

Zhong Shan City Richsound Electronic Industrial Ltd.

TEST REPORT

SCOPE OF WORK FCC TESTING-TB523DW5, 100043839

REPORT NUMBER 211123006SZN-001

ISSUE DATE

[REVISED DATE]

30 December 2021

[-----]

PAGES 46

DOCUMENT CONTROL NUMBER FCC ID 247_b © 2017 INTERTEK

101, 201, Building B, No. 308 Wuhe Avenue, Zhangkengjing Community, GuanHu Subdistrict, LongHua District, Shenzhen.

Tel: (86 755) 8601 6288 Fax: (86 755) 8601 6751 www.intertek.com

Intertek Report No.: 211123006SZN-001

Zhong Shan City Richsound Electronic Industrial Ltd.

Application For Certification

FCC ID: Z8M-TB523DW5

onn. 5.1 wireless soundbar, Wireless Subwoofer, Surround Speaker(L/R)

Model: TB523DW5, 100043839

2.4GHz Transceiver

Report No.: 211123006SZN-001

We hereby certify that the sample of the above item is considered to comply with the requirements of FCC Part 15, Subpart C for Intentional Radiator, mention 47 CFR [10-1-20]

Prepared and Checked by:

Approved by:

Ryan Chen Project Engineer Sewen Guo Senior Project Engineer Date: 30 December 2021

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Intertek Testing Service Shenzhen Ltd. Longhua Branch

101, 201, Building B, No. 308 Wuhe Avenue, Zhangkengjing Community, GuanHu Subdistrict, LongHua District, Shenzhen. Tel: (86 755) 8601 6288 Fax: (86 755) 8601 6751

MEASUREMENT/TECHNICAL REPORT

This report concerns (check one:)	Original Grant <u>X</u>	Cla	ass II Change
Equipment Type: <u>DSS - Part 15 Spre</u>	ad Spectrum Transmitte	r	
Deferred grant requested per 47 CF	R 0.457(d)(1)(ii)?	Yes	No <u>X</u>
	lf yes, o	lefer until:	
	, .		date
Company Name agrees to notify the	e Commission by:		
		dat	
of the intended date of announcem	ent of the product so the	at the grant can be i	issued on that date.
Transition Rules Request per 15.37	?	Yes	No <u>X</u>
If no, assumed Part 15, Subpart C fo	r intentional radiator – th	e new 47 CFR [10-1-	-20 Edition] provision.
Report prepared by:			
101, 2 Comn	Chen ek Testing Services Shenz 201, Building B, No. 308 V nunity, GuanHu Subdistri 36 755) 8614 0682 Fax: (8	Vuhe Avenue, Zhan ct, LongHua District	gkengjing

Table of Contents

1.0	Summary of Test Results	4
2.0	General Description	5
2.1	Product Description	5
2.2	Related Submittal(s) Grants	5
2.3	Test Methodology	5
2.4	Test Facility	5
3.0	System Test Configuration	6
3.1	Justification	6
3.2	EUT Exercising Software	6
3.3	Special Accessories	6
3.4	Equipment Modification	7
3.5	Measurement Uncertainty	7
3.6	Support Equipment List and Description	7
4.0	Test Results	8
4.1	Radiated Test Result	8
4.1.	1 Field Strength Calculation	8
4.1.	2 Radiated Emission Configuration Photograph	9
4.1.	3 Radiated Emission	9
4.1.	4 Transmitter Spurious Emissions (Radiated)1	2
4.2	Conducted Emission at Mains Terminal1	6
4.2.	1 Conducted Emission Configuration Photograph1	6
4.2.	2 Conducted Emissions1	6
4.3	Peak Power1	9
4.4	20dB Bandwidth2	2
4.5	Channel Number (Number of Hopping Frequencies)	4
4.6	Channel Separation (Carrier Frequency Separation)	7
4.7	Dwell Time (Time of Occupancy)2	9
4.8	Band Edge3	5
4.9	Transmitter Spurious Emission (Conducted)3	8
5.0	Equipment Photographs	2
6.0	Product Labelling	2
7.0	Technical Specifications	
8.0	Instruction Manual	
9.0	Miscellaneous Information	
9.1	Discussion of Pulse Desensitization	
	Calculation of Average Factor	
9.3	Emissions Test Procedures4	4
10.0	Test Equipment List	6

1.0 <u>Summary of Test Results</u>

Applicant: Zhong Shan City Richsound Electronic Industrial Ltd. Address: No.16, East Shagang Road, Gangkou, ZHONGSHAN, Guangdong 528447, China. Manufacturer: Zhong Shan City Richsound Electronic Industrial Ltd. Address: No.16, East Shagang Road, Gangkou, ZHONGSHAN, Guangdong 528447, China.

Model: TB523DW5, 100043839

FCC ID: Z8M-TB523DW5

TEST	REFERENCE	RESULTS
Max. Output power / Max. e.i.r.p.	FCC 15.247(b)(1)	Pass
20dB Bandwidth	FCC 15.247(a)(1)	Pass
Channel Separation	FCC 15.247(a)(1)	Pass
Channel Number	FCC 15.247(a)(1) (iii)	Pass
Dwell Time	FCC 15.247(a)(1)(iii)	Pass
Out of Band Antenna Conducted Emission	FCC 15.247(d)	Pass
Radiated Emission in Restricted Bands	FCC 15.247(d), FCC 15.209, FCC 15.205	Pass
Band Edge	FCC 15.247(d), FCC 15.209, FCC 15.205	Pass
AC Conducted Emission	FCC 15.207	Pass

Notes: The EUT uses an Integral Antenna which in accordance to Section 15.203 is considered sufficient to comply with the provisions of this section.

2.0 General Description

2.1 Product Description

The equipment under test (EUT) is a onn. 5.1 wireless soundbar, Wireless Subwoofer, Surround Speaker(L/R) with Bluetooth FHSS technology operating in 2402-2480MHz and SRD 5.8GHz transmitting function operating in 5727-5819MHz. The EUT is powered by AC 100-240V~ 50/60Hz. For more detail information pls. refer to the user manual.

Bluetooth Version: 5.1 EDR Antenna Type: Integral antenna Antenna Gain: 3.35 dBi max Modulation Type: GFSK, π/4-DQPSK

The Model: 100043839 is the same as the Model: TB523DW5 in hardware and electrical aspect. The difference in model number and trademark serves as packaging and marketing purpose only.

For electronic filing, the brief circuit description is saved with filename: descri.pdf.

2.2 Related Submittal(s) Grants

This is an application for certification of transceiver for the onn. 5.1 wireless soundbar, Wireless Subwoofer, Surround Speaker(L/R) which has Bluetooth function. Other digital functions were reported in the verification report: 211123006SZN-003. For SRD 5.8GHz transmitting function is subjected to report: 211123006SZN-002.

2.3 Test Methodology

Both AC mains line-conducted and radiated emission measurements were performed according to the procedures in ANSI C63.10 (2013). Radiated emission measurement was performed in semi-anechoic chamber and conducted emission measurement was performed in shield room. For radiated emission measurement, preliminary scans were performed in the semi-anechoic chamber only to determine the worst case modes. All radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "Justification Section" of this Application.

2.4 Test Facility

The Semi-anechoic chamber and shielding room used to collect the radiated data and conducted data are **Intertek Testing Services Shenzhen Ltd. Longhua Branch** and located at 101, 201, Building B, No. 308 Wuhe Avenue, Zhangkengjing Community, GuanHu Subdistrict, LongHua District, Shenzhen. This test facility and site measurement data have been fully placed on file with File Number: CN1188.

3.0 System Test Configuration

3.1 Justification

The system was configured for testing in a typical fashion (as a customer would normally use it), and in the confines as outlined in ANSI C63.10 (2013).

The EUT was powered by AC120V, 60Hz during the test.

All packets DH1, DH3 & DH5 mode in modulation type GFSK, $\pi/4$ -DQPSK were tested and only the worst data was reported in this report.

For maximizing emissions below 30 MHz, the EUT was rotated through 360°, the centre of the loop antenna was placed 1 meter above the ground, and the antenna polarization was changed. For maximizing emissions, the EUT was rotated through 360°, the antenna height was varied from 1 meter to 4 meters above the ground plane, and the antenna polarization was changed. This step by step procedure for maximizing emissions led to the data reported in Section 4.

The EUT and transmitting antenna was centered on the turntable.

The equipment under test (EUT) was configured for testing in a typical fashion (as a customer would normally use it). The EUT was placed on a turn table, which enabled the engineer to maximize emissions through its placement in the three orthogonal axes.

3.2 EUT Exercising Software

The EUT exercise program (provided by client) used during radiated and conducted testing was designed to exercise the various system components in a manner similar to a typical use. The worst-case configuration is used in all specified testing.

The parameters of test software setting:

During the test, Channel and power controlling software provided by the applicant was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the application and is going to be fixed on the firmware of the end product.

Test Software: FCC Asist 1.0.2.2

3.3 Special Accessories N/A

3.4 Equipment Modification

Any modifications installed previous to testing by Zhong Shan City Richsound Electronic Industrial Ltd. will be incorporated in each production model sold / leased in the United States.

No modifications were installed by Intertek Testing Services Shenzhen Ltd. Longhua Branch.

3.5 Measurement Uncertainty

When determining the test conclusion, the Measurement Uncertainty of test has been considered.

3.6 Support Equipment List and Description

Description	Manufacturer	Model No.		
Mobile Phone (Provided by Intertek)	SAMSUNG	SM-G9300		
Test TV (Provided by Intertek)	SONY	KDL-24EX520		
USB Memory (Provided by Intertek)	TOSHIBA	UHYBS-004G-BL		
3.5mm to 3.5mm audio Cable (Provided by Applicant)	Richsound	Unshielded, Length 100cm		
HDMI In Cable (Provided by Applicant)	Richsound	Shielded, Length 150cm		
Detached AC power cord (Provided by Applicant)	Richsound	Unshielded, Length 150cm		
Optical Cable	Richsound	Unshielded, Length 120cm		
HDMI In Cable (Provided by Intertek)	N/A	Unshielded, Length 150cm		
Dummy Load (Provided by Intertek)	N/A	Audio: 1k Ω HDMI: 100 Ω		

4.0 <u>Test Results</u>

Data is included worst-case configuration (the configuration which resulted in the highest emission levels).

4.1 Radiated Test Results

A sample calculation, configuration photographs and data tables of the emissions are included.

4.1.1 Field Strength Calculation

The field strength is calculated by adding the reading on the Spectrum Analyzer to the factors associated with preamplifiers (if any), antennas, cables, pulse desensitization and average factors (when specified limit is in average and measurements are made with peak detectors). A sample calculation is included below.

 $\begin{array}{ll} FS = RA + AF + CF - AG + PD + AV \\ \mbox{Where} & FS = Field Strength in dB\muV/m \\ RA = Receiver Amplitude (including preamplifier) in dB\muV \\ CF = Cable Attenuation Factor in dB \\ AF = Antenna Factor in dB/m \\ AG = Amplifier Gain in dB \\ PD = Pulse Desensitization in dB \\ AV = Average Factor in -dB \end{array}$

In the radiated emission table which follows, the reading shown on the data table may reflect the preamplifier gain. An example of the calculations, where the reading does not reflect the preamplifier gain, follows:

FS = RA + AF + CF - AG + PD + AV

Assume a receiver reading of 62.0 dB μ V is obtained. The antenna factor of 7.4 dB/m and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted. The pulse desensitization factor of the spectrum analyzer was 0 dB, and the resultant average factor was -10 dB. The net field strength for comparison to the appropriate emission limit is 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

RA = 62.0 dBµV AF = 7.4 dB/m CF = 1.6 dB AG = 29.0 dB PD = 0 dB AV = -10 dB

 $FS = 62 + 7.4 + 1.6 - 29 + 0 + (-10) = 32 \text{ dB}\mu\text{V/m}$ Level in $\mu\text{V/m}$ = Common Antilogarithm [(32 dB $\mu\text{V/m}$)/20] = 39.8 $\mu\text{V/m}$

4.1.2 Radiated Emission Configuration Photograph

For electronic filing, the worst case radiated emission configuration photograph is saved with filename: radiated photos. pdf.

4.1.3 Radiated Emissions- FCC section 15.209

The data on the following page lists the significant emission frequencies, the limit and the margin of compliance. Numbers with a minus sign are below the limit.

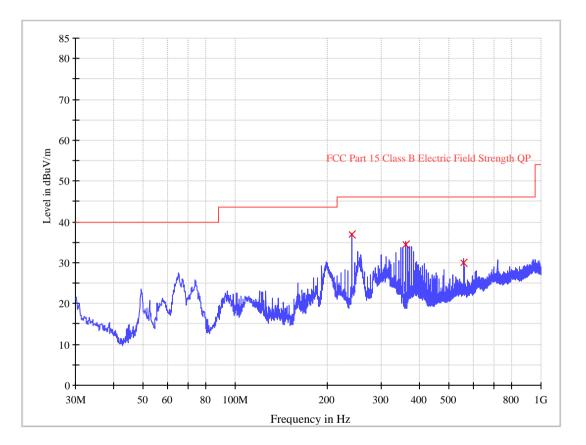
Worst Case Radiated Emission

at 64.640000 / 239.960000 MHz

Judgement: Passed by 9.1 dB

TEST PERSONNEL:

Sign on file


Ryan Chen, Project Engineer Typed/Printed Name

08 December 2021 Date

Applicant: Zhong Shan City Richsound Electronic Industrial Ltd. Date of Test: 08 December 2021 Model:TB523DW5 Worst-case operating Mode: Synchronous transmission Modulation type: GFSK

ANT Polarity: Horizontal

FCC Part 15

Frequency (MHz)	Quasi Peak (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Polarization	Corr. (dB/m)	Margin - QPK (dB)	Limit – QPK dBµV/m)
239.960000	36.9	1000.0	120.000	н	14.5	9.1	46.0
359.921250	34.5	1000.0	120.000	н	18.4	11.5	46.0
559.983750	30.0	1000.0	120.000	Н	23.2	16.0	46.0

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Quasi Peak (dBµV/m) = Corr. (dB/m) + Read Level (dBµV)
- 3. Margin (dB) = Limit Line (dB μ V/m) Level (dB μ V/m)

Applicant: Zhong Shan City Richsound Electronic Industrial Ltd. Date of Test: 08 December 2021 Model: TB523DW5 Worst-case operating Mode: Synchronous transmission Modulation type: GFSK

ANT Polarity: Vertical

85 80 70 60 Level in dBuV/m/ FCC Part 15 Class B Electric Field Strength QP 50 40 Ж τ. 20 Ŧ

FCC Part 15

requend	Cups	<mark>i Peak</mark>	Meas.	Bandwidth		Corr. (dB/m)	Margin -	Limit –
501	.vi	50 0	0 80		Frequency in Hz	500	-100 500	
0		50 6	0 80	100M	200	300	400 500	
10		ļ						
20 -	h	M	ſ	rvv				
20			/ NW	N.A.				dead and

8.1

14.5

18.4

v

۷

v

9.1

16.6

14.1

40.0

46.0

46.0

120.000

120.000

120.000

Remark:

64.640000

240.005000

359.921250

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

30.9

29.4

31.9

2. Quasi Peak (dBµV/m) = Corr. (dB/m) + Read Level (dBµV)

1000.0

1000.0

1000.0

3. Margin (dB) = Limit Line (dB μ V/m) – Level (dB μ V/m)

4.1.4 Transmitter Spurious Emissions (Radiated) - FCC section 15.209

The data on the following page lists the significant emission frequencies, the limit and the margin of compliance. Numbers with a minus sign are below the limit.

Worst Case Radiated Emission

at 2399.161 MHz

Judgement: Passed by 6.45 dB

TEST PERSONNEL:

Sign on file

Ryan Chen, Project Engineer Typed/Printed Name

08 December 2021 Date

Applicant: Zhong Shan City Richsound Electronic Industrial Ltd. Date of Test: 08 December 2021 Model: TB523DW5 Worst-case operating Mode: Transmit (2402MHz) Modulation type: GFSK

Table 1

Radiated Emissions

(2402MHz)										
Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB/m)	Net at 3m (dBµV/m)	Peak Limit at 3m (dBµV/m)	Margin (dB)			
Horizontal	**2402.000	111.8	36.7	28.1	103.2					
Horizontal	*4804.000	57.6	36.7	35.5	56.4	74.0	-17.6			

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB/m)	Average Factor (-dB)	Net at 3m (dBµV/m)	Average Limit at 3m (dBµV/m)	Margin (dB)
Horizontal	**2402.000	111.8	36.7	28.1	22.5	80.7		
Horizontal	*4804.000	57.6	36.7	35.5	22.5	33.9	54.0	-20.1

NOTES: 1. Peak detector is used for the emission measurement.

- 2. All measurements were made at 3 meters. Radiated emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other radiated emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative value in the margin column shows emission below limit.
- 4. Horn antenna used for the emission over 1000MHz.
- * Emission within the restricted band meets the requirement of section 15.205. The corresponding limit as per 15.209 is based on Quasi peak limit for frequencies below 1000 MHz and average limit for frequencies over 1000 MHz. The radio frequency emissions above 1GHz also meet corresponding 20dB permitted peak limit with a peak detector function.
- ** Fundamental emission was measured for determining band-edge compliance of using delta measurement technique.

Applicant: Zhong Shan City Richsound Electronic Industrial Ltd. Date of Test: 08 December 2021 Model: TB523DW5 Worst-case operating Mode: Transmit (2441MHz) Modulation type: GFSK

Table 2

Radiated Emissions

(2441MHz)										
Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB/m)	Net at 3m (dBµV/m)	Peak Limit at 3m (dBµV/m)	Margin (dB)			
Horizontal	*4882.000	55.8	36.7	35.5	54.6	74.0	-19.4			
Horizontal	*7323.000	59.1	36.1	37.2	60.2	74.0	-13.8			

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB/m)	Average Factor (-dB)	Net at 3m (dBµV/m)	Average Limit at 3m (dBµV/m)	Margin (dB)
Horizontal	*4882.000	55.8	36.7	35.5	22.5	32.1	54.0	-21.9
Horizontal	*7323.000	59.1	36.1	37.2	22.5	37.7	54.0	-16.3

NOTES: 1. Peak detector is used for the emission measurement.

- 2. All measurements were made at 3 meters. Radiated emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other radiated emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative value in the margin column shows emission below limit.
- 4. Horn antenna used for the emission over 1000MHz.
- * Emission within the restricted band meets the requirement of section 15.205. The corresponding limit as per 15.209 is based on Quasi peak limit for frequencies below 1000 MHz and average limit for frequencies over 1000 MHz. The radio frequency emissions above 1GHz also meet corresponding 20dB permitted peak limit with a peak detector function.

Applicant: Zhong Shan City Richsound Electronic Industrial Ltd. Date of Test: 08 December 2021 Model: TB523DW5 Worst-case operating Mode: Transmit (2480MHz) Modulation type: GFSK

Table 3

Radiated Emissions

	(2480MHz)										
Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB/m)	Net at 3m (dBµV/m)	Peak Limit at 3m (dBµV/m)	Margin (dB)				
Horizontal	**2480.000	109.8	36.7	28.1	101.2						
Horizontal	*4960.000	54.6	36.7	35.5	53.4	74.0	-20.6				
Horizontal	*7440.000	57.6	36.1	37.2	58.7	74.0	-15.3				

Polarization	Frequency (MHz)	Reading (dBµV)	Pre- Amp Gain (dB)	Antenna Factor (dB/m)	Average Factor (-dB)	Net at 3m (dBµV/m)	Average Limit at 3m (dBµV/m)	Margin (dB)
Horizontal	**2480.000	109.8	36.7	28.1	22.5	78.7		
Horizontal	*4960.000	54.6	36.7	35.5	22.5	30.9	54.0	-23.1
Horizontal	*7440.000	57.6	36.1	37.2	22.5	36.2	54.0	-17.8

NOTES: 1. Peak detector is used for the emission measurement.

- All measurements were made at 3 meters. Radiated emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other radiated emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative value in the margin column shows emission below limit.
- 4. Horn antenna used for the emission over 1000MHz.
- * Emission within the restricted band meets the requirement of section 15.205. The corresponding limit as per 15.209 is based on Quasi peak limit for frequencies below 1000 MHz and average limit for frequencies over 1000 MHz. The radio frequency emissions above 1GHz also meet corresponding 20dB permitted peak limit with a peak detector function.
- ** Fundamental emission was measured for determining band-edge compliance of using delta measurement technique.

- 4.2 Conducted Emission at Mains Terminal
- 4.2.1 Conducted Emissions Configuration Photograph

For electronic filing, the worst case conducted emission configuration photograph is saved with filename: conducted photos.pdf.

4.2.2 Conducted Emissions

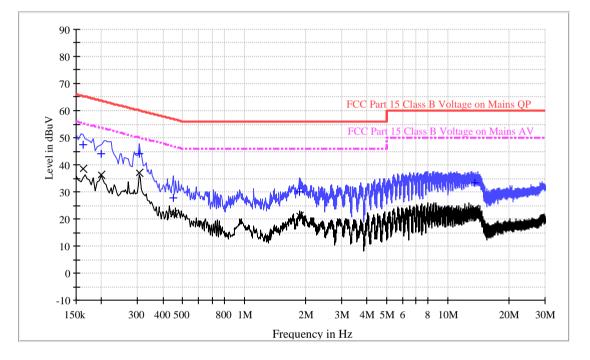
Worst Case Conducted Configuration

at 0.306000 MHz

Judgement: Passed by 13.2 dB margin

TEST PERSONNEL:

Sign on file


Ryan Chen, Project Engineer Typed/Printed Name

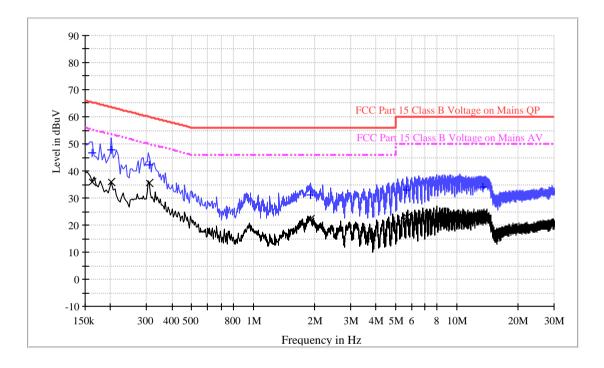
08 December 2021 Date

Applicant: Zhong Shan City Richsound Electronic Industrial Ltd. Date of Test: 08 December 2021 Model: TB523DW5 Worst-case operating Mode: Synchronous transmission Modulation type: GFSK Phase: Live

Conducted Emission Test - FCC

Result Table QP

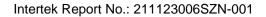
Frequency (MHz)	Quasi Peak (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.162000	47.4	9.000	L1	9.6	18.0	65.4
0.198000	44.2	9.000	L1	9.6	19.5	63.7
0.306000	43.9	9.000	L1	9.6	16.2	60.1
0.450000	27.7	9.000	L1	9.6	29.2	56.9
1.866000	29.9	9.000	L1	9.6	26.1	56.0
13.518000	33.4	9.000	L1	10.0	26.6	60.0


Result Table AV

Frequency (MHz)	Average (dBμV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.162000	38.6	9.000	L1	9.6	16.8	55.4
0.198000	36.4	9.000	L1	9.6	17.3	53.7
0.306000	36.9	9.000	L1	9.6	13.2	50.1
0.450000	21.7	9.000	L1	9.6	25.2	46.9
1.866000	21.1	9.000	L1	9.6	24.9	46.0
13.518000	23.6	9.000	L1	10.0	26.4	50.0

Applicant: Zhong Shan City Richsound Electronic Industrial Ltd. Date of Test: 08 December 2021 Model: TB523DW5 Worst-case operating Mode: Synchronous transmission Modulation type: GFSK Phase: Neutral

Conducted Emission Test - FCC



Result Table QP

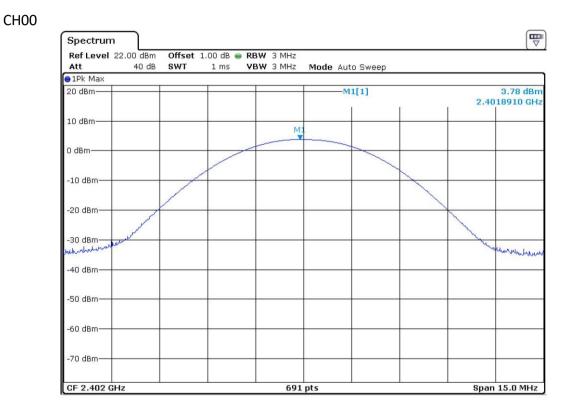
Frequency (MHz)	Quasi Peak (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.162000	46.5	9.000	N	9.5	18.9	65.4
0.202000	47.6	9.000	Ν	9.5	15.9	63.5
0.310000	42.2	9.000	Ν	9.5	17.8	60.0
1.906000	31.3	9.000	Ν	9.5	24.7	56.0
5.678000	33.1	9.000	Ν	9.6	26.9	60.0
13.494000	34.1	9.000	Ν	9.9	25.9	60.0

Result Table AV

Frequency	Average	Bandwidth	Line	Corr.	Margin	Limit
(MHz)	(dBµV)	(kHz)	Line	(dB)	(dB)	(dBµV)
0.162000	35.8	9.000	N	9.5	19.6	55.4
0.202000	35.8	9.000	Ν	9.5	17.7	53.5
0.310000	35.7	9.000	Ν	9.5	14.3	50.0
1.906000	22.3	9.000	Ν	9.5	23.7	46.0
5.678000	22.8	9.000	Ν	9.6	27.2	50.0
13.494000	24.0	9.000	Ν	9.9	26.0	50.0

4.3 Peak Power

Maximum Conducted Output Power at Antenna Terminals, FCC Rules 15.247(b)(1). The antenna port of the EUT was connected to the input of a spectrum analyzer. The analyzer was set for RBW > 20dB bandwidth and power was read directly in dBm.


For antenna with gains of 6dBi or less, and frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, the systems operate with an output power no greater than 125 mW.

Antenna Gain = 3.35dBi							
Modulation Type	Frequency (MHz)	Output Power (Peak Reading) (dBm)	Output Power (mW)				
	2402	3.78	2.39				
GFSK	2441	4.31	2.70				
	2480	4.72	2.96				

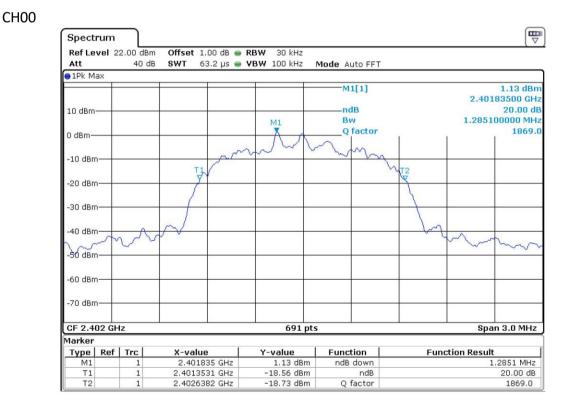
Cable loss: 2.0 dB External Attenuation: 0 dB

Modulation Type: GFSK

CH39

CH78 Spectrum Ref Level 22.00 dBm Offset 1.00 dB 👄 RBW 3 MHz Att 40 dB SWT VBW 3 MHz Mode Auto Sweep 1 ms ⊖1Pk Max 4.72 dBm 2.4798050 GHz 20 dBm--M1[1] 10 dBm-M1 0 dBm--10 dBm--20 dBm--30 dBm-Munder -40 dBm--50 dBm--60 dBm--70 dBm-CF 2.48 GHz 691 pts Span 15.0 MHz

Version: 01-November-2017


4.4 20dB Bandwidth

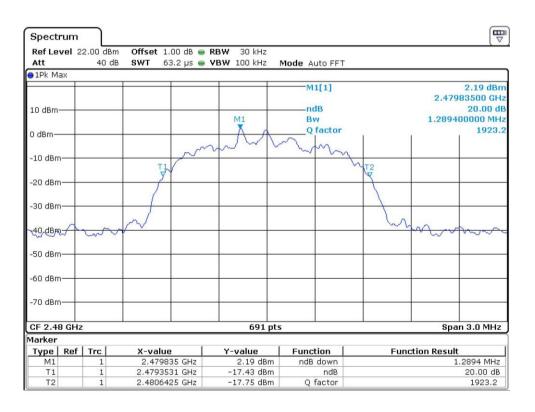
Maximum 20dB RF Bandwidth, FCC Rule 15.247(a) (1):

The antenna port of the EUT was connected to the input of a spectrum analyzer. Analyzer RBW was chosen so that the display was a result of the hopping channel modulation. For each RF output channel investigated, the spectrum analyzer center frequency was set to the channel carrier. Use the spectrum 20dB down delta function to measure the bandwidth.

Frequency (MHz)	20 dB Bandwidth (MHz)
2402	1.2851
2441	1.2938
2480	1.2894

Modulation Type: GFSK

Version: 01-November-2017



CH39

Intertek Report No.: 211123006SZN-001

₩ Spectrum Offset 1.00 dB 🖷 RBW 30 kHz Ref Level 22.00 dBm 63.2 µs 💿 VBW 100 kHz 40 dB Mode Auto FFT Att SWT ●1Pk Max M1[1] 1.72 dBm 2.44083500 GHz ndB 20.00 dB 10 dBm-1.293800000 MHz Μ1 Bw O factor 1886.6 0 dBm-S -10 dBm-Ţ -20 dBm -30 dBm -50 dBm--60 dBm--70 dBm-Span 3.0 MHz CF 2.441 GHz 691 pts Marker Type | Ref | Trc X-value Y-value Function **Function Result** 1.2938 MHz 2.440835 GHz 1.72 dBm -17.84 dBm M1 ndB down 1 Τ1 2.4403531 GHz 20.00 dB ndB 1 Т2 2.4416469 GHz -18.38 dBm Q factor 1886.6

CH78

4.5 Channel Number (Number of Hopping Frequencies)

Minimum Number of Hopping Frequencies, FCC Rule 15.247(a) (1) (iii):

The RF passband of the EUT was divided into 3 approximately equal bands. With the analyzer set to MAX HOLD readings were taken for 2-3 minutes. The channel peaks so recorded were added together, and the total number compared to the minimum number of channels required in the regulation.

Number of hopping channels =	79

Note: In AFH mode, this device operates using 20 channels and it's satisfied the requirement of limit of minimum of 15 hopping channels.

Modulation Type: GFSK

CH00-CH78

Spectrum			
Ref Level 20.00 dB		V 1 MHz V 3 MHz Mode Auto Sweep	
●1Pk Max		Note Auto Sweep	
10,dBm-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	M2[1] M1[1]	5.54 dBm 2.480060 GHz 5.16 dBm 2.401990 CHz
0 dBm			
10 dBm			
/ -20 dBm			
-30 dBm			
-40 dBm			
-50 dBm			
-60 dBm			
-70 dBm			
Start 2.4 GHz		691 pts	Stop 2.4835 GHz

CH00-CH24

Spectrum				
Ref Level 20.00 att 35		uto Sweep		
1Pk Max	off office mode a	ato oweep		
10 dBm		M2[1] M1[1]		5.45 dBr 260210 GH 5.16 dBr 019940 G
-10 dBm				
-20 dBm				
-30 dBm				
-40 dBm				
-50 dBm				
-60 dBm				
-70 dBm				
Start 2.4 GHz	691 pts		Ston	2.4265 GHz

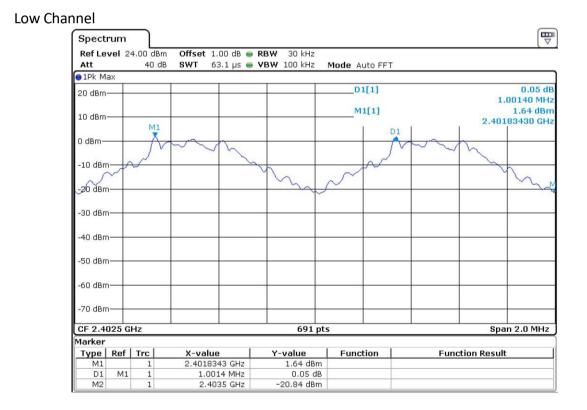
CH25-CH52

Spectrum Ref Level 20.00	dBm Offset	2.00 dB 👄 RI	3W 1 MHz					
UNINERRY (1)	5 dB SWT	1 ms 🖷 ۷	3W 3 MHz	Mode Aut	to Sweep			
1Pk Max					2[1] 11[1]			5.53 dBr 540340 GH 5.42 dBr 269660 GH
0 dBm								
-10 dBm								
-20 dBm								
-30 dBm								
-40 dBm						_		
-50 dBm								
-60 dBm		_						
-70 dBm								
Start 2.4265 GH	,		691	ntc			Stop 5	2.4545 GHz

CH53-CH78

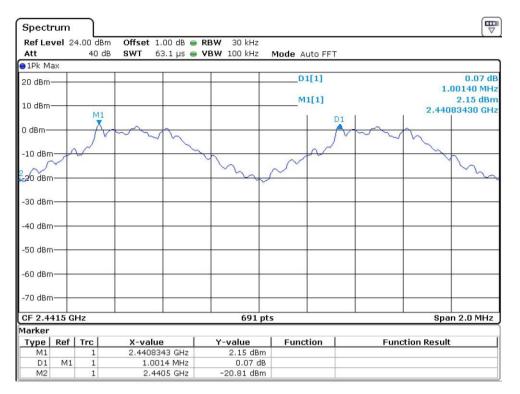
Spectrum		
Ref Level 20.00 dBm Offset 2 Att 35 dB SWT	.00 dB 👄 RBW 1 MHz 1 ms 👄 VBW 3 MHz 🛛 Mode Auto Sweep	
●1Pk Max		r ss dow
	M1[1]	5.55 dBm 2.4548990 GHz
λ₽ dBm	M2[1]	5.52 dBm 2 799540 GHz
0 dBm		
-10 dBm		
-20 dBm		
-30 dBm		
-40 dBm		brue
-50 dBm		
-60 dBm		
-70 dBm		
Start 2.4545 GHz	691 pts	Stop 2.4835 GHz

4.6 Channel Separation (Carrier Frequency Separation)

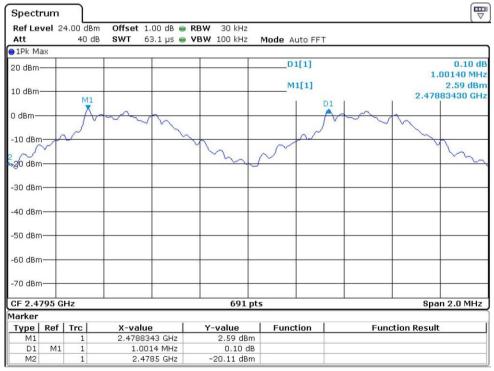

Minimum Hopping Channel Carrier Frequency Separation, FCC Ref: 15.247(a)(1):

Using the DELTA MARKER function of the analyzer, the frequency separation between two adjacent channels was measured and compared against the limit:

Not less than 2/3 of 20dB bandwidth of hopping channel: 1.2938 x 2/3 = 0.863MHz


Modulation Type	Channel Number	Channel Frequency (MHz)	Channel Separation (MHz)	Limit (MHz)	Verdict
GFSK	0	2402	1.00140	>0.863	PASS
	39	2441	1.00140	>0.863	PASS
	78	2480	1.00140	>0.863	PASS

Modulation Type: GFSK



Middle Channel

High Channel

4.7 Dwell Time (Time of Occupancy)

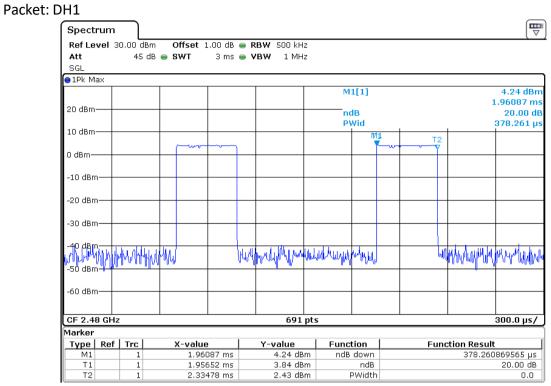
Average Channel Occupancy Time, FCC Ref: 15.247(a) (1)(iii):

The spectrum analyzer center frequency was set to one of the known hopping channels with a longer sweep time to show two successive hops on a channel; the SPAN was set to ZERO SPAN, and the TRIGGER was set to VIDEO. RBW shall be \leq channel spacing and where possible RBW should be set >>1/T, where T is the expected dwell time per channel. The time duration of the transmissions so captured was measured with the MARKER DELTA function.

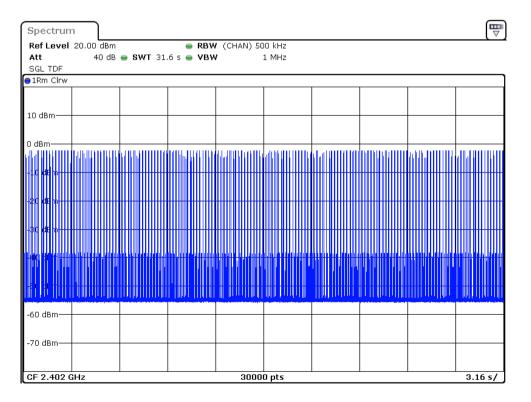
Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. Different modes of operation were performed and only the worst case data was reported.

Worst Test Result:

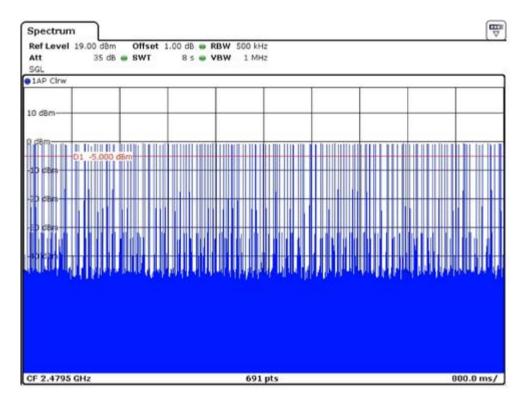
Normal hopping mode


Modulation Type	Packet	Max Dwell Time	Limit (s)	Result
	DH1	0.378ms * 889 = 336.042ms	0.4	Pass
GESK	DH3	1.638 * 223= 365.274ms	0.4	Pass
GL2K	DH5	2.887ms * 95 = 274.265ms	0.4	Pass

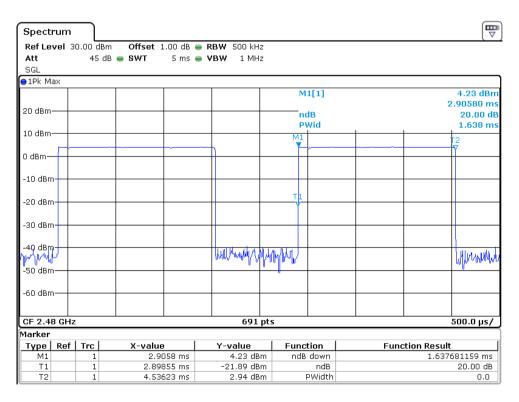
AFH mode:


Modulation Type	Packet	Max Dwell Time	Limit (s)	Result
	DH1	0.378ms * 130 = 49.14ms	0.4	Pass
СГСИ	DH3	1.638ms * 82 = 134.316ms	0.4	Pass
GFSK	DH5	2.887ms * 61 = 176.107ms	0.4	Pass

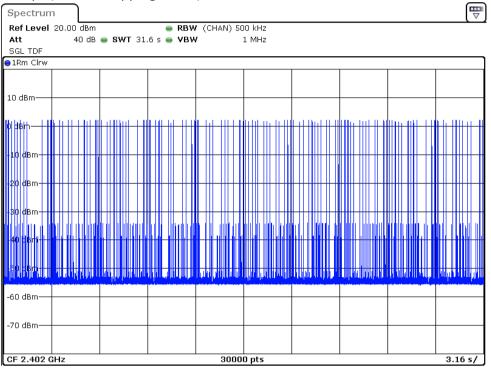
Modulation Type: GFSK



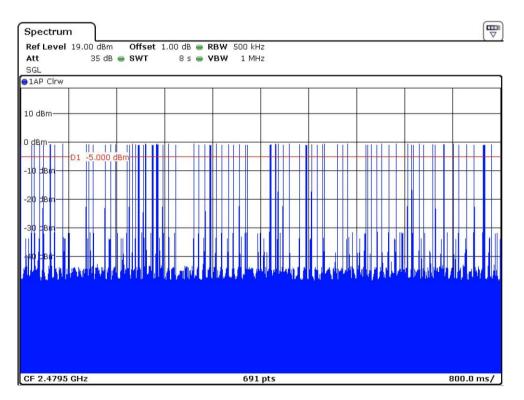
Number of hops (Normal hopping mode)



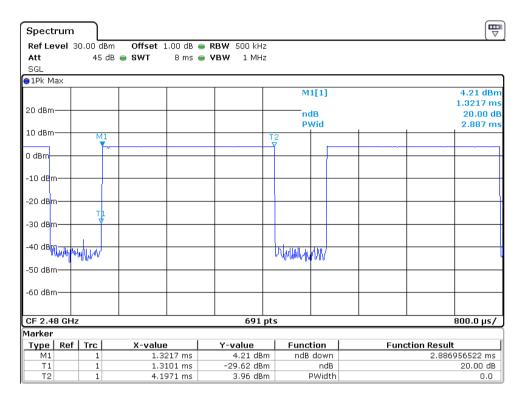
Number of hops (AFH mode)



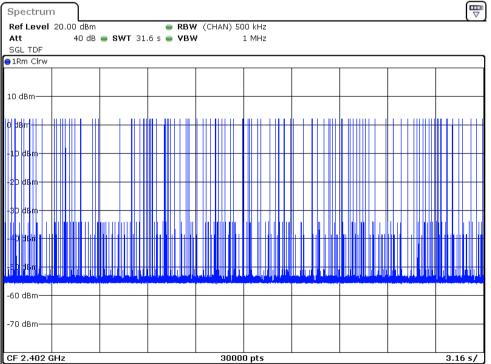
Packet: DH3



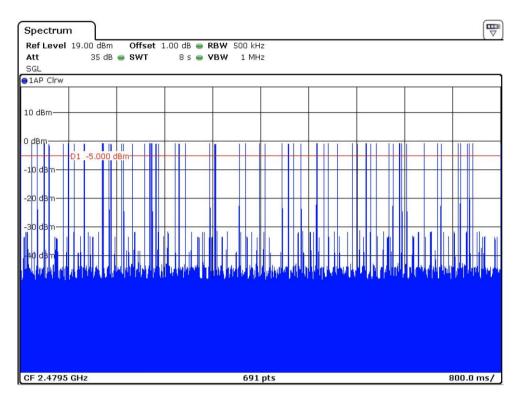
Number of hops (Normal hopping mode)



Number of hops (AFH mode)



Packet: DH5



Number of hops (Normal hopping mode)

Number of hops (AFH mode)

4.8 Band Edge

Out of Band Conducted Emissions, FCC Rule 15.247(d):

In any 100 KHz bandwidth outside the EUT passband, the RF power produced by the modulation products of the spreading sequence, the information sequence, and the carrier frequency shall be at least 20 dB below that of the maximum in-band 100 kHz emission, or else shall meet the general limits for radiated emissions at frequencies outside the passband, whichever results in lower attenuation.

Furthermore, delta measurement technique for measuring bandage emissions was shown as below:

(i) Lower channel 2402MHz:

Peak Resultant field strength = Fundamental emissions (peak value) – delta from the bandedge plot = 103.2dBµv/m-35.65dB

= 67.55dBµv/m

Average Resultant field strength = Fundamental emissions (Average value) – delta from the bandedge plot = 80.7dBμv/m-35.65dB = 45.05dBμv/m

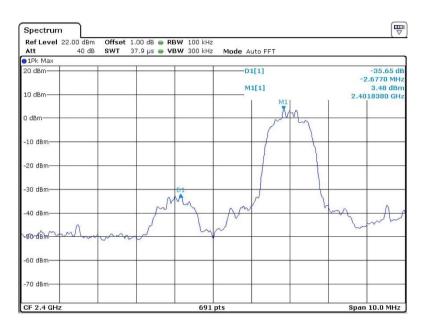
(ii) Upper channel 2480MHz:

Peak Resultant field strength = Fundamental emissions (peak value) – delta from the bandedge plot

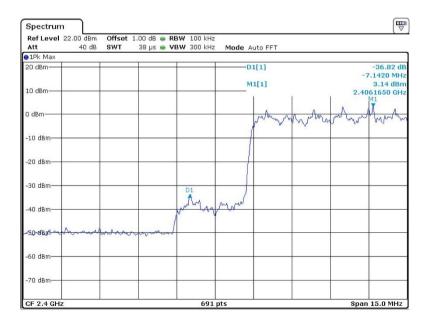
= 101.2dBµv/m-43.61dB

= 57.59dBµv/m

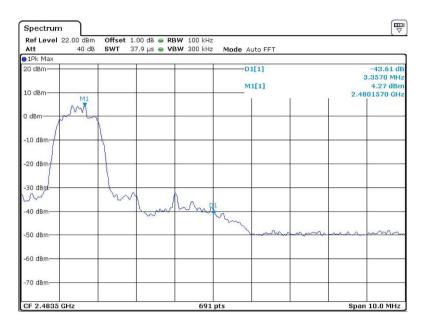
Average Resultant field strength = Fundamental emissions (Average value) – delta from the bandedge plot


= 78.7dBµv/m-43.61dB

= 35.09dBµv/m


The resultant field strength meets the general radiated emission limit in section 15.209, which does not exceed 74dBµv/m (Peak Limit) and 54dBµv/m (Average Limit).

Modulation Type: GFSK Low channel: Hopping function off


Hopping function On

High channel:

Hopping function off

Hopping function On

4.9060 Mi	Spectrum Ref Level 22.00 Att	dBm Offset : OdB SWT	1.00 dB 👄 RE 38 µs 👄 VE			uto FFT			(⊽
4.9060 Mi 4.50 dB 2.478830 Gi 2.478830 Gi	●1Pk Max								
на двя Мили Мили Палания Соловой С									-48.55 dB 4.9060 MHz 4.50 dBm
-20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	000	why My	~					2.4	788330 GHz
-30 dBm -40 dBm -50 dBm -60 dBm	-10 dBm								
-40 dBm	-20 dBm								
-40 dBm	-30 dBm		twy	٨					
-60 dBm	-40 dBm		i W	h how	D1			0	
					- m/m	- AMALA	man	and bolins	the Mary
-70 dBm	-60 dBm								
	-70 dBm								

4.9 Transmitter Spurious Emissions (Conducted) Out of Band Conducted Spurious Emissions, FCC Rule 15.247(d):

All spurious emission and up to the tenth harmonic was measured and they were found to be at least 20 dB below the highest level of the desired power in the passband.

Modulation Type: GFSK

CH00

Ref Level 30.00 dBm Offset 1.00 dB @ RBW 100 HH2 Att 45 dB SWT 25 ms @ VBW 300 HH2 Mode Auto Sweep 11% Max 20 dBm 01(1) -30.02 dB -1.49720 GH4 2,70050 GH4 10 dBm 01(1) 2,705 GH2 30 dBm 01 01 30 dBm 01 01 45 dB SWT 227 ms @ VBW 300 HH2 Att 45 dB SWT 20 Att 45 ms 70 HB 45 ms 70		n								
10 Max 0 (11) -30.02 db 20 dbm 01(1) -1.49720 Gb 10 dbm 01(1) 2.76 dbm 10 dbm 0 dbm 01(1) 20 dbm 01(1) 2.776 dbm 10 dbm 01(1) 2.776 dbm 20 dbm 01(1) 2.776 dbm 10 dbm 01 01 20 dbm 01 01 30 dbm 01 01 40 dbm 01 01 30 dbm 01 01 40 dbm 01 01 50 dbm 01 01 10 dbm 01 01 01 10 d		30.00 dBm					uto Sween			(*
20 dBm	●1Pk Max	10 00	041	20 110 - 11	54 000 KHZ	MOUE A	uto Sweep			
20 dBm						D	1[1]		-1	-38.02 dB
0 dBm 2.40050 GHz 0 dBm 10 dBm 10 dBm 10 dBm 20 dBm 10 dBm 30 dBm 11 dBm Start 1.0 MHz 691 pts Start 1.0 MHz 691 pts Start 1.0 MHz 691 pts Start 1.0 MHz 11 dBm 20 dBm 12 dBm 10 dBm 11 dBm	20 dBm					м	1[1]		-1.	2.75 dBm
0 dBm Image: start 1.0 MHz G1 Image: start 1.0 Mz G1 <							I	I	2.	40050 GHz
0 dBm	10 dBm									M1
20 dBm	0 dBm									Ť
30 dBm D1	-10 dBm—									
40 dBm 01	-20 dBm									
40 dBm	-30 dBm			D1						
Start 1.0 MHz 691 pts Stop 2.5 GHz Spectrum Image: stop 2.5 GHz<	-40 dBm									
60 dBm Image: start 1.0 MHz 691 pts Stop 2.5 GHz Spectrum Image: start 1.0 MHz 691 pts Stop 2.5 GHz Spectrum Image: start 1.0 MHz 691 pts Stop 2.5 GHz Spectrum Image: start 1.0 MHz 691 pts Stop 2.5 GHz Spectrum Image: start 1.0 MHz Image: start 1.0 MHz Image: start 1.0 MHz Att 45 dB Offset 1.00 dB RBW 100 kHz Image: start 1.0 MHz Att 45 dB Offset 1.00 dB RBW 100 kHz Image: start 1.0 MHz Image: start 1.0 MHz 10 dBm Image: start 1.0 MHz Image: start 1.0 MHz Image: start 1.0 MHz Image: start 1.0 MHz 10 dBm Image: start 1.0 MHz Image: start 1.0 MHz Image: start 1.0 MHz Image: start 1.0 MHz 10 dBm Image: start 1.0 MHz 10 dBm Image: start 1.0 MHz 10 dBm Image: start 1.0 MHz	Newskywahle	your	unnhuhu	hennen	monthering	www.envelvero	nahanhannaa	ummen	www.www.www.	munulund
Start 1.0 MHz 691 pts Stop 2.5 GHz Spectrum Image: Constraint of the start of	-50 dBm									
Spectrum Image: Construction of the second sec	-60 dBm									
Ref Level 30.00 dBm Offset 1.00 dB RBW 100 kHz Att 45 dB SWT 227 ms VBW 300 kHz Mode Auto Sweep 91Pk Max 01[1] -40.69 dB 4.3690 GHz -40.69 dB 20 dBm 01[1] -40.69 dB -40.69 dB -40.69 dB 20 dBm 01[1] -40.69 dB -40.69 dB -40.69 dB 10 dBm 0 0 0 -41.50 GHz -41.50 GHz 10 dBm 0 0 0 0 -41.50 GHz -41.50 GHz 20 dBm 0 0 0 0 0 0 -41.50 GHz 10 dBm 0<	Start 1.0 M	/Hz			691	pts			Sto	p 2.5 GHz
Ref Level 30.00 dBm Offset 1.00 dB RBW 100 kHz Att 45 dB SWT 227 ms VBW 300 kHz Mode Auto Sweep 91Pk Max 01[1] -40.69 dB 4.3690 GHz -40.69 dB 20 dBm 01[1] -40.69 dB -40.69 dB -40.69 dB 20 dBm 01[1] -40.69 dB -40.69 dB -40.69 dB 10 dBm 0 0 0 -41.50 GHz -41.50 GHz 10 dBm 0 0 0 0 -41.50 GHz -41.50 GHz 20 dBm 0 0 0 0 0 0 -41.50 GHz 10 dBm 0<		_								_
 IPK Max D1[1] 40.69 dB 43690 GHz 27.70 dBm 2.70 dBm 2.71 dB	Ref Level	30.00 dBm								[₩
20 dBm	●1Pk Max	45 UB	501 2	27 ms 🔳 Vi	3W 3UU KH2	MODE A	uto Sweep			
20 dBm						D	1[1]			-40.69 dB
20 dBm 40 dBm 50 dBm 60 dBm 60 dBm 20 dBm	20 dBm					м	1[1]		2	2.70 dBm
1	20 40						I	I	2	2.4150 GHz
0 dBm	10 dBm									
10 dBm 10 dBm <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1									
20 dBm	0 dBm									
-30 dBm	o abiii									
DI DI 40 dBm	-10 dBm									
40 dBm										
-50 dBm	-10 dBm									
-60 dBm	-10 dBm		4				h	1.07 1.2		
	-10 dBm		4		humanath	New John Mary	mound when	www.	Murree with	Within
	-10 dBm		4	White manufa	humahat	www.lal.	Mar Marker	www		Warm
Start 2.3 GHz 691 pts Stop 25.0 GHz	-10 dBm		4		humahath	Now hope the say	all and a contraction of the second s	www	M. Mar Mar Mark	Within

TEST REPORT

CH39 Spectrum Ref Level 30.00 dBm Offset 1.00 dB 🖷 RBW 100 kHz 45 dB SWT 25 ms 🔵 VBW 300 kHz Mode Auto Sweep Att ⊖1Pk Max D1[1] 46.31 dB -1.07050 GHz 3.29 dBm _M1[1] 20 dBm-2.44030 GHz 10 dBmм1 Т 0 dBm--10 dBm -20 dBm -30 dBm--40 dBm-4 der harten mann unullion and with March Jar Marth and the second لرفعا يتعايده s because alls -50 dBm--60 dBm-Start 1.0 MHz 691 pts Stop 2.5 GHz [₩ Spectrum Ref Level 30.00 dBm Offset 1.00 dB 👄 RBW 100 kHz 227 ms 🖷 VBW 300 kHz 45 dB SWT Mode Auto Sweep Att ●1Pk Max D1[1] -41.25 dB 4.3360 GHz _M1[1] 3.13 dBm 20 dBm-2.4480 GHz 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm-40 dBm and and the share and the ward and the and the second and the Sec. 1.1 www.www.have within unput would would would would would would be a start of the star -50 dBm--60 dBm-

Start 2.3 GHz

691 pts

Stop 25.0 GHz

C	Н	7	8
-		•	-

	n								
Ref Level	30.00 dBm			3W 100 kHz					
Att	45 dB	SWT	25 ms 🖷 ۷	BW 300 kHz	Mode A	uto Sweep			
1Pk Max					D	l[1]			-46.16 d
					0.	.[1]		-1.	80100 GH
20 dBm					M	1[1]			3.89 dBr
							I	2.	48010 GH
10 dBm									
to abili									N
) dBm——									
-10 dBm—									
-20 dBm—									
-30 dBm—									
-40 dBm—		D1							
undahara	mununuhun	how when the	all when have a start of the	who why when	the methoder lyn	hulunderrow	upluty	montourner	where where the second s
-50 dBm									
00 00									
co 40									
-60 dBm									
Start 1.0	MHz			691	pts			Sto	p 2.5 GHz
Att	30.00 dBm 45 dB			BW 100 kHz BW 300 kHz		uto Sweep			
1Pk Max	1		1						
					_				
					D	L[1]			
20 d8m						ı[1] 1[1]		2	1.4020 GH
20 dBm									1.4020 GH 3.58 dBn
									1.4020 GH 3.58 dBn
10 dBm									1.4020 GH 3.58 dBr
10 dBm									1.4020 GH 3.58 dBn
10 dBm									1.4020 GH 3.58 dBn
10 dBm 1 7 0 dBm									1.4020 GH 3.58 dBn
20 dBm 10 dBm 1 D dBm -10 dBm									1.4020 GH 3.58 dBn
10 dBm 1 7 0 dBm									1.4020 GH 3.58 dBn
10 dBm 1 7 0 dBm -10 dBm									1.4020 GH 3.58 dBn
10 dBm 1 0 dBm									-39.69 df F.4020 GH 3.58 dBn 2.4810 GH
10 dBm 1 7 0 dBm -10 dBm									1.4020 GH 3.58 dBn
10 dBm		1							1.4020 GH 3.58 dBr
10 dBm 1 20 dBm 10 dBm 20 dBm 30 dBm		1			M	1[1]			4.4020 GH 3.58 dBr 2.4810 GH
10 dBm 1 20 dBm 10 dBm 20 dBm 30 dBm		1					www.waratra		4.4020 GH 3.58 dBr 2.4810 GH
10 dBm 1 20 dBm 20 dBm 30 dBm 30 dBm		<u>h</u>			M	1[1]	www.ward		4.4020 GH 3.58 dBn 2.4810 GH
10 dBm		<u>h</u>			M	1[1]	where where a function of the second s		4.4020 GH 3.58 dBn 2.4810 GH
10 dBm 1 20 dBm -10 dBm -20 dBm		<u>h</u>		Brown Marine	M	1[1]	where where a function of the second s		4.4020 GH 3.58 dBn 2.4810 GH
10 dBm 1 20 dBm 20 dBm 20 dBm 30 dBm 40 dBm 40 dBm 50 dBm		<u>h</u>		hubrer all parts	M	1[1]	which where a function of the second se		4.4020 GH 3.58 dBn 2.4810 GH
10 dBm 1 20 dBm 20 dBm 30 dBm 30 dBm		<u>h</u>		hubun Mayang	M	1[1]	inter and and and		F.4020 GH: 3.58 dBn 2.4810 GH:

5.0 Equipment Photographs

For electronic filing, the photographs of the tested EUT are saved with filename: external photos.pdf & internal photos.pdf.

6.0 <u>Product Labelling</u>

For electronic filing, the FCC ID label artwork and the label location are saved with filename: label.pdf.

7.0 <u>Technical Specifications</u>

For electronic filing, the block diagram and schematics of the tested EUT are saved with filename: block.pdf and circuit.pdf respectively.

8.0 Instruction Manual

For electronic filing, a preliminary copy of the Instruction Manual is saved with filename: manual.pdf.

This manual will be provided to the end-user with each unit sold/leased in the United States.

9.0 <u>Miscellaneous Information</u>

This miscellaneous information includes details of the measured bandedge, the test procedure and calculation of factor such as pulse desensitization.

9.1 Discussion of Pulse Desensitization

Pulse desensitivity is not applicable for this device. The effective period (T_{eff}) is approximately 625µs for Bluetooth. With a resolution bandwidth (3dB) of 1MHz, so the pulse desensitivity factor is 0dB.

9.2 Calculation of Average Factor

Based on the Bluetooth Specification Version 5.1 (EDR mode) and worst case AFH mode, transmitter ON time is independent of packet type (DH1, DH3 and DH5) and packet length, the AFH mode Duty cycle connection factor as below:

Channel hop rate = 800 hops/second (AFH Mode)

Adjusted channel hop rate for DH5 mode = 133.33 hops/second

Time per channel hop = 1/133.33 hops/second = 7.5 ms

Time to cycle through all channels = 7.5 x 20 channels = 150 ms

Number of times transmitter hits on one channel = 100 ms / 150 ms = 1 time(s)

Worst case dwell time = 7.5 ms

Duty cycle connection factor = 20log10 (7.5ms / 100ms) = -22.5 dB

9.3 Emissions Test Procedures

The following is a description of the test procedure used by Intertek Testing Services in the measurements of transmitters operating under Part 15, Subpart C rules.

The test set-up and procedures described below are designed to meet the requirements of ANSI C63.10: 2013.

The transmitting equipment under test (EUT) is placed on a styrene turntable which is four feet in diameter, up to 1GHz 0.8m and above 1GHz 1.5m in height above the ground plane. During the radiated emissions test, the turntable is rotated and any cables leaving the EUT are manipulated to find the configuration resulting in maximum emissions. The EUT is adjust through all three orthogonal axes to obtain maximum emission levels. The antenna height and polarization are varied during the testing to search for maximum signal levels.

Detector function for radiated emissions is in peak mode. Average readings, when required, are taken by measuring the duty cycle of the equipment under test and subtracting the corresponding amount in dB from the measured peak readings. A detailed description for the calculation of the average factor can be found in section 9.2.

The frequency range scanned is from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or 40 GHz, whichever is lower. For line conducted emissions, the range scanned is 150 kHz to 30 MHz with RBW 9KHz used.

9.3 Emissions Test Procedures (cont'd)

The EUT is warmed up for 15 minutes prior to the test.

AC power to the unit is varied from 85% to 115% nominal and variation in the fundamental emission field strength is recorded. If battery powered, a new, fully charged battery is used.

Conducted measurements are made as described in ANSI C63.10: 2013.

The IF bandwidth used for measurement of radiated signal strength was 10 kHz for emission below 30 MHz and 120 kHz for emission from 30 MHz to 1000 MHz. Where pulsed transmissions of short enough pulse duration warrant, a greater bandwidth is selected according to the recommendations of Hewlett Packard Application Note 150-2. Above 1000 MHz, a resolution bandwidth of 1 MHz is used (RBW 3MHz used for fundamental emission).

Transmitter measurements are normally conducted at a measurement distance of three meters. However, to assure low enough noise floor in the restricted bands and above 1 GHz, signals are acquired at a distance of one meter or less. All measurements are extrapolated to three meters using inverse scaling, but those measurements taken at a closer distance are so marked.

TEST REPORT

Intertek Report No.: 211123006SZN-001

10 Test Equipment List

Equipment No.	Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due Date
SZ061-12	BiConiLog Antenna	ETS	3142E	00166158	2021-08-04	2024-08-04
SZ185-02	EMI Receiver	R&S	ESCI	100547	2021-07-12	2022-07-12
SZ061-08	Horn Antenna	ETS	3115	00092346	2021-09-05	2024-09-05
SZ061-06	Active Loop Antenna	Electro-Metrics	EM-6876	217	2021-05-18	2023-05-18
SZ056-03	Spectrum Analyzer	R&S	FSP 30	101148	2021-05-10	2022-05-10
SZ056-06	Signal Analyzer	R&S	FSV 40	101101	2020-12-22	2021-12-22
SZ181-04	Preamplifier	Agilent	8449B	3008A02474	2021-05-10	2022-05-10
SZ188-01	Anechoic Chamber	ETS	RFD-F/A- 100	4102	2018-12-15	2021-12-15
SZ062-24	RF Cable	RADIALL	SF104PE		2021-10-26	2022-10-26
SZ062-25	RF Cable	RADIALL	SF104PE		2021-10-26	2022-10-26
SZ062-38	RF Cable	RADIALL	A50- 3.5M3.5M- 8M		2021-06-04	2022-06-04
SZ067-04	Notch Filter	Micro-Tronics	BRM50702- 02		2021-05-11	2022-05-11
SZ185-02	EMI Test Receiver	R&S	ESCI	100692	2021-07-12	2022-07-12
SZ187-01	Two-Line V- Network	R&S	ENV216	100072	2021-11-02	2022-11-02
SZ187-02	Two-Line V- Network	R&S	ENV216	100072	2021-05-12	2022-05-12
SZ062-16	RF Cable	HUBER+SUHNE R	CBL2-BN- 1m	110127- 2231000	2021-10-26	2022-10-26
SZ188-03	Shielding Room	ETS	RFD-100	4100	2020-01-07	2023-01-07