

MPE TEST REPORT

Applicant Shanghai Smawave Technology Co. ,Ltd

FCC ID 2AU8HMGL6201A

Product LTE Module

Brand Smawave

Model MGL6201A

Report No. R2001A0002-M1

Issue Date February 12, 2020

TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in **FCC 47 CFR Part 1 1.1310**. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Performed by: Yu Wang

Yu Wang

Approved by: Guangchang Fan

Guangchang Fan

TA Technology (Shanghai) Co., Ltd.

No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3

FAX: +86-021-50791141/2/3-8000

Table of Contents

1	Tes	st Laboratory	3
	1.1	Notes of the Test Report	3
	1.2	Testing Location	3
	1.3	Laboratory Environment	3
2	Des	scription of Equipment under Test	4
3	Ma	ximum conducted output power (measured) and antenna Gain	5
4	Tes	et Regult	6

Report No.: R2001A0002-M1

IPE Test Report No.: R2001A0002-M1

1 Test Laboratory

1.1 Notes of the Test Report

This report shall not be reproduced in full or partial, without the written approval of **TA technology** (shanghai) co., Ltd. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein .Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above.

1.2 Testing Location

Company: TA Technology (Shanghai) Co., Ltd.

Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China

City: Shanghai

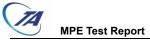
Post code: 201201

Country: P. R. China

Contact: Xu Kai

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000


Website: http://www.ta-shanghai.com

E-mail: xukai@ta-shanghai.com

1.3 Laboratory Environment

Temperature	Min. = 18°C, Max. = 25 °C		
Relative humidity	Min. = 30%, Max. = 70%		
Ground system resistance	< 0.5 Ω		
Ameliant mains in the sales of and formal comple	and in according a could be according to the adender		

Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surrounding objects is minimized and in compliance with requirement of standards.

MPE Test Report No.: R2001A0002-M1

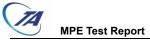
2 Description of Equipment under Test

Client Information

Applicant	Shanghai Smawave Technology Co. ,Ltd		
Applicant address	3/F, Building 8, 1001 North Qinzhou Road, Xuhui District, Shanghai, China		
Manufacturer	Shanghai Smawave Technology Co. ,Ltd		
Manufacturer address	3/F, Building 8, 1001 North Qinzhou Road, Xuhui District, Shanghai, China		

General Technologies

Model	MGL6201A		
IMEI	860524031979550		
Hardware Version	V2.0		
Software Version	CAT12-A		
Date of Testing:	October 1, 2019~ November 7, 2019		



MPE Test Report No.: R2001A0002-M1

3 Maximum conducted output power (measured) and antenna Gain

The numeric gain (G) of the antenna with a gain specified in dB is determined by Numeric gain (G)=10^(antenna gain/10)

Band	Maximum Conducted Output Power (dBm)		Antenna Gain	Numeric gain
	(dBm)	(mW)	(dBi)	
LTE Band 2	24.000	251.189	2.150	1.641
LTE Band 4	24.000	251.189	1.490	1.409
LTE Band 5	23.500	223.872	2.780	1.897
LTE Band 12	24.000	251.189	1.040	1.271
LTE Band 13	24.000	251.189	1.040	1.271
LTE Band 14	24.000	251.189	2.780	1.897
LTE Band 25	24.000	251.189	2.150	1.641
LTE Band 26	24.000	251.189	2.780	1.897
LTE Band 41	24.000	251.189	3.990	2.506
LTE Band 48	24.500	281.838	3.710	2.350
LTE Band 53	24.500	281.838	4.220	2.642
LTE Band 66	24.000	251.189	1.490	1.409

MPE Test Report No.: R2001A0002-M1

4 Test Result

According to section 1.1310 of FCC 47 CFR Part 1, limits for maximum permissible exposure (MPE) are as following

TABLE 1 – LIMITS FOR MAXIMUN PERMISSIBLE EXPOSURE (MPE)

Frequency Range	Electric Field	Magnetic Field	Power Density	Averaging Time
(MHz)	Strength	Strength		
A-1-0-17	(V/m)	(AVm)	(mW/cm2)	(minutes)
	(A) Limits for Occu	upational/Controlle	d Exposures	
0.3-3.0	614	1.63	*(100)	6
3-30	1842/f	4.89/f	*(900/f2)	6
30-300	61.4	0.163	1.0	6
300-1500			f/300	6
1500-100,000			5	6
(B)	Limits for General	Population/Uncont	rolled Exposure	
0.3-1.34	614	1.63	*(100)	30
1.34-30	824/f	2.19/f	*(180/f2)	30
30-300	27.5	0.073	0.2	30
300-1500			f/1500	30
1500-100,000			1.0	30

f = frequency in MHz

Note1. Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational / controlled limits apply provided he or she is made aware of the potential for exposure.

Note2: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

^{* =} Plane-wave equivalent power density

Report No.: R2001A0002-M1

The maximum permissible exposure for 300~1500 MHz is f/1500, for 1500~100,000MHz is 1.0.So

Band	The maximum permissible exposure
LTE Band 2	1.0mW/cm ²
LTE Band 4	1.0mW/cm ²
LTE Band 5	0.55mW/cm ²
LTE Band 12	0.47mW/cm ²
LTE Band 13	0.52mW/cm ²
LTE Band 14	0.53mW/cm ²
LTE Band 25	1.0mW/cm ²
LTE Band 26	0.55mW/cm ²
LTE Band 41	1.0mW/cm ²
LTE Band 48	1.0mW/cm ²
LTE Band 53	1.0mW/cm ²
LTE Band 66	1.0mW/cm ²

RF Exposure Calculations:

The following information provides the minimum separation distance for the highest gain antenna provided. This calculation is based on the conducted power, considering maximum power and antenna gain. The formula shown in KDB 447498 D01 is used in the calculation.

Equation from KDB 447498 D01 General RF Exposure Guidance v06 (10/23/2015) is:

S= PG /
$$4 \square R^2$$

Where: S = power density (in appropriate units, e.g. mW/cm²)

P = Time-average maximum tune up procedure (in appropriate units, e.g., mW)

G = the numeric gain of the antenna

R = distance to the center of radiation of the antenna (20 cm = limit for MPE)

Band	PG (mW)	Test Result (mW/cm ²)	Limit Value (mW/cm²)	Conclusion
LTE Band 2	412.098	0.082	1.000	Pass
LTE Band 4	353.997	0.070	1.000	Pass
LTE Band 5	424.620	0.084	0.550	Pass
LTE Band 12	319.154	0.063	0.470	Pass
LTE Band 13	319.154	0.063	0.520	Pass
LTE Band 14	476.431	0.095	0.530	Pass
LTE Band 25	412.098	0.082	1.000	Pass
LTE Band 26	476.431	0.095	0.550	Pass
LTE Band 41	629.506	0.125	1.000	Pass
LTE Band 48	662.217	0.132	1.000	Pass
LTE Band 53	744.732	0.148	1.000	Pass
LTE Band 66	353.997	0.070	1.000	Pass
Note: R = 20cm				

LTE Antenna can't transmit simultaneously.

Note: For transmitters, minimum separation distance is 20cm, even if calculations indicate MPE distance is less.

Report No.: R2001A0002-M1