FCC SAR EVALUATION REPORT # In accordance with the requirements of FCC 47 CFR Part 2(2.1093), ANSI/IEEE C95.1-1992 and IEEE Std 1528-2013 Product Name: WLAN+Bluetooth module 3165D2W **Brand Name**: acer Model Name: 3165D2W Report No.: S20120705310001 FCC ID: HLZ3165D2 The product was installed into Windows Tablet (Brand Name: acer, Model Name: N19E1, Acer ENDURO T5, ET510-51W) during test. #### Prepared for Acer Incorporated 8F, 88, Sec.1 Xintai 5th Rd. Xizhi, New Taipei City 221, Taiwan # Prepared by Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R.China. Tel.: 400-800-6106, 0755-3699 5508 Website: http://www.ntek.org.cn # **TEST RESULT CERTIFICATION** | Applicant's name Acer Incorporate | Applicant's | name | Acer | Incorporate | be | |-----------------------------------|-------------|------|------|-------------|----| |-----------------------------------|-------------|------|------|-------------|----| Address 8F, 88, Sec.1 Xintai 5th Rd. Xizhi, New Taipei City 221, Taiwan Name Acer Incorporated Address 8F, 88, Sec.1 Xintai 5th Rd. Xizhi, New Taipei City 221, Taiwan **Product description** Product name WLAN+Bluetooth module 3165D2W Brand Name acer Model and/or type 3165D2W reference The product was installed into Windows Tablet (Brand Name: acer, Model Name: N19E1, Acer ENDURO T5, ET510-51W) during test. FCC 47 CFR Part 2(2.1093) ANSI/IEEE C95.1-1992 Standards.....IEEE Std 1528-2013 Published RF exposure KDB procedures This device described above has been tested by Shenzhen NTEK. In accordance with the measurement methods and procedures specified in IEEE Std 1528-2013 and KDB 865664 D01. Testing has shown that this device is capable of compliance with localized specific absorption rate (SAR) specified in FCC 47 CFR Part 2(2.1093) and ANSI/IEEE C95.1-1992. The test results in this report apply only to the tested sample of the stated device/equipment. Other similar device/equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties. This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK, this document may be altered or revised by Shenzhen NTEK, personal only, and shall be noted in the revision of the document. #### **Date of Test** Date (s) of performance of tests Dec. 18, 2020 ~ Dec. 24, 2020 Date of Issue Dec. 25, 2020 Test Result Pass Prepared By (Test Engineer) Approved By (Lab Manager) # * * Revision History * * Report No.: S20120705310001 | REV. | DESCRIPTION | ISSUED DATE | REMARK | | |---------|---|-------------|--------------|--| | Rev.1.0 | 0 Initial Test Report Release Dec. 25, 2020 | | Cheng Jiawen | # **TABLE OF CONTENTS** | 1. | Genera | l Info | ormation | 6 | |-----|---------|--------|--|----| | | 1.1. | RF e | exposure limits | 6 | | | 1.2. | State | ement of Compliance | 7 | | | 1.3. | EUT | Description | 7 | | | 1.4. | Test | specification(s) | 8 | | | | | pient Condition | | | 2. | SAR Me | easur | rement System | 9 | | | 2.1. | SATI | MO SAR Measurement Set-up Diagram | 9 | | | 2.2. | Rob | ot | 10 | | | 2.3. | E-Fi | eld Probe | 11 | | | 2.3 | .1. | E-Field Probe Calibration | 11 | | | 2.4. | SAM | 1 phantoms | 12 | | | 2.4 | .1. | Technical Data | 13 | | | 2.5. | Dev | ice Holder | 14 | | | 2.6. | Test | Equipment List | 15 | | 3. | SAR Me | easui | rement Procedures | 17 | | | 3.1. | Pow | ver Reference | 17 | | | 3.2. | Area | a scan & Zoom scan | 17 | | | 3.3. | Desc | cription of interpolation/extrapolation scheme | 19 | | | 3.4. | Volu | ımetric Scan | 19 | | | 3.5. | Pow | ver Drift | 19 | | 4. | System | Veri | ification Procedure | 20 | | | 4.1. | Tissu | ue Verification | 20 | | | 4.1 | .1. | Tissue Dielectric Parameter Check Results | 21 | | | 4.2. | Syst | em Verification Procedure | 22 | | | 4.2 | .1. | System Verification Results | 23 | | 5. | SAR Me | easui | rement variability and uncertainty | 24 | | | 5.1. | SAR | measurement variability | 24 | | | 5.2. | SAR | measurement uncertainty | 25 | | 6. | RF Expo | osure | e Positions | 26 | | | 6.1. | Tabl | let host platform exposure conditions | 26 | | 7. | RF Out | put F | Power | 27 | | | 7.1. | WLA | AN & Bluetooth Output Power | 27 | | 8. | Antenn | a Lo | cation | 30 | | 9. | Stand-a | alone | SAR test exclusion | 37 | | 10. | SAR F | Resul | lts | 37 | | | 10.1. | SA | R measurement Result | 37 | | | 10. | 1.1. | SAR measurement Result of WLAN 2.4G | 37 | | | 10. | 1.2. | SAR measurement Result of WLAN 5.2G | 38 | | | GO STITUTE OF THE POST OF | | |-----|---|----| | | 10.1.3. SAR measurement Result of WLAN 5.3G | 38 | | | 10.1.4. SAR measurement Result of WLAN 5.6G | 39 | | | 10.1.5. SAR measurement Result of WLAN 5.8G | 40 | | | 10.2. Simultaneous Transmission Analysis | 41 | | 11. | Appendix A. Photo documentation | 41 | | 12. | Appendix B. System Check Plots | 42 | | 13. | Appendix C. Plots of High SAR Measurement | 53 | | 14. | Appendix D. Calibration Certificate | 64 | # ACCREDITED P # 1. General Information ## 1.1. RF exposure limits (A).Limits for Occupational/Controlled Exposure (W/kg) | Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles | |------------|--------------|--------------------------------| | 0.4 | 8.0 | 20.0 | (B).Limits for General Population/Uncontrolled Exposure (W/kg) | Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles | |------------|--------------|--------------------------------| | 80.0 | 1.6 | 4.0 | NOTE: Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube. #### **Occupational/Controlled Environments:** Are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation). # **General Population/Uncontrolled Environments:** Are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. NOTE TRUNK LIMIT 1.6 W/kg APPLIED TO THIS EUT # 1.2. Statement of Compliance The maximum results of Specific Absorption Rate (SAR) found during testing for 3165D2W are as follows. | | Max Reported SAR Value(W/kg) | | | | |-----------|------------------------------|--|--|--| | Band | 1-g Body | | | | | | (Separation distance of 0mm) | | | | | WLAN 2.4G | 1.343 | | | | | WLAN 5.2G | 1.342 | | | | | WLAN 5.3G | 1.286 | | | | | WLAN 5.6G | 1.434 | | | | | WLAN 5.8G | 1.071 | | | | Note: This device is in compliance with Specific Absorption Rate (SAR) for general population / uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR Part 2(2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE Std 1528-2013 & KDB 865664 D01. # 1.3. EUT Description | Device Information | | | | | | | |---------------------------------|--|-----------|----------|--|--|--| | Product Name | WLAN+Bluetooth module 3165D2W | | | | | | | Brand Name | acer | | | | | | | Model Name | 3165D2W | | | | | | | FCC ID | HLZ3165D2 | | | | | | | Device Phase | Identical Prototype | | | | | | | Exposure Category | General population / Uncontrolled environment | | | | | | | Antenna Type | PIFA Antenna | | | | | | | Battery Information | DC 7.4V, 5000mAh | | | | | | | Device Operating Configurations | | | | | | | | Supporting Mode(s) | WLAN 2.4G/5G, Bluetooth | | | | | | | Test Modulation | WLAN(DSSS/OFDM), Bluetooth(GFSK, π/4-DQPSK, 8DPSK) | | | | | | | Device Class | В | | | | | | | | Band | Tx (MHz) | Rx (MHz) | | | | | | WLAN 2.4G | 2412-2462 | | | | | | | WLAN 5.2G | 5180-5240 | | | | | | Operating Frequency Range(s) | WLAN 5.3G | 5260-5320 | | | | | | | WLAN 5.6G | 5500-5720 | | | | | | | WLAN 5.8G | 5745-5825 | | | | | | | Bluetooth | 2402-2480 | | | | | The product was installed into Windows Tablet (Brand Name: acer, Model Name: N19E1, Acer ENDURO T5, ET510-51W) during test. # 1.4. Test specification(s) | FCC 47 CFR Part 2(2.1093) | |---| | ANSI/IEEE C95.1-1992 | | IEEE Std 1528-2013 | | KDB 865664 D01 SAR measurement 100 MHz to 6 GHz | | KDB 865664 D02 RF Exposure Reporting | | KDB 447498 D01 General RF Exposure Guidance | | KDB 248227 D01 802.11 Wi-Fi SAR | | KDB 616217 D04 SAR for laptop and tablets | # 1.5. Ambient Condition | Ambient temperature | 20°C – 24°C | |---------------------|-------------| | Relative Humidity | 30% – 70% | # 2. SAR Measurement System #### 2.1. SATIMO SAR Measurement Set-up Diagram These measurements were performed with the automated near-field scanning system OPENSAR from SATIMO. The system is based on a high precision robot (working range: 901 mm), which positions the probes with a positional repeatability of better than ±0.03 mm. The SAR measurements were conducted with dosimetric probe (manufactured by SATIMO), designed in the classical triangular configuration and optimized for dosimetric evaluation. The first step of the field measurement is the evaluation of the voltages induced on the probe by the device under test. Probe diode detectors are nonlinear. Below the diode compression point, the output voltage is proportional to the square of the applied E-field; above the diode compression point, it is linear to the applied E-field. The compression point depends on the diode, and a calibration procedure is necessary for each sensor of the probe. The Keithley multimeter reads the voltage of each sensor and send
these three values to the PC. The corresponding E field value is calculated using the probe calibration factors, which are stored in the working directory. This evaluation includes linearization of the diode characteristics. The field calculation is done separately for each sensor. Each component of the E field is displayed on the "Dipole Area Scan Interface" and the total E field is displayed on the "3D Interface" The SATIMO SAR system uses the high precision robots from KUKA. For the 6-axis controller system, the robot controller version (KUKA) from KUKA is used. The KUKA robot series have many features that are important for our application: - High precision (repeatability ±0.03 mm) - High reliability (industrial design) - · Jerk-free straight movements - Low ELF interference (the closed metallic construction shields against motor control fields) #### 2.3. E-Field Probe This E-field detection probe is composed of three orthogonal dipoles linked to special Schottky diodes with low detection thresholds. The probe allows the measurement of electric fields in liquids such as the one defined in the IEEE and CENELEC standards. Report No.: S20120705310001 For the measurements the Specific Dosimetric E-Field Probe SN 08/16 EPGO287 with following specifications is used - Dynamic range: 0.01-100 W/kg - Tip Diameter: 2.5 mm - Distance between probe tip and sensor center: 1 mm - Distance between sensor center and the inner phantom surface: 2 mm (repeatability better than ±1 mm). Probe linearity: ±0.08 dBAxial isotropy: 0.06 dB - Hemispherical Isotropy: 0.08 dB - Calibration range: 650MHz to 5900MHz for head & body simulating liquid. - Lower detection limit: 7mW/kg Angle between probe axis (evaluation axis) and surface normal line: less than 30°. #### 2.3.1. E-Field Probe Calibration Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than ±10%. The spherical isotropy shall be evaluated and within ±0.25dB. The sensitivity parameters (Norm X, Norm Y, and Norm Z), the diode compression parameter (DCP) and the conversion factor (Conv F) of the probe are tested. The calibration data can be referred to appendix D of this report. # 2.4. SAM phantoms # Photo of SAM phantom SN 16/15 SAM119 The SAM phantom is used to measure the SAR relative to people exposed to electro-magnetic field radiated by mobile phones. # 2.4.1. Technical Data | Serial
Number | Shell thickness | Filling volume | Dimensions | Positionner
Material | Permittivity | Loss
Tangent | |--------------------|-----------------|----------------|---|-------------------------|--------------|-----------------| | SN 16/15
SAM119 | 2 mm ±0.2 mm | 27 liters | Length:1000 mm
Width:500 mm
Height:200 mm | Gelcoat with fiberglass | 3.4 | 0.02 | | Serial Number | Left Head(mm) | | Righ | Right Head(mm) | | Part(mm) | |-----------------|---------------|------|------|----------------|---|----------| | | 2 | 2.02 | 2 | 2.08 | 1 | 2.09 | | | 3 | 2.05 | 3 | 2.06 | 2 | 2.06 | | | 4 | 2.07 | 4 | 2.07 | 3 | 2.08 | | | 5 | 2.08 | 5 | 2.08 | 4 | 2.10 | | SN 16/15 SAM119 | 6 | 2.05 | 6 | 2.07 | 5 | 2.10 | | | 7 | 2.05 | 7 | 2.05 | 6 | 2.07 | | | 8 | 2.07 | 8 | 2.06 | 7 | 2.07 | | | 9 | 2.08 | 9 | 2.06 | - | - | The test, based on ultrasonic system, allows measuring the thickness with an accuracy of 10 μ m. # 2.5. Device Holder The positioning system allows obtaining cheek and tilting position with a very good accuracy. In compliance with CENELEC, the tilt angle uncertainty is lower than 1 degree. | Serial Number | Serial Number Holder Material | | Loss Tangent | |-----------------|-------------------------------|-----|--------------| | SN 16/15 MSH100 | Delrin | 3.7 | 0.005 | # 2.6. Test Equipment List This table gives a complete overview of the SAR measurement equipment. Report No.: S20120705310001 Devices used during the test described are marked \boxtimes | 11 | Monufooturor | Name of | Type/Model Serial Number | Carial Number | Calibration | | |----|--------------|---------------------|--------------------------|--------------------|-------------|----------| | | Manufacturer | Equipment | i ype/iviodei | Seriai Number | Last Cal. | Due Date | | | MVG | E FIELD PROBE | SSE2 | SN 08/16 EPGO287 | Dec. 27, | Dec. 26, | | | IVIVO | LTIELDTROBE | OOLZ | 014 00/10 E1 00207 | 2019 | 2020 | | | MVG | 750 MHz Dipole | SID750 | SN 03/15 DIP | Apr. 19, | Apr. 18, | | | WV | 700 Will 2 Dipole | 012700 | 0G750-355 | 2018 | 2021 | | | MVG | 835 MHz Dipole | SID835 | SN 03/15 DIP | Apr. 19, | Apr. 18, | | | | 000 IIII IZ DIPOIO | 0.2000 | 0G835-347 | 2018 | 2021 | | | MVG | 900 MHz Dipole | SID900 | SN 03/15 DIP | Apr. 19, | Apr. 18, | | | | 200 Mil 2 Dipolo | 012000 | 0G900-348 | 2018 | 2021 | | | MVG | 1800 MHz Dipole | SID1800 | SN 03/15 DIP | Apr. 19, | Apr. 18, | | | WV | Todo Wii iz Bipolo | 012 1000 | 1G800-349 | 2018 | 2021 | | | MVG | 1900 MHz Dipole | SID1900 | SN 03/15 DIP | Apr. 19, | Apr. 18, | | | WVO | 1000 Will IZ Dipole | 0101000 | 1G900-350 | 2018 | 2021 | | | MVG | 2000 MHz Dipole | SID2000 | SN 03/15 DIP | Apr. 19, | Apr. 18, | | | IVIVO | 2000 WII IZ DIPOIC | 0102000 | 2G000-351 | 2018 | 2021 | | | MVG | 2450 MHz Dipole | SID2450 | SN 03/15 DIP | Apr. 19, | Apr. 18, | | | IVIVO | 2430 IVII IZ DIPOIE | 31D2430 | 2G450-352 | 2018 | 2021 | | | MVG | 2600 MHz Dipole | SID2600 | SN 03/15 DIP | Apr. 19, | Apr. 18, | | | IVIVO | 2000 WII IZ DIPOIC | 0102000 | 2G600-356 | 2018 | 2021 | | | MVG | 5000 MHz Dipole | SWG5500 | SN 13/14 WGA 33 | Apr. 19, | Apr. 18, | | | IVIVO | 3000 WII IZ DIPOIC | 000000 | 014 10/14 440/4 00 | 2018 | 2021 | | | MVG | Liquid | SCLMP | ON 04/45 OODO 70 | NCR | NCR | | | WVO | measurement Kit | OOLIVII | SN 21/15 OCPG 72 | NOIX | NOIX | | | MVG | Power Amplifier | N.A | AMPLISAR_28/14_003 | NCR | NCR | | | KEITHLEY | Millivoltmeter | 2000 | 4072790 | NCR | NCR | | | | Universal radio | | | lul 40 | lul 40 | | | R&S | communication | CMU200 | 117858 | Jul. 13, | Jul. 12, | | | | tester | | | 2020 | 2021 | | | | Wideband radio | | | lul 40 | lul 40 | | | R&S | communication | CMW500 | 103917 | Jul. 13, | Jul. 12, | | | tester | | | 2020 | 2021 | | | | HP | Nationals Assets | 07505 | 0440 104400 | Jul. 13, | Jul. 12, | | | 1 11 | Network Analyzer | 8753D | 3410J01136 | 2020 | 2021 | | | Agilent | PSG Analog | E0057D | NN/54440440 | Jul. 13, | Jul. 12, | | | Aglierit | Signal Generator | E8257D | MY51110112 | 2020 | 2021 | ACCREDITED Page 16 of 108 Report No.: S20120705310001 Jul. 12, Jul. 13, \boxtimes Agilent E4419B Power meter MY45102538 2021 2020 Jul. 13, Jul. 12, Agilent \boxtimes Power sensor E9301A MY41495644 2020 2021 Jul. 13, Jul. 12, \boxtimes Agilent E9301A US39212148 Power sensor 2020 2021 Jul. 17, Jul. 16, Directional \boxtimes MCLI/USA CB11-20 0D2L51502 2023 2020 Coupler # 3. SAR Measurement Procedures The measurement procedures are as follows: <Conducted power measurement> (a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band. Report No.: S20120705310001 - (b) Read the WWAN RF power level from the base station simulator. - (c) For Wi-Fi/BT power measurement, use engineering software to configure EUT Wi-Fi/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band. - (d) Connect EUT RF port through RF cable to the power meter, and measure Wi-Fi/BT output power. #### <SAR measurement> - (a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT Wi-Fi/BT continuously transmission, at maximum RF power, in the highest power channel. - (b) Place the EUT in the positions as Appendix A demonstrates. - (c) Set scan area, grid size and other setting on the OPENSAR software. - (d) Measure SAR results for the highest power channel on each testing position. - (e) Find out the largest SAR result on these testing positions of each band. - (f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg. According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps: - (a) Power reference measurement - (b) Area scan - (c) Zoom scan - (d) Power drift measurement #### 3.1. Power Reference The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties. #### 3.2. Area scan & Zoom scan The area scan is a 2D scan to find the hot spot location on the DUT. The zoom scan is a 3D scan above the hot spot to calculate the 1g and 10g SAR value. Measurement of the SAR distribution with a grid of 8 to 16 mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme. Around this point, a cube of 30 * 30 *30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8 * 4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated. From the scanned SAR distribution, identify the position of the maximum SAR value, in addition identify the positions of any local maxima with SAR values within 2 dB of the maximum value that will not be within the zoom scan of other peaks; additional peaks shall be measured only when the primary peak is within 2 dB of the SAR
compliance limit (e.g., 1 W/kg for 1,6 W/kg 1 g limit, or 1,26 W/kg for 2 W/kg, 10 g limit). Area scan & Zoom scan scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz. | | | | ≤ 3 GHz | > 3 GHz | |--|--------------|---|---|---| | Maximum distance from (geometric center of pr | | | 5 ± 1 mm | $\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$ | | Maximum probe angle surface normal at the m | | | 30° ± 1° | 20° ± 1° | | | | | ≤ 2 GHz: ≤ 15 mm
2 – 3 GHz: ≤ 12 mm | $3 - 4 \text{ GHz} \le 12 \text{ mm}$
$4 - 6 \text{ GHz} \le 10 \text{ mm}$ | | Maximum area scan sp | atial resolı | ntion: Δx_{Area} , Δy_{Area} | When the x or y dimension of measurement plane orientation the measurement resolution in x or y dimension of the test dimeasurement point on the test | on, is smaller than the above, must be \leq the corresponding evice with at least one | | Maximum zoom scan s | patial reso | lution: Δx_{Zoom} , Δy_{Zoom} | \leq 2 GHz: \leq 8 mm
2 - 3 GHz: \leq 5 mm [*] | $3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$
$4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$ | | | uniform | grid: Δz _{Zoom} (n) | ≤ 5 mm | $3 - 4 \text{ GHz} \le 4 \text{ mm}$
$4 - 5 \text{ GHz} \le 3 \text{ mm}$
$5 - 6 \text{ GHz} \le 2 \text{ mm}$ | | Maximum zoom scan
spatial resolution,
normal to phantom
surface | graded | Δz _{Zoom} (1): between 1 st two points closest to phantom surface | ≤ 4 mm | $3 - 4 \text{ GHz: } \le 3 \text{ mm}$
$4 - 5 \text{ GHz: } \le 2.5 \text{ mm}$
$5 - 6 \text{ GHz: } \le 2 \text{ mm}$ | | | grid | Δz _{Zoom} (n>1):
between subsequent
points | ≤ 5 mm est ≤ 4 mm | Zoom(n-1) | | Minimum zoom scan
volume | x, y, z | | ≥ 30 mm | $3 - 4 \text{ GHz: } \ge 28 \text{ mm}$
$4 - 5 \text{ GHz: } \ge 25 \text{ mm}$
$5 - 6 \text{ GHz: } \ge 22 \text{ mm}$ | Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details. ^{*} When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz. ## 3.3. Description of interpolation/extrapolation scheme The local SAR inside the phantom is measured using small dipole sensing elements inside a probe body. The probe tip must not be in contact with the phantom surface in order to minimise measurements errors, but the highest local SAR will occur at the surface of the phantom. Report No.: S20120705310001 An extrapolation is using to determinate this highest local SAR values. The extrapolation is based on a fourth-order least-square polynomial fit of measured data. The local SAR value is then extrapolated from the liquid surface with a 1 mm step. The measurements have to be performed over a limited time (due to the duration of the battery) so the step of measurement is high. It could vary between 5 and 8 mm. To obtain an accurate assessment of the maximum SAR averaged over 10 grams and 1 gram requires a very fine resolution in the three dimensional scanned data array. #### 3.4. Volumetric Scan The volumetric scan consists to a full 3D scan over a specific area. This 3D scan is useful form multi Tx SAR measurement. Indeed, it is possible with OpenSAR to add, point by point, several volumetric scan to calculate the SAR value of the combined measurement as it is define in the standard IEEE1528 and IEC62209. #### 3.5. Power Drift All SAR testing is under the EUT install full charged battery and transmit maximum output power. In OpenSAR measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in V/m. If the power drifts more than ±5%, the SAR will be retested. # 4. System Verification Procedure #### 4.1. Tissue Verification The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation. | Ingredients (% of weight) | Head Tissue | | | | | | | | | | |---------------------------|-------------|-------|-------|-------|-------------------|--------|-------|-------|-------|-------| | Frequency Band (MHz) | 750 | 835 | 900 | 1800 | 1900 | 2000 | 2450 | 2600 | 5200 | 5800 | | Water | 34.40 | 34.40 | 34.40 | 55.36 | 55.36 | 57.87 | 57.87 | 57.87 | 65.53 | 65.53 | | NaCl | 0.79 | 0.79 | 0.79 | 0.35 | 0.35 | 0.16 | 0.16 | 0.16 | 0.00 | 0.00 | | 1,2-Propanediol | 64.81 | 64.81 | 64.81 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Triton X-100 | 0.00 | 0.00 | 0.00 | 30.45 | 30.45 | 19.97 | 19.97 | 19.97 | 24.24 | 24.24 | | DGBE | 0.00 | 0.00 | 0.00 | 13.84 | 13.84 | 22.00 | 22.00 | 22.00 | 10.23 | 10.23 | | Ingredients (% of weight) | | | | | Body ⁻ | Tissue | | | | | | Frequency Band
(MHz) | 750 | 835 | 900 | 1800 | 1900 | 2000 | 2450 | 2600 | 5200 | 5800 | | Water | 50.30 | 50.30 | 50.30 | 69.91 | 69.91 | 71.88 | 71.88 | 71.88 | 79.54 | 79.54 | | NaCl | 0.60 | 0.60 | 0.60 | 0.13 | 0.13 | 0.16 | 0.16 | 0.16 | 0.00 | 0.00 | | 1,2-Propanediol | 49.10 | 49.10 | 49.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Triton X-100 | 0.00 | 0.00 | 0.00 | 9.99 | 9.99 | 19.97 | 19.97 | 19.97 | 11.24 | 11.24 | | DGBE | 0.00 | 0.00 | 0.00 | 19.97 | 19.97 | 7.99 | 7.99 | 7.99 | 9.22 | 9.22 | For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For head SAR testing, the liquid depth from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm. Report No.: S20120705310001 #### 4.1.1. **Tissue Dielectric Parameter Check Results** The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameter are within the tolerances of the specified target values. The measured conductivity and relative permittivity should be within ±5% of the target values. | | measure conductive permitting orientation in target range. | | | | | | | | | |----------------|--|---------------|------------------|---------|----------|-----------------|---------------|--|--| | T: | Measured | Target T | issue | Measure | d Tissue | Liannial | | | | | Tissue
Type | Frequency
(MHz) | εr (±5%) | σ (S/m)
(±5%) | εr | σ (S/m) | Liquid
Temp. | Test Date | | | | Body | 2450 | 52.70 | 1.95 | 52.30 | 1.94 | 21.5 °C | Dec. 23, 2020 | | | | 2450 | | (50.07~55.34) | (1.85~2.05) | | | | | | | | Body | 5200 | 49.00 | 5.30 | 50.26 | 5.34 | 21.3 °C | Dec. 24, 2020 | | | | 5200 | 0200 | (46.55~51.45) | (5.04~5.57) | 00.20 | 0.0. | | , | | | | Body | 5400 | 48.70 | 5.53 | 48.85 | 5.67 | 21.3 °C | Dec. 24, 2020 | | | | 5400 | 0100 | (46.27~51.14) | (5.25~5.81) | 10.00 | 0.07 | 21.0 | D00. 21, 2020 | | | | Body | 5600 | 48.50 | 5.77 | 49.92 | 5.74 | 21.4 °C | Dec. 18, 2020 | | | | 5600 | 3000 | (46.08~50.93) | (5.48~6.06) | 75.52 | 3.74 | 21.4 0 | DCC. 10, 2020 | | | | Body | 5800 | 48.20 | 6.00 | 48.71 | 6.05 | 21.2 °C | Dec. 24, 2020 | | | | 5800 | 3300 | (45.79~50.61) | (5.70~6.30) | 70.71 | 0.00 | 21.2 0 | DCC. 24, 2020 | | | NOTE: The dielectric parameters of the tissue-equivalent liquid should be measured under similar ambient conditions and within 2 °C of the conditions expected during the SAR evaluation to satisfy protocol requirements. # 4.2. System Verification Procedure The system verification is performed for verifying the accuracy of the complete measurement system and performance of the software. The dipole is connected to the signal source consisting of signal generator and amplifier via a directional coupler, N-connector cable and adaption to SMA. It is fed with a power of 100mW (below 5GHz) or 100mW (above 5GHz). To adjust this power a power meter is used. The power sensor is connected to the cable before the system verification to measure the power at this point and do adjustments at the signal generator. At the outputs of the directional coupler both return loss as well as forward power are controlled during the system verification to make sure that emitted power at the dipole is kept constant. This can also be checked by the power drift measurement after the test (result on plot). The system verification is shown as below picture: # 4.2.1. System Verification Results Comparing to the original SAR value provided by SATIMO, the verification data should be within its specification of ±10%. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance verification can meet the variation criterion and the plots can be referred to Appendix B of this report. | one in the protection and the protection of | | | | | | | | |
---|---------------------------|------------------------|---------------|----------------|---------|---------------|--|--| | System | Target SA
(±10 | Measure
(Normalize | | Liquid | | | | | | Verification | 1-g (W/Kg) | 10-g (W/Kg) | 1-g
(W/Kg) | 10-g
(W/Kg) | Temp. | Test Date | | | | 2450MHz Body | 52.90
(47.61~58.19) | 24.09
(21.68~26.50) | 55.17 | 24.27 | 21.5 °C | Dec. 23, 2020 | | | | 5200MHz Body | 156.85
(141.17~172.54) | 55.20
(49.68~60.72) | 155.98 | 56.59 | 21.3 °C | Dec. 24, 2020 | | | | 5400MHz Body | 163.97
(147.57~180.37) | 57.26
(51.53~62.99) | 169.84 | 61.18 | 21.3 °C | Dec. 24, 2020 | | | | 5600MHz Body | 166.58
(149.92~183.24) | 57.87
(52.08~63.66) | 179.94 | 60.85 | 21.4 °C | Dec. 18, 2020 | | | | 5800MHz Body | 169.30
(152.37~186.23) | 58.49
(52.64~64.34) | 168.86 | 57.43 | 21.2 °C | Dec. 24, 2020 | | | # 5. SAR Measurement variability and uncertainty ## 5.1. SAR measurement variability Per KDB865664 D01 SAR measurement 100 MHz to 6 GHz, SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. The additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results. Report No.: S20120705310001 - 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply. - 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once. - 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit). - 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20. # 5.2. SAR measurement uncertainty The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in IEEE 1528: 2003. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2. | approximately the 95 % confidence leve | | | e lacit | | | | | | |---|--------------|----------------|----------|-------------|--------------|----------------|-----------------|----------| | Uncertainty Component | Tol. (±%) | Prob.
Dist. | Div. | Ci
(1 g) | Ci
(10 g) | 1 g Ui
(±%) | 10 g Ui
(±%) | Vi | | M | leasurem | ent Syst | em | | | | | | | Probe Calibration | 5.8 | N | 1 | 1 | 1 | 5.80 | 5.80 | ∞ | | Axial Isotropy | 3.5 | R | √3 | 0.7 | 0.7 | 1.43 | 1.43 | ∞ | | Hemispherical Isotropy | 5.9 | R | √3 | 0.7 | 0.7 | 2.41 | 2.41 | ∞ | | Boundary Effect | 1 | R | √3 | 1 | 1 | 0.58 | 0.58 | ∞ | | Linearity | 4.7 | R | √3 | 1 | 1 | 2.71 | 2.71 | ∞ | | System Detection Limits | 1 | R | √3 | 1 | 1 | 0.58 | 0.58 | ∞ | | Modulation response | 3 | N | 1 | 1 | 1 | 3.00 | 3.00 | ∞ | | Readout Electronics | 0.5 | N | 1 | 1 | 1 | 0.50 | 0.50 | ∞ | | Response Time | 0 | R | √3 | 1 | 1 | 0.00 | 0.00 | ∞ | | Integration Time | 1.4 | R | √3 | 1 | 1 | 0.81 | 0.81 | ∞ | | RF Ambient Conditions - Noise | 3 | R | √3 | 1 | 1 | 1.73 | 1.73 | ∞ | | RF Ambient Conditions - Reflections | 3 | R | √3 | 1 | 1 | 1.73 | 1.73 | ∞ | | Probe Positioner Mechanical Tolerance | 1.4 | R | √3 | 1 | 1 | 0.81 | 0.81 | ∞ | | Probe Positioning with respect to Phantom | 1.4 | R | √3 | 1 | 1 | 0.81 | 0.81 | ∞ | | Shell | 1.4 | | √ J | 1 | ' | 0.61 | 0.61 | ~ | | Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation | 2.3 | R | √3 | 1 | 1 | 1.33 | 1.33 | ∞ | | | Test sam | nple Rela | ited | | | | | | | Test Sample Positioning | 2.6 | N | 1 | 1 | 1 | 2.60 | 2.60 | 11 | | Device Holder Uncertainty | 3 | N | 1 | 1 | 1 | 3.00 | 3.00 | 7 | | Output Power Variation - SAR drift | 5 | R | √3 | 1 | 1 | 2.89 | 2.89 | ∞ | | measurement | | | ļ . | | | | | - 0 | | SAR scaling | 2 m and T | R Day | √3 | 1 | 1 | 1.15 | 1.15 | ∞ | | | m and Ti | ssue Pai | amete | ers⊔
T | Π | Т | | 1 | | Phantom Uncertainty (shape and thickness tolerances) | 4 | R | √3 | 1 | 1 | 2.31 | 2.31 | ∞ | | Uncertainty in SAR correction for deviation | 2 | N | 1 | 1 | 0.84 | 2.00 | 1.68 | ∞ | | (in permittivity and conductivity) | | IN | ı ı | 1 | 0.04 | 2.00 | 1.00 | ~ | | Liquid Conductivity (temperature | 2.5 | N | 1 | 0.78 | 0.71 | 1.95 | 1.78 | 5 | | uncertainty) | 1 | 1 | <u> </u> | | - | | | | | Liquid conductivity - measurement uncertainty | 4 | N | 1 | 0.23 | 0.26 | 0.92 | 1.04 | 5 | | Liquid permittivity (temperature uncertainty) | 2.5 | N | 1 | 0.78 | 0.71 | 1.95 | 1.78 | ∞ | | Liquid permittivity - measurement uncertainty | 5 | N | 1 | 0.23 | 0.26 | 1.15 | 1.30 | ∞ | | Combined Standard Uncertainty | | RSS | | | | 10.63 | 10.54 | | | Expanded Uncertainty | | | <u> </u> | <u> </u> | | | | | | (95% Confidence interval) | | k | | | | 21.26 | 21.08 | | | | | | | | | | | | # 6. RF Exposure Positions ## 6.1. Tablet host platform exposure conditions Refer to KDB616217 D04, when the modular approach is used, transmitters and modules must be initially tested for standalone operations in generic host conditions according to the following minimum test separation distance and antenna installation requirements for incorporation in the tablet platform. The separation distance required for incorporation in qualified hosts is described in KDB 447498; item 5) of section 4.1 and item 1) of section 5.2.2 etc. Report No.: S20120705310001 - \leq 5 mm between the antenna and user for both back surface and edge exposure conditions - the antennas used by the host must have been tested for equipment approval or qualify for SAR test exclusion - the antenna polarization, physical orientation, rotation and installation configurations used by the host must have been tested for compliance or qualify for test exclusion - when the SAR Test Exclusion Threshold in KDB 447498 applies, a test separation distance of 5 mm is required to determine test exclusion for the tablet platform The antennas embedded in tablets are typically ≤ 5 mm from the outer housing. The required antenna to user test separation distance is a "not to exceed test" distance required to apply the modular approach. Instead of the typical zero gap tablet edge test requirement between the edge of a tablet and the user, when an antenna has been tested at ≤ 5 mm according to the modular approach it can be incorporated into tablets with at least twice the tested distance from the outer housing of the tablet edge; otherwise, the tablet edge zero gap test requirement applies. When the dedicated host approach is applied, the back surface and edges of the tablet should be tested for SAR compliance with the tablet touching the phantom. # 7. RF Output Power # 7.1. WLAN & Bluetooth Output Power | | | Frequency | Av | erage Output I | Power (dBm) |) | | |---------|---------|-----------|---------|----------------|-------------|-------|--------------| | Mode | Channel | (MHz) | Tune-up | ANT1 | Tune-up | ANT2 | Duty Cycle % | | | 1 | 2412 | 14.50 | 14.35 | 14.50 | 14.33 | 99% | | 802.11b | 6 | 2437 | 14.50 | 14.36 | 14.50 | 14.01 | 99% | | | 11 | 2462 | 14.50 | 14.49 |
14.50 | 14.48 | 99% | | | 1 | 2412 | 14.00 | 13.49 | 14.00 | 13.34 | 99% | | 802.11g | 6 | 2437 | 14.00 | 13.88 | 14.00 | 13.62 | 99% | | | 11 | 2462 | 12.50 | 12.16 | 12.50 | 12.12 | 99% | | 000.44 | 1 | 2412 | 13.00 | 12.38 | 13.00 | 12.47 | 99% | | 802.11n | 6 | 2437 | 13.00 | 12.37 | 13.00 | 12.17 | 99% | | HT20 | 11 | 2462 | 13.00 | 12.52 | 13.00 | 12.24 | 99% | | 000 44 | 3 | 2422 | 12.00 | 11.74 | 12.00 | 11.62 | 98% | | 802.11n | 6 | 2437 | 12.00 | 11.64 | 12.00 | 11.94 | 98% | | HT40 | 9 | 2452 | 12.00 | 11.47 | 12.00 | 11.39 | 98% | NOTE: Power measurement results of WLAN 2.4G. | | | Frequency | A۱ | /erage Outpu | t Power (dBm | 1) | Duty Cyala 9/ | | |-------------------|---------|-----------|---------|--------------|--------------|-------|---------------|--| | Mode | Channel | (MHz) | Tune-up | ANT1 | Tune-up | ANT2 | Duty Cycle % | | | | 36 | 5180 | 13.50 | 12.68 | 13.00 | 12.86 | 99% | | | 802.11a | 40 | 5200 | 13.50 | 13.02 | 13.00 | 12.99 | 99% | | | | 48 | 5240 | 13.50 | 13.36 | 13.00 | 12.63 | 99% | | | | 36 | 5180 | 13.00 | 12.49 | 13.00 | 12.09 | 99% | | | 802.11n | 40 | 5200 | 13.00 | 12.57 | 13.00 | 12.62 | 99% | | | HT20 | 48 | 5240 | 13.00 | 12.16 | 13.00 | 12.93 | 99% | | | 802.11n | 38 | 5190 | 13.00 | 11.78 | 13.00 | 12.17 | 98% | | | HT40 | 46 | 5230 | 13.00 | 12.12 | 13.00 | 11.84 | 98% | | | | 36 | 5180 | 13.00 | 11.76 | 13.00 | 11.81 | 99% | | | 802.11ac | 40 | 5200 | 13.00 | 11.80 | 13.00 | 11.90 | 99% | | | VHT20 | 48 | 5240 | 13.00 | 12.14 | 13.00 | 12.79 | 99% | | | 802.11ac | 38 | 5190 | 11.00 | 10.56 | 11.00 | 10.57 | 98% | | | VHT40 | 46 | 5230 | 11.00 | 10.91 | 11.00 | 10.93 | 98% | | | 802.11ac
VHT80 | 42 | 5210 | 11.00 | 10.18 | 10.00 | 9.38 | 95% | | NOTE: Power measurement results of WLAN 5.2G. | | | Frequency | Av | | | | | |------|---------|-----------|---------|------|---------|------|--------------| | Mode | Channel | (MHz) | Tune-up | ANT1 | Tune-up | ANT2 | Duty Cycle % | 52 5260 13.50 13.06 13.50 13.01 99% 802.11a 56 5280 13.50 13.20 13.50 13.18 99% 99% 64 5320 13.50 13.43 13.50 13.36 52 5260 13.00 12.20 13.00 12.56 99% 802.11n 99% 5280 13.00 12.34 13.00 12.75 56 HT20 64 5320 13.00 12.55 13.00 12.96 99% 5270 13.00 12.00 11.78 98% 802.11n 54 11.80 HT40 62 5310 13.00 12.01 12.00 11.93 98% 52 5260 13.00 11.71 13.00 11.84 99% 802.11ac 56 5280 13.00 11.89 13.00 11.97 99% VHT20 64 5320 13.00 12.08 13.00 12.22 99% 802.11ac 54 5270 12.00 10.92 12.00 10.88 98% VHT40 62 5310 12.00 11.17 12.00 11.14 98% 802.11ac 58 5290 10.00 9.87 10.00 9.80 95% VHT80 NOTE: Power measurement results of WLAN 5.3G. | | | Frequency | Д | verage Outpu | ıt Power (dBm |) | Duty | |-----------------|---------|-----------|---------|--------------|---------------|-------|---------| | Mode | Channel | (MHz) | Tune-up | ANT1 | Tune-up | ANT2 | Cycle % | | | 100 | 5500 | 13.00 | 12.71 | 13.50 | 12.56 | 99% | | 802.11a | 120 | 5600 | 13.00 | 12.39 | 13.50 | 13.08 | 99% | | | 144 | 5720 | 13.00 | 12.93 | 13.50 | 12.73 | 99% | | 802.11n
HT20 | 100 | 5500 | 13.00 | 12.20 | 13.50 | 11.96 | 99% | | | 120 | 5600 | 13.00 | 12.76 | 13.50 | 12.54 | 99% | | | 144 | 5720 | 13.00 | 12.49 | 13.50 | 13.07 | 99% | | | 102 | 5510 | 12.00 | 11.48 | 13.00 | 11.70 | 98% | | 802.11n | 118 | 5590 | 12.00 | 11.87 | 13.00 | 12.11 | 98% | | HT40 | 142 | 5710 | 12.00 | 11.50 | 13.00 | 12.15 | 98% | | | 100 | 5500 | 13.00 | 11.40 | 13.00 | 11.55 | 99% | | 802.11ac | 120 | 5600 | 13.00 | 11.97 | 13.00 | 12.13 | 99% | | VHT20 | 144 | 5720 | 13.00 | 12.06 | 13.00 | 12.18 | 99% | | | 102 | 5510 | 11.00 | 10.51 | 12.00 | 10.37 | 98% | | 802.11ac | 118 | 5590 | 11.00 | 10.89 | 12.00 | 10.77 | 98% | | VHT40 | 142 | 5710 | 11.00 | 10.54 | 12.00 | 11.74 | 98% | | 000.44 | 106 | 5530 | 11.00 | 9.68 | 11.00 | 9.76 | 95% | | 802.11ac | 122 | 5610 | 11.00 | 10.14 | 11.00 | 10.23 | 95% | | VHT80 | 138 | 5690 | 11.00 | 10.14 | 11.00 | 10.23 | 95% | NOTE: Power measurement results of WLAN 5.6G. Average Output Power (dBm) Frequency Duty Mode Channel (MHz) Tune-up ANT1 ANT2 Cycle % Tune-up 12.80 13.00 99% 149 5745 14.00 12.78 14.00 13.18 12.79 802.11a 157 5785 13.00 99% 12.74 165 5825 14.00 12.70 13.00 99% 12.19 12.22 99% 149 5745 13.00 13.00 802.11n 12.21 157 5785 13.00 13.00 12.28 99% HT20 5825 13.00 12.59 13.00 12.68 99% 165 802.11n 151 5755 12.00 11.79 12.00 11.72 98% HT40 159 5795 12.00 11.89 12.00 11.94 98% 149 5745 13.00 11.61 13.00 11.70 99% 802.11ac 157 5785 13.00 11.67 13.00 11.73 99% VHT20 13.00 12.12 13.00 12.16 99% 165 5825 151 5755 11.00 10.24 11.00 10.70 98% 802.11ac VHT40 159 5795 11.00 10.34 11.00 10.74 98% 802.11ac 95% 155 5775 10.00 9.86 10.00 9.72 Report No.: S20120705310001 NOTE: Power measurement results of WLAN 5.8G. VHT80 | | Peak Output Power (dBm) | | | | | | | | | |--------|-------------------------|---------|---------|-------|--------|--|--|--|--| | | Data Data | T | Channel | | | | | | | | | Data Rates | Tune-up | 0CH | 39CH | 78CH | | | | | | BR+EDR | 1DH5 | 5.100 | 4.694 | 5.014 | 3.491 | | | | | | | 2DH5 | 1.000 | 0.446 | 0.812 | -0.574 | | | | | | | 3DH5 | 1.000 | 0.583 | 0.948 | -0.517 | | | | | | | Channel | Tune-up | Peak Output Power (dBm) | |-----|---------|---------|-------------------------| | 5 | 0CH | 3.100 | 2.945 | | BLE | 19CH | 3.100 | 3.071 | | | 39CH | 3.100 | 1.891 | NOTE: Power measurement results of Bluetooth. 1Mbps highest duty cycle is 77%. # 8. Antenna Location Note: Since the confidentiality request of EUT, the antenna location example diagram see as above. | Distance of the Antenna to the EUT surface/edge | | | | | | | |---|---|---|-----|----|---|-----| | Antennas Front Side Back Side Left Side Right Side Top Side Bottom Side | | | | | | | | WLAN 1 | 5 | 5 | 230 | 22 | 5 | 175 | | WLAN 2 & Bluetooth 5 5 45 190 175 5 | | | | | | | Note: When the minimum separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion. ANT1 | ANT1 | | | | | |-----------------------------------|------------------------------------|-------------------|--|--| | Positions for SAR tests | | | | | | Test separation distances ≤ 50 mm | | | | | | Exposure Positions | Tune-up Maximum p | ower of WLAN 2.4G | | | | Exposure Fositions | 14.5 | dBm | | | | Front Side | Antenna to user(mm) | 5 | | | | | SAR exclusion threshold | 8.8 | | | | | SAR testing required? | YES | | | | | Antenna to user(mm) | 5 | | | | Back Side | SAR exclusion threshold | 8.8 | | | | | SAR testing required? | YES | | | | | Antenna to user(mm) | 22 | | | | Right Side | SAR exclusion threshold | 2.0 | | | | | SAR testing required? | NO | | | | | Antenna to user(mm) | 5 | | | | Top Side | SAR exclusion threshold | 8.8 | | | | | SAR testing required? | YES | | | | Evposura Positiona | Tune-up Maximum power of WLAN 5.2G | | | | | Exposure Positions | 13.5dBm | | | | | | Antenna to user(mm) | 5 | | | | Front Side | SAR exclusion threshold | 10.2 | | | | | SAR testing required? | YES | | | | | Antenna to user(mm) | 5 | | | | Back Side | SAR exclusion threshold | 10.2 | | | | | SAR testing required? | YES | | | | | Antenna to user(mm) | 22 | | | | Right Side | SAR exclusion threshold | 2.3 | | | | | SAR testing required? | NO | | | | | Antenna to user(mm) | 5 | | | | Top Side | SAR exclusion threshold | 10.2 | | | | | SAR testing required? | YES | | | | Exposure Positions | Tune-up Maximum power of WLAN 5.3G | | | | | LAPOSUIE FUSILIONS | 13.5dBm | | | | | Front Side | Antenna to user(mm) | 5 | | | | | SAR exclusion threshold | 10.3 | | | | | SAR testing required? | YES | | | | | Antenna to user(mm) | 5 | | | | Back Side | SAR exclusion threshold | 10.3 | | | | | SAR testing required? | YES | | | | | Certificate #4298.01 | | | |---------------------|------------------------------------|------|--| | | Antenna to user(mm) | 22 | | | Right Side | SAR exclusion threshold | 2.3 | | | | SAR testing required? | NO | | | | Antenna to user(mm) | 5 | | | Top Side | SAR exclusion threshold | 10.3 | | | | SAR testing required? | YES | | | Francisco Decitions | Tune-up Maximum power of WLAN 5.6G | | | | Exposure Positions | 13dBm | | | | | Antenna to user(mm) | 5 | | | Front Side | SAR exclusion threshold | 9.5 | | | | SAR testing required? | YES | | | | Antenna to user(mm) | 5 | | | Back Side | SAR exclusion threshold | 9.5 | | | | SAR testing required? | YES | | | | Antenna to user(mm) | 22 | | | Right Side | SAR exclusion threshold | 2.2 | | | | SAR testing required? | NO | | | | Antenna to user(mm) | 5 | | | Top Side | SAR exclusion threshold | 9.5 | | | | SAR testing required? | YES | | | Evacura Positiona | Tune-up Maximum power of WLAN 5.8G | | | | Exposure Positions | 14dBm | | | | | Antenna to user(mm) | 5 | | | Front Side | SAR exclusion threshold | 12.1 | | | | SAR testing required? | YES | | | | Antenna to user(mm) | 5 | | | Back Side | SAR exclusion threshold | 12.1 | | | | SAR testing required? | YES | | | Right Side | Antenna to user(mm) | 22 | | | | SAR exclusion threshold | 2.8 | | | | SAR testing required? | NO | | | | Antenna to user(mm) | 5 | | | Top Side | SAR exclusion threshold | 12.1 | | | | SAR testing required? | YES | | NOTE: Refer to section 4.3.1 of KDB 447498 D01. | Positions for SAR tests | | | | |-----------------------------------|-------------------|-------------------|--| | Test separation distances > 50 mm | | | | | E D 37 | Tune-up Maximum p | ower of WLAN 2.4G | | | Exposure Positions | 14.5dBm | 28.18mW | | | | Certificate #4298.01 | Report No.: 320120703310001 | | | | |---------------------|------------------------------------|-----------------------------|--|--|--| | | Antenna to user(mm) | 230 | | | | | Left Side | SAR exclusion threshold(mW) | 1896 | | | | | | SAR testing required? | NO | | | | | | Antenna to user(mm) | 175 | | | | | Bottom Side | SAR exclusion threshold(mW) | 1346 | | | | | | SAR testing required? | NO | | | | | | Tune-up Maximum p | ower of WLAN 5.2G | | | | | Exposure Positions | 13.5dBm 22.39mW |
| | | | | | Antenna to user(mm) | 230 | | | | | Left Side | SAR exclusion threshold(mW) | 1866 | | | | | | SAR testing required? | NO | | | | | | Antenna to user(mm) | 175 | | | | | Bottom Side | SAR exclusion threshold(mW) | 1316 | | | | | | SAR testing required? | NO | | | | | | <u> </u> | ower of WLAN 5.3G | | | | | Exposure Positions | 13.5dBm | 22.39mW | | | | | | Antenna to user(mm) | 230 | | | | | Left Side | SAR exclusion threshold(mW) | 1865 | | | | | | SAR testing required? | NO | | | | | | Antenna to user(mm) | 175 | | | | | Bottom Side | SAR exclusion threshold(mW) | 1315 | | | | | | SAR testing required? | NO | | | | | | Tune-up Maximum power of WLAN 5.6G | | | | | | Exposure Positions | 13dBm | 19.95mW | | | | | | Antenna to user(mm) | 230 | | | | | Left Side | SAR exclusion threshold(mW) | 1862 | | | | | | SAR testing required? | NO | | | | | | Antenna to user(mm) | 175 | | | | | Bottom Side | SAR exclusion threshold(mW) | 1312 | | | | | | SAR testing required? | NO | | | | | | Tune-up Maximum power of WLAN 5.8G | | | | | | Exposure Positions | 14dBm | 25.12mW | | | | | Left Side | Antenna to user(mm) | 230 | | | | | | SAR exclusion threshold(mW) | 1862 | | | | | | SAR testing required? | NO | | | | | | Antenna to user(mm) | 175 | | | | | Bottom Side | SAR exclusion threshold(mW) | 1312 | | | | | | SAR testing required? | NO | | | | | NOTE D () () 40.4 | (I/DD 447400 D04 | | | | | NOTE: Refer to section 4.3.1 of KDB 447498 D01. **Back Side** Left Side ANT2 Positions for SAR tests Test separation distances ≤ 50 mm Tune-up Maximum power of WLAN 2.4G **Exposure Positions** 14.5dBm Antenna to user(mm) 5 8.8 Front Side SAR exclusion threshold SAR testing required? **YES** Antenna to user(mm) 5 **Back Side** SAR exclusion threshold 8.8 SAR testing required? **YES** Antenna to user(mm) 45 Left Side SAR exclusion threshold 1.0 SAR testing required? NO 5 Antenna to user(mm) **Bottom Side** SAR exclusion threshold 8.8 SAR testing required? YES Tune-up Maximum power of WLAN 5.2G **Exposure Positions** 13dBm Antenna to user(mm) 5 Front Side 9.1 SAR exclusion threshold SAR testing required? **YES** 5 Antenna to user(mm) 9.1 **Back Side** SAR exclusion threshold SAR testing required? **YES** Antenna to user(mm) 45 Left Side 1.0 SAR exclusion threshold SAR testing required? NO 5 Antenna to user(mm) **Bottom Side** SAR exclusion threshold 9.1 SAR testing required? **YES** Tune-up Maximum power of WLAN 5.3G **Exposure Positions** 13.5dBm Antenna to user(mm) 5 Front Side 10.3 SAR exclusion threshold SAR testing required? YES Antenna to user(mm) 5 SAR exclusion threshold SAR testing required? Antenna to user(mm) 10.3 **YES** 45 | | Certificate #4298.01 | | | | |---------------------|------------------------------------|------|--|--| | | SAR exclusion threshold | 1.1 | | | | | SAR testing required? | NO | | | | | Antenna to user(mm) | 5 | | | | Bottom Side | SAR exclusion threshold | 10.3 | | | | | SAR testing required? | YES | | | | Francisco Desilient | Tune-up Maximum power of WLAN 5.6G | | | | | Exposure Positions | 13.5dBm | | | | | | Antenna to user(mm) | 5 | | | | Front Side | SAR exclusion threshold | 10.7 | | | | | SAR testing required? | YES | | | | | Antenna to user(mm) | 5 | | | | Back Side | SAR exclusion threshold | 10.7 | | | | | SAR testing required? | YES | | | | | Antenna to user(mm) | 45 | | | | Left Side | SAR exclusion threshold | 1.2 | | | | | SAR testing required? | NO | | | | | Antenna to user(mm) | 5 | | | | Bottom Side | SAR exclusion threshold | 10.7 | | | | | SAR testing required? | YES | | | | Francisco Desilient | Tune-up Maximum power of WLAN 5.8G | | | | | Exposure Positions | 13dBm | | | | | | Antenna to user(mm) | 5 | | | | Front Side | SAR exclusion threshold | 9.6 | | | | | SAR testing required? | YES | | | | | Antenna to user(mm) | 5 | | | | Back Side | SAR exclusion threshold | 9.6 | | | | | SAR testing required? | YES | | | | | Antenna to user(mm) | 45 | | | | Left Side | SAR exclusion threshold | 1.1 | | | | | SAR testing required? | NO | | | | | Antenna to user(mm) | 5 | | | | Bottom Side | SAR exclusion threshold | 9.6 | | | | | SAR testing required? | YES | | | NOTE: Refer to section 4.3.1 of KDB 447498 D01. | Positions for SAR tests | | | | |-----------------------------------|------------------------------------|--------|--| | Test separation distances > 50 mm | | | | | | Tune-up Maximum power of WLAN 2.4G | | | | Exposure Positions | 14.5dBm | 28.2mW | | | Right Side | Antenna to user(mm) | 190 | | | SAR exclusion threshold(mW) | | Certificate #4298.01 | 1100011110 02012010001 | | | |--|-----------------------|------------------------------------|------------------------|--|--| | Antenna to user(mm) | | SAR exclusion threshold(mW) | 1496 | | | | Top Side | | SAR testing required? | NO | | | | SAR testing required? NO Tune-up Maximum power of WLAN 5.2G 13dBm 19.95mW Antenna to user(mm) 190 SAR exclusion threshold(mW) 1466 SAR testing required? NO Antenna to user(mm) 175 SAR exclusion threshold(mW) 1316 SAR testing required? NO Tune-up Maximum power of WLAN 5.3G 13.5dBm 22.39mW Antenna to user(mm) 190 SAR exclusion threshold(mW) 1465 SAR testing required? NO Antenna to user(mm) 190 SAR exclusion threshold(mW) 1465 SAR testing required? NO Antenna to user(mm) 175 SAR exclusion threshold(mW) 1315 SAR testing required? NO Antenna to user(mm) 175 SAR testing required? NO Tune-up Maximum power of WLAN 5.6G 13.5dBm 22.39mW Antenna to user(mm) 190 SAR testing required? NO Tune-up Maximum power of WLAN 5.6G 13.5dBm 22.39mW Antenna to user(mm) 190 SAR testing required? NO Antenna to user(mm) 190 SAR testing required? NO Antenna to user(mm) 175 SAR testing required? NO Antenna to user(mm) 175 SAR testing required? NO Antenna to user(mm) 175 SAR testing required? NO Tune-up Maximum power of WLAN 5.8G 13dBm 19.95mW Antenna to user(mm) 190 SAR exclusion threshold(mW) 1462 SAR testing required? NO Antenna to user(mm) 190 SAR exclusion threshold(mW) 1462 SAR testing required? NO Antenna to user(mm) 190 SAR exclusion threshold(mW) 1462 SAR testing required? NO Antenna to user(mm) 190 SAR exclusion threshold(mW) 1462 SAR testing required? NO Antenna to user(mm) 190 SAR exclusion threshold(mW) 1462 SAR testing required? NO Antenna to user(mm) 175 SAR testing required? NO Antenna to user(mm) 175 SAR exclusion threshold(mW) 1462 SAR testing required? NO Antenna to user(mm) 175 SAR exclusion threshold(mW) 1462 SAR exclusion threshold(mW) 1 | | Antenna to user(mm) | 175 | | | | Tune-up Maximum power of WLAN 5.2G 13dBm 19.95mW | Top Side | SAR exclusion threshold(mW) | 1346 | | | | Right Side | | SAR testing required? | NO | | | | Antenna to user(mm) 190 | Formation Designation | Tune-up Maximum power of WLAN 5.2G | | | | | Right Side | Exposure Positions | 13dBm | 19.95mW | | | | SAR testing required? NO | | Antenna to user(mm) | 190 | | | | Antenna to user(mm) | Right Side | SAR exclusion threshold(mW) | 1466 | | | | Top Side | | SAR testing required? | NO | | | | SAR testing required? NO | | Antenna to user(mm) | 175 | | | | Tune-up Maximum power of WLAN 5.3G | Top Side | SAR exclusion threshold(mW) | 1316 | | | | Exposure Positions | | SAR testing required? | NO | | | | Antenna to user(mm) 190 | F 5 % | Tune-up Maximum p | ower of WLAN 5.3G | | | | SAR exclusion threshold(mW) | Exposure Positions | 13.5dBm | 22.39mW | | | | SAR testing required? NO | | Antenna to user(mm) | 190 | | | | Antenna to user(mm) | Right Side | SAR exclusion threshold(mW) | 1465 | | | | SAR exclusion threshold(mW) 1315 | | SAR testing required? | NO | | | | SAR testing required? NO | | Antenna to user(mm) | 175 | | | | Tune-up Maximum power of WLAN 5.6G | Top Side | SAR exclusion threshold(mW) | 1315 | | | | Antenna to user(mm) 190 | | SAR testing required? | NO | | | | Antenna to user(mm) 190 | Formation Designation | Tune-up Maximum power of WLAN 5.6G | | | | | Right Side SAR exclusion threshold(mW) 1462
SAR testing required? NO Antenna to user(mm) 175 SAR exclusion threshold(mW) 1312 SAR testing required? NO Tune-up Maximum power of WLAN 5.8G 13dBm 13dBm 19.95mW Antenna to user(mm) 190 SAR exclusion threshold(mW) 1462 SAR testing required? NO Antenna to user(mm) 175 Top Side SAR exclusion threshold(mW) 1312 | Exposure Positions | 13.5dBm | 22.39mW | | | | SAR testing required? NO | | Antenna to user(mm) | 190 | | | | Antenna to user(mm) | Right Side | SAR exclusion threshold(mW) | 1462 | | | | SAR exclusion threshold(mW) 1312 SAR testing required? NO Tune-up Maximum power of WLAN 5.8G 13dBm 19.95mW Antenna to user(mm) 190 SAR exclusion threshold(mW) 1462 SAR testing required? NO Antenna to user(mm) 175 Top Side SAR exclusion threshold(mW) 1312 | | SAR testing required? | NO | | | | SAR testing required? NO | | Antenna to user(mm) | 175 | | | | Tune-up Maximum power of WLAN 5.8G | Top Side | SAR exclusion threshold(mW) | 1312 | | | | Exposure Positions 13dBm 19.95mW Antenna to user(mm) 190 SAR exclusion threshold(mW) 1462 SAR testing required? NO Antenna to user(mm) 175 Top Side SAR exclusion threshold(mW) 1312 | | SAR testing required? | NO | | | | 13dBm | Evenoure Positions | Tune-up Maximum power of WLAN 5.8G | | | | | Right Side SAR exclusion threshold(mW) 1462 SAR testing required? NO Antenna to user(mm) 175 Top Side SAR exclusion threshold(mW) 1312 | Exposure Positions | 13dBm | 19.95mW | | | | SAR testing required? NO | | Antenna to user(mm) | 190 | | | | Antenna to user(mm) 175 Top Side SAR exclusion threshold(mW) 1312 | Right Side | SAR exclusion threshold(mW) | 1462 | | | | Top Side SAR exclusion threshold(mW) 1312 | | SAR testing required? | NO | | | | | | Antenna to user(mm) | 175 | | | | SAR testing required? NO | Top Side | SAR exclusion threshold(mW) | 1312 | | | | | | SAR testing required? | NO | | | NOTE: Refer to section 4.3.1 of KDB 447498 D01. #### 9. Stand-alone SAR test exclusion Refer to FCC KDB 447498D01, the 1-g SAR and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by: Report No.: S20120705310001 [(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f_{(GHZ)}}$] ≤ 3.0 for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where: - f_(GHZ) is the RF channel transmit frequency in GHz - Power and distance are rounded to the nearest mW and mm before calculation - · The result is rounded to one decimal place for comparison When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion. | Mode | P_{max} | P _{max} | Distance | f | Calculation | SAR Exclusion | SAR test | |-----------|------------------|------------------|----------|-------|-------------|---------------|-----------| | Mode | (dBm) | (mW) | (mm) | (GHz) | Result | threshold | exclusion | | Bluetooth | 5.10 | 3.24 | 5 | 2.480 | 1.02 | 3.00 | Yes | NOTE: Standalone SAR test exclusion for Bluetooth #### 10. SAR Results #### 10.1. SAR measurement Result #### 10.1.1. SAR measurement Result of WLAN 2.4G | Test Position of Body | Test
channel
/Freq. | Test
Mode | | Value
/kg)
10g | Power
Drift
(±5%) | Conducted power (dBm) | Tune-up
power
(dBm) | Duty
Cycle
% | Scaled
SAR
1g | Date | |-----------------------|---|--------------|-------|----------------------|-------------------------|-----------------------|---------------------------|--------------------|---------------------|------------| | with 0mm | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | . 9 | . • • | . , | , , | (==::) | ,, | (W/Kg) | | | | T | T | T | T | AN | T1 | T | 1 | | | | Front Side | 6/2437 | 802.11
b | 0.106 | 0.060 | -0.80 | 14.36 | 14.50 | 99% | 0.111 | 2020/12/23 | | Back Side | 6/2437 | 802.11
b | 0.220 | 0.109 | -0.98 | 14.36 | 14.50 | 99% | 0.230 | 2020/12/23 | | Top Side | 6/2437 | 802.11
b | 0.100 | 0.058 | 1.23 | 14.36 | 14.50 | 99% | 0.104 | 2020/12/23 | | | | | | | AN ⁻ | T2 | | | | | | Front Side | 6/2437 | 802.11
b | 0.330 | 0.165 | -2.25 | 14.01 | 14.50 | 99% | 0.373 | 2020/12/23 | | Back Side | 6/2437 | 802.11
b | 1.181 | 0.509 | -0.22 | 14.01 | 14.50 | 99% | 1.335 | 2020/12/23 | | Bottom
Side | 6/2437 | 802.11
b | 0.596 | 0.353 | 0.61 | 14.01 | 14.50 | 99% | 0.674 | 2020/12/23 | | Back Side | 1/2412 | 802.11
b | 0.940 | 0.415 | 0.25 | 14.33 | 14.50 | 99% | 0.987 | 2020/12/23 | ge 38 of 108 Report No.: S20120705310001 | Back Side | 11/2462 | 802.11
b | 1.323 | 0.551 | 2.47 | 14.48 | 14.50 | 99% | 1.343 | 2020/12/23 | |-----------|---------|-------------|-------|-------|------|-------|-------|------|-------|------------| | Back Side | 11/2462 | 802.11 | 1.315 | 0.548 | 0.32 | 14.48 | 14.50 | 99% | 1.334 | 2020/12/23 | | Repeated | 11/2402 | b | 1.313 | 0.546 | 0.32 | 14.40 | 14.50 | 9970 | 1.334 | 2020/12/23 | NOTE: Body SAR test results of WLAN 2.4G #### 10.1.2. SAR measurement Result of WLAN 5.2G | Test Position of Body with 0mm | Test
channel
/Freq. | Test
Mode | | Value
/kg)
10g | Power Drift (±5%) | Conducted power (dBm) | Tune-up
power
(dBm) | Duty
Cycle
% | Scaled
SAR
1g
(W/Kg) | Date | |--------------------------------|---------------------------|--------------|-------|----------------------|-------------------|--|---------------------------|--------------------|-------------------------------|------------| | | | | | | ANT | <u>. </u> | | | (*****3) | | | Front Side | 40/5200 | 802.11a | 0.626 | 0.234 | -2.10 | 13.02 | 13.50 | 99% | 0.706 | 2020/12/24 | | Back Side | 40/5200 | 802.11a | 1.165 | 0.369 | -0.32 | 13.02 | 13.50 | 99% | 1.314 | 2020/12/24 | | Back Side
Repeated | 40/5200 | 802.11a | 1.158 | 0.364 | 0.28 | 13.02 | 13.50 | 99% | 1.306 | 2020/12/24 | | Top Side | 40/5200 | 802.11a | 0.553 | 0.218 | 1.24 | 13.02 | 13.50 | 99% | 0.624 | 2020/12/24 | | Back Side | 36/5180 | 802.11a | 1.100 | 0.376 | -4.88 | 12.68 | 13.50 | 99% | 1.342 | 2020/12/24 | | Back Side | 48/5240 | 802.11a | 0.955 | 0.306 | -3.14 | 13.36 | 13.50 | 99% | 0.996 | 2020/12/24 | | | | | | | ANT | 2 | | | | | | Front Side | 40/5200 | 802.11a | 0.789 | 0.255 | 2.76 | 12.99 | 13.00 | 99% | 0.799 | 2020/12/24 | | Back Side | 40/5200 | 802.11a | 1.303 | 0.404 | -1.12 | 12.99 | 13.00 | 99% | 1.319 | 2020/12/24 | | Back Side
Repeated | 40/5200 | 802.11a | 1.297 | 0.400 | 0.13 | 12.99 | 13.00 | 99% | 1.313 | 2020/12/24 | | Bottom
Side | 40/5200 | 802.11a | 0.652 | 0.246 | 1.34 | 12.99 | 13.00 | 99% | 0.660 | 2020/12/24 | | Back Side | 36/5180 | 802.11a | 0.923 | 0.302 | 3.65 | 12.86 | 13.00 | 99% | 0.963 | 2020/12/24 | | Back Side | 48/5240 | 802.11a | 1.198 | 0.385 | -3.92 | 12.63 | 13.00 | 99% | 1.318 | 2020/12/24 | NOTE: Body SAR test results of WLAN 5.2G #### 10.1.3. SAR measurement Result of WLAN 5.3G | Test Position of Body with 0mm | Test channel /Freq. | Test
Mode | | Value
/kg)
10g | Power Drift (±5%) | Conducted power (dBm) | Tune-up
power
(dBm) | Duty
Cycle
% | Scaled
SAR
1g
(W/Kg) | Date | |--------------------------------|---------------------|--------------|-------|----------------------|-------------------|-----------------------|---------------------------|--------------------|-------------------------------|------------| | | | | | | ANT | 1 | 1 | | | | | Front Side | 56/5280 | 802.11a | 0.474 | 0.167 | -0.49 | 13.20 | 13.50 | 99% | 0.513 | 2020/12/24 | | Back Side | 56/5280 | 802.11a | 0.765 | 0.281 | -3.06 | 13.20 | 13.50 | 99% | 0.828 | 2020/12/24 | | Top Side | 56/5280 | 802.11a | 0.451 | 0.159 | 0.22 | 13.20 | 13.50 | 99% | 0.488 | 2020/12/24 | | Back Side | 52/5260 | 802.11a | 0.643 | 0.224 | -2.23 | 13.06 | 13.50 | 99% | 0.719 | 2020/12/24 | |------------|---------|---------|-------|-------|-------|-------|-------|-----|-------|------------| | Back Side | 64/5320 | 802.11a | 0.650 | 0.232 | 1.39 | 13.43 | 13.50 | 99% | 0.667 | 2020/12/24 | | | | | | | ANT | 2 | | | | | | Front Side | 56/5280 | 802.11a | 0.633 | 0.227 | -3.46 | 13.18 | 13.50 | 99% | 0.688 | 2020/12/24 | | Back Side | 56/5280 | 802.11a | 1.183 | 0.382 | -1.10 | 13.18 | 13.50 | 99% | 1.286 | 2020/12/24 | | Back Side | 56/5280 | 802.11a | 1.177 | 0.378 | -1.10 | 13.18 | 13.50 | 99% | 1.280 | 2020/12/24 | | Repeated | 50/5260 | 002.11a | 1.177 | 0.376 | -1.10 | 13.10 | 13.50 | 99% | 1.200 | 2020/12/24 | | Bottom | 56/5280 | 802.11a | 0.598 | 0.219 | -2.32 | 13.18 | 13.50 | 99% | 0.650 | 2020/12/24 | | Side | 50/5260 | 002.11a | 0.596 | 0.219 | -2.32 | 13.10 | 13.50 | 99% | 0.650 | 2020/12/24 | | Back Side | 52/5260 | 802.11a | 1.029 | 0.354 | -1.51 | 13.01 | 13.50 | 99% | 1.164 | 2020/12/24 | | Back Side | 64/5320 | 802.11a | 0.953 | 0.320 | -2.42 | 13.36 | 13.50 | 99% | 0.994 | 2020/12/24 | NOTE: Body SAR test results of WLAN 5.3G #### 10.1.4. SAR measurement Result of WLAN 5.6G | Test Position of Body with 0mm | Test
channel
/Freq. | Test
Mode | | Value
/kg)
10g | Power Drift (±5%) | Conducted power (dBm) | Tune-up
power
(dBm) | Duty
Cycle
% | Scaled
SAR
1g
(W/Kg) | Date | |--------------------------------|---------------------------|--------------|-------|----------------------|-------------------|-----------------------|---------------------------|--------------------|-------------------------------|------------| | | T | T | 1 | Т | ANT | 1 | T | | ı | | | Front
Side | 120/5600 | 802.11a | 0.681 | 0.208 | 2.27 | 12.39 | 13.00 | 99% | 0.792 | 2020/12/18 | | Back
Side | 120/5600 | 802.11a | 0.849 | 0.296 | -2.91 | 12.39 | 13.00 | 99% | 0.987 | 2020/12/18 | | Top Side | 120/5600 | 802.11a | 0.637 | 0.187 | 1.71 | 12.39 | 13.00 | 99% | 0.740 | 2020/12/18 | | Back
Side | 100/5500 | 802.11a | 0.800 | 0.268 | -3.76 | 12.71 | 13.00 | 99% | 0.864 | 2020/12/18 | | Back
Side | 144/5720 | 802.11a | 1.099 | 0.339 | -0.46 | 12.93 | 13.00 | 99% | 1.128 |
2020/12/24 | | Back
Side
Repeated | 144/5720 | 802.11a | 1.092 | 0.335 | 1.23 | 12.93 | 13.00 | 99% | 1.121 | 2020/12/24 | | | | | • | | ANT | 2 | | | | | | Front
Side | 120/5600 | 802.11a | 0.629 | 0.225 | 3.74 | 13.08 | 13.50 | 99% | 0.700 | 2020/12/18 | | Back
Side | 120/5600 | 802.11a | 1.158 | 0.365 | -0.31 | 13.08 | 13.50 | 99% | 1.288 | 2020/12/18 | | Bottom
Side | 120/5600 | 802.11a | 0.602 | 0.205 | -0.88 | 13.08 | 13.50 | 99% | 0.670 | 2020/12/18 | | Back
Side | 100/5500 | 802.11a | 0.800 | 0.268 | -2.90 | 12.56 | 13.50 | 99% | 1.003 | 2020/12/18 | | Back | 144/5720 | 802.11a | 1.189 | 0.365 | 0.21 | 12.73 | 13.50 | 99% | 1.434 | 2020/12/24 | |----------|----------|---------|-------|-------|------|-------|-------|------|-------|------------| | Side | 144/3720 | 002.11a | 1.109 | 0.303 | 0.21 | 12.73 | 13.50 | 9970 | 1.454 | 2020/12/24 | | Back | | | | | | | | | | | | Side | 144/5720 | 802.11a | 1.180 | 0.360 | 0.33 | 12.73 | 13.50 | 99% | 1.423 | 2020/12/24 | | Repeated | | | | | | | | | | | NOTE: Body SAR test results of WLAN 5.6G #### 10.1.5. SAR measurement Result of WLAN 5.8G | Test Position of Body with 0mm | Test
channel
/Freq. | Test
Mode | SAR (W) | | Power Drift (±5%) | Conducted power (dBm) | Tune-up
power
(dBm) | Duty
Cycle
% | Scaled
SAR
1g
(W/Kg) | Date | |--------------------------------|---------------------------|--------------|---------|-------|-------------------|-----------------------|---------------------------|--------------------|-------------------------------|------------| | Front
Side | 157/5785 | 802.11a | 0.490 | 0.152 | 3.28 | 13.18 | 14.00 | 99% | 0.598 | 2020/12/24 | | Back
Side | 157/5785 | 802.11a | 0.777 | 0.251 | -4.65 | 13.18 | 14.00 | 99% | 0.948 | 2020/12/24 | | Top Side | 157/5785 | 802.11a | 0.451 | 0.146 | 2.50 | 13.18 | 14.00 | 99% | 0.550 | 2020/12/24 | | Back
Side | 149/5745 | 802.11a | 0.645 | 0.198 | 3.87 | 12.80 | 14.00 | 99% | 0.859 | 2020/12/24 | | Back
Side | 165/5825 | 802.11a | 0.692 | 0.217 | -1.00 | 12.70 | 14.00 | 99% | 0.943 | 2020/12/24 | | | | | | | ANT | 2 | | | | | | Front
Side | 157/5785 | 802.11a | 0.657 | 0.193 | -3.23 | 12.79 | 13.00 | 99% | 0.697 | 2020/12/24 | | Back
Side | 157/5785 | 802.11a | 1.010 | 0.309 | -1.63 | 12.79 | 13.00 | 99% | 1.071 | 2020/12/24 | | Back
Side
Repeated | 157/5785 | 802.11a | 1.004 | 0.300 | -1.63 | 12.79 | 13.00 | 99% | 1.064 | 2020/12/24 | | Bottom
Side | 157/5785 | 802.11a | 0.616 | 0.188 | 2.94 | 12.79 | 13.00 | 99% | 0.653 | 2020/12/24 | | Back
Side | 149/5745 | 802.11a | 1.007 | 0.311 | 0.79 | 12.78 | 13.00 | 99% | 1.070 | 2020/12/24 | | Back
Side | 165/5825 | 802.11a | 0.804 | 0.250 | -2.95 | 12.74 | 13.00 | 99% | 0.862 | 2020/12/24 | NOTE: Body SAR test results of WLAN 5.8G #### 10.2. Simultaneous Transmission Analysis | NO | Circulton caus Transmission Configurations | Position | |-----|--|----------| | NO. | Simultaneous Transmission Configurations | Body | | 1 | 2.4G Wi-Fi ant 1 + 2.4G Wi-Fi ant 2 | NO | | 2 | 5G Wi-Fi ant 1 + 5G Wi-Fi ant 2 | NO | | 3 | 2.4G Wi-Fi + 5G Wi-Fi | NO | | 4 | 2.4G Wi-Fi + 5G Wi-Fi + Bluetooth | NO | | 5 | 2.4G Wi-Fi + Bluetooth | NO | | 6 | 5G Wi-Fi + Bluetooth | NO | Report No.: S20120705310001 ## 11. Appendix A. Photo documentation Refer to appendix Test Setup photo---SAR 12. Appendix B. System Check Plots | Table of contents | | |---|--| | MEASUREMENT 1 System Performance Check - SID2450 - Body | | | MEASUREMENT 2 System Performance Check - SID5200 - Body | | | MEASUREMENT 3 System Performance Check - SID5400 - Body | | | MEASUREMENT 4 System Performance Check - SID5600 - Body | | | MEASUREMENT 5 System Performance Check - SID5800 - Body | | Report No.: S20120705310001 Date of measurement: 23/12/2020 A. Experimental conditions. | A Experimental containers | | |---------------------------|-----------------------------| | Area Scan | dx=12mm dy=12mm, h= 5.00 mm | | <u>ZoomScan</u> | 7x7x7,dx=5mm dy=5mm dz=5mm | | <u>Phantom</u> | Validation plane | | Device Position | <u>Dipole</u> | | Band | <u>CW2450</u> | | Channels | <u>Middle</u> | | <u>Signal</u> | CW (Crest factor: 1.0) | **B. SAR Measurement Results** | 2450.000000 | |-------------| | 52.301697 | | 14.233566 | | 1.942816 | | 0.420000 | | | Maximum location: X=0.00, Y=1.00 SAR Peak: 8.46 W/kg | SAR 10g (W/Kg) | 2.427285 | |----------------|----------| | SAR 1g (W/Kg) | 5.517270 | Date of measurement: 24/12/2020 A. Experimental conditions. | <u>Area Scan</u> | <u>dx=10mm dy=10mm, h= 2.00 mm</u> | | | | | | |------------------------|------------------------------------|--|--|--|--|--| | <u>ZoomScan</u> | 7x7x12,dx=4mm dy=4mm dz=2mm | | | | | | | <u>Phantom</u> | <u>Validation plane</u> | | | | | | | <u>Device Position</u> | <u>Dipole</u> | | | | | | | <u>Band</u> | <u>CW5200</u> | | | | | | | <u>Channels</u> | <u>Middle</u> | | | | | | | <u>Signal</u> | CW (Crest factor: 1.0) | | | | | | **B. SAR Measurement Results** | Frequency (MHz) | 5200.000000 | |--|-------------| | Relative permittivity (real part) | 50.262845 | | Relative permittivity (imaginary part) | 18.481441 | | Conductivity (S/m) | 5.343842 | | Variation (%) | 4.490000 | Maximum location: X=0.00, Y=6.00 SAR Peak: 49.61 W/kg | SAR 10g (W/Kg) | 5.659184 | |----------------|-----------| | SAR 1g (W/Kg) | 15.598246 | | Z
(m
m) | 0.00 | 2.00 | 4.00 | 6.00 | 8.00 | 10.0
0 | 12.0
0 | 14.0
0 | 16.0
0 | 18.0
0 | 20.0 | 22.0
0 | |-----------------------|-------------|---|-------------|------------|------------|--------------|------------|------------|------------|------------|------------|-------------| | SA
R
(W/
Kg) | 46.6
150 | 27.5
644 | 14.0
668 | 7.05
91 | 3.59
28 | 1.78
02 | 0.89
38 | 0.46
70 | 0.24
75 | 0.13
53 | 0.06
50 | 0.04
000 | | 3/ | | 30. 30. 30. 20. 30. 30. 30. 30. 30. 30. 30. 30. 30. 3 | 0- | 4 6 | 3 8 | 10 12
Z (| 14 16 | 18 20 |) 22 2 | 4 26 | | | Date of measurement: 24/12/2020 A. Experimental conditions. | A: Experimental conditions | <u> </u> | |----------------------------|-----------------------------| | Area Scan | dx=10mm dy=10mm, h= 2.00 mm | | ZoomScan | 7x7x12,dx=4mm dy=4mm dz=2mm | | <u>Phantom</u> | Validation plane | | Device Position | <u>Dipole</u> | | Band | CW5400 | | <u>Channels</u> | <u>Middle</u> | | Signal | CW (Crest factor: 1.0) | ## **B. SAR Measurement Results** | 5400.000000 | |-------------| | 48.854200 | | 18.914024 | | 5.671084 | | -1.550000 | | | ## Maximum location: X=0.00, Y=6.00 SAR Peak: 49.61 W/kg | SAR 10g (W/Kg) | 6.118324 | |----------------|-----------| | SAR 1g (W/Kg) | 16.984202 | | Z
(m
m) | 0.00 | 2.00 | 4.00 | 6.00
7.05 | 8.00
3.59 | 10.0
0 | 12.0
0 | 14.0
0 | 16.0
0 | 18.0
0 | 20.0
0 | 22.0
0 | |---------------|------|-----------|----------|--------------|--------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | R | 123 | 690 | 601 | 80 | 42 | 62 | 83 | 05 | 35 | 82 | 20 | 71 | | (W/
Kg) | | | | | | | | | | | | | | | | 46. | \ | | | | | | | | | 1 | | | | 40. | °-\ | | | | | | | | | | | | | (%/kg) | 0- | | | | | + | | | | | | | | ≩
20.1 | 0- | | | | | | | | | | | | | SA | | | | | | | | | | | | | | 10. | U- | | | | | | | | | | | | | 0. | 0- | 4 6 | 8 |
10 12 | 14 16 | 18 20 |) 22 2 | 4 26 | | | | | | | | | | | mm) | | | | | | Date of measurement: 18/12/2020 A. Experimental conditions. | 71. Experimental conditions | <u>/ </u> | | | | | | |-----------------------------|--|--|--|--|--|--| | Area Scan | dx=10mm dy=10mm, h= 2.00 mm | | | | | | | ZoomScan | 7x7x12,dx=4mm dy=4mm dz=2mm | | | | | | | <u>Phantom</u> | Validation plane | | | | | | | Device Position | <u>Dipole</u> | | | | | | | <u>Band</u> | <u>CW5600</u> | | | | | | | Channels | <u>Middle</u> | | | | | | | Signal | CW (Crest factor: 1.0) | | | | | | ## **B. SAR Measurement Results** | Frequency (MHz) | 5600.000000 | |--|-------------| | Relative permittivity (real part) | 49.920330 | | Relative permittivity (imaginary part) | 18.451725 | | Conductivity (S/m) | 5.744255 | | Variation (%) | -3.120000 | Maximum location: X=0.00, Y=6.00 SAR Peak: 50.97 W/kg | SAR 10g (W/Kg) | 6.085019 | |----------------|-----------| | SAR 1g (W/Kg) | 17.994075 | | Z
(m
m) | 0.00 | 2.00 | 4.00 | 6.00 | 8.00 | 10.0
0 | 12.0
0 | 14.0
0 | 16.0
0 | 18.0
0 | 20.0 | 22.0 | |-----------------------|-------------|--|-------------|------------|------------|--------------|------------|------------|-----------|------------|------------|------------| | SA
R
(W/
Kg) | 48.0
319 | 28.3
990 | 14.4
532 | 7.29
35 | 3.64
97 | 1.82
04 | 0.92
45 | 0.46
66 | 96 | 0.13
43 | 0.07
29 | 0.04
94 | | 3/ | | 48.
40.
30.
20.
20.
10. | 0- | 4 | 8 | 10 12
Z (| 14 16 | 18 20 |) 22 2 | 4 26 | | | Date of measurement: 24/12/2020 A. Experimental conditions. | <u>Area Scan</u> | dx=10mm dy=10mm, h= 2.00 mm | |------------------|-----------------------------| | <u>ZoomScan</u> | 7x7x12,dx=4mm dy=4mm dz=2mm | | <u>Phantom</u> | Validation plane | | Device Position | <u>Dipole</u> | | Band | <u>CW5800</u> | | <u>Channels</u> | <u>Middle</u> | | Signal | CW (Crest factor: 1.0) | ## **B. SAR Measurement Results** | Frequency (MHz) | 5800.000000 | |--|-------------| | Relative permittivity (real part) | 48.710523 | | Relative permittivity (imaginary part) | 18.780043 | | Conductivity (S/m) | 6.045240 | | Variation (%) | 1.340000 | **VOLUME SAR** Maximum location: X=0.00, Y=6.00 SAR Peak: 51.30 W/kg | SAR 10g (W/Kg) | 5.743184 |
|----------------|-----------| | SAR 1g (W/Kg) | 16.886052 | | Z
(m
m) | 0.00 | 2.00 | 4.00 | 6.00 | 8.00 | 10.0 | 12.0
0 | 14.0 | 16.0
0 | 18.0
0 | 20.0 | 22.0
0 | |-----------------------|-------------|--|-------------|------------|------------|--------------|------------|------------|------------|------------|------------|------------| | SA
R
(W/
Kg) | 48.3
472 | 28.6
209 | 14.6
589 | 7.40
39 | 3.68
57 | 1.83
35 | 0.93
18 | 0.47
60 | 0.25
13 | 0.13
08 | 0.07
83 | 0.05
22 | | | | 48.
40.
30.
30.
20.
10. | 0- | 4 6 | 8 | 10 12
Z (| 14 16 | 18 20 | 0 22 2 | 24 26 | | | ## 13. Appendix C. Plots of High SAR Measurement | Tal | ble of contents | |------------------------------|-----------------| | MEASUREMENT 1 WLAN 5.2G Body | | | MEASUREMENT 2 WLAN 5.8G Body | | | MEASUREMENT 3 WLAN 5.3G Body | | | MEASUREMENT 4 WLAN 5.6G Body | | | MEASUREMENT 5 WLAN 2.4G Body | | Report No.: S20120705310001 Date of measurement: 24/12/2020 A. Experimental conditions. | - 11 = 21 p 0 1 1 1 1 0 | | | | | | |---|---------------------------------|--|--|--|--| | Area Scan | dx=10mm dy=10mm, h= 2.00 mm | | | | | | <u>ZoomScan</u> | 7x7x12,dx=4mm dy=4mm dz=2mm | | | | | | <u>Phantom</u> | Validation plane | | | | | | Device Position | Body | | | | | | <u>Band</u> | <u>IEEE 802.11a U-NII</u> | | | | | | <u>Channels</u> | <u>Middle</u> | | | | | | Signal | IEEE802.11a (Crest factor: 1.0) | | | | | ## **B. SAR Measurement Results** | Frequency (MHz) | 5200.000000 | |--|-------------| | Relative permittivity (real part) | 50.256229 | | Relative permittivity (imaginary part) | 18.477774 | | Conductivity (S/m) | 5.338023 | | Variation (%) | -1.120000 | **VOLUME SAR** Maximum location: X=9.00, Y=18.00 SAR Peak: 4.28 W/kg | SAR 10g (W/Kg) | 0.403995 | |----------------|----------| | SAR 1g (W/Kg) | 1.303171 | | Z
(m
m)
SA
R
(W/
Kg) | 0.00
4.03
79 | 2.00
2.47
61 | 4.00
1.34
36 | 6.00
0.74
44 | 8.00
0.41
18 | 10.0
0
0.24
31 | 12.0
0
0.13
92 | 14.0
0
0.09
77 | 16.0
0
0.05
34 | 18.0
0
0.07
34 | 20.0
0
0.06
26 | 22.0
0
0.05
98 | |--|--------------------|--|--------------------|--------------------|--------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------| | S. | | 4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5 | | 4 6 | 8 1 | 0 12
Z (n | 14 16 mm) | 18 20 | 1 22 2 | 4 26 | | | Date of measurement: 24/12/2020 A. Experimental conditions. | 7 ti =2tp0:::::0::ta: 00::a::t:0::0: | | |--------------------------------------|---------------------------------| | Area Scan | dx=10mm dy=10mm, h= 2.00 mm | | <u>ZoomScan</u> | 7x7x12,dx=4mm dy=4mm dz=2mm | | <u>Phantom</u> | Validation plane | | Device Position | <u>Body</u> | | <u>Band</u> | <u>IEEE 802.11a U-NII</u> | | <u>Channels</u> | <u>Middle</u> | | Signal | IEEE802.11a (Crest factor: 1.0) | ## **B. SAR Measurement Results** | Air Micagai cilicili ircoalio | | |--|-------------| | Frequency (MHz) | 5785.000000 | | Relative permittivity (real part) | 48.783165 | | Relative permittivity (imaginary part) | 18.656767 | | Conductivity (S/m) | 5.996077 | | Variation (%) | -1.630000 | Maximum location: X=2.00, Y=17.00 SAR Peak: 3.60 W/kg | SAR 10g (W/Kg) | 0.308695 | |----------------|----------| | SAR 1g (W/Kg) | 1.010030 | | Z
(m
m)
SA
R
(W/
Kg) | 0.00
3.43
21 | 2.00
1.97
33 | 4.00
0.66
93 | 0.52
92 | 8.00
0.22
60 | 10.0
0
0.17
76 | 12.0
0
0.10
44 | 14.0
0
0.09
44 | 16.0
0
0.08
51 | 18.0
0
0.08
28 | 20.0
0
0.07
87 | 22.0
0
0.07
24 | |--|--------------------|---|--------------------|------------|--------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------| | | | 3.4
3.0
2.5
2.0
1.5
1.0
0.5 | \
\ | 4 6 | 8 1 | 0 12
Z (n | 14 16 | 18 20 | 22 2 | 4 26 | | | Date of measurement: 24/12/2020 A. Experimental conditions. | - 11 = 21 p 0 1 1 1 1 0
1 1 0 | | |---|---------------------------------| | Area Scan | dx=10mm dy=10mm, h= 2.00 mm | | <u>ZoomScan</u> | 7x7x12,dx=4mm dy=4mm dz=2mm | | <u>Phantom</u> | Validation plane | | Device Position | <u>Body</u> | | <u>Band</u> | <u>IEEE 802.11a U-NII</u> | | <u>Channels</u> | <u>Middle</u> | | Signal | IEEE802.11a (Crest factor: 1.0) | ## **B. SAR Measurement Results** | Frequency (MHz) | 5280.000000 | |--|-------------| | Relative permittivity (real part) | 50.147035 | | Relative permittivity (imaginary part) | 18.562932 | | Conductivity (S/m) | 5.445127 | | Variation (%) | -1.100000 | **VOLUME SAR** Maximum location: X=-10.00, Y=19.00 SAR Peak: 3.85 W/kg | SAR 10g (W/Kg) | 0.381563 | |----------------|----------| | SAR 1g (W/Kg) | 1.183296 | | Z
(m
m)
SA
R
(W/
Kg) | 0.00
3.51
89 | 2.00
2.14
66 | 4.00
1.16
73 | 6.00
0.64
50 | 8.00
0.37
04 | 10.0
0
0.22
37 | 12.0
0
0.14
62 | 14.0
0
0.10
72 | 16.0
0
0.09
00 | 18.0
0
0.07
53 | 20.0
0
0.07
33 | 22.0
0
0.07
43 | |--|--------------------|--|--------------------|--------------------|--------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------| | | | 3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.1 | | 4 6 | 8 1 | 0 12
Z (n | 14 16 mm) | 18 20 | 1 22 2 | 4 26 | | | Date of measurement: 24/12/2020 A. Experimental conditions. | <u> </u> | | |------------------------|---------------------------------| | <u>Area Scan</u> | dx=10mm dy=10mm, h= 2.00 mm | | <u>ZoomScan</u> | 7x7x12,dx=4mm dy=4mm dz=2mm | | <u>Phantom</u> | Validation plane | | <u>Device Position</u> | <u>Body</u> | | <u>Band</u> | <u>IEEE 802.11a U-NII</u> | | <u>Channels</u> | <u>High</u> | | Signal | IEEE802.11a (Crest factor: 1.0) | ## **B. SAR Measurement Results** | Frequency (MHz) | 5720.000000 | |--|-------------| | Relative permittivity (real part) | 48.941495 | | Relative permittivity (imaginary part) | 18.811054 | | Conductivity (S/m) | 5.977735 | | Variation (%) | 0.210000 | **VOLUME SAR** Maximum location: X=0.00, Y=15.00 SAR Peak: 4.19 W/kg | SAR 10g (W/Kg) | 0.364600 | |----------------|----------| | SAR 1g (W/Kg) | 1.188864 | | Z
(m
m)
SA
R
(W/
Kg) | 0.00
3.98
94 | 2.27
15 | 4.00
0.61
60 | 6.00
0.62
39 | 0.20
61 | 10.0
0
0.22
48 | 12.0
0
0.10
36 | 14.0
0
0.10
62 | 16.0
0
0.08
15 | 18.0
0
0.08
78 | 20.0
0
0.07
56 | 22.0
0
0.07
97 | |--|--------------------|--|--------------------|--------------------|------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------| | | | 4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5 | | 4 6 | 8 1 | 0 12
Z (m | 14 16 mm) | 18 20 | 22 2 | 4 26 | | | Date of measurement: 23/12/2020 A. Experimental conditions. | <u>Area Scan</u> | dx=12mm dy=12mm, h= 5.00 mm | |------------------|---------------------------------| | <u>ZoomScan</u> | 7x7x7,dx=5mm dy=5mm dz=5mm | | <u>Phantom</u> | Validation plane | | Device Position | <u>Body</u> | | <u>Band</u> | <u>IEEE 802.11b ISM</u> | | <u>Channels</u> | <u>High</u> | | Signal | IEEE802.11b (Crest factor: 1.0) | ## **B. SAR Measurement Results** | Frequency (MHz) | 2462.000000 | | | |--|-------------|--|--| | Relative permittivity (real part) | 52.229210 | | | | Relative permittivity (imaginary part) | 14.178457 | | | | Conductivity (S/m) | 1.939298 | | | | Variation (%) | 2.470000 | | | Maximum location: X=-15.00, Y=12.00 SAR Peak: 2.58 W/kg | SAR 10g (W/Kg) | 0.551082 | |----------------|----------| | SAR 1g (W/Kg) | 1.323216 | 14. Appendix D. Calibration Certificate | Table of contents | | |--|--| | E Field Probe - SN 08/16 EPGO287 | | | 2450 MHz Dipole - SN 03/15 DIP 2G450-352 | | | 5000-6000 MHz Dipole - SN 13/14 WGA 33 | | | Extended Calibration Certificate | | Report No.: S20120705310001 #### **COMOSAR E-Field Probe Calibration Report** Ref: ACR.260.1.18.SATU.A # SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD. BUILDING E, FENDA SCIENCE PARK, SANWEI COMMUNITY, XIXIANG STREET, BAO'AN DISTRICT, SHENZHEN GUANGDONG, CHINA MVG COMOSAR DOSIMETRIC E-FIELD PROBE SERIAL NO.: SN 08/16 EPGO287 Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144 Calibration Date: 12/27/2019 #### Summary: This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed in MVG USA using the CALISAR / CALIBAIR test bench, for use with a COMOSAR system only. All calibration results are traceable to national metrology institutions. #### COMOSAR E-FIELD PROBE CALIBRATION REPORT Ref: ACR.260.1.18.SATU.A | | Name | Function | Date | Signature | |---------------|---------------|-----------------|------------|----------------| | Prepared by : | Jérôme LUC | Product Manager | 12/27/2019 | Jes | | Checked by: | Jérôme LUC | Product Manager | 12/27/2019 | JES | | Approved by: | Kim RUTKOWSKI | Quality Manager | 12/27/2019 | him Putthowski | Distribution: Customer Name SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD. | Issue | Date | Modifications | | |-------|------------|-----------------|--| | A | 12/27/2019 | Initial release | | | | | | | | | | | | | | | | | #### COMOSAR E-FIELD PROBE CALIBRATION REPORT Ref: ACR.260.1.18.SATU.A #### TABLE OF CONTENTS | 1 | Dev | ice Under Test | | |---|------|-----------------------------|---| | 2 | Prod | luct Description4 | | | | 2.1 | General Information | 4 | | 3 | Mea | surement Method 4 | | | | 3.1 | Linearity | 4 | | | 3.2 | Sensitivity | | | | 3.3 | Lower Detection Limit | | | | 3.4 | Isotropy | | | | 3.5 | Boundary Effect | 5 | | 4 | Mea | surement Uncertainty5 | | | 5 | Cali | bration Measurement Results | | | | 5.1 | Sensitivity in air | 6 | | | 5.2 | Linearity | | | | 5.3 | Sensitivity in liquid | 7 | | | 5.4 | Isotropy | | | 6 | List | of Equipment10 | | #### COMOSAR E-FIELD PROBE CALIBRATION REPORT Ref: ACR.260.1.18.SATU.A #### 1 DEVICE UNDER TEST | Device Under Test | | | |--|----------------------------------|--| | Device Type | COMOSAR DOSIMETRIC E FIELD PROBE | | | Manufacturer | MVG | | | Model | SSE2 | | | Serial Number | SN 08/16 EPGO287 | | | Product Condition (new / used) | Used | | | Frequency Range of Probe | 0.15 GHz-6GHz | | | Resistance of Three Dipoles at Connector | Dipole 1: R1=0.209 MΩ | | | | Dipole 2: R2=0.196 MΩ | | | | Dipole 3: R3=0.197 MΩ | | A yearly calibration interval is recommended. #### 2 PRODUCT DESCRIPTION #### 2.1 GENERAL INFORMATION MVG's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209
standards. **Figure 1** – MVG COMOSAR Dosimetric E field Dipole | Probe Length | 330 mm | |--|--------| | Length of Individual Dipoles | 2 mm | | Maximum external diameter | 8 mm | | Probe Tip External Diameter | 2.5 mm | | Distance between dipoles / probe extremity | 1 mm | #### 3 MEASUREMENT METHOD The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards. #### 3.1 LINEARITY The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg. Page: 4/10 Ref: ACR.260.1.18.SATU.A Report No.: S20120705310001 MVG The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards. #### 3.3 LOWER DETECTION LIMIT The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg. #### 3.4 ISOTROPY The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis $(0^{\circ}-180^{\circ})$ in 15° increments. At each step the probe is rotated about its axis $(0^{\circ}-360^{\circ})$. #### 3.5 BOUNDARY EFFECT The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface. #### 4 MEASUREMENT UNCERTAINTY The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. | Uncertainty analysis of the probe calibration in waveguide | | | | | | |--|-----------------------|-----------------------------|------------|----|-----------------------------| | ERROR SOURCES | Uncertainty value (%) | Probability
Distribution | Divisor | ci | Standard
Uncertainty (%) | | Incident or forward power | 3.00% | Rectangular | √3 | 1 | 1.732% | | Reflected power | 3.00% | Rectangular | √3 | 1 | 1.732% | | Liquid conductivity | 5.00% | Rectangular | √3 | 1 | 2.887% | | Liquid permittivity | 4.00% | Rectangular | √3 | 1 | 2.309% | | Field homogeneity | 3.00% | Rectangular | √3 | 1 | 1.732% | | Field probe positioning | 5.00% | Rectangular | $\sqrt{3}$ | 1 | 2.887% | | Field probe linearity | 3.00% | Rectangular | $\sqrt{3}$ | 1 | 1.732% | | Combined standard uncertainty | | | | | 5.831% | | Expanded uncertainty
95 % confidence level k = 2 | | | | | 12.0% | Page: 5/10 #### COMOSAR E-FIELD PROBE CALIBRATION REPORT Ref: ACR.260.1.18.SATU.A #### 5 CALIBRATION MEASUREMENT RESULTS | Calibration Parameters | | |------------------------|-------| | Liquid Temperature | 21 °C | | Lab Temperature | 21 °C | | Lab Humidity | 45 % | #### 5.1 <u>SENSITIVITY IN AIR</u> | | | Normz dipole 3 ($\mu V/(V/m)^2$) | |------|------|------------------------------------| | 0.66 | 0.75 | 0.58 | | DCP dipole 1 | DCP dipole 2 | DCP dipole 3 | |--------------|--------------|--------------| | (mV) | (mV) | (mV) | | 93 | 93 | 98 | Calibration curves ei=f(V) (i=1,2,3) allow to obtain H-field value using the formula: $$E = \sqrt{E_1^2 + E_2^2 + E_3^2}$$ # Calibration curves 658 600 500 500 100 100 0-0.00 0.02 0.04 0.06 0.08 0.10 0.12 Voltage (V) Dipole 1 Dipole 2 Dipole 3 Page: 6/10 #### COMOSAR E-FIELD PROBE CALIBRATION REPORT Ref: ACR.260.1.18.SATU.A #### 5.2 <u>LINEARITY</u> Linearity: I+/-1.89% (+/-0.08dB) #### 5.3 SENSITIVITY IN LIQUID | Liquid | Frequency | Permittivity | Epsilon (S/m) | <u>ConvF</u> | |--------|-----------------|--------------|---------------|--------------| | | <u>(MHz +/-</u> | | | | | | <u>100MHz)</u> | | | | | HL750 | 750 | 40.03 | 0.93 | 1.45 | | BL750 | 750 | 56.83 | 1.00 | 1.49 | | HL850 | 835 | 42.19 | 0.90 | 1.50 | | BL850 | 835 | 54.67 | 1.01 | 1.56 | | HL900 | 900 | 42.08 | 1.01 | 1.51 | | HL1800 | 1800 | 41.68 | 1.46 | 1.71 | | BL1800 | 1800 | 53.86 | 1.46 | 1.77 | | HL1900 | 1900 | 38.45 | 1.45 | 2.03 | | BL1900 | 1900 | 53.32 | 1.56 | 2.07 | | HL2000 | 2000 | 38.26 | 1.38 | 1.76 | | HL2450 | 2450 | 37.50 | 1.80 | 2.00 | | BL2450 | 2450 | 53.22 | 1.89 | 2.08 | | HL2600 | 2600 | 39.80 | 1.99 | 2.12 | | BL2600 | 2600 | 52.52 | 2.23 | 2.19 | | HL5200 | 5200 | 35.64 | 4.67 | 2.55 | | BL5200 | 5200 | 48.64 | 5.51 | 2.62 | | HL5400 | 5400 | 36.44 | 4.87 | 2.53 | | BL5400 | 5400 | 46.52 | 5.77 | 2.59 | | HL5600 | 5600 | 36.66 | 5.17 | 2.64 | | BL5600 | 5600 | 46.79 | 5.77 | 2.73 | | HL5800 | 5800 | 35.31 | 5.31 | 2.72 | | BL5800 | 5800 | 47.04 | 6.10 | 2.81 | LOWER DETECTION LIMIT: 7mW/kg #### COMOSAR E-FIELD PROBE CALIBRATION REPORT Ref: ACR.260.1.18.SATU.A #### 5.4 <u>ISOTROPY</u> #### HL900 MHz - Axial isotropy: 0.04 dB- Hemispherical isotropy: 0.07 dB #### **HL1800 MHz** - Axial isotropy: 0.06 dB - Hemispherical isotropy: 0.08 dB #### COMOSAR E-FIELD PROBE CALIBRATION REPORT Ref: ACR.260.1.18.SATU.A #### **HL5600 MHz** - Axial isotropy: 0.06 dB - Hemispherical isotropy: 0.08 dB #### COMOSAR E-FIELD PROBE CALIBRATION REPORT Ref: ACR.260.1.18.SATU.A #### 6 LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | |----------------------------------|---|------------------|---|---| | Equipment
Description | · · I III III III III III III III III I | | Next Calibration
Date | | | Flat Phantom | MVG | SN-20/09-SAM71 | Validated. No cal required. | Validated. No cal
required. | | COMOSAR Test Bench | Version 3 | NA | Validated. No cal required. | Validated. No cal required. | | Network Analyzer | Rhode & Schwarz
ZVA | SN100132 | 02/2019 | 02/2022 | | Reference Probe | MVG | EP 94 SN 37/08 | 10/2019 | 10/2020 | | Multimeter | Keithley 2000 | 1188656 | 01/2017 | 01/2020 | | Signal Generator | Agilent E4438C | MY49070581 | 01/2017 | 01/2020 | | Amplifier | Aethercomm | SN 046 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | Power Meter | HP E4418A | US38261498 | 01/2017 | 01/2020 | | Power Sensor | HP ECP-E26A | US37181460 | 01/2017 | 01/2020 | | Directional Coupler | Narda 4216-20 | 01386 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | Waveguide | Mega Industries | 069Y7-158-13-712 | Validated. No cal required. | Validated. No cal required. | | Waveguide Transition | Mega Industries | 069Y7-158-13-701 | Validated. No cal required. | Validated. No cal
required. | | Waveguide Termination | Mega Industries | 069Y7-158-13-701 | Validated. No cal required. | Validated. No cal required. | | Temperature / Humidity
Sensor | Control Company | 150798832 | 11/2017 | 11/2020 | ### **SAR Reference Dipole Calibration Report** Ref: ACR.109.7.18.SATU.A # SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD. BUILDING E, FENDA SCIENCE PARK, SANWEI COMMUNITY, XIXIANG STREET, BAO'AN DISTRICT, SHENZHEN GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE > FREQUENCY: 2450 MHZ SERIAL NO.: SN 03/15 DIP 2G450-352 Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144 Calibration Date: 04/19/2018 #### Summary: This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions. #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.109.7.18.SATU.A | | Name | Function | Date | Signature | |---------------|---------------|-----------------|-----------|----------------| | Prepared by : | Jérôme LUC | Product Manager | 4/19/2018 | 23 | | Checked by: | Jérôme LUC | Product Manager | 4/19/2018 | Jes | | Approved by: | Kim RUTKOWSKI | Quality Manager | 4/19/2018 | Jum Butthowski | | | Customer Name | |---------------|---------------| | | SHENZHEN NTEK | | Distribution: | TESTING | | Distribution: | TECHNOLOGY | | | CO., LTD. | | Issue | Date | Modifications | |-------|-----------|-----------------| | A | 4/19/2018 | Initial release | | | | | | | | | | | | | #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.109.7.18.SATU.A #### TABLE OF CONTENTS | I | Intro | oduction4 | | |---|-------|--|---| | 2 | Dev | rice Under Test4 | | | 3 | Pro | duct Description4 | | | | 3.1 | General Information | 4 | | 4 | Mea | surement Method5 | | | | 4.1 | Return Loss Requirements | 5 | | | 4.2 | Mechanical Requirements | 5 | | 5 | Mea | asurement Uncertainty5 | | | | 5.1 | Return Loss | 5 | | | 5.2 | Dimension Measurement | 5 | | | 5.3 | Validation Measurement | 5 | | 6 | Cali | bration Measurement Results6 | | | | 6.1 |
Return Loss and Impedance In Head Liquid | 6 | | | 6.2 | Return Loss and Impedance In Body Liquid | 6 | | | 6.3 | Mechanical Dimensions | 6 | | 7 | Val | idation measurement | | | | 7.1 | Head Liquid Measurement | 7 | | | 7.2 | SAR Measurement Result With Head Liquid | | | | 7.3 | Body Liquid Measurement | 9 | | | 7.4 | SAR Measurement Result With Body Liquid | | | Q | List | of Equipment 11 | | #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.109.7.18.SATU.A #### 1 INTRODUCTION This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. #### 2 DEVICE UNDER TEST | Device Under Test | | | | |--------------------------------------|-----------------------------------|--|--| | Device Type | COMOSAR 2450 MHz REFERENCE DIPOLE | | | | Manufacturer | MVG | | | | Model | SID2450 | | | | Serial Number SN 03/15 DIP 2G450-352 | | | | | Product Condition (new / used) Used | | | | A yearly calibration interval is recommended. #### 3 PRODUCT DESCRIPTION #### 3.1 GENERAL INFORMATION MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only. Figure 1 – MVG COMOSAR Validation Dipole Page: 4/11 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.109.7.18.SATU.A #### 4 MEASUREMENT METHOD The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards. #### 4.1 <u>RETURN LOSS REQUIREMENTS</u> The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. #### 4.2 MECHANICAL REQUIREMENTS The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. #### 5 MEASUREMENT UNCERTAINTY All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. #### 5.1 RETURN LOSS The following uncertainties apply to the return loss measurement: | Frequency band | Expanded Uncertainty on Return Loss | | |----------------|--|--| | 400-6000MHz | 0.1 dB | | #### 5.2 <u>DIMENSION MEASUREMENT</u> The following uncertainties apply to the dimension measurements: | Length (mm) | Expanded Uncertainty on Length | |-------------|--------------------------------| | 3 - 300 | 0.05 mm | #### 5.3 VALIDATION MEASUREMENT The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements. | Scan Volume | Expanded Uncertainty | |-------------|----------------------| | 1 g | 20.3 % | Page: 5/11 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.109.7.18.SATU.A | 10 g | 20.1 % | |------|--------| | | | #### 6 CALIBRATION MEASUREMENT RESULTS #### 6.1 <u>RETURN LOSS AND IMPEDANCE IN HEAD LIQUID</u> | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |-----------------|------------------|------------------|-----------------------------| | 2450 | -28.15 | -20 | $53.9 \Omega + 0.3 j\Omega$ | #### 6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | | |-----------------|------------------|------------------|-----------------------------|--| | 2450 | -22.99 | -20 | $57.6 \Omega - 0.8 j\Omega$ | | #### 6.3 <u>MECHANICAL DIMENSIONS</u> | Frequency MHz | L mm | | h mm | | d mm | | |---------------|-------------|----------|-------------|----------|-------------|----------| | | required | measured | required | measured | required | measured | | 300 | 420.0 ±1 %. | | 250.0 ±1 %. | | 6.35 ±1 %. | | Page: 6/11