

Report No.: EED32J00230702 Page 1 of 40

TEST REPORT

Product : E-POS
Trade mark : RONGTA

Model/Type reference : AP02, AP02A, AP02B, RP02, TP02, TP02A, TP02B, SP02, SP02A, SP02B

Serial Number : N/A

Report Number : EED32J00230702

FCC ID : 2AD6G-AP02 Date of Issue : Jan. 26, 2018

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

XIAMEN RONGTA TECHNOLOGY CO., LTD. 3F-1/E Building, No.195 Gaoqishe, Gaodian Village, Dianqian Street Office, Huli District, Xiamen City, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

Tom-chen

Tom chen (Test Project)

Report Seal

Mill chen (Project Engineer)

Reviewed by:

Kevin yang (Reviewer)

Sheek Luo (Lab supervisor)

Date:

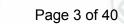
Jan. 26, 2018

Check No.:2447672866

Page 2 of 40

2 Version

Version No.	Date	Description
00	Jan. 26, 2018	Original



3 Test Summary

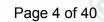
Test Item	Test Requirement	Test method	Result PASS	
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013		
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS	
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS	
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS	
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v04	PASS	
Duty cycle	47 CFR Part 15 Subpart C Section 15.35(c)	ANSI C63.10-2013	PASS PASS	
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013		
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013		

Remark:

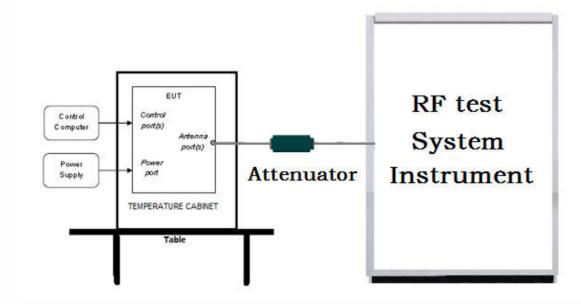
Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample and the sample information are provided by the client.

Model No.:AP02, AP02A, AP02B, RP02, TP02, TP02A, TP02B, SP02, SP02A, SP02B


Only the model AP02 was tested, since their electrical circuit design, layout, components and internal wiring are identical. Only the model name and color are different.

4 Content


1 CO	VER PAGE						1
2 VE	RSION		•••••		•••••		2
3 TE	ST SUMMARY						3
	NTENT						
	ST REQUIREMENT						
	1 Test setup						
5.	1 TEST SETUP5.1.1 For Conducted tes						
	5.1.2 For Radiated Emis	•					
	5.1.3 For Conducted En	nissions test se	tup				6
	2 TEST ENVIRONMENT						
	3 TEST CONDITION						
	NERAL INFORMATION						
	1 CLIENT INFORMATION						
	2 GENERAL DESCRIPTION 3 PRODUCT SPECIFICATIO						
	4 DESCRIPTION OF SUPPO						
	5 TEST FACILITY						
	6 DEVIATION FROM STAND						
	7 ABNORMALITIES FROM S						
	3 OTHER INFORMATION RI 9 MEASUREMENT UNCERT						
	UIPMENT LIST	and the second		and different			
8 RA	DIO TECHNICAL REQU						
	Appendix A): 6dB Occu						
	Appendix B): Conducted						
	Appendix C): Band-edge Appendix D): RF Condu						
	Appendix E): Power Spe						
	Appendix F): Duty Cycle						
	Appendix G): Antenna F Appendix H): AC Power						
	Appendix I): Restricted						
	Appendix J): Radiated S						
РНО	TOGRAPHS OF TEST S	SETUP					38
	TOGRAPHS OF EUT C						
1 110	TOOKAI IIO OI LOT O	ONSTRUCTIO	IAL DETAIL	J	•••••••••••	••••••	

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

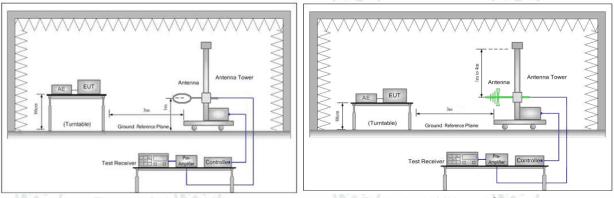


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Page 5 of 40

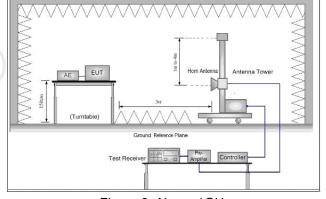
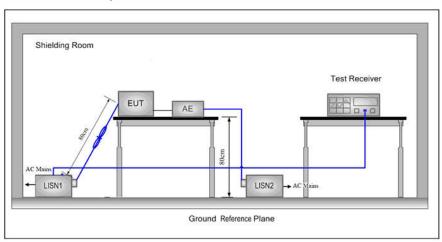


Figure 3. Above 1GHz



Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

5.1.3 For Conducted Emissions test setup

Conducted Emissions setup

Page 6 of 40

5.2 Test Environment

Operating Environment:		(3)	/3
Temperature:	23°C	(8.72)	(85)
Humidity:	55% RH		6
Atmospheric Pressure:	1010mbar		

5.3 Test Condition

Test channel:

of onarino.					
Test Mode	Tv	RF Channel			
rest wode	Tx	Low(L)	Middle(M)	High(H)	
OFOK	0400MH= 0400 MH=	Channel 1	Channel 20	Channel 40	
GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz	
Transmitting mode:	Keep the EUT at Transmit mod	e.			

General Information

6.1 Client Information

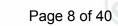
Applicant:	XIAMEN RONGTA TECHNOLOGY CO., LTD.
Address of Applicant:	3F-1/E Building, No.195 Gaoqishe, Gaodian Village, Dianqian Street Office, Huli District, Xiamen City, China
Manufacturer:	XIAMEN RONGTA TECHNOLOGY CO., LTD.
Address of Manufacturer:	3F-1/E Building, No.195 Gaoqishe, Gaodian Village, Dianqian Street Office, Huli District, Xiamen City, China
Factory:	XIAMEN RONGTA TECHNOLOGY CO., LTD.
Address of Factory:	4,5F, G Plant, Gaoqi Industrial Zones, Huli District, Xiamen City, China

Page 7 of 40

6.2 General Description of EUT

Product Name:	E-POS
Mode No.(EUT):	AP02, AP02A, AP02B, RP02, TP02, TP02A, TP02B, SP02, SP02A, SP02B
Test Mode:	AP02
Trade Mark:	RONGTA
EUT Supports Radios application	BT4.0, BT3.0 2402-2480MHz, WiFi b/g/n(HT20) 2.4G wifi 2412-2462MHz, GPRS 850/1900 , UMTS (3G) WCDMA Band II/WCDMA Band V
Hardware version:	C(Manufacturer declare)
Software version :	1.0.0(Manufacturer declare)
	DC 5V by Adapter Adapter: Input AC 100-240V,50/60Hz,0.5A. Output DC5V 1A
Power Supply:	DC 3.7V by Battery Battery: 3.7V, 6000mAh, 22.2Wh
Sample Received Date:	Oct. 19, 2017
Sample tested Date:	Oct. 19, 2017 to Jan. 26, 2018

6.3 Product Specification subjective to this standard


Operation Frequency:	2402MHz~2480MHz				
Bluetooth Version:	4.0				
Modulation Type:	GFSK		100		/'5
Number of Channel:	40		(65)		(62)
Sample Type:	Portable				
Test Power Grade:	N/A				
Test software of EUT	Engineering mode				
Antenna Type:	Integral	(3/3)		(35)	
Antenna Gain:	1.95dBi				
Test Voltage:	AC 120V, 60Hz				
Test voltage.	DC 3.7V		130		

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Operation F	Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
(14)	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz	
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz	
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz	
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz	
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz	
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz	
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz	
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz	
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz	
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz	

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Facility

Test location

The test site a is located on *Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China.* Test site at Centre Testing International Group Co., Ltd has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on November 06, 2014. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

FCC-Designation No.: CN1164

Centre Testing International Group Co., Ltd EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The American association for Centre Testing International Group Co., Ltd. EMC laboratory accreditation Designation No.:CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

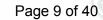
None

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nower conducted	0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB (1GHz-18GHz)
2	Dadieted Causieus emission test	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
4	Conduction emission	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%



BT&WI-FI Automatic test

software

Report No. : EED32J00230702 **7 Equipment List**

RF test system								
Equipment	Manufacturer	rer Mode No. Serial Number		Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-13-2018			
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2016	03-13-2018			
Signal Generator	Keysight	N5182B	MY53051549	04-01-2016	03-13-2018			
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2017	01-11-2018			
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-11-2018	01-10-2019			
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-12-2017	01-11-2018			
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	(0)	01-11-2018	01-10-2019			
DC Power	Keysight	E3642A	MY54436035	04-01-2016	03-31-2018			
PC-1	Lenovo	R4960d		04-01-2016	03-31-2018			
power meter & power sensor	R&S	OSP120	101374	04-01-2016	03-13-2018			
RF control unit	JS Tonscend	JS0806-2	158060006	04-01-2016	03-13-2018			

Conducted disturbance Test							
Equipment	Manufacturer Mode No		Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Receiver	R&S	ESCI	100009	06-14-2017	06-13-2018		
Temperature/ Humidity Indicator	TAYLOR	1451	1905	05-08-2017	05-07-2018		
LISN	R&S	ENV216	100098	06-13-2017	06-12-2018		
LISN	schwarzbeck	NNLK8121	8121-529	06-13-2017	06-12-2018		
Voltage Probe	R&S	ESH2-Z3	(2/2)	06-13-2017	06-12-2018		
Current Probe	R&S	EZ17	100106	06-13-2017	06-12-2018		
ISN	TESEQ GmbH	ISN T800	30297	02-23-2017	02-22-2018		

JS1120-2

JS Tonscend

04-01-2016

03-31-2018

Page 10 of 40

	3M	Semi/full-anech	oic Chamber		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy
3M Chamber & Accessory Equipment	TDK	SAC-3	<u> </u>	06-05-2016	06-05-2019
TRILOG Broadband Antenna	SCHWARZBECK	VULB9163	9163-484	05-23-2017	05-22-2018
Horn Antenna	ETS-LINDGREN	3117	00057410	06-30-2015	06-28-2018
Loop Antenna	ETS	6502	00071730	06-22-2017	06-21-2019
Spectrum Analyzer	R&S	FSP40	100416	06-13-2017	06-12-2018
Receiver	R&S	ESCI	100435	06-14-2017	06-13-2018
Multi device Controller	maturo	NCD/070/10711 112	(4)	01-12-2017	01-11-2018
Multi device Controller	maturo	NCD/070/10711 112		01-11-2018	01-10-2019
LISN	schwarzbeck	NNBM8125	81251547	06-13-2017	06-12-2018
LISN	schwarzbeck	NNBM8125	81251548	06-13-2017	06-12-2018
Signal Generator	Agilent	E4438C	MY45095744	03-14-2017	03-13-2018
Signal Generator	Keysight	E8257D	MY53401106	03-14-2017	03-13-2018
Temperature/ Humidity Indicator	TAYLOR	1451	1905	05-08-2017	05-07-2018
Cable line	Fulai(7M)	SF106	5219/6A	01-12-2017	01-11-2018
Cable line	Fulai(6M)	SF106	5220/6A	01-12-2017	01-11-2018
Cable line	Fulai(3M)	SF106	5216/6A	01-12-2017	01-11-2018
Cable line	Fulai(3M)	SF106	5217/6A	01-12-2017	01-11-2018
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2017	01-11-2018
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-11-2018	01-10-2019
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-12-2017	01-11-2018
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-11-2018	01-10-2019
band rejection filter	Sinoscite	FL5CX01CA09C L12-0395-001	<u> </u>	01-12-2017	01-11-2018
band rejection filter	Sinoscite	FL5CX01CA09C L12-0395-001		01-11-2018	01-10-2019
band rejection filter	Sinoscite	FL5CX01CA08C L12-0393-001		01-12-2017	01-11-2018
band rejection filter	Sinoscite	FL5CX01CA08C L12-0393-001		01-11-2018	01-10-2019
band rejection filter	Sinoscite	FL5CX02CA04C L12-0396-002		01-12-2017	01-11-2018
band rejection filter	Sinoscite	FL5CX02CA04C L12-0396-002	(C)	01-11-2018	01-10-2019
band rejection filter	Sinoscite	FL5CX02CA03C L12-0394-001		01-12-2017	01-11-2018
band rejection filter	Sinoscite	FL5CX02CA03C L12-0394-001		01-11-2018	01-10-2019

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 11 of 40

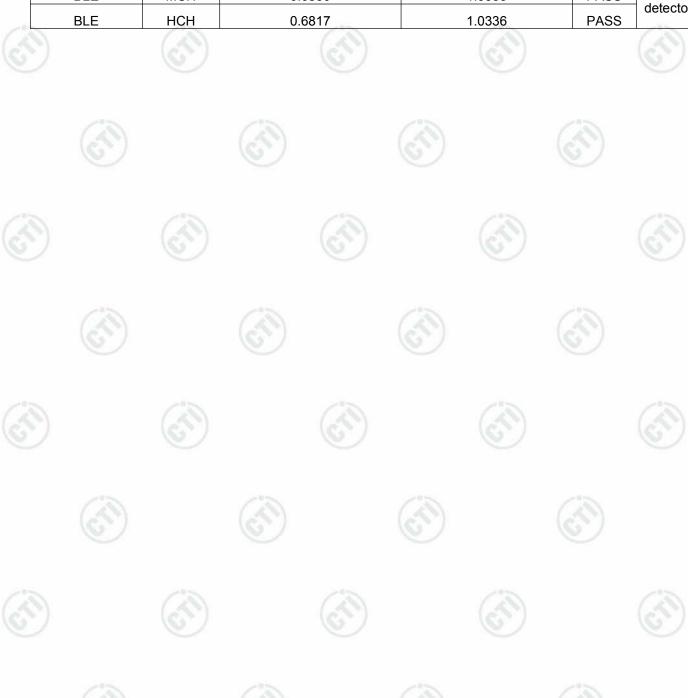
8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Part15C Section 15.247 (a)(2) Part15C Section 15.247 (b)(3) Part15C Section 15.247 (b)(3) Part15C Section 15.247(d) Part15C Section 15.247 (e) Part15C Section 15.247 (e) Part15C Section 15.247 (e) Part15C Section 15.247 (c) Part15C Section 15.247 (c) Part15C Section 15.203/15.247 (c) Part15C Section 15.205/15.209 ANSI C63.10 ANSI C63.10 ANSI C63.10 ANSI C63.10 ANSI C63.10 AC Power Line Conducted Emission Pass Appendix E Appendix	est Results List.		795		70%
ANSI C63.10/KDB 558074 6dB Occupied Bandwidth PASS Appendix Append	Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (b)(3) Part15C Section 15.247(d) Part15C Section 15.247(d) Part15C Section 15.247(d) Part15C Section 15.247(d) Part15C Section 15.247(e) Part15C Section 15.247 (e) Part15C Section 15.25 (c) Part15C Section 15.25 (c) Part15C Section 15.203/15.247 (c) Part15C Section 15.207 ANSI C63.10 ANSI C63.10 ANSI C63.10 ANSI C63.10 AC Power Line Conducted Emission Pass Appendix Expression Appendix Expression Appendix Expression Pass Appendix Expression Appendix Expression Appendix Expression Pass Appendix Expression P	ANSI C63 10/KDB 558		6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247(d) Part15C Section 15.247(d) Part15C Section 15.247(d) Part15C Section 15.247 (e) Part15C Section 15.247 (e) Part15C Section 15.247 (e) Part15C Section 15.35 (c) Part15C Section 15.203/15.247 (c) Part15C Section 15.205/15.209 Part15C Section 15.205/15.209 ANSI C63.10 Restricted bands around fundamental frequency (Radiated Emission) Part15C Section 15.205/15.209 Restricted Spurious Emissions PASS Appendix Conducted PASS Ap		ANSI C63.10/KDB 558074		PASS	Appendix B)
Part15C Section 15.207 Part15C Section 15.207 Part15C Section ANSI C63.10/KDB 558074 Power Spectral Density Pass Appendix E		ANSI C63.10/KDB 558074	_	PASS	Appendix C)
Part15C Section 15.207 Part15C Section 15.207 Part15C Section 15.205/15.209 Part15C Section 15.205/15.209 Part15C Section 15.205/15.209 ANSI C63.10 ANSI C63.10 ANSI C63.10 Antenna Requirement Appendix Restricted bands around fundamental frequency (Radiated Emission) Appendix Rependix Report		ANSI C63.10/KDB 558074		PASS	Appendix D)
Part 15C Section 15.207 Part 15C Section 15.207 Part 15C Section 15.207 Part 15C Section 15.207 Part 15C Section 15.205/15.209		ANSI C63.10/KDB 558074	Power Spectral Density	PASS	Appendix E)
ANSI C63.10 Antenna Requirement PASS Appendix C ANSI C63.10 Antenna Requirement PASS Appendix C AC Power Line Conducted Emission PASS Appendix C APPENDIX F ANSI C63.10 PASS Appendix C ARRICGS.10 Restricted bands around fundamental frequency (Radiated Emission) Part 15C Section PASS Appendix C APPENDIX F APPENDIX		ANSI 63.10	Duty cycle	PASS	Appendix F)
Part 15C Section 15.205/15.209 ANSI C63.10 Emission Restricted bands around fundamental frequency (Radiated Emission) Part 15C Section K ANSI C63.10 Restricted bands around fundamental frequency (Radiated Emission) PASS Appendix Bands Appendix Bands Appendix Appendix Bands Appendix Bands Appendix Bands Appendix Bands Band		ANSI C63.10	Antenna Requirement	PASS	Appendix G)
ANSI C63.10 fundamental frequency (Radiated Emission) PASS Appendix Part15C Section K ANSI C63.10 Radiated Spurious Emissions PASS Appendix		ANSI C63.10		PASS	Appendix H)
K ANSI C63.10 Radiated Spurious Emissions PASS Appendix .		ANSI C63.10	fundamental frequency	PASS	Appendix I)
		K ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix J)

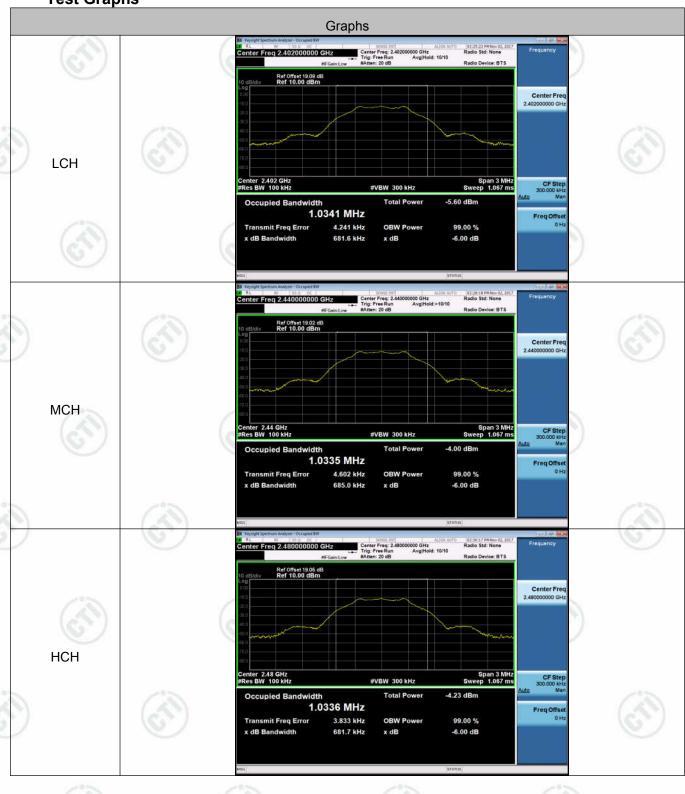


Page 12 of 40

Appendix A): 6dB Occupied Bandwidth

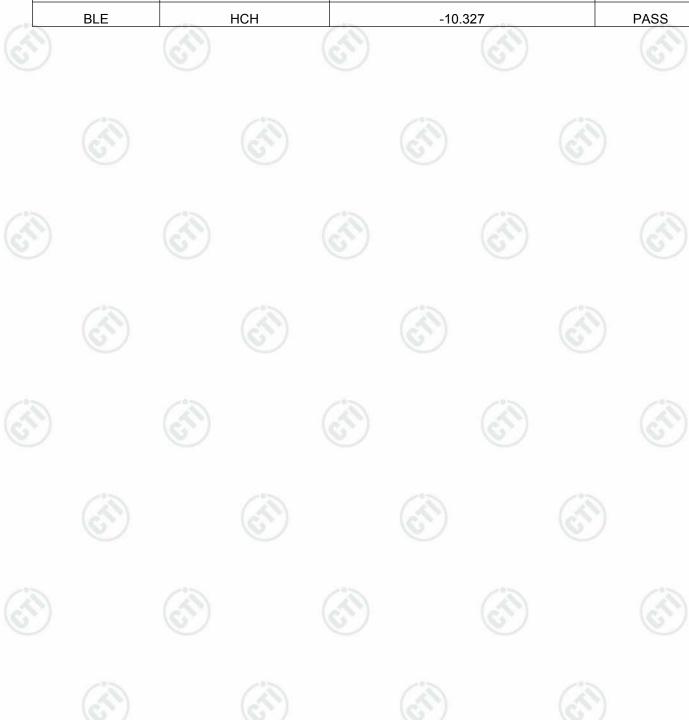
Test Result

Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict	Remark
BLE	LCH	0.6816	1.0341	PASS]
BLE	MCH	0.6850	1.0335	PASS	Peak
BLE	HCH	0.6817	1.0336	PASS	detector



Page 13 of 40

Test Graphs



Page 14 of 40

Appendix B): Conducted Peak Output Power

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	-11.718	PASS
BLE	MCH	-10.131	PASS
BLE	HCH	-10.327	PASS



Page 15 of 40

Test Graphs

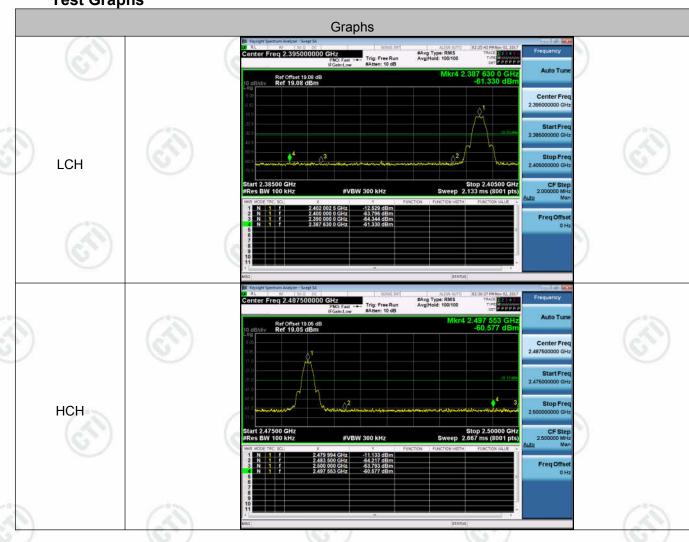


Report No. : EED32J00230702 Page 16 of 40

Appendix C): Band-edge for RF Conducted Emissions

Result Table

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict	
BLE	LCH	-12.529	-61.330	-32.53	PASS	
BLE	HCH	-11.133	-60.577	-31.13	PASS	



Page 17 of 40

Test Graphs

Page 18 of 40

Appendix D): RF Conducted Spurious Emissions

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	-12.714	<limit< th=""><th>PASS</th></limit<>	PASS
BLE	MCH	-11.109	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	нсн	-11.286	<limit< td=""><td>PASS</td></limit<>	PASS



Page 19 of 40

Test Graphs

Page 20 of 40



Page 21 of 40

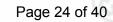
Appendix E): Power Spectral Density

Result Table

Mode	Channel	PSD [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
BLE	LCH	-27.178	8	PASS
BLE	MCH	-25.532	8	PASS
BLE	нсн	-25.792	8	PASS

Page 23 of 40

Test Graphs



Report No. : EED32J00230702 **Appendix F): Duty Cycle**

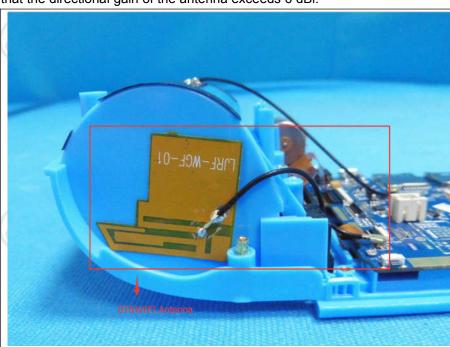
Result Table

Test Mode	Channel	Duty Cycle[%]	Verdict
GFSK	LCH	59.92	PASS
GFSK	MCH	59.92	PASS
GFSK	HCH	59.92	PASS



Page 25 of 40

Appendix G): Antenna Requirement


15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna car be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

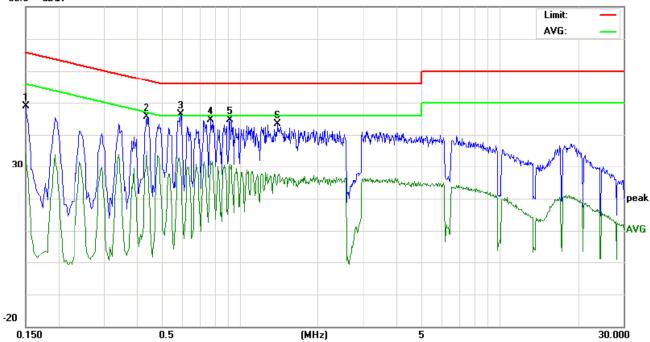
The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 1.95dBi.

Page 27 of 40

Appendix H): AC Power Line Conducted Emission

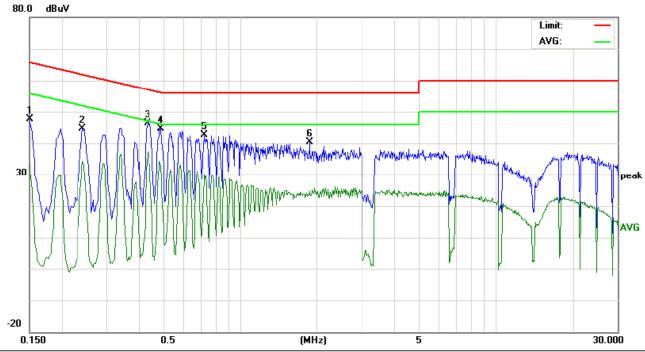
Test Procedure:	Test freque	ency range :150K	Hz-30MHz			
	2) The EU Stabiliz power which were	T was connected cation Network) w cables of all othe was bonded to the unit being measure power cables to	to AC power sou thich provides a 5 r units of the EUT e ground reference ured. A multiple s a single LISN pro	rce through 0Ω/50μΗ + Γ were coni e plane in t ocket outle	a LISN 1 (Line 5Ω linear imperected to a second same way a t strip was use	e Impedance edance. The cond LISN 2, s the LISN 1 d to connect
	referen horizor	ce plane. And for ital ground referer	aced upon a non- floor-standing arr nce plane, with a vertical gr	rangement,	the EUT was p	laced on the
	EUT sh referen 1 was ground plane.	nall be 0.4 m from ice plane was bor placed 0.8 m from reference plane This distance was er units of the EU	the vertical grounded to the horizon the boundary of for LISNs mounds between the close T and associated	nd reference ntal ground of the unit united on to sest points	e plane. The ve reference plan under test and o of the grour of the LISN 1 a	rtical ground ne. The LISN bonded to a nd reference and the EUT.
	of the		num emission, the s must be chan t.			
Limit:		10%				
	Freque	ncy range (MHz)	(6)	Limit (dBµV	')	
	110440	noy rango (ivii iz)	Quasi-pea	ık	Average	
		0.15-0.5	66 to 56*	:	56 to 46*	
		0.5-5	56	1	46	~ ~
	(25)	5-30	60	(20)	50	(4/2)
	MHz to	0.50 MHz.	ly with the logarit			e range 0.15
leasurement Data in initial pre-scan v luasi-Peak and Av etected.	vas performed on				ximized peak e	mission were

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$



Page 28 of 40

No.	Freq.		ding_Le dBu∀)	vel	Correct Factor	M	leasurem (dBuV)		Lin (dB			rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1500	39.09	37.23	24.20	9.77	48.86	47.00	33.97	65.99	55.99	-18.99	-22.02	Р	
2	0.4380	35.99	33.51	25.18	9.73	45.72	43.24	34.91	57.10	47.10	-13.86	-12.19	Р	
3	0.5940	36.59	33.69	19.08	9.75	46.34	43.44	28.83	56.00	46.00	-12.56	-17.17	Р	
4	0.7740	34.89	31.27	22.04	9.74	44.63	41.01	31.78	56.00	46.00	-14.99	-14.22	Р	
5	0.9220	34.90	32.25	21.11	9.74	44.64	41.99	30.85	56.00	46.00	-14.01	-15.15	Р	
6	1.4020	33.55	30.77	17.00	9.72	43.27	40.49	26.72	56.00	46.00	-15.51	-19.28	Р	



Page 29 of 40

No.	Freq.		ding_Le dBuV)	evel	Correct Factor	N	Measurement (dBuV)				rgin dB)			
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1500	37.94	35.15	23.84	9.77	47.71	44.92	33.61	65.99	55.99	-21.07	-22.38	Р	
2	0.2420	34.89	32.65	24.54	9.74	44.63	42.39	34.28	62.02	52.02	-19.63	-17.74	Р	
3	0.4340	36.66	34.65	26.53	9.74	46.40	44.39	36.27	57.18	47.18	-12.79	-10.91	Р	
4	0.4900	34.96	32.44	23.41	9.71	44.67	42.15	33.12	56.17	46.17	-14.02	-13.05	Р	
5	0.7260	32.85	30.22	20.43	9.75	42.60	39.97	30.18	56.00	46.00	-16.03	-15.82	Р	
6	1.8700	30.64	28.07	14.79	9.72	40.36	37.79	24.51	56.00	46.00	-18.21	-21.49	Р	

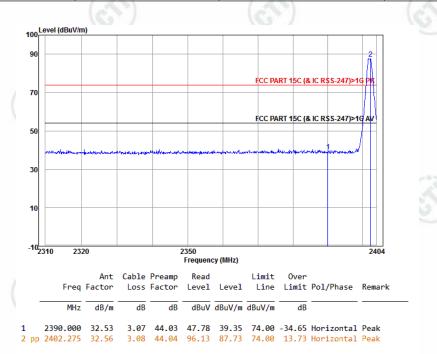
Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. AC120V and 240V are tested and found the worst case is 120V, So only the 120V data were shown in the above.

Report No. : EED32J00230702 Page 30 of 40

Appendix I): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	A h a v a 4 O l l =	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	
est Procedure:	Below 1GHz test procedu a. The EUT was placed of at a 3 meter semi-aned determine the position b. The EUT was set 3 media was mounted on the too of the antenna height is determine the maximular polarizations of the antenna was turned from 0 degular test. The test-receiver systems and width with Maximular f. Place a marker at the of frequency to show communications.	on the top of a rotal choic camber. The of the highest race ters away from the pof a variable-he waried from one not a value of the field enna are set to mission, the EUT of the heights from 1 to heights from 1	e table wand a diation. The interference interference in the inter	ence-receinna tower. ur meters n. Both horneasurement ged to its v 4 meters a the maxim Function a	ving antenna, above the gro rizontal and vee ent. worst case and and the rotatal num reading. nd Specified	which und erticand the ble
imit	bands. Save the spect for lowest and highest Above 1GHz test procedured g. Different between above to fully Anechoic Chammat 18GHz the distance is h. Test the EUT in the low in the radiation measure Transmitting mode, an j. Repeat above procedure.	channel ure as below: ve is the test site, ber change form 1 meter and table bwest channel, the ments are perforr d found the X axis	change fr table 0.8 is 1.5 med the Highest med in X, is positionic	rom Semi- meter to 1 ter). channel Y, Z axis p ng which i	Anechoic Cha .5 meter(Abo positioning for t is worse case as complete.	ambe ve
Limit:	for lowest and highest Above 1GHz test procedu g. Different between above to fully Anechoic Chammatage 18GHz the distance is horizontal to the result of the radiation measure that the second of the requency is requency.	channel ure as below: ve is the test site, aber change form 1 meter and table bwest channel , th ments are perform d found the X axis ares until all frequent Limit (dBµV/n	change fr table 0.8 is 1.5 med the Highest med in X, is positionic	rom Semi- meter to 1 ter). channel Y, Z axis p ng which i easured wa	Anechoic Cha .5 meter(Abo positioning for t is worse case as complete.	ambe ve
imit:	for lowest and highest Above 1GHz test procedu g. Different between above to fully Anechoic Chammatage 18GHz the distance is horizontal in the letter in the letter in the radiation measure Transmitting mode, an jour in Repeat above procedus Frequency 30MHz-88MHz	channel ure as below: ve is the test site, aber change form 1 meter and table bwest channel, th ments are perform d found the X axis ures until all frequent Limit (dBµV/n 40.0	change fr table 0.8 is 1.5 med the Highest med in X, is positionic	rom Semi- meter to 1 ter). channel Y, Z axis p ng which i easured wa	Anechoic Cha .5 meter(Abo positioning for t is worse case as complete.	ambe ve
imit:	for lowest and highest Above 1GHz test procedu g. Different between above to fully Anechoic Chammatage 18GHz the distance is horizontal to the folion of th	channel ure as below: ve is the test site, aber change form 1 meter and table bwest channel , th ments are perform d found the X axis ures until all freque Limit (dBµV/n 40.0 43.5	change fr table 0.8 is 1.5 med the Highest med in X, is positionic	rom Semi- meter to 1 ter). channel Y, Z axis p ng which i easured wa Rer Quasi-pe	Anechoic Cha .5 meter(Abo positioning for t is worse case as complete. mark eak Value	ambe ve
imit:	g. Different between above 1GHz test procedure. g. Different between above to fully Anechoic Chammat 18GHz the distance is horizontal in the left. The radiation measure that Transmitting mode, and journal in the left. Repeat above procedure. Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	channel ure as below: ve is the test site, aber change form 1 meter and table bwest channel , th ments are perform d found the X axis ares until all frequent Limit (dBµV/n 40.0 43.5 46.0	change fr table 0.8 is 1.5 med the Highest med in X, is positionic	rom Semi- meter to 1 ter). channel Y, Z axis p ng which i easured wa Rer Quasi-pe Quasi-pe	Anechoic Cha .5 meter(Abo positioning for t is worse case as complete. mark eak Value eak Value	ambe ve
Limit:	for lowest and highest Above 1GHz test procedu g. Different between above to fully Anechoic Chammatage 18GHz the distance is horizontal to the folion of th	channel ure as below: ve is the test site, aber change form 1 meter and table bwest channel , th ments are perform d found the X axis ures until all freque Limit (dBµV/n 40.0 43.5	change fr table 0.8 is 1.5 med the Highest med in X, is positionic	rom Semi- meter to 1 ter). channel Y, Z axis p ng which ir easured wa Rer Quasi-pe Quasi-pe Quasi-pe	Anechoic Cha .5 meter(Abo positioning for t is worse case as complete. mark eak Value	ambe ve

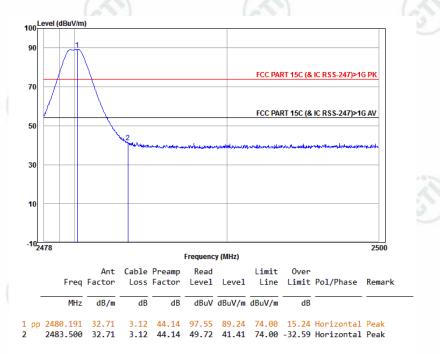


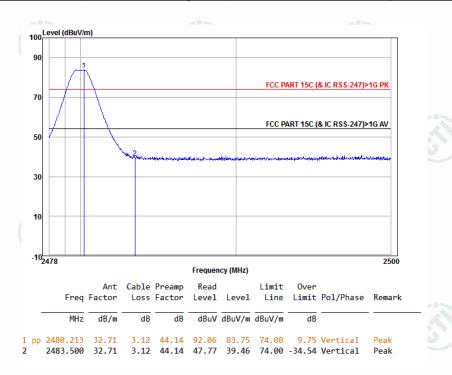
Page 31 of 40

Test plot as follows:

Worse case mode: GFSK

Frequency: 2402MHz Test channel: Lowest Polarization: Horizontal Remark: PK



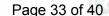


Page 32 of 40

Worse case mode:	GFSK				
Frequency: 2480MHz		Test channel: Highest	Polarization: Horizontal	Remark: PK	

Worse case mode:	GFSK			
Frequency: 2480MHz		Test channel: Highest	Polarization: Vertical	Remark: PK

Note:


1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Appendix J): Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
(85%)	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
)	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	A h a a 4 O l l =	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

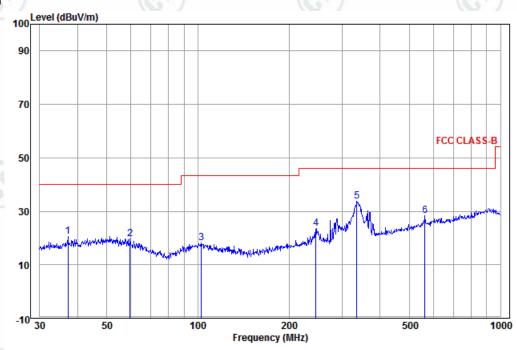
. Repeat above procedures until all frequencies measured was complete.

		• •
	m	14.

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	<u> </u>	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
1.705MHz-30MHz	30	-	70-	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com



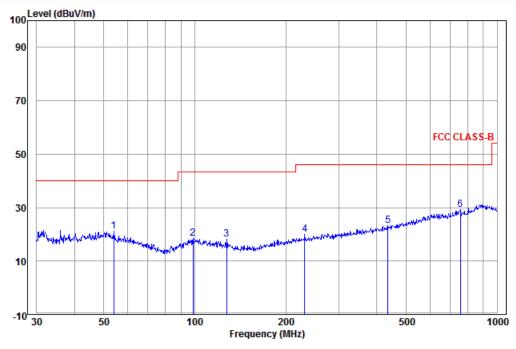
Page 34 of 40

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

30MHz~1GHz (QP)

Horizontal

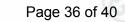
	Freq					Limit Line		Pol/Phase	Remark
	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	37.155	13.31	0.06	7.15	20.52	40.00	-19.48	Horizontal	QP
2	59.649	13.15	0.21	6.37	19.73	40.00	-20.27	Horizontal	QP
3	102.719	12.26	0.59	5.30	18.15	43.50	-25.35	Horizontal	QP
4	245.951	12.52	1.32	9.61	23.45	46.00	-22.55	Horizontal	QP
5 рр	334.859	14.11	1.25	18.26	33.62	46.00	-12.38	Horizontal	QP
6	562.662	18.04	1.62	8.59	28.25	46.00	-17.75	Horizontal	QP



Vertical

Page 35 of 40

	Freq					Limit Line		Pol/Phase	Remark
-	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	53.882	13.98	0.15	6.99	21.12	40.00	-18.88	Vertical	QP
2	98.833	12.32	0.57	5.43	18.32	43.50	-25.18	Vertical	QP
3	127.665	10.27	0.60	7.25	18.12	43.50	-25.38	Vertical	QP
4	230.907	12.21	1.25	6.61	20.07	46.00	-25.93	Vertical	QP
5	435.590	15.92	1.43	5.96	23.31	46.00	-22.69	Vertical	QP
6 рр	755.387	19.53	2.50	7.09	29.12	46.00	-16.88	Vertical	QP



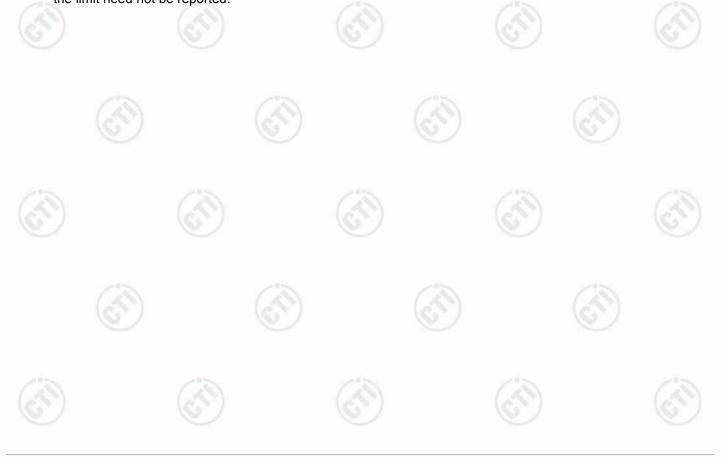
Transmitter Emission above 1GHz

Worse case mode: GFSK				Test char	nnel:	Lowest			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1238.405	30.32	1.92	44.33	46.29	34.20	74.00	-39.80	Pass	Horizontal
1581.218	31.02	2.39	43.91	46.28	35.78	74.00	-38.22	Pass	Horizontal
3776.385	32.96	4.02	44.62	47.12	39.48	74.00	-34.52	Pass	Horizontal
4804.000	34.69	5.98	44.60	42.73	38.80	74.00	-35.20	Pass	Horizontal
7206.000	36.42	6.97	44.77	42.92	41.54	74.00	-32.46	Pass	Horizontal
9608.000	37.88	6.98	45.58	43.13	42.41	74.00	-31.59	Pass	Horizontal
1207.279	30.24	1.87	44.37	46.93	34.67	74.00	-39.33	Pass	Vertical
3316.617	33.32	3.65	44.67	47.77	40.07	74.00	-33.93	Pass	Vertical
4804.000	34.69	5.98	44.60	43.37	39.44	74.00	-34.56	Pass	Vertical
5865.832	35.80	7.31	44.51	46.23	44.83	74.00	-29.17	Pass	Vertical
7206.000	36.42	6.97	44.77	43.87	42.49	74.00	-31.51	Pass	Vertical
9608.000	37.88	6.98	45.58	43.78	43.06	74.00	-30.94	Pass	Vertical

Worse case mode:		GFSK		Test cha	Test channel:		Middle				
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis		
1374.639	30.62	2.12	44.15	46.77	35.36	74.00	-38.64	Pass	Horizontal		
1943.292	31.62	2.78	43.55	46.39	37.24	74.00	-36.76	Pass	Horizontal		
3757.208	32.97	4.01	44.62	47.06	39.42	74.00	-34.58	Pass	Horizontal		
4880.000	34.85	6.13	44.60	44.13	40.51	74.00	-33.49	Pass	Horizontal		
7320.000	36.43	6.85	44.87	43.11	41.52	74.00	-32.48	Pass	Horizontal		
9760.000	38.05	7.12	45.55	41.88	41.50	74.00	-32.50	Pass	Horizontal		
1135.731	30.07	1.75	44.48	46.60	33.94	74.00	-40.06	Pass	Vertical		
1502.732	30.88	2.29	43.99	46.50	35.68	74.00	-38.32	Pass	Vertical		
4159.927	33.20	4.57	44.60	45.85	39.02	74.00	-34.98	Pass	Vertical		
4880.000	34.85	6.13	44.60	43.44	39.82	74.00	-34.18	Pass	Vertical		
7320.000	36.43	6.85	44.87	43.13	41.54	74.00	-32.46	Pass	Vertical		
9760.000	38.05	7.12	45.55	42.15	41.77	74.00	-32.23	Pass	Vertical		

Page	37	of 40	
1 ago	\circ	01 10	

Worse case mode:		GFSK		Test ch	nannel:	Highest			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1263.883	30.38	1.96	44.29	47.44	35.49	74.00	-38.51	Pass	Horizontal
1805.005	31.40	2.64	43.68	46.77	37.13	74.00	-36.87	Pass	Horizontal
3728.625	33.00	3.99	44.62	46.61	38.98	74.00	-35.02	Pass	Horizontal
4960.000	35.02	6.29	44.60	42.61	39.32	74.00	-34.68	Pass	Horizontal
7440.000	36.45	6.73	44.97	43.77	41.98	74.00	-32.02	Pass	Horizontal
9920.000	38.22	7.26	45.52	42.18	42.14	74.00	-31.86	Pass	Horizontal
1185.958	30.19	1.84	44.40	45.35	32.98	74.00	-41.02	Pass	Vertical
1642.761	31.13	2.46	43.84	46.61	36.36	74.00	-37.64	Pass	Vertical
3516.592	33.16	3.82	44.64	46.07	38.41	74.00	-35.59	Pass	Vertical
4960.000	35.02	6.29	44.60	43.29	40.00	74.00	-34.00	Pass	Vertical
7440.000	36.45	6.73	44.97	43.36	41.57	74.00	-32.43	Pass	Vertical
9920.000	38.22	7.26	45.52	41.97	41.93	74.00	-32.07	Pass	Vertical


Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Page 38 of 40

PHOTOGRAPHS OF TEST SETUP

Test mode No.: AP02

Radiated spurious emission Test Setup-1(Below 30MHz)

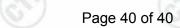
Radiated spurious emission Test Setup-2(Below 1G)



Page 39 of 40

Radiated spurious emission Test Setup-3(Above 1G)

Conducted Emissions Test Setup



PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No. EED32J00230701 for EUT external and internal photos.

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

