 | 1.79 | | HL3900 | 3900 | 2.07 | | HL4200 | 4200 | 2.21 | | HL4600 | 4600 | 2.25 | | HL4900 | 4900 | 2.05 | | HL5200 | 5200 | 1.80 | | HL5400 | 5400 | 2.05 | | HL5600 | 5600 | 2.16 | | HL5800 | 5800 | 2.07 | LOWER DETECTION LIMIT: 8mW/kg Ref: ACR.60.1.21.MVGB.A Report No.: S23082101103001 # 5.4 ISOTROPY ## **HL1800 MHz** Ref: ACR.60.1.21.MVGB.A # 6 LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | | |---------------------------------------|----------------------------|--------------------|---|---|--| | Equipment Manufacturer / Identifica | | Identification No. | Current
Calibration Date | Next Calibration
Date | | | Flat Phantom | MVG | SN-20/09-SAM71 | Validated. No cal required. | Validated. No cal
required. | | | COMOSAR Test Bench | Version 3 | NA | Validated. No cal required. | Validated. No cal
required. | | | Network Analyzer | Rohde & Schwarz
ZVM | 100203 | 05/2022 | 05/2025 | | | Network Analyzer –
Calibration kit | Rohde & Schwarz
ZV-Z235 | 101223 | 05/2022 | 05/2025 | | | Multimeter | Keithley 2000 | 1160271 | 02/2022 | 02/2025 | | | Signal Generator | Rohde & Schwarz
SMB | 106589 | 04/2022 | 04/2025 | | | Amplifier | Aethercomm | SN 046 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | Power Meter | NI-USB 5680 | 170100013 | 05/2022 | 05/2025 | | | Directional Coupler | Narda 4216-20 | 01386 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | Waveguide | Mega Industries | 069Y7-158-13-712 | Validated. No cal required. | Validated. No cal required. | | | Waveguide Transition | Mega Industries | 069Y7-158-13-701 | Validated. No cal required. | Validated. No cal required. | | | Waveguide Termination | Mega Industries | 069Y7-158-13-701 | Validated. No cal required. | Validated. No cal required. | | | Temperature / Humidity
Sensor | Testo 184 H1 | 44220687 | 05/2020 | 05/2023 | | # **SAR Reference Dipole Calibration Report** Ref: ACR.60.8.21.MVGB.A # SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD. BUILDING E, FENDA SCIENCE PARK, SANWEI COMMUNITY, XIXIANG STREET, BAO'AN DISTRICT, SHENZHEN GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE > FREQUENCY: 2450 MHZ SERIAL NO.: SN 03/15 DIP2G450-352 # Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE Calibration date: 03/01/2021 Accreditations #2-6789 and #2-6814 Scope available on
www.cofrac.fr ## Summary: This document presents the method and results from an accredited SAR reference dipole calibration performed at MVG, using the COMOSAR test bench. The test results covered by accreditation are traceable to the International System of Units (SI). #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.8.21.MVGB.A | | Name | Function | Date | Signature | |---------------|--------------|---------------------|----------|--------------| | Prepared by : | Jérôme LUC | Technical Manager | 3/1/2021 | JE | | Checked by : | Jérôme LUC | Technical Manager | 3/1/2021 | JE | | Approved by : | Yann Toutain | Laboratory Director | 3/1/2021 | Gann Toutain | | | • | | • | 2021.03.01 | 13:13:40 +01'00' | | Customer Name | |----------------|---------------| | | SHENZHEN NTEK | | Distribution : | TESTING | | Distribution: | TECHNOLOGY | | | CO., LTD. | | Issue | Name | Date | Modifications | |-------|----------------|----------|-----------------| | A | Jérôme LE GALL | 3/1/2021 | Initial release | | | | | | | | | | | | | | | | Ref: ACR.60.8.21.MVGB.A Report No.: S23082101103001 # TABLE OF CONTENTS | 1 | Intro | oduction4 | | | | |---|-------|-----------------------------|-----|--|--| | 2 | Dev | Device Under Test | | | | | 3 | Prod | luct Description4 | | | | | | 3.1 | General Information | _ | | | | 4 | Mea | surement Method | | | | | | 4.1 | Return Loss Requirements | _ : | | | | | 4.2 | Mechanical Requirements | _ 4 | | | | 5 | Mea | surement Uncertainty | | | | | | 5.1 | Return Loss | _ 5 | | | | | 5.2 | Dimension Measurement | | | | | | 5.3 | Validation Measurement | _ 4 | | | | 6 | Cali | bration Measurement Results | | | | | | 6.1 | Return Loss and Impedance | _(| | | | | 6.2 | Mechanical Dimensions | | | | | 7 | Vali | dation measurement | | | | | | 7.1 | Measurement Condition | _ | | | | | 7.2 | Head Liquid Measurement | _ | | | | | 7.3 | Measurement Result | _ 8 | | | | 8 | List | of Equipment | | | | Ref: ACR.60.8.21 MVGB.A Report No.: S23082101103001 ## INTRODUCTION This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. #### DEVICE UNDER TEST 2 | Device Under Test | | | |---|-----------------------|--| | Device Type COMOSAR 2450 MHz REFERENCE DIPOLE | | | | Manufacturer | MVG | | | Model | SID2450 | | | Serial Number | SN 03/15 DIP2G450-352 | | | Product Condition (new / used) | Used | | #### 3 PRODUCT DESCRIPTION #### GENERAL INFORMATION 3.1 MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only. Figure 1 - MVG COMOSAR Validation Dipole Ref: ACR 60 8 21 MVGB A Report No.: S23082101103001 #### 4 MEASUREMENT METHOD The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards. # 4.1 RETURN LOSS REQUIREMENTS The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration. #### 4.2 MECHANICAL REQUIREMENTS The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper. #### 5 MEASUREMENT UNCERTAINTY All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. #### 5.1 RETURN LOSS The following uncertainties apply to the return loss measurement: | Frequency band | Expanded Uncertainty on Return Loss | |----------------|-------------------------------------| | 400-6000MHz | 0.08 LIN | ## 5.2 DIMENSION MEASUREMENT The following uncertainties apply to the dimension measurements: | Length (mm) | Expanded Uncertainty on Length | |-------------|--------------------------------| | 0 - 300 | 0.20 mm | | 300 - 450 | 0.44 mm | #### 5.3 VALIDATION MEASUREMENT The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements. | Scan Volume | Expanded Uncertainty | |-------------|----------------------| |-------------|----------------------| Page: 5/10 Ref: ACR.60.8.21.MVGB.A Report No.: S23082101103001 | 1 g | 19 % (SAR) | |------|------------| | 10 g | 19 % (SAR) | ## CALIBRATION MEASUREMENT RESULTS # RETURN LOSS AND IMPEDANCE | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |-----------------|------------------|------------------|------------------------| | 2450 | -23.18 | -20 | 56.3 Ω - 2.9 jΩ | # 6.2 MECHANICAL DIMENSIONS | Frequency MHz | L mm | | h mm | | d mm | | |---------------|-------------|----------|-------------|----------|-------------|----------| | | required | measured | required | measured | required | measured | | 300 | 420.0 ±1 %. | | 250.0 ±1 %. | | 6.35 ±1 %. | | | 450 | 290.0 ±1 %. | | 166.7 ±1 %. | | 6.35 ±1 %. | | | 750 | 176.0 ±1 %. | | 100.0 ±1 %. | | 6.35 ±1 %. | | | 835 | 161.0 ±1 %. | | 89.8 ±1 %. | | 3.6 ±1 %. | | | 900 | 149.0 ±1 %. | | 83.3 ±1 %. | | 3.6 ±1 %. | | | 1450 | 89.1 ±1 %. | | 51.7 ±1 %. | | 3.6 ±1 %. | | | 1500 | 80.5 ±1 %. | | 50.0 ±1 %. | | 3.6 ±1 %. | | | 1640 | 79.0 ±1 %. | | 45.7 ±1 %. | | 3.6 ±1 %. | | | 1750 | 75.2 ±1 %. | | 42.9 ±1 %. | | 3.6 ±1 %. | | | 1800 | 72.0 ±1 %. | | 41.7 ±1 %. | | 3.6 ±1 %. | | | 1900 | 68.0 ±1 %. | | 39.5 ±1 %. | | 3.6 ±1 %. | | | 1950 | 66.3 ±1 %. | | 38.5 ±1 %. | | 3.6 ±1 %. | | | 2000 | 64.5 ±1 %. | | 37.5 ±1 %. | | 3.6 ±1 %. | | | 2100 | 61.0 ±1 %. | | 35.7 ±1 %. | | 3.6 ±1 %. | | | 2300 | 55.5 ±1 %. | | 32.6 ±1 %. | | 3.6 ±1 %. | | | 2450 | 51.5 ±1 %. | - | 30.4 ±1 %. | - | 3.6 ±1 %. | - | Page: 6/10 Ref: ACR.60.8.21.MVGB.A Report No.: S23082101103001 | 2600 | 48.5 ±1 %. | 28.8 ±1 %. | 3.6 ±1 %. | | |------|------------|------------|-----------|--| | 3000 | 41.5 ±1 %. | 25.0 ±1 %. | 3.6 ±1 %. | | | 3500 | 37.0±1 %. | 26.4 ±1 %. | 3.6 ±1 %. | | | 3700 | 34.7±1 %. | 26.4 ±1 %. | 3.6 ±1 %. | | #### 7 VALIDATION MEASUREMENT The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom. ## 7.1 MEASUREMENT CONDITION | Software | OPENSAR V5 | |---|--| | Phantom | SN 13/09 SAM68 | | Probe | SN 41/18 EPGO333 | | Liquid | Head Liquid Values: eps': 41.9 sigma: 1.88 | | Distance between dipole center and liquid | 10.0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=5mm/dy=5mm/dz=5mm | | Frequency | 24502450 MHz | | Input power | 20 dBm | | Liquid Temperature | 20 +/- 1 °C | | Lab Temperature | 20 +/- 1 °C | | Lab Humidity | 30-70 % | ## 7.2 HEAD LIQUID MEASUREMENT | Frequency
MHz | Relative permittivity (ε_r') | | Conductiv | ity (σ) S/m | |------------------|--|----------|------------|-------------| | | required | measured | required | measured | | 300 | 45.3 ±10 % | | 0.87 ±10 % | | | 450 | 43.5 ±10 % | | 0.87 ±10 % | | | 750 | 41.9 ±10 % | | 0.89 ±10 % | | | 835 | 41.5 ±10 % | | 0.90 ±10 % | | | 900 | 41.5 ±10 % | | 0.97 ±10 % | | | 1450 | 40.5 ±10 % | | 1.20 ±10 % | | | 1500 | 40.4 ±10 % | | 1.23 ±10 % | | | 1640 | 40.2 ±10 % | | 1.31 ±10 % | | | 1750 | 40.1 ±10 % | | 1.37 ±10 % | | | 1800 | 40.0 ±10 % | | 1.40 ±10 % | | | 1900 | 40.0 ±10 % | | 1.40 ±10 % | | | 1950 | 40.0 ±10 % | | 1.40 ±10 % | | | 2000 | 40.0 ±10 % | | 1.40 ±10 % | | Page: 7/10 Ref: ACR.60.8.21.MVGB.A Report No.: S23082101103001 | 2100 | 39.8 ±10 % | | 1.49 ±10 % | | |------|------------|------|------------|------| | 2300 | 39.5 ±10 % | | 1.67 ±10 % | | | 2450 | 39.2 ±10 % | 41.9 | 1.80 ±10 % | 1.88 | | 2600 | 39.0 ±10 % | | 1.96 ±10 % | | | 3000 | 38.5 ±10 % | | 2.40 ±10 % | | | 3500 | 37.9 ±10 % | | 2.91 ±10 % | | | | | | | | # 7.3 MEASUREMENT RESULT The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power. | Frequency
MHz | 1 g SAR (W/kg/W) | | 10 g SAR | (W/kg/W) | |------------------|------------------|--------------|----------|--------------| | | required | measured | required | measured | | 300 | 2.85 | | 1.94 | | | 450 | 4.58 | | 3.06 | | | 750 | 8.49 | |
5.55 | | | 835 | 9.56 | | 6.22 | | | 900 | 10.9 | | 6.99 | | | 1450 | 29 | | 16 | | | 1500 | 30.5 | | 16.8 | | | 1640 | 34.2 | | 18.4 | | | 1750 | 36.4 | | 19.3 | | | 1800 | 38.4 | | 20.1 | | | 1900 | 39.7 | | 20.5 | | | 1950 | 40.5 | | 20.9 | | | 2000 | 41.1 | | 21.1 | | | 2100 | 43.6 | | 21.9 | | | 2300 | 48.7 | | 23.3 | | | 2450 | 52.4 | 53.69 (5.37) | 24 | 23.94 (2.39) | | 2600 | 55.3 | | 24.6 | | | 3000 | 63.8 | | 25.7 | | | 3500 | 67.1 | | 25 | | #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.8.21.MVGB.A Report No.: S23082101103001 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.60.8.21.MVGB.A Report No.: S23082101103001 # LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | | | | |---------------------------------------|----------------------------|--------------------|---|---|--|--|--| | Equipment
Description | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration
Date | | | | | SAM Phantom | MVG | SN-13/09-SAM68 | Validated. No cal
required. | Validated. No cal
required. | | | | | COMOSAR Test Bench | Version 3 | NA | | Validated. No cal
required. | | | | | Network Analyzer | Rohde & Schwarz
ZVM | 100203 | 05/2019 | 05/2022 | | | | | Network Analyzer –
Calibration kit | Rohde & Schwarz
ZV-Z235 | 101223 | 05/2019 | 05/2022 | | | | | Calipers | Mitutoyo | SN 0009732 | 10/2019 | 10/2022 | | | | | Reference Probe | MVG | EPGO333 SN 41/18 | 05/2020 | 05/2021 | | | | | Multimeter | Keithley 2000 | 1160271 | 02/2020 | 02/2023 | | | | | Signal Generator | Rohde & Schwarz
SMB | 106589 | 04/2019 | 04/2022 | | | | | Amplifier | Aethercomm | SN 046 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | | | Power Meter | NI-USB 5680 | 170100013 | 05/2019 | 05/2022 | | | | | Directional Coupler | Narda 4216-20 | 01386 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | | | Temperature / Humidity
Sensor | Testo 184 H1 | 44220687 | 05/2020 | 05/2023 | | | | # SAR Reference Waveguide Calibration Report Ref: ACR.60.10.21.MVGB.A Report No.: S23082101103001 # SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD. BUILDING E, FENDA SCIENCE PARK, SANWEI COMMUNITY, XIXIANG STREET, BAO'AN DISTRICT, SHENZHEN GUANGDONG, CHINA SATIMO COMOSAR REFERENCE WAVEGUIDE > FREQUENCY: 5000-6000 MHZ SERIAL NO.: SN 13/14 WGA33 #### Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE Calibration date: 03/01/2021 Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr #### Summary: This document presents the method and results from an accredited SAR reference waveguide calibration performed at MVG, using the COMOSAR test bench. The test results covered by accreditation are traceable to the International System of Units (SI). mvg #### SAR REFERENCE WAVEGUIDE CALIBRATION REPORT Ref: ACR.60.10.21.MVGB.A Report No.: S23082101103001 | | Name | Function | Date | Signature | |---------------|--------------|---------------------|----------|------------------------| | Prepared by : | Jérôme Luc | Technical Manager | 3/1/2021 | Jes | | Checked by: | Jérôme Luc | Technical Manager | 3/1/2021 | Jes | | Approved by : | Yann Toutain | Laboratory Director | 3/1/2021 | Gann Toutain | | | • | • | • | Mode diempla 2021.03.0 | | | | | | 1 12 15 4 | 1 13:15:44 +01'00' Customer Name SHENZHEN NTEK TESTING Distribution: TECHNOLOGY CO., LTD. | Issue | Name | Date | Modifications | |-------|------------|----------|-----------------| | A | Jérôme Luc | 3/1/2021 | Initial release | | | | | | | | | | | | | | | | Ref: ACR.60.10.21.MVGB.A Report No.: S23082101103001 #### TABLE OF CONTENTS | 1 | Intr | oduction4 | | |---|------|-----------------------------|---| | 2 | Dev | rice Under Test | | | 3 | Pro | duct Description | | | | 3.1 | General Information | 4 | | 4 | | asurement Method | | | | 4.1 | Return Loss Requirements | 4 | | | 4.2 | Mechanical Requirements | 4 | | | | asurement Uncertainty | | | | 5.1 | Return Loss | 5 | | | 5.2 | Dimension Measurement | 5 | | | 5.3 | Validation Measurement | 5 | | 5 | | bration Measurement Results | | | | 6.1 | Return Loss | 5 | | | 6.2 | Mechanical Dimensions | 6 | | | | idation measurement6 | | | | 7.1 | Head Liquid Measurement | 8 | | | 7.2 | Measurement Result | | | | | of Equipment | | Ref: ACR.60.10.21.MVGB.A Report No.: S23082101103001 #### 1 INTRODUCTION This document contains a summary of the requirements set forth by the IEEE 1528 and CEI/IEC 62209 standards for reference waveguides used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. #### 2 DEVICE UNDER TEST | | Device Under Test | |--------------------------------|---| | Device Type | COMOSAR 5000-6000 MHz REFERENCE WAVEGUIDE | | Manufacturer | MVG | | Model | SWG5500 | | Serial Number | SN 13/14 WGA33 | | Product Condition (new / used) | Used | #### 3 PRODUCT DESCRIPTION #### 3.1 GENERAL INFORMATION MVG's COMOSAR Validation Waveguides are built in accordance to the IEEE 1528 and CEI/IEC 62209 standards. #### 4 MEASUREMENT METHOD The IEEE 1528 and CEI/IEC 62209 standards provide requirements for reference waveguides used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards. # 4.1 <u>RETURN LOSS REQUIREME</u>NTS The waveguide used for SAR system validation measurements and checks must have a return loss of -8 dB or better. The return loss measurement shall be performed with matching layer placed in the open end of the waveguide, with the waveguide and matching layer in direct contact with the phantom shell as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration. #### 4.2 MECHANICAL REQUIREMENTS The IEEE 1528 and CEI/IEC 62209 standards specify the mechanical dimensions of the validation waveguide, the specified dimensions are as shown in Section 6.2. Figure 1 shows how the dimensions relate to the physical construction of the waveguide. A direct method is used with a ISO17025 calibrated caliper. Ref: ACR.60.10.21.MVGB.A Report No.: S23082101103001 #### MEASUREMENT UNCERTAINTY All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. #### 5.1 RETURN LOSS The following uncertainties apply to the return loss measurement: | Frequency band | Expanded Uncertainty on Return Loss | | |----------------|-------------------------------------|--| | 400-6000MHz | 0.08 LIN | | #### 5.2 DIMENSION MEASUREMENT The following uncertainties apply to the dimension measurements: | Length (mm) | Expanded Uncertainty on Length | | |-------------|--------------------------------|--| | 0 - 300 | 0.20 mm | | #### VALIDATION MEASUREMENT The guidelines outlined in the IEEE 1528 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements. | Scan Volume | Expanded Uncertainty | |-------------|----------------------| | 1 g | 19 % (SAR) | | 10 g | 19 % (SAR) | #### CALIBRATION MEASUREMENT RESULTS #### 6.1 RETURN LOSS Page: 5/11 Ref: ACR.60.10.21.MVGB.A Report No.: S23082101103001 | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |-----------------|------------------|------------------|--------------------------------| | 5200 | -9.15 | -8 | $21.17 \Omega + 13.26 j\Omega$ | | 5400 | -13.75 | -8 | $68.57 \Omega + 6.68 j\Omega$ | | 5600 | -16.65 | -8 | 35.76 Ω - 2.15 jΩ | | 5800 | -14.30 | -8 | $54.74 \Omega + 18.27 j\Omega$ | #### 6.2 MECHANICAL DIMENSIONS | Frequency | L (1 | mm) | W(| mm) | Lf (| mm) | Wf (| mm) | |-----------|--------------|----------|--------------|----------|--------------|----------|--------------|----------| | (MHz) | Required | Measured | Required | Measured | Required | Measured | Required | Measured | | 5800 | 40.39 ± 0.13 | . s | 20.19 ± 0.13 | - | 81.03 ± 0.13 | 1978 | 61.98 ± 0.13 | 8 | Figure 1: Validation Waveguide Dimensions #### 7 VALIDATION MEASUREMENT The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference waveguide meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed with the matching layer placed in the open end of the waveguide, with the waveguide and matching layer in direct contact with the phantom shell. Ref: ACR.60.10.21.MVGB.A Report No.: S23082101103001 #### Measurement Condition | Weastrement Condition | | |--|---| | Software | OPENSAR V5 | | Phantom | SN 13/09 SAM68 | | Probe | SN 41/18 EPGO333 | | Liquid | Head Liquid Values 5200 MHz: eps':34.06 sigma: 4.70 | | | Head Liquid Values 5400 MHz: eps' :33.39 sigma : 4.91
Head Liquid Values 5600 MHz: eps' :32.77 sigma : 5.13
Head Liquid Values 5800 MHz: eps' :32.40 sigma : 5.34 | | Distance between dipole waveguide and liquid | 0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=4mm/dy=4m/dz=2mm | | Frequency | 5200 MHz
5400 MHz
5600 MHz
5800 MHz | | Input power | 20 dBm | | Liquid Temperature | 20 +/- 1 °C | | Lab Temperature | 20 +/- 1 °C | | Lab Humidity | 30-70 % | | | | Ref: ACR.60.10.21.MVGB.A Report No.: S23082101103001 #### 7.1 HEAD LIQUID MEASUREMENT | Frequency
MHz | Relative permittivity (ε _r ') | |
Conductiv | ity (σ) S/m | |------------------|--|----------|------------|-------------| | | required | measured | required | measured | | 5000 | 36.2 ±10 % | | 4.45 ±10 % | | | 5100 | 36.1 ±10 % | | 4.56 ±10 % | | | 5200 | 36.0 ±10 % | 34.06 | 4.66 ±10 % | 4.70 | | 5300 | 35.9 ±10 % | | 4.76 ±10 % | | | 5400 | 35.8 ±10 % | 33.39 | 4.86 ±10 % | 4.91 | | 5500 | 35.6 ±10 % | | 4.97 ±10 % | | | 5600 | 35.5 ±10 % | 32.77 | 5.07 ±10 % | 5.13 | | 5700 | 35.4 ±10 % | | 5.17 ±10 % | | | 5800 | 35.3 ±10 % | 32.40 | 5.27 ±10 % | 5.34 | | 5900 | 35.2 ±10 % | | 5.38 ±10 % | | | 6000 | 35.1 ±10 % | | 5.48 ±10 % | | ### 7.2 MEASUREMENT RESULT At those frequencies, the target SAR value can not be generic. Hereunder is the target SAR value defined by Satimo, within the uncertainty for the system validation. All SAR values are normalized to 1 W net power. In bracket, the measured SAR is given with the used input power. | Frequency (MHz) | 1 g SAR (W/kg) | | 10 g SAR (W/kg) | | | | |-----------------|----------------|----------------|-----------------|--------------|--|--| | | required | measured | required | measured | | | | 5200 | 159.00 | 162.34 (16.23) | 56.90 | 55.42 (5.54) | | | | 5400 | 166.40 | 168.48 (16.85) | 58.43 | 57.03 (5.70) | | | | 5600 | 173.80 | 174.92 (17.49) | 59.97 | 58.63 (5.86) | | | | 5800 | 181.20 | 178.89 (17.89) | 61.50 | 59.32 (5.93) | | | mvg SAR REFERENCE WAVEGUIDE CALIBRATION REPORT Ref: ACR.60.10.21.MVGB.A Report No.: S23082101103001 # SAR MEASUREMENT PLOTS @ 5400 MHz # SAR MEASUREMENT PLOTS @ 5600 MHz Page: 9/11 Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Waveguide vG This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Ref: ACR.60.10.21.MVGB.A Report No.: S23082101103001 Ref: ACR.60.10.21.MVGB.A Report No.: S23082101103001 #### LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | | | | |---------------------------------------|----------------------------|--------------------|---|---|--|--|--| | Equipment
Description | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration
Date | | | | | Flat Phantom | MVG | SN-13/09-SAM68 | Validated. No cal required. | Validated. No cal
required. | | | | | COMOSAR Test Bench | Version 3 | NA | Validated. No cal required. | Validated. No cal
required. | | | | | Network Analyzer | Rohde & Schwarz
ZVM | 100203 | 05/2019 | 05/2022 | | | | | Network Analyzer –
Calibration kit | Rohde & Schwarz
ZV-Z235 | 101223 | 05/2019 | 05/2022 | | | | | Calipers | Mitutoyo | SN 0009732 | 10/2019 | 10/2022 | | | | | Reference Probe | MVG | EPGO333 SN 41/18 | 05/2020 | 05/2021 | | | | | Multimeter | Keithley 2000 | 1160271 | 02/2020 | 02/2023 | | | | | Signal Generator | Rohde & Schwarz
SMB | 106589 | 04/2019 | 04/2022 | | | | | Amplifier | Aethercomm | SN 046 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | | | Power Meter | NI-USB 5680 | 170100013 | 05/2019 | 05/2022 | | | | | Directional Coupler | Narda 4216-20 | 01386 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | | | Temperature / Humidity
Sensor | Testo 184 H1 | 44220687 | 05/2020 | 05/2023 | | | | # <Justification of the extended calibration> If dipoles are verified in return loss (<-20dB, within 20% of prior calibration for below 3GHz, and <-8dB, within 20% of prior calibration for 5GHz to 6GHz), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. #### <Head 2450MHz> | Return Loss (dB) | Delta (%) | Impedance | Delta(ohm) | Date of Measurement | |------------------|-----------|-----------|------------|---------------------| | -23.18 | - | 56.30 | - | Mar. 01, 2021 | | -23.39 | 0.91 | 56.342 | 0.042 | Feb. 28, 2022 | | -26.296 | 13.44 | 54.99 | 1.310 | Feb. 20, 2023 | The return loss is <-20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. # **Dipole Verification Data** Report No.: S23082101103001 Report No.: S23082101103001 #### <Head 5200MHz> | Return Loss (dB) | Delta (%) | Impedance | Delta(ohm) | Date of Measurement | |------------------|-----------|-----------|------------|---------------------| | -9.15 | - | 21.17 | - | Mar. 01, 2021 | | -9.1819 | 0.35 | 21.191 | 0.021 | Feb. 28, 2022 | | -8.317 | 9.10 | 25.673 | 4.503 | Feb. 20, 2023 | The return loss is <-8dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. # Page 88 of # <Head 5400MHz> | Return Loss (dB) | Delta (%) | Impedance | Delta(ohm) | Date of Measurement | |------------------|-----------|-----------|------------|---------------------| | -13.75 | - | 68.57 | - | Mar. 01, 2021 | | -13.816 | 0.48 | 68.914 | 0.344 | Feb. 28, 2022 | | -12.328 | 10.34 | 73.094 | 4.524 | Feb. 20, 2023 | The return loss is <-8dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. # <Head 5600MHz> | Return Loss (dB) | Delta (%) | Impedance | Delta(ohm) | Date of Measurement | |------------------|-----------|-----------|------------|---------------------| | -16.65 | - | 35.76 | - | Mar. 01, 2021 | | -16.249 | 2.41 | 35.146 | 0.614 | Feb. 28, 2022 | | -14.502 | 12.9 | 33.526 | 2.234 | Feb. 20, 2023 | The return loss is <-8dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. Report No.: S23082101103001 # <Head 5800MHz> | Return Loss (dB) | Delta (%) | Impedance | Delta(ohm) | Date of Measurement | |------------------|-----------|-----------|------------|---------------------| | -14.30 | - | 54.74 | - | Mar. 01, 2021 | | -14.349 | 0.34 | 55.115 | 0.375 | Feb. 28, 2022 | | -12.808 | 10.43 | 55.289 | 0.549 | Feb. 27, 2023 | The return loss is <-8dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. **END**