

Report No: JYTSZB-R12-2102736

FCC REPORT (Bluetooth)

Applicant:	Sky Phone LLC
Address of Applicant:	1348 Washington Av. Suite 350, Miami Beach, FL 33139
Equipment Under Test (E	EUT)
Product Name:	Tablet PC
Model No.:	SKY KID1
Trade mark:	SKY DEVICES
FCC ID:	2ABOSSKYKID1
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247
Date of sample receipt:	03 Dec., 2021
Date of Test:	04 Dec., 2021 to 12 Jan., 2022
Date of report issued:	01 Aug., 2022
Test Result:	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	13 Jan., 2022	Original
01	01 Aug., 2022	Update Appendix A – BT page 1, 13, 14.

Tested by:

Mike.DU Test Engineer

Date: 01 Aug., 2022

Winner Thang

Reviewed by:

Project Engineer

Date: 01 Aug., 2022

Project No.: JYTSZE2112005

3 Contents

	Page
1 COVER PAGE	1
2 VERSION	2
3 CONTENTS	3
4 TEST SUMMARY	- -
5 GENERAL INFORMATION	5
5.1 CLIENT INFORMATION	
5.2 GENERAL DESCRIPTION OF E.U.T.	-
5.3 TEST ENVIRONMENT AND MODE	
5.4 DESCRIPTION OF SUPPORT UNITS	
5.6 ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	
5.7 LABORATORY FACILITY	
5.8 LABORATORY LOCATION	
5.9 TEST INSTRUMENTS LIST	7
6 TEST RESULTS AND MEASUREMENT DATA	9
6.1 ANTENNA REQUIREMENT	9
6.2 CONDUCTED EMISSIONS	-
6.3 CONDUCTED OUTPUT POWER	
6.4 20DB OCCUPY BANDWIDTH 6.5 CARRIER FREQUENCIES SEPARATION	
6.6 HOPPING CHANNEL NUMBER	
6.7 DWELL TIME	
6.8 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
6.9 BAND EDGE	
6.9.1 Conducted Emission Method	
6.9.2 Radiated Emission Method 6.10 SPURIOUS EMISSION	
6.10.1 Conducted Emission Method	
6.10.2 Radiated Emission Method	
7 TEST SETUP PHOTO	
8 EUT CONSTRUCTIONAL DETAILS	

4 Test Summary

Test Items	Section in CFR 47	Test Data	Result
Antenna Requirement	15.203 & 15.247 (b)	See Section 6.1	Pass
AC Power Line Conducted Emission	15.207	See Section 6.2	Pass
Conducted Peak Output Power	15.247 (b)(1)	Appendix A – BT	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Appendix A – BT	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Appendix A – BT	Pass
Hopping Channel Number	15.247 (a)(1)	Appendix A – BT	Pass
Dwell Time	15.247 (a)(1)	Appendix A – BT	Pass
Conducted Band Edge	15.247(d)	Appendix A – BT	Pass
Radiated Band Edge	15.205 & 15.209	See Section 6.9.2	Pass
Conducted Spurious Emission	15.247(d)	Appendix A – BT	Pass
Radiated Spurious Emission	15.205 & 15.209	See Section 6.10.2	Pass
Remark:	•		

Pass: The EUT complies with the essential requirements in the standard. 1.

The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by 2. the customer).

Test Method:	ANSI C63.10-2013
	KDB 558074 D01 15.247 Meas Guidance v05r02

5 General Information

5.1 Client Information

Applicant:	Sky Phone LLC
Address:	1348 Washington Av. Suite 350, Miami Beach, FL 33139
Manufacturer:	Sky Phone LLC
Address:	1348 Washington Av. Suite 350, Miami Beach, FL 33139

5.2 General Description of E.U.T.

Product Name:	Tablet PC
Model No.:	SKY KID1
Operation Frequency:	2402MHz~2480MHz
Transfer rate:	1/2/3 Mbits/s
Number of channel:	79
Modulation type:	GFSK, π/4-DQPSK, 8DPSK
Modulation technology:	FHSS
Antenna Type:	Internal Antenna
Antenna gain:	1.2 dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V, 2500mAh
AC adapter:	Input: AC100-240V, 50/60Hz, 0.2A
	Output: DC 5.0V, 1500mA
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel for GFSK, π/4-DQPSK, 8DPSK Channel Frequency Channel Frequency Channel Frequency								
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz	
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz	
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz	
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz	
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz	
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz	
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz	
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz	
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz	
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz	
19 2421MHz 39 2441MHz 59 2461MHz								

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test Modes:				
Non-hopping mode:	Keep the EUT in continuous transmitting mode with worst case data rate.			
Hopping mode:	Keep the EUT in hopping mode.			
Remark	GFSK (1 Mbps) is the worst case mode.			
Padiated Emission: The same	have placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane			

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 150KHz) for V-AMN	3.11 dB
Conducted Emission (150kHz ~ 30MHz) for V-AMN	2.62 dB
Radiated Emission (9kHz ~ 30MHz electric field) for 3m SAC	3.13 dB
Radiated Emission (9kHz ~ 30MHz magnetic field) for 3m SAC	3.13 dB
Radiated Emission (30MHz ~ 1GHz) for 3m SAC	4.45 dB
Radiated Emission (1GHz ~ 18GHz) for 3m SAC	5.34 dB
Radiated Emission (18GHz ~ 40GHz) for 3m SAC	5.34 dB
Radiated Emission (30MHz ~ 1GHz) for 10m SAC	4.32 dB

5.6 Additions to, deviations, or exclusions from the method

No

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <u>https://portal.a2la.org/scopepdf/4346-01.pdf</u>

5.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366 Email: info-JYTee@lets.com, Website: <u>http://jyt.lets.com/</u>

5.9 Test Instruments list

Radiated Emission(above 1GHz):							
Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
3m SAC	ETS	RFD-100	Q1984	04-14-2021	04-13-2024		
BiConiLog Antenna	SCHWARZBECK	VULB9163	9163-1246	03-07-2021	03-06-2022		
Biconical Antenna	SCHWARZBECK	VUBA 9117	9117#359	06-17-2021	06-17-2022		
Horn Antenna	SCHWARZBECK	BBHA9120D	912D-916	03-07-2021	03-06-2022		
Broad-Band Horn Antenna	SCHWARZBECK	BBHA9170	1067	04-02-2021	04-01-2022		
Broad-Band Horn Antenna	SCHWARZBECK	BBHA9170	1068	04-02-2021	04-01-2022		
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-03-2021	03-02-2022		
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-03-2021	03-02-2022		
Spectrum analyzer	Keysight	N9010B	MY60240202	10-27-2021	10-26-2022		
Simulated Station	Anritsu	MT8820C	6201026545	03-03-2021	03-02-2022		
Low Pre-amplifier	SCHWARZBECK	BBV9743B	00305	03-07-2021	03-06-2022		
High Pre-amplifier	SKET	LNPA_0118G-50	MF280208233	03-07-2021	03-06-2022		
Cable	Qualwave	JYT3M-1G-NN-8M	JYT3M-1	03-07-2021	03-06-2022		
Cable	Qualwave	JYT3M-18G-NN-8M	JYT3M-2	03-07-2021	03-06-2022		
Cable	Qualwave	JYT3M-1G-BB-5M	JYT3M-3	03-07-2021	03-06-2022		
Cable	Bost	JYT3M-40G-SS-8M	JYT3M-4	04-02-2021	04-01-2022		

Radiated Emission(below 1GHz):							
Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
EMI Test Software	Tonscend	TS+		Version:3.0.0.1			
10m SAC	ETS	RFSD-100-F/A	Q2005	04-28-2021	04-27-2024		
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1249	04-02-2021	04-01-2022		
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1250	04-02-2021	04-01-2022		
EMI Test Receiver	R&S	ESR 3	102800	04-08-2021	04-07-2022		
EMI Test Receiver	R&S	ESR 3	102802	04-08-2021	04-07-2022		
Low Pre-amplifier	Bost	LNA 0920N	2016	04-06-2021	04-05-2022		
Low Pre-amplifier	Bost	LNA 0920N	2019	04-06-2021	04-05-2022		
Cable	Bost	JYT10M-1G-NN-10M	JYT10M-1	04-02-2021	04-01-2022		
Cable	Bost	JYT10M-1G-NN-10M	JYT10M-2	04-02-2021	04-01-2022		
Test Software	R&S	EMC32	Version: 10.50.40				

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI 3	101189	03-03-2021	03-02-2022
LISN	Schwarzbeck	NSLK 8127	QCJ001-13	03-18-2021	03-17-2022
LISN	Rohde & Schwarz	ESH3-Z5	843862/010	06-18-2020	06-17-2022
RF Switch	TOP PRECISION	RSU0301	N/A	03-03-2021	03-02-2022
Cable	Bost	JYTCE-1G-NN-2M	JYTCE-1	03-03-2021	03-02-2022
Cable	Bost	JYTCE-1G-BN-3M	JYTCE-2	03-03-2021	03-02-2022
EMI Test Software	AUDIX	E3	V	ersion: 6.110919	b

Conducted method:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
Spectrum Analyzer	Keysight	N9010B	MY60240202	10-27-2021	10-26-2022
Vector Signal Generator	Keysight	N5182B	MY59101009	10-27-2021	10-26-2022
Analog Signal Generator	Keysight	N5173B	MY59100765	10-27-2021	10-26-2022
Power Detector Box	MWRF-test	MW100-PSB	MW201020JYT	11-19-2021	11-18-2022
Simulated Station	Rohde & Schwarz	CMW270	102335	10-27-2021	10-26-2022
RF Control Box	MWRF-test	MW100-RFCB	MW200927JYT	N/A	N/A
PDU	MWRF-test	XY-G10	N/A	N/A	N/A
DC Power Supply	Keysight	E3642A	MY60296194	11-27-2020	11-26-2023
Temperature Humidity Chamber	Deli	8840	N/A	03-08-2021	03-07-2022
Test Software	MWRF-tes	MTS 8310		Version: 2.0.0.0	

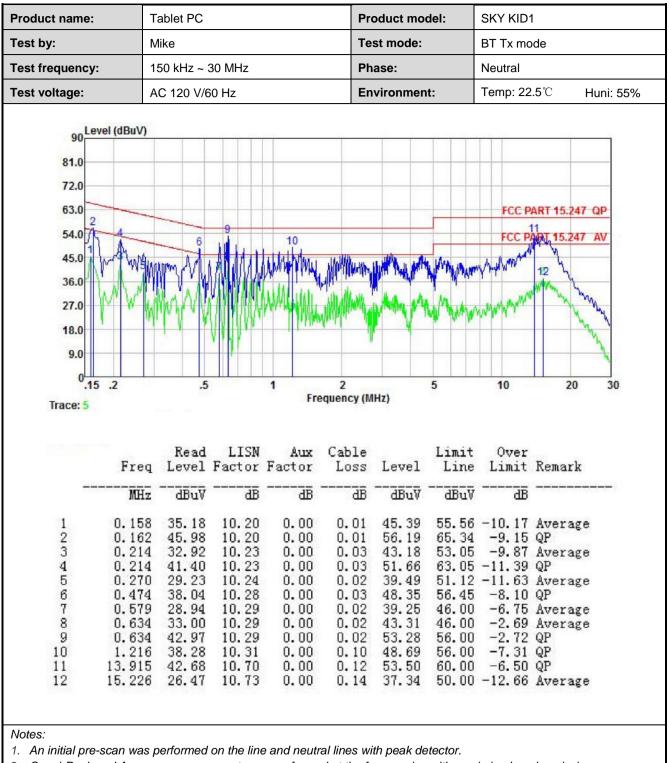
6 Test results and measurement data

6.1 Antenna Requirement

Standard requirement:	FCC Part 15 C Section 15.203 & 247(b)
responsible party shall be use antenna that uses a unique of so that a broken antenna car electrical connector is prohibit 15.247(b) (4) requirement: (4) The conducted output pow antennas with directional gain section, if transmitting antenna power from the intentional radi	be designed to ensure that no antenna other than that furnished by the ed with the device. The use of a permanently attached antenna or of an coupling to the intentional radiator, the manufacturer may design the unit in be replaced by the user, but the use of a standard antenna jack or ited. wer limit specified in paragraph (b) of this section is based on the use of ns that do not exceed 6 dBi. Except as shown in paragraph (c) of this has of directional gain greater than 6 dBi are used, the conducted output diator shall be reduced below the stated values in paragraphs (b)(1), on, as appropriate, by the amount in dB that the directional gain of the
E.U.T Antenna:	
The Bluetooth antenna is an Ir the antenna is 1.2 dBi.	nternal antenna which permanently attached, and the best case gain of

6.2 Conducted Emissions

Test Requirement:	FCC Part 15 C Section 15.	207	
Test Frequency Range:	150 kHz to 30 MHz		
Class / Severity:	Class B		
Receiver setup:	RBW=9 kHz, VBW=30 kHz	z, Sweep time=auto	
Limit:	Frequency range (MHz)	Limit (c	dBuV)
		Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	* Decreases with the logari	thm of the frequency.	
Test setup:	Reference Pl	ane	
	AUX Equipment Test table/Insulation plane Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Networ Test table height=0.8m		
Test procedure:	 50ohm/50uH coupling in The peripheral devices a LISN that provides a 500 termination. (Please reference) Both sides of A.C. line interference. In order to positions of equipmen 	tion network (L.I.S.N.). Th npedance for the measuri	is provides a ng equipment. main power through a lance with 500hm the test setup and n conducted sion, the relative ables must be changed
Test Instruments:	Refer to section 5.9 for det	ails	
Test mode:	Hopping mode		
Test results:	Pass		



Measurement Data:

Product name:	Та	ablet PC			Pro	duct mod	lel:	SKY KID1		
Test by:	М	ike			Tes	st mode:		BT Tx mo	de	
Test frequency:	15	50 kHz ~ 3	30 MHz		Pha	ase:		Line		
Test voltage:	A	C 120 V/6	0 Hz		Env	vironment	t:	Temp: 22.	.5℃ H	uni: 55%
90 Lev	vel (dBuV)					T T			1	
81.0					_		_			
72.0										
								FCC D	107 45 347	0.0
63.0 2								FLC P	ART 15.247	QP
54.0	3		8	10				FCC P/	ART 15.247	AV
45.0	hand have		BUALL	0 II				M	m m	
36.0	my	WWW IP	AUAMA	WUHAM	w/manuald	wer with they	Mar Winn	MAN.	11 4	
	mul	1 March	K Y Y Y Y Y	MANJA	da the	when has		ant	1 May Mar	Www.
27.0					A STATE OF THE STA	THE M	W VAV	ww	MA	u. 1
27.0		W W								
18.0		W W	MM.	. Alle						. with
18.0		-wy -w	MMM.	Jilli						. MA
			MMM.							
18.0 9.0	.2	.5	MMMM.	1	2		5	10	20	30
18.0 9.0 0.15	.2	.5			2 equency (M	Hz)	5	10	20	30
18.0 9.0	.2	.5	NN MAA.			Hz)	5	10	20	30
18.0 9.0 0.15	.2	.5				Hz)	5	10	20	30
18.0 9.0 0.15	.2	Read	LISN	Fre	equency (M Cable	Hz)	Limit	Over		30
18.0 9.0 0 .15	.2 Freq	Read		Fre	equenc <mark>y (</mark> M	Hz)		Over		30
18.0 9.0 0.15		Read	LISN	Fre	equency (M Cable		Limit	Over	Remark	30
18.0 9.0 0.15 Trace: 7	Freq MHz	Read Level dBuV	LISN Factor 	Aux Factor dB	Cable Loss dB	Level dBuV	Limit Line dBuV	Over Limit dB	Remark	
18.0 9.0 0.15 Trace: 7	Freq MHz 0.162	Read Level dBuV 36.24	LISN Factor dB 10.22	Aux Factor 	Cable Loss dB 0.01	Level 	Limit Line dBuV 55.34	Over Limit dB -8.87	Remark 	
18.0 9.0 0.15 Trace: 7	Freq MHz 0.162 0.162	Read Level dBuV 36.24 45.56	LISN Factor 	Aux Factor dB 0.00 0.00	Cable Loss dB 0.01 0.01	Level 	Limit Line dBuV 55.34 65.34	Over Limit -8.87 -9.55	Remark Average QP	
18.0 9.0 0.15 Trace: 7	Freq MHz 0.162 0.162 0.214 0.219	Read Level dBuV 36.24 45.56 39.81 32.52	LISN Factor dB 10.22 10.22 10.24 10.24	Aux Factor dB 0.00 0.00 0.00 0.00 0.00	Cable Loss dB 0.01 0.01 0.03 0.03	Level 	Limit Line dBuV 55.34 65.34 63.05 52.88	Over Limit 	Remark Average QP Average	
18.0 9.0 0.15 Trace: 7	Freq MHz 0.162 0.162 0.214 0.219 0.454	Read Level dBuV 36.24 45.56 39.81 32.52 34.32	LISN Factor dB 10.22 10.22 10.24 10.24 10.28	Factor 	Cable Loss dB 0.01 0.01 0.03 0.03 0.03 0.03	Level dBuV 46.47 55.79 50.08 42.79 44.63	Limit Line dBuV 55.34 65.34 63.05 52.88 56.80	Over Limit -8.87 -9.55 -12.97 -10.09 -12.17	Remark Average QP QP Average QP	
18.0 9.0 0.15 Trace: 7	Freq MHz 0.162 0.162 0.214 0.219 0.454 0.579	Read Level dBuV 36.24 45.56 39.81 32.52 34.32 30.27	LISN Factor dB 10.22 10.22 10.24 10.24 10.28 10.29	Factor 	Cable Loss dB 0.01 0.03 0.03 0.03 0.03 0.03 0.02	Level dBuV 46.47 55.79 50.08 42.79 44.63 40.58	Limit Line dBuV 55.34 65.34 63.05 52.88 56.80 46.00	Over Limit -8.87 -9.55 -12.97 -10.09 -12.17 -5.42	Remark Average QP QP Average QP Average	
18.0 9.0 0.15 Trace: 7	Freq MHz 0.162 0.214 0.219 0.454 0.579 0.617	Read Level dBuV 36.24 45.56 39.81 32.52 34.32 30.27 34.25	LISN Factor dB 10.22 10.22 10.24 10.24 10.28 10.29 10.30	Factor 	Cable Loss dB 0.01 0.03 0.03 0.03 0.03 0.02 0.02	Level dBuV 46.47 55.79 50.08 42.79 44.63 40.58 44.57	Limit Line dBuV 55.34 65.34 63.05 52.88 56.80 46.00 46.00	Over Limit -8.87 -9.55 -12.97 -10.09 -12.17 -5.42 -1.43	Remark Average QP Average QP Average Average	
18.0 9.0 0.15 Trace: 7	Freq 0.162 0.162 0.214 0.219 0.454 0.579 0.617 0.617	Read Level dBuV 36.24 45.56 39.81 32.52 34.32 30.27 34.25 41.58	LISN Factor dB 10.22 10.22 10.24 10.24 10.28 10.29 10.30 10.30	Factor Aux Factor dB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Cable Loss dB 0.01 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02	Level dBuV 46.47 55.79 50.08 42.79 44.63 40.58 44.57 51.90	Limit Line dBuV 55.34 65.34 63.05 52.88 56.80 46.00 46.00 56.00	Over Limit -8.87 -9.55 -12.97 -10.09 -12.17 -5.42 -1.43 -4.10	Remark QP QP Average QP Average Average QP	
18.0 9.0 0.15 Trace: 7	Freq 0.162 0.214 0.214 0.219 0.454 0.579 0.617 0.617 0.731	Read Level dBuV 36.24 45.56 39.81 32.52 34.32 30.27 34.25 41.58 28.97	LISN Factor dB 10.22 10.22 10.24 10.24 10.24 10.28 10.29 10.30 10.30 10.30	Free Aux Factor dB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Cable Loss dB 0.01 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02	Level dBuV 46.47 55.79 50.08 42.79 44.63 40.58 44.57 51.90 39.30	Limit Line dBuV 55.34 65.34 63.05 52.88 56.80 46.00 46.00 56.00 46.00	Over Limit -8.87 -9.55 -12.97 -10.09 -12.17 -5.42 -1.43 -4.10 -6.70	Remark QP QP Average QP Average Average QP Average QP	
18.0 9.0 0.15 Trace: 7	Freq MHz 0.162 0.214 0.219 0.454 0.579 0.617 0.617 0.731 1.229	Read Level dBuV 36.24 45.56 39.81 32.52 34.32 30.27 34.25 41.58 28.97 37.15	LISN Factor dB 10.22 10.22 10.24 10.24 10.24 10.28 10.29 10.30 10.30 10.30 10.32	Aux Factor dB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Cable Loss dB 0.01 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02	Level dBuV 46.47 55.79 50.08 42.79 44.63 40.58 44.57 51.90 39.30 47.57	Limit Line dBuV 55.34 65.34 63.05 52.88 56.80 46.00 46.00 56.00 46.00 56.00	Over Limit -8.87 -9.55 -12.97 -10.09 -12.17 -5.42 -1.43 -4.10 -6.70 -8.43	Remark QP QP Average QP Average Average QP Average QP Average QP	
18.0 9.0 0.15 Trace: 7	Freq 0.162 0.214 0.214 0.219 0.454 0.579 0.617 0.617 0.731	Read Level dBuV 36.24 45.56 39.81 32.52 34.32 30.27 34.25 41.58 28.97	LISN Factor dB 10.22 10.22 10.24 10.24 10.24 10.28 10.29 10.30 10.30 10.30	Free Aux Factor dB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Cable Loss dB 0.01 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02	Level dBuV 46.47 55.79 50.08 42.79 44.63 40.58 44.57 51.90 39.30	Limit Line dBuV 55.34 65.34 63.05 52.88 56.80 46.00 46.00 56.00 46.00 56.00	Over Limit -8.87 -9.55 -12.97 -10.09 -12.17 -5.42 -1.43 -4.10 -6.70 -8.43	Remark QP QP Average QP Average QP Average QP Average QP Average QP	

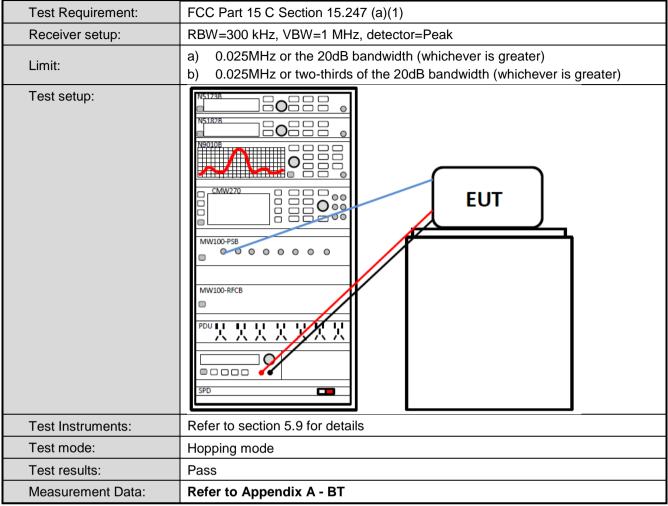
3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

Test Requirement:	FCC Part 15 C Section 15.247 (b)(1)
Receiver setup:	RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz) RBW=2MHz, VBW=6MHz, Detector=Peak (If 20dB BW > 1 MHz and < 3MHz)
Limit:	For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Non-hopping mode
Test results:	Pass
Measurement Data:	Refer to Appendix A - BT

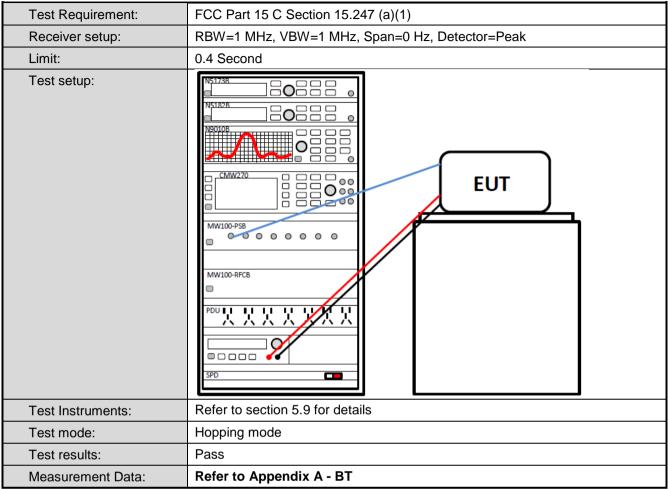
6.3 Conducted Output Power



6.4 20dB Occupy Bandwidth

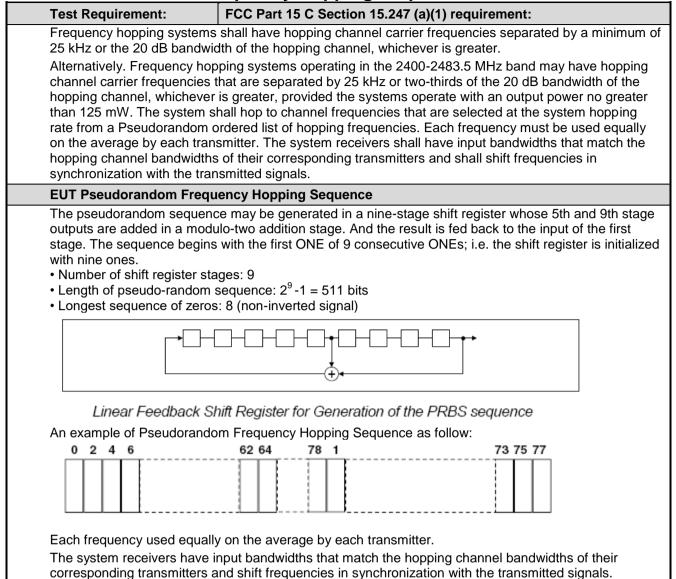
Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)
Receiver setup:	DH1: RBW=15 kHz, VBW=47 kHz, detector=Peak 2DH1&3DH: RBW=20 kHz, VBW=62 kHz, detector=Peak
Limit:	Within authorization band
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Non-hopping mode
Test results:	Pass
Measurement Data:	Refer to Appendix A - BT

6.5 Carrier Frequencies Separation



6.6 Hopping Channel Number

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Center Frequency=2441MHz,
	Frequency Range: 2400MHz~2483.5MHz, Detector=Peak
Limit:	15 channels
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Hopping mode
Test results:	Pass
Measurement Data:	Refer to Appendix A - BT



6.7 Dwell Time

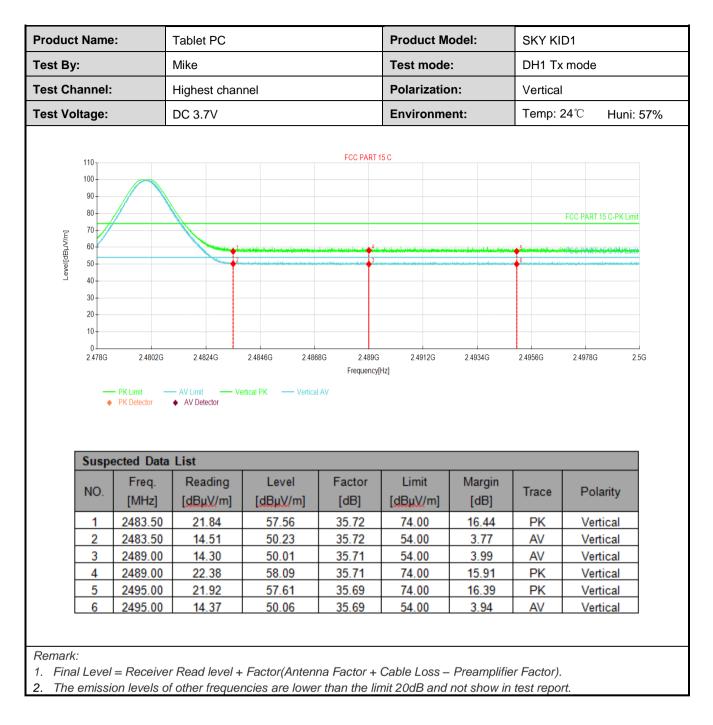
6.8 Pseudorandom Frequency Hopping Sequence

6.9 Band Edge

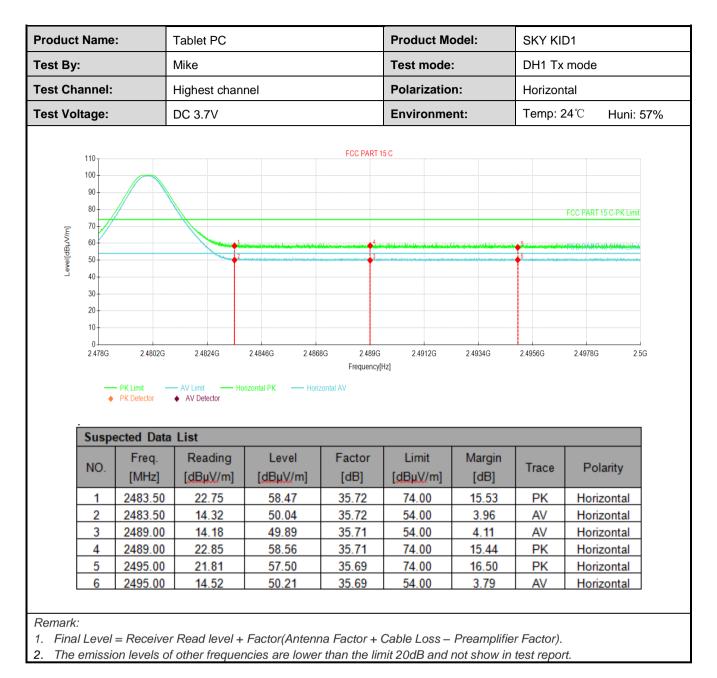
Test Requirement:	FCC Part 15 C Section 15.247 (d)
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Detector=Peak
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Non-hopping mode and hopping mode
Test results:	Pass
Measurement Data:	Refer to Appendix A - BT

6.9.2 Radiated Emission Method

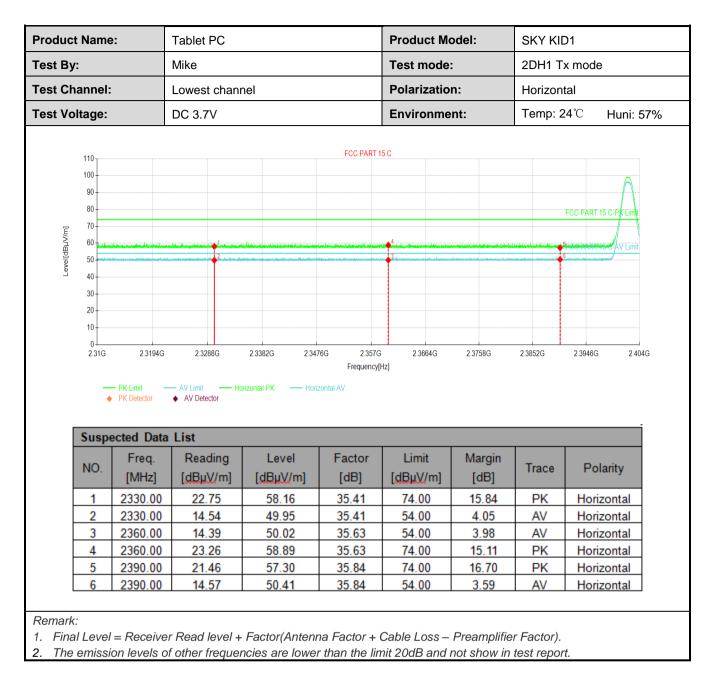
Test Requirement:	FCC Part 15 C	Section 15.2	209 a	and 15.205			
Test Frequency Range:	2310 MHz to 23	90 MHz and	d 248	83.5 MHz to 2	500 M	lHz	
Test Distance:	3m						
Receiver setup:	Frequency	Detector	r	RBW	V	BW	Remark
	Above 1GHz	Peak		1MHz	31	MHz	Peak Value
	Above IGHZ	RMS		1MHz	31	MHz	Average Value
Limit:	Frequence	су	Lim	it (dBuV/m @3	3m)		Remark
	Above 1G	H7		54.00		Av	verage Value
	7.000010			74.00		F	Peak Value
Test setup:	AE unitst	EUT table) Grour Test Receiver	3m A Reference A		enna Towe		
Test Procedure:	 determine the 2. The EUT was antenna, whi tower. 3. The antenna ground to de horizontal an measuremen 4. For each sus and then the the rota table maximum rea 5. The test-rece Bandwidth w 6. If the emission limit specified EUT would b margin would 	B meter camb e position of s set 3 mete ch was mou height is va termine the r d vertical po t. spected emis antenna wa was turned ading. eiver system ith Maximum on level of th d, then testin e reported. (d	ber. the ers a intec intec max blariz ssior is tur fror was n Ho ne El or or the co Othe ed or	The table was highest radiati way from the in d on the top of from one mete imum value of zations of the a h, the EUT was ned to heights n 0 degrees to s set to Peak E old Mode. JT in peak mo build be stoppe	rotat ion. nterfe a vari er to fe the fi antenr s arrai from 0 360 0 Detect de wa d and ssions g pea	ed 360 or rence-re able-he our meta eld strein ha are s nged to 1 meter degrees Function as 10dB I the pea s that dia k, quasi	degrees to eceiving ight antenna ers above the ngth. Both et to make the its worst case to 4 meters and to find the on and Specified lower than the ak values of the d not have 10dB -peak or
Test Instruments:	Refer to section						
Test mode:	Non-hopping m	ode					
Test results:	Passed						


GFSK Mode:

/4401	Name		Tablet PC			Product Mo	Juel.	SKY KIE	וכ	
st By:			Mike			Test mode:	:	DH1 Tx	mode	
st Cha	annel	:	Lowest chan	nel	Polarization: Vertical					
st Vol	tage:		DC 3.7V			Environme	nt:	Temp: 2	24 ℃	Huni: 57%
	110				FCC PART 1	5 C				
_	90 80 70								FCC PART 15	5 C-PIK Limit
Level[dBµV/m]	60 50 40			an in film a start and a second of the second s	tan an a	A 4 J J				V Limit
	30-									
	20 10 0 2.31G	2.3194G	2.3288G	2.3382G 2.347			2.3758G	2.3852G	2.3946G	2.404G
	20	2.3194G PK Limit – PK Detector		2.3382G 2.347 erfical PK — Vertical	Frequency[2.3758G	2.3852G	2.3946G	2.404G
-	20 10 0 2.31G	PK Limit - PK Detector	AV Limit Ve AV Detector		Frequency[2.3758G	2.3852G	2 3946G	2.404G
	20 10 0 2.31G	PK Limit – PK Detector	AV Limit Ve AV Detector		Frequency[2.3758G Margin [dB]	2.3852G		2.404G
	20 10 0 2.31G Suspending NO. 1	PK Limit - PK Detector -	AV Limit Ve AV Detector Ve	ertical PK Vertical Level	Frequency[AV Factor	Hz]	Margin		Pola	
	20 10 0 2.31G Suspendent	PK Limit PK Detector ected Data Freq. [MHz]	AV Limit Ve AV Detector List Reading [dBµV/m]	ertical PK Vertical Level [dBµV/m]	Frequency[AV Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Pola	arity
	20 10 0 2.31G Suspending NO. 1 2 3	ected Data Freq. [MHz] 2330.00 2360.00	AV Limit Ve AV Detector List Reading [dBµV/m] 22.19 14.49 14.28	Level [dBµV/m] 57.60 49.90 49.91	Frequency[AV Factor [dB] 35.41 35.41 35.63	Limit [dBµV/m] 74.00 54.00 54.00	Margin [dB] 16.40 4.10 4.09	Trace PK AV AV	Pola Vert Vert	arity tical tical
	20 10 0 2.31G Suspending NO. 1 2	PK Limit PK Detector Freq. [MHz] 2330.00 2360.00 2360.00	AV Limit Ve AV Detector List Reading [dBµV/m] 22.19 14.49 14.28 21.94	Level [dBµV/m] 57.60 49.90 49.91 57.57	Frequency[AV Factor [dB] 35.41 35.63 35.63 35.63	Limit [dBµV/m] 74.00 54.00 54.00 74.00	Margin [dB] 16.40 4.10	Trace PK AV AV PK	Pola Veri Veri Veri	arity tical tical tical
	20 10 0 2.31G Suspending NO. 1 2 3	ected Data Freq. [MHz] 2330.00 2360.00	AV Limit Ve AV Detector List Reading [dBµV/m] 22.19 14.49 14.28	Level [dBµV/m] 57.60 49.90 49.91	Frequency[AV Factor [dB] 35.41 35.41 35.63	Limit [dBµV/m] 74.00 54.00 54.00	Margin [dB] 16.40 4.10 4.09	Trace PK AV AV	Pola Veri Veri Veri Veri	arity tical tical

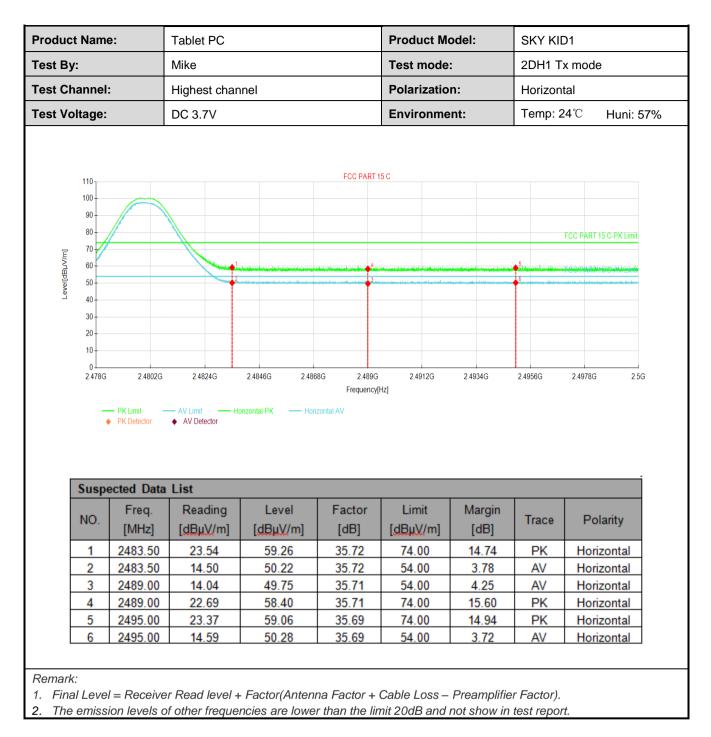


Product Name:		Tablet PC			Product Model:		SKY KID1					
Test By:			Mike			Test mode:		DH1 Tx mode				
Fest Cha	annel:	:	Lowest chan	nel		Polarizatio	n:	Horizontal		Horizontal		
Test Voltage:			DC 3.7V			Environme	nt:	Temp: 2	24℃ Huni: 57%			
	110 100 90 80 70 60 40 30 20 10				FCC PART 1				FCC PART 15 C-PK Limit			
	0 2.31G	2.3194G	2.3288G	2.3382G 2.347 prizontal PK — Horiz	Frequency[2.3758G	2.3852G	2.3946G 2.404G			
	0 2.31G	PK Limit PK Detector	AV Limit Ho AV Detector Ho List Reading	orizontal PK — Horiz Level	Frequency(contal AV Factor	Hz]	Margin	23852G	2.3946G 2.404G			
	0 2.31G Suspe	PK Limit PK Detector	AV Limit Ho AV Detector Ho List Reading [dBµV/m]	nizontal PK — Horiz Level [dBµV/m]	Frequency(contal AV Factor [dB]	Limit	Margin [dB]	Тгасе	Polarity			
	0 2.31G Suspe NO.	ected Data Freq. [MHz] 2330.00	AV Limit Ho AV Detector Ho List Reading [dBµV/m] 22.45	Level [dBµV/m] 57.86	Frequency(contal AV Factor [dB] 35.41	Limit [dBµV/m] 74.00	Margin [dB] 16.14	Trace	Polarity Horizontal			
	0 2.31G Suspe NO. 1 2	ected Data Freq. [MHz] 2330.00 2330.00	AV Limit Ho AV Detector Ho List Reading [dBµV/m] 22.45 14.33	Level [dBµV/m] 57.86 49.74	Frequency(contal AV Factor [dB] 35.41 35.41	Limit [dBµV/m] 74.00 54.00	Margin [dB] 16.14 4.26	Trace PK AV	Polarity Horizontal Horizontal			
	0 231G Suspe NO. 1 2 3	PK Limit PK Detector ected Data Freq. [MHz] 2330.00 2330.00 2360.00	AV Limit Ho AV Detector List Reading [dBµV/m] 22.45 14.33 14.65	Level [dBµV/m] 57.86 49.74 50.28	Frequency(rontal AV Factor [dB] 35.41 35.41 35.63	Limit [dBµV/m] 74.00 54.00 54.00	Margin [dB] 16.14 4.26 3.72	Trace PK AV AV	Polarity Horizontal Horizontal Horizontal			
	0 2.31G Suspe NO. 1 2 3 4	ected Data Freq. [MHz] 2330.00 2360.00 2360.00	AV Limit AV Detector Heading [dBµV/m] 22.45 14.33 14.65 21.96	Level [dBµV/m] 57.86 49.74 50.28 57.59	Frequency(contal AV Factor [dB] 35.41 35.63 35.63	Limit [dBµV/m] 74.00 54.00 54.00 74.00	Margin [dB] 16.14 4.26 3.72 16.41	Trace PK AV AV PK	Polarity Horizontal Horizontal Horizontal Horizontal			
	0 231G Suspe NO. 1 2 3	PK Limit PK Detector ected Data Freq. [MHz] 2330.00 2330.00 2360.00	AV Limit Ho AV Detector List Reading [dBµV/m] 22.45 14.33 14.65	Level [dBµV/m] 57.86 49.74 50.28	Frequency(rontal AV Factor [dB] 35.41 35.41 35.63	Limit [dBµV/m] 74.00 54.00 54.00	Margin [dB] 16.14 4.26 3.72	Trace PK AV AV	Polarity Horizontal Horizontal Horizontal			



$\pi/4$ -DQPSK mode

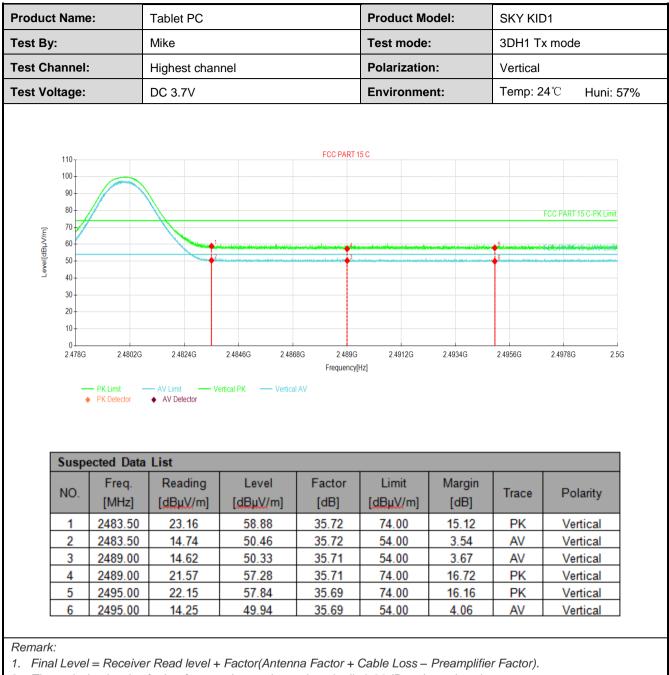
roduct Name:		Tablet PC			Product Mo	odel:	SKY KID1						
est By:	st By:		Mike			Test mode:		2DH1 Tx mode					
est Cha	annel	:	Lowest chan	nel		Polarizatio	n:	Vertical			Vertical		
est Vol	tage:		DC 3.7V			Environme	nt:	Temp: 2	24℃	Huni: 57%			
					FCC PART 1	15 C							
	110												
	90									A			
	80								FCC PART 15	C-PK Limit			
E	70												
Level[dBµV/m]	60	hillig an strangers and a stranger and		, at and his day, to be matter at some thread of an and	Marya Nataraka Kalilatina natarahilatina		an ben an an direction and die ben ben, a			C-AV Limit			
Leve	50 40	in an ann an ann ann ann ann ann ann ann	ins i shi thini na anna dhard a' i an tar Alandan shara di		de-fedfill-terrenetisspenetisk-vistperiod	alist and a second and a second s	handen han Hinde dag bina, dirakan menilak akal	alama dan bilan ta dan bilan (Henrien geisen seligting gesten den Alter an Operander				
	30-												
	20												
	20		0.00000		700 00770		0.07500	0.00500					
	20 10	2.3194G	2.3288G	2.3382G 2.34	76G 2.357G Frequency[2.3758G	2.3852G	2.3946G	2.404G			
	20	— PK Limit –	— AV Limit — Ve	2.3382G 2.34 ertical PK — Vertical	Frequency[2.3758G	2.3852G	2.3946G	2.404G			
	20				Frequency[2.3758G	2.3852G	2.3946G	2.404G			
	20 10 0 2.31G	— PK Limit –	AV Limit Ve		Frequency[2.3758G	2.3852G	2.3946G	2.404G			
	20 10 0 2.31G	PK Limit - PK Detector	AV Limit Va AV Detector		Frequency[
	20 10 0 2.31G	─ PK Limit – PK Detector	AV Limit Ve	ertical PK — Vertical	Frequency	Hz]	2.3758G Margin [dB]	2.3852G	2.3946G Pola				
	20 10 0 2.31G	PK Limit PK Detector ected Data Freq.	AV Limit AV Detector Ve List Reading	ertical PK — Vertical Level	Frequency AV Factor	Hz] Limit	Margin			ırity			
	20 10 2.31G	PK Limit PK Detector ected Data Freq. [MHz]	AV Limit Va AV Detector Va List Reading [dBµV/m]	ertical PK Vertical Level [dBµV/m]	Frequency AV Factor [dB]	Limit	Margin [dB]	Trace	Pola	urity			
	20 10 2.31G Suspe NO.	PK Limit PK Detector ected Data Freq. [MHz] 2330.00	AV Limit AV Detector List Reading [dBµV/m] 22.54	ertical PK Vertical Level [dBµV/m] 57.95	Frequency AV Factor [dB] 35.41	Hz] Limit [dBµV/m] 74.00	Margin [dB] 16.05	Trace	Pola	urity ical			
	20 10 0 2.31G Suspentition NO. 1 2	PK Limit PK Detector ected Data Freq. [MHz] 2330.00 2330.00	AV Limit	ertical PK — Vertical Level [dBµV/m] 57.95 49.74	Frequency AV Factor [dB] 35.41 35.41	Limit [dBµV/m] 74.00 54.00	Margin [dB] 16.05 4.26	Trace PK AV	Pola Verti Verti	urity ical ical			
	20 10 0 2.31G Suspe NO. 1 2 3	PK Limit PK Detector Freq. [MHz] 2330.00 2330.00 2360.00	AV Limit AV Detector ↓ AV Detector List Reading [dBµV/m] 22.54 14.33 15.11	Level [dBµV/m] 57.95 49.74 50.74	Frequency AV Factor [dB] 35.41 35.41 35.63	Limit [dBμV/m] 74.00 54.00 54.00	Margin [dB] 16.05 4.26 3.26	Trace PK AV AV	Pola Verti Verti Verti	rrity ical ical ical			



		Tablet PC			Product Me	odel:	SKY KIE	D1	
est By:		Mike		Test mode	:	2DH1 Tx mode			
est Channe	el:	Highest chan	inel		Polarizatio	Polarization: Vertical			
est Voltage	e:	DC 3.7V			Environme	nt:	Temp: 24°C Huni: 57		
				FCC PART 1	5C		5	FCC PART 15 C-PK Limit	
30 40 30 20 10 0 2.470	G 2.4802G → PK Limit ◆ PK Detector	2.4824G AV Limit Ve AV Detector	2.4846G 2.486 ertical PK — Vertical	Frequency[2.4912G Hz]	2.4934G	2 4956G	24978G 25G	
40- 30- 20- 10- 2.478	PK Limit	AV Limit Ve AV Detector		Frequency[2.4934G	2.4956G	2.4978G 2.5G	
40- 30- 20- 10- 2.478	PK Limit - PK Detector -	AV Limit Ve AV Detector		Frequency[2.4934G Margin [dB]	2.4956G Trace	24978G 25G	
40- 30- 20- 10- 0- 2.470	PK Limit PK Detector PECted Data Freq.	AV Limit Ve AV Detector List Reading	ertical PK — Vertical	Frequency[AV Factor	Limit	Margin			
40- 30- 20- 10- 0- 2.470	PK Limit PK Delector PK Delector PK Delector PK Delector PK Delector	AV Limit AV Detector Ve AV Detector List Reading [dBµV/m] 24.15 14.60	ertical PK — Vertical Level [dBµV/m]	Frequency[AV Factor [dB]	Limit [dBµV/m] 74.00 54.00	Margin [dB] 14.13 3.68	Trace	Polarity Vertical Vertical	
40- 30- 20- 10- 2.470 Sus NO.	PK Limit PK Detector PK Detector PK Detector Freq. [MHz] 2483.50	AV Limit Ve AV Detector Ve	Level [dBµV/m] 59.87	Frequency AV Factor [dB] 35.72	Limit [dBµV/m] 74.00	Margin [dB] 14.13	Trace	Polarity Vertical	
40- 30- 20- 10- 0- 2.474 Sus NO 1 2	PK Limit ▶ PK Detector ■ Freq. [MHz] 2483.50 2483.50	AV Limit AV Detector Ve AV Detector List Reading [dBµV/m] 24.15 14.60	Level [dBµV/m] 59.87 50.32	Frequency[AV Factor [dB] 35.72 35.72	Limit [dBµV/m] 74.00 54.00	Margin [dB] 14.13 3.68	Trace PK AV	Polarity Vertical Vertical	
40- 30- 20- 10- 0_ 2.470 Sus NO. 1 2 3	PK Limit PK Detector PK Detector Data Freq. [MHz] 2483.50 2483.00 2489.00 2489.00	AV Limit	Level [dBµV/m] 59.87 50.32 50.08	Frequency AV Factor [dB] 35.72 35.72 35.71	Limit [dBµV/m] 74.00 54.00 54.00	Margin [dB] 14.13 3.68 3.92	Trace PK AV AV	Polarity Vertical Vertical Vertical	

Project No.: JYTSZE2112005

8DPSK mode


duct Name:		Tablet PC			Product Mo	odel:	SKY KID1		
st By:		Mike			Test mode:		3DH1 Tx mode Vertical		
st Channe	:	Lowest channel Polarization: Vertical							
st Voltage:		DC 3.7V			Environme	nt:	Temp: 24°C Huni: 57		
110 100 90 80 70 60 50 40				FCC PART 1	5 C			FCC PART 15 C	PK Limt
30 20 10 0 2.31G	2.3194G → PK Limit → PK Detector	2.3288G AV Limit Ve AV Detector	23382G 2347 ertical PK — Vertical	Frequency[2.3758G	2.3852G	2.3946G	2.404G
20 10 2.31G	— PK Limit —	AV Limit Ve AV Detector		Frequency[2.3758G	2.3852G	2.3946G	2.404G
20 10 2.31G	─ PK Limit — ♦ PK Detector	AV Limit Ve AV Detector		Frequency[2.3758G Margin [dB]	2.3852G	2 3946G Polar	
20 10 2.31G	PK Limit → PK Detector ected Data Freq.	AV Limit Ve AV Detector Ve	ertical PK — Vertical	Frequency[AV Factor	Hz]	Margin			rity
20 10 0 2.31G Susp NO.	PK Limit → PK Detector PK Detector → PK Detector → PK Detector → PK Detector	AV Limit Ve AV Detector Ve	Level	Frequency[AV Factor [dB]	Limit	Margin [dB]	Trace	Polar	rity
20- 10- 0. 2.31G NO. 1	PK Limit PK Detector ected Data Freq. [MHz] 2330.00	AV Limit Ve AV Detector Ve	Level [dBµV/m] 57.71	Frequency(AV Factor [dB] 35.41	Limit [dBµV/m] 74.00	Margin [dB] 16.29	Trace	Polar	rity cal
20 10 2.31G Susp NO. 1 2	 ▶ PK Limit ▶ PK Detector ■ ected Data ▶ Freq. [MHz] 2330.00 2330.00 	AV Limit Ve AV Detector Ve	Level [dBµV/m] 57.71 49.79	Frequency[AV Factor [dB] 35.41 35.41	Limit [dBµV/m] 74.00 54.00	Margin [dB] 16.29 4.21	Trace PK AV	Polar Vertic Vertic	rity cal cal
20 10 0 2.31G NO. 1 2 3	 ▶ PK Limit ▶ PK Detector ▶ PK Detec	AV Limit Ve AV Detector Ve	Level [dBµV/m] 57.71 49.79 49.87	Frequency[AV Factor [dB] 35.41 35.41 35.63	Limit [dBµV/m] 74.00 54.00 54.00	Margin [dB] 16.29 4.21 4.13	Trace PK AV AV	Polar Vertio Vertio	rity cal cal cal


2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Project No.: JYTSZE2112005

6.10 Spurious Emission

6.10.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	
Test Instruments:	Refer to section 5.9 for details
Test mode:	Non-hopping mode
Test results:	Pass
Measurement Data:	Refer to Appendix A - BT

6.10.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C S	Section 15.	209				
Test Frequency Range:	9 kHz to 25 GHz	-					
Test Distance:	3m or 10m						
Receiver setup:	Frequency	Detecto	or	RBW	VBW	/ Remark	
	30MHz-1GHz	Quasi-pe	eak	120kHz	300kH	Iz Quasi-peak Value	
		Peak		1MHz	3MHz	z Peak Value	
	Above 1GHz	RMS		1MHz	3MHz	z Average Value	
Limit:	Frequenc	;y	Lim	it (dBuV/m @	⊉10m)	Remark	
	30MHz-88N	ЛНz		30.0		Quasi-peak Value	
	88MHz-216	MHz		33.5		Quasi-peak Value	
	216MHz-960	MHz		36.0		Quasi-peak Value	
	960MHz-10	GHz		44.0		Quasi-peak Value	
	Frequenc	у	Lii	mit (dBuV/m @	⊉3m)	Remark	
	Above 1G	H7		54.0		Average Value	
	7.0000 10			74.0		Peak Value	
	EUT Tur Tal Ground Above 1GHz		4m			Search Antenna RF Test Receiver	
Test Procedure:	1. The EUT was placed on the top of a rotating table 0.8m(below						
rest rocedure.	1GHz)/1.5m (below 1GH 360 degree	n(above 10 lz)or 3 met s to detern	GHz) ter ch nine	above the namber(abov the position o	ground a /e 1GHz) of the hig	at a 10 meter chamber). The table was rotated ghest radiation. 3 meters(above 1GHz)	

JianYan Testing Group Shenzhen Co., Ltd. No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: JYTSZE2112005

	away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	 The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 5.9 for details
Test mode:	Non-hopping mode
Test results:	Pass
Remark:	 Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case. 9 kHz to 30 MHz is noise floor and lower than the limit 20dB, so only shows the data of above 30MHz in this report.

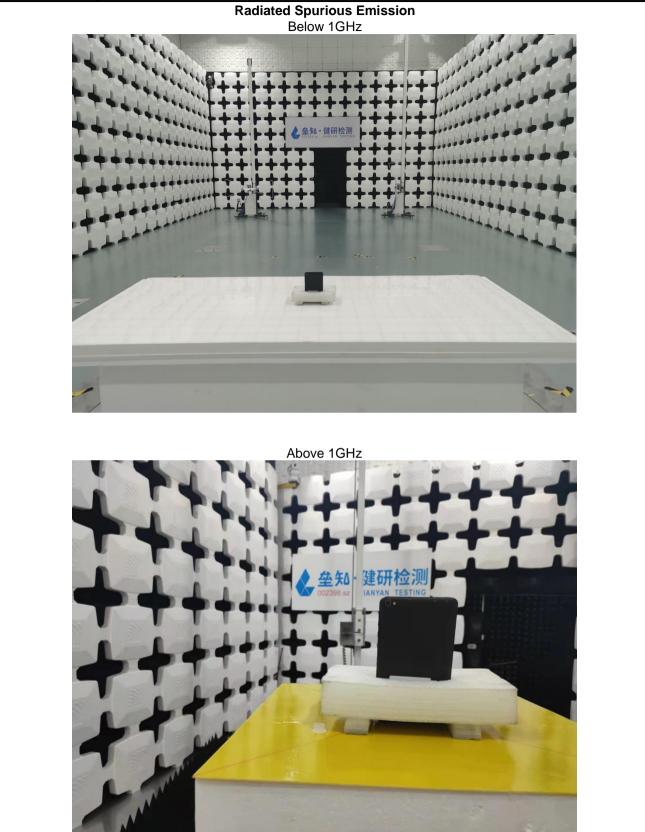
Measurement Data (worst case):

Below 1GHz:

Product Na	me:	Tablet PC			Product Model:		SKY KID1	SKY KID1		
est By:		Mike			Test mod	Test mode:		BT Tx mode		
est Freque	ency:	30 MHz ~ 1 G	GHz		Polarizati	on:	Vertical &	Vertical & Horizontal		
Fest Voltag	e:	DC 3.7V			Environm	ent:	Temp: 24	C Huni: 5		
				Full Spect	rum					
	⁴⁵ T			*****			FCC PART 1	5.247.10m		
	40									
	30									
Level in dBµV/	-	.*								
ē	20	the second				*				
Lev	the the									
	10	-Alla John M	*							
		a de la compañía de l								
	0+									
	30M	50 60	80 100N		200	300 400	0 500	800 1G		
				Frequer	ncy in Hz					
C *	itical_Fre	eqs ∣ MaxPeak	Limit	Margin	Height	Pol	Azimuth	Corr.		
	Frequency (MHz)	(dB	(dB	(dB)	(cm)		(deg)	(dB/m)		
	(MHz) 44.065000	(dB µ V/m) 21.65	(dB µ V/m) 30.00	(dB) 8.35	(cm) 100.0	V	(deg) 137.0	(dB/m) -15.7		
	(MHz) 44.065000 76.754000	(dB µ V/m) 21.65 14.10	(dB µ V/m) 30.00 30.00	(dB) 8.35 15.90	(cm) 100.0 100.0	V V	(deg) 137.0 29.0	(dB/m) -15.7 -19.5		
	(MHz) 44.065000 76.754000 80.828000	(dB µ V/m) 21.65 14.10 13.77	(dB µ V/m) 30.00 30.00 30.00	(dB) 8.35 15.90 16.23	(cm) 100.0 100.0 100.0	V V V	(deg) 137.0 29.0 97.0	(dB/m) -15.7 -19.5 -20.1		
	(MHz) 44.065000 76.754000	(dB µ V/m) 21.65 14.10 13.77 11.90 18.24	(dB µ V/m) 30.00 30.00	(dB) 8.35 15.90	(cm) 100.0 100.0	V V V V	(deg) 137.0 29.0	(dB/m) -15.7 -19.5		

1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

The emission levels of other frequencies are lower than the limit 20dB and not show in test report. 2.


Above 1GHz:

		Test ch	annel: Lowest ch	annel		
		Det	tector: Peak Valu	e		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4804.00	57.41	-9.60	47.81	74.00	26.19	Vertical
4804.00	55.37	-9.60	45.77	74.00	28.23	Horizonta
		Dete	ctor: Average Va	llue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4804.00	48.70	-9.60	39.10	54.00	14.90	Vertical
4804.00	48.45	-9.60	38.85	54.00	15.15	Horizonta
		Test ch	annel: Middle ch	annel		
		Det	tector: Peak Valu	ie		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4882.00	57.93	-9.05	48.88	74.00	25.12	Vertical
4882.00	55.76	-9.05	46.71	74.00	27.29	Horizonta
		Dete	ctor: Average Va	lue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4882.00	49.32	-9.05	40.27	54.00	13.73	Vertical
4882.00	48.64	-9.05	39.59	54.00	14.41	Horizonta
			annel: Highest ch tector: Peak Valu	Ie		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4960.00	57.65	-8.45	49.20	74.00	24.80	Vertical
4960.00	55.51	-8.45	47.06	74.00	26.94	Horizonta
		Dete	ctor: Average Va	lue		
_	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
Frequency (MHz)	(abav)				1 10 -0	Vartical
• •	48.93	-8.45	40.48	54.00	13.52	Vertical

2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Project No.: JYTSZE2112005

Project No.: JYTSZE2112005

8 EUT Constructional Details

Reference to the test report No.: JYTSZB-R01-2100850.

-----End of report-----