The University of Michigan Radiation Laboratory 3228 EECS Building Ann Arbor, MI 48109-2122 Tel: (734) 647-1792

Measured Radio Frequency Emissions From

UTA Nissan SEC Receiver Model KOBNR00SEC

Report No. 415031-000 June 4, 1999

For: United Technologies Automotive 5200 Auto Club Drive Dearborn, Michigan 48126-9982

EXHIBIT <u>E</u>

Page /-/0 of /0

U of Mich file 415031- 000

Contact:
Bruce Conner

Tel: (313) 593-9801 Fax: (313) 593-9306 PO: D48300000

Measurements made by:

Tests supervised by: Report approved by:

> Valdis V. Liepa Research Scientist

Summary

Tests for compliance with FCC Regulations subject to Part 15, Subpart B, were performed on United Technologies Automotive Nissan SEC Receiver. This device is subject to the Rules and Regulations as a Receiver. As a Digital Device it is exempt, but such measurements were made to assess receiver's overall emissions.

Ben Flaster Valdis V. Liepa

In testing performed on May 10 and 11, 1999, the device tested in the worst case met the allowed specifications for radiated emissions from the receiver section by 10.9 dB (see p. 6). The conductive emission tests do not apply, since the device is powered from an automotive 12 VDC electric system.

1. Introduction

United Technologies Nissan SEC receiver was tested for compliance with FCC Regulations, Part 15, adopted under Docket 87-389, April 18, 1989. The tests were performed at the University of Michigan Radiation Laboratory Willow Run Test Range following the procedures described in ANSI C63.4-1992 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz". The attenuation characteristics of the Open Site facility are on file with FCC Laboratory, Columbia, Maryland. (FCC file 31040/SIT)

2. Test Procedure and Equipment Used

The test equipment commonly used in our facility is listed in Table 2.1 below. The second column identifies the specific equipment used in these tests. The HP 8593E spectrum analyzer is used for primary amplitude and frequency reference.

Table 2.1. Test Equipment.

Test Instrument	Equipment Used	Manufacturer/Model	Cal. Date/By
Spectrum Analyzei		Hewlett-Packard 8593A	June 1998/HP
(9kHz-22GHz)		SN: 3107A01358	
Spectrum Analyzei	· X	Hewlett-Packard 8593E	July 1998/HP
(9kHz-26GHz)		SN: 3107A01131	
Spectrum Analyzei (0.1-1500 MHz		Hewlett-Packard 182T/8558B SN: 1529A01114/543592	August 1997U of M Rad Lab
Preamplifier (5-1000MHz)	X	Watkins-Johnson A11 -1 plus A25-1S	May 1997/U of M Rad Lab
Preamplifier	X	Avantek	Nov. 1992/ U of M Rad Lab
(5-4000 MHz) Broadband Bicone	X	University of Michigan	June 1996/U of M Rad Lab
(20-200 MHz)			
Broadband Bicone (200-1000 MHz	X	University of Michigan	June 1996/U of M Rad Lab
Dipole Antenna Se		University of Michigan	June 1996/U of M Rad Lab
(25-1000 MHz)		, .	
Dipole Antenna Sé		EMCO 3121C	June 1996/U of M Rad Lab
(30-1000 MHz)		SN: 992	
Active Loop Anten		EMCO 6502	December 1993/ EMCO
(0.090-30MHz)		SN: 2855	
Active Rod (30Hz-50 MHz)	1	EMCO 3301B SN: 3223	December 1993/EMCO
Ridge-horn Antenn		University of Michigan	February 1991/U of M Rad Lab
(0.5-5 GHz)		,	·
LISN Box		University of Michigan	May 1994/U of M Rad Lab
Signal Cables	X	Assorted	January 1993/U of M Rad Lab
X-Y Plotter		Hewlett-Packard 7046A	During Use/U of M Rad Lab
Signal Generator (0.1-990 MHz)	X	Hewlett-Packard 8656A	January 1990/U of M Rad Lab
EMI/Fld Int. Meter (30-1000 MHz)		Stoddard NM-37/57A SN: 0606-80119	August 1989/U of M Rad Lab
Printer	X	Hewlett-Packard 2225A	August 1989/HP
			-

3. Configuration and Identification of Device Under Test

The DUT is a 315.0 MHz superegenerative receiver, designed for onboard automobile security/convenience applications and, as such, it is powered from an automobile 12 VDC source. The receiver is housed in a plastic case approximately 4.25 x 4.0 x 1.25 inches, plus a metal mounting bracket and one multi-pin connector for power input and digital signal output. For testing, a "generic" harness was made up, one bundle containing a pair of power-up wires and the other bundle containing (output) control signal wires. The length of the harness was about 3.0 m and the ends of signal wires were left open. In the receiver, decoding, signal processing, etc., are performed by a micro, timed by a 4.00 MHz oscillator.

The DUT was designed and manufactured by United Technologies Automotive, 5200 Auto

Club Drive, Dearborn, MI 48126. It is identified as:

UTA Nissan SEC Receiver Model: KOBNR00SEC SN: FCCTEST3 FCC ID: KOBNR00SEC CANADA:

3.1 Modifications Made

There were no modifications made to the DUT by this laboratory.

4. Emission Limits

The DUT tested falls under Part 15, Subpart B, "Unintentional Radiators". The pertinent test frequencies, with corresponding emission limits, are given in Tables 4.1 and 4.2 below.

4.1 Radiated Emission Limits

Table 4.1. Radiated Emission Limits (Ref: 15.33, 15.35, 15.109).

Freq. (MHz)	E _{lim} (3m) μV/m	E _{lim} dB(μV/m)		
30-88	100	40.0		
88-216	150	43.5		
216-960	200	46.0		
960-2000	500	54.0		

Note: Quasi-Peak readings apply to 1000 MHz (120 kHz BW) Average readings apply above 1000 MHz (1 MHz BW)

4.2 Conducted Emission Limits

Table 4.2. Conducted Emission Limits (Ref: 15.107).

Freq. (MHz)	μV	dB(μV)
0.450 - 1.705	250	48.0
1.705 - 30.0	250	48.0

Note: Quasi-Peak readings apply here

4.3 Antenna Power Conduction Limits

Ref: 15.111(a). Pmax = 2 nW; for frequency range see Table 4.1.

5. Emission Tests and Results

Even though the FCC and/or Industry Canada specify that both the radiated and conductive emissions be measured using the Quasi-Peak and/or average detection schemes, we normally use peak detection since especially the Quasi-Peak is cumbersome to use with our instrumentation. In case the measurement fails to meet the limits, or the measurement is near the limit, it is remeasured using appropriate detection. We note, that since the peak detected signal is always higher or equal to the Quasi-Peak or average detected signal, the margin of compliance may be better, but not worse, than indicated in this report. The type of detection used is indicated in the data table, Table 5.1.

5.1 Anechoic Chamber Radiated Emission Tests

To familiarize with the radiated emission behavior of the DUT, it was studied and measured in the shielded anechoic chamber. In the chamber there is a set-up similar to that of an outdoor 3-meter site, with turntable, antenna mast, and a ground plane. Instrumentation includes spectrum analyzers and other equipment as needed.

To study and test for radiated emissions, the DUT was powered by a laboratory power supply at 13.5 VDC. The DUT antenna connector was terminated in 50-ohm load. A 315 MHz CW signal was injected (radiated) from a nearby signal generator using a short wire antenna. The DUT was taped onto the test table on each of the three axis. At each orientation, the table was rotated to obtain maximum signal for vertical and horizontal emission polarizations. This sequence was repeated throughout the required frequency range.

In the chamber we studied and recorded all the emissions using a ridge-horn antenna, which covers 200 MHz to 5000 MHz, up to 2 GHz. In scanning from 30 MHz to 2.0 GHz, there were no spurious emissions observed other than the LO and injection signal (315 MHz), and the LO harmonics. Figures 5.1 and 5.2 show emissions measured 0-1000 MHz and 1000-2000 MHz, respectively. These measurements are made with a ridge-horn antenna at 3m, with spectrum analyzer in peak hold mode and the receiver rotated in all orientations. The measurements up to 1000 MHz (Fig. 5.1) are used for initial evaluation only, but those above 1000 MHz (Fig. 5.2) are used in final assessment for compliance.

5.2 Open Site Radiated Emission Tests

The DUT was then moved to the 3 meter Open Field Test Site where measurements were repeated up to 1000 MHz using a small bicone, or dipoles when the measurement is near the limit. The DUT was exercised as described in Sec. 5.1 above. The measurements were made with a spectrum analyzer using 120 kHz IF bandwidth and peak detection mode, and, when appropriate, using Quasi-Peak or average detection (see 5.0). Figure 5.3 shows the DUT on the test table; figure 5.4 shows the overview of the OATS with the DUT on the test table.

The emissions from digital circuitry were measured on the Open Site using a standard bicone. These results are also presented in Table 5.1.

5.3 Computations and Results for Radiated Emissions

To convert the dBm's measured on the spectrum analyzer to dB(μ V/m), we use expression

$$E_3(dB\mu V/m) = 107 + P_R + K_A - K_G$$

where

 P_R = power recorded on spectrum analyzer, dB, measured at 3m K_A = antenna factor, dB/m K_G = pre-amplifier gain, including cable loss, dB

When presenting the data, at each frequency the highest measured emission under all of the possible orientations is given. Computations and results are given in Table 5.1. There we see that the DUT meets the limit by 10.9 dB.

5.4 Conducted Emission Tests

These tests do not apply, since the DUT is powered from an automotive 12 VDC source.

6. Other Measurements

6.1 Emission Spectrum Near Fundamental

Near operating frequency the emission spectrum is typically measured over 2 MHz span, with and without the injection signal. These data are taken with the DUT close to antenna and hence amplitudes are relative. The plots are given in Figure 6.1.

6.2 Effect of Supply Voltage Variation

The DUT has been designed to operate from 12 VDC power. Using a spectrum analyzer, relative conducted emissions were recorded at the "fundamental" (315 MHz) as voltage was varied from 5.0 to 18.0 VDC. Figure 6.2 shows the emission variation.

6.3 Operating Voltage and Current

V = 13.8 VDCI = 2.5 mADC

The University of Michigan Radiation Laboratory 3228 EECS Building Ann Arbor, Michigan 48109-2122 (734) 647-1792

Table 5.1 Highest Emissions Measured

	Radiated Emission - RF UTA Nissan SEC, RX; FCC										
	Freq.	Ant.	Ant.	Pr	Det.	Ka	Kg	E3	E3lim	Pass	
#	MHz	Used	Pol.	dBm	Used	dB/m	dB	dBμV/m	dBμV/m	dB	Comments
1	316.0	Dip	Н	-72.5	Pk	18.9	20.8	32.6	46.0	13.4	flat
2	316.0	Dip	Н	-70.0	Pk	18.9	20.8	35.1	46.0	10.9	side
_3	316.0	Dip	<u>H</u> _	-75.0	Pk	18.9	20.8	30.1	46.0	15.9	end
4	316.0	Dip	V	-79.0	Pk	18.9	20.8	26.1	46.0	19.9	flat
_5	316.0	Dip	V	-76.0	Pk	18.9	20.8	29.1	46.0	16.9	side
6	316.0	Dip	V	-80.0	Pk	18.9	20.8	25.1	46.0	20.9	end
7	630.0	Dip	V/H	-85.0	Pk	25.2	17.5	29.8	46.0	16.2	max. of all, noise; 10 kHz BW
8	945.0	Dip	V/H	-90.0	Pk	28.9	15.1	30.8	46.0	15.2	max. of all, noise; 10 kHz BW
9	1290.0	Horn	H	-62.0	Pk	20.8	28.2	37.6	54.0	16.4	max. of all, noise
10	1490.0	Horn	Н	-61.0	Pk	21.5	28.2	39.3	54.0	14.7	max. of all, noise
11											
12									<u> </u>		The second state of the se
13											
14											
15						<u>-</u>		ļ			
16						···· -					
17											
18			<u> </u>	<u> </u>							
					Rad	iated F	mission	- Digita	al (Class	s B)	
1											T
2											
3			L	LDigit	al Emis	ı sions ma	re than 20	0 dB belov	w FCC CI	ass B li	mits
4				~.g							
5									<u> </u>		
6									<u> </u>		
7					l						
8					- 						
9			,								
10											
11											
12											

	Conducted Emissions								
	Freq.	Line	Det.	Vtest	Vlim	Pass			
#	MHz	Side	Used	dΒμV	dΒμV	dB	Comments		
1				·					
2	Not applicable								
3									

Figure 5.1. Emissions measured at 3 meters in anechoic chamber, 0-1000 MHz. (top) Receiver plus ambient (bottom) Ambient

Figure 5.2. Emissions measured at 3 meters in anechoic chamber, 1000-2000 MHz. (top) Receiver plus ambient (bottom) Ambient

Figure 6.1. Relative receiver emissions in stand-by and "locked-in" modes. The final emission measurements were made with the receiver in "locked-in" mode.

Figure 6.2. Relative emission at "fundamental" vs. supply voltage.