	TEST REPC							
FCC ID	2AQ5C-HGBS1	2AQ5C-HGBS1						
Test Report No:	TCT250218E014	CT250218E014						
Date of issue:	Feb. 24, 2025							
Testing laboratory: :	SHENZHEN TONGCE TES	TING LAB						
Testing location/ address:	2101 & 2201, Zhenchang F Fuhai Subdistrict, Bao'an D 518103, People's Republic	istrict, Shenzhen, Guang						
Applicant's name: :	Hypercel Corporation							
Address:	28385 Constellation Rd., Va States	alencia, California 91355	, United					
Manufacturer's name :	Shenzhen Hypercel Techno	ology Co., Ltd						
Address:	Room 605, No.4 Building, T Avenue, Bao'an District, Sh	enzhen City 518103, Chi	ina					
Standard(s) :	FCC CFR Title 47 Part 15 S FCC KDB 558074 D01 15.2 ANSI C63.10:2020							
Product Name::	Wireless LED Handlebar Sp	beaker						
Brand Name :	HyperGear	(J) (J)						
Model/Type reference :	16071							
Rating(s):	Rechargeable Li-ion Battery	/ DC 3.7V						
Date of receipt of test item	Feb. 18, 2025	(C)	KC)					
Date (s) of performance of test	Feb. 18, 2025 ~ Feb. 24, 20)25						
Tested by (+signature) :	Yannie ZHONG	Yannie Zooklecs						
Check by (+signature) :	Beryl ZHAO	Boy 2 TCT	STING					
Approved by (+signature):): Tomsin							
TONGCE TESTING LAB. TH	oduced except in full, withou his document may be altered ly, and shall be noted in the	d or revised by SHENZH	EN TONGCE					

Table of Contents

TCT 通测检测 TESTING CENTRE TECHNOLOGY

1. General Product Information	
1.1. EUT description	
1.2. Model(s) list	3
1.3. Operation Frequency	
2. Test Result Summary	
3. General Information	
3.1. Test environment and mode	6
3.2. Description of Support Units	6
4. Facilities and Accreditations	
4.1. Facilities	
4.2. Location	
4.3. Measurement Uncertainty	
5. Test Results and Measurement Data	8
5.1. Antenna requirement	
5.2. Conducted Emission	
5.3. Conducted Output Power	
5.4. 20dB Occupy Bandwidth	
5.5. Carrier Frequencies Separation	
5.6. Hopping Channel Number	
5.7. Dwell Time	
5.8. Pseudorandom Frequency Hopping Sequence	
5.9. Conducted Band Edge Measurement	
5.10.Conducted Spurious Emission Measurement	
5.11.Radiated Spurious Emission Measurement	
Appendix A: Test Result of Conducted Test	
Appendix B: Photographs of Test Setup	
Appendix C: Photographs of EUT	

1. General Product Information

1.1. EUT description

Product Name:	Wireless LED Handlebar Speaker		
Model/Type reference:	16071		
Sample Number:	TCT250218E014-0101		
Bluetooth Version:	V5.3	No.	
Operation Frequency:	2402MHz~2480MHz		
Transfer Rate:	1/2/3 Mbits/s		
Number of Channel:	79		
Modulation Type:	GFSK, π/4-DQPSK, 8DPSK		
Modulation Technology:	FHSS		
Antenna Type:	PCB Antenna		
Antenna Gain:	2.499dBi		KO)
Rating(s):	Rechargeable Li-ion Battery DC 3.7V		

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

None.

Report No.: TCT250218E014

1.3. Operation Frequency

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
(, (1)	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
		<u> </u>					
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
		X	J				
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Remark: Channel 0, 39 & 78 have been tested for GFSK, π/4-DQPSK, 8DPSK modulation mode.

Page 4 of 87

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna Requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Peak Output Power	§15.247 (b)(1)	PASS
20dB Occupied Bandwidth	§15.247 (a)(1)	PASS
Carrier Frequencies Separation	§15.247 (a)(1)	PASS
Hopping Channel Number	§15.247 (a)(1)	PASS
Dwell Time	§15.247 (a)(1)	PASS
Radiated Emission	§15.205/§15.209	PASS
Band Edge	§15.247(d)	PASS

Note:

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

3. General Information

3.1. Test environment and mode

Operating Environment:							
Condition	Conducted Emission	Radiated Emission					
Temperature:	22.8 °C	22.5 °C					
Humidity:	49 % RH	51 % RH					
Atmospheric Pressure:	1010 mbar	1010 mbar					
Test Software:							
Software Information:	Software Information: FCC Assist 1.0.2.2						
Power Level: 10							
Test Mode:							

Test Mode:

Engineering mode.	Keep the EUT in continuous transmitting by select channel and modulations with Fully-charged battery.

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case (Z axis) are shown in Test Results of the following pages.

DH1 DH3 DH5 all have been tested, only worse case DH1 is reported.

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Adapter	ETA0U82CBC	RT10206CS/AE	/	SAMSUNG

Note:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

3. For conducted measurements (Output Power, 20dB Occupied Bandwidth, Carrier Frequencies Separation, Hopping Channel Number, Dwell Time, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

- IC Registration No.: 10668A
 - SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

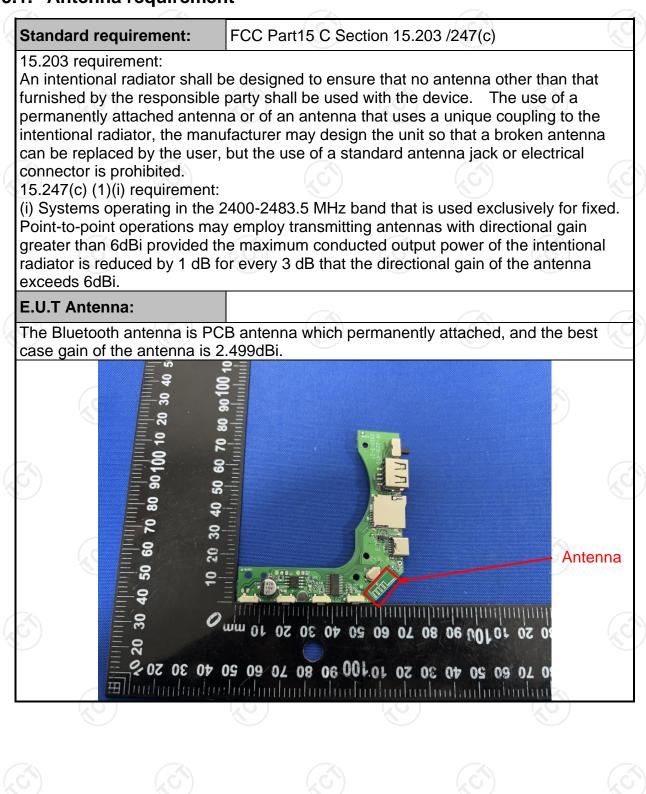
The testing lab has been registered by Innovation, Science and Economic Development Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory, Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

4.3. Measurement Uncertainty


The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	→ ± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

5. Test Results and Measurement Data

5.1. Antenna requirement

5.2. Conducted Emission

5.2.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.10:2020					
Frequency Range:	150 kHz to 30 MHz					
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto					
	Frequency range	Limit (dBuV)			
	(MHz)	Quasi-peak	Áverage 🔨			
Limits:	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	Referenc	e Plane	(201)			
Test Setup:	40cm E.U.T AC power Test table/Insulation plane Remarkc E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m					
Test Mode:	Charging + Transmittir	ng Mode				
Test Procedure:	 The E.U.T is connected to an adapter through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2020 on conducted measurement. 					
	PASS					
Test Result:						

Page 10 of 87

http://www.tct-lab.com

Fax: 86-755-27673332

5.2.2. Test Instruments

Hotline: 400-6611-140

Tel: 86-755-27673339

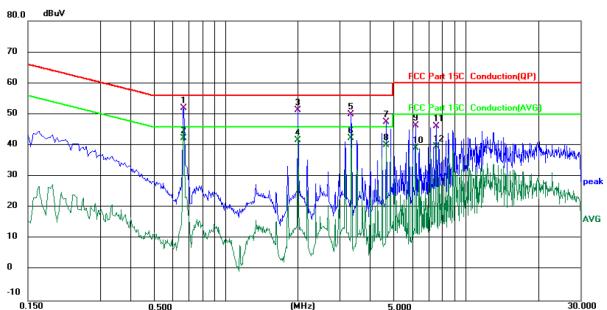
Conducted Emission Shielding Room Test Site (843)								
Equipment Manufacturer Model Serial Number Calibration								
EMI Test Receiver	R&S	ESCI3	100898	Jun. 26, 2025				
LISN	Schwarzbeck	NSLK 8126	8126453	Jan. 20, 2026				
Attenuator	N/A	10dB	164080	Jun. 26, 2025				
Line-5	тст	CE-05	/	Jun. 26, 2025				
EMI Test Software	EZ_EMC	EMEC-3A1	1.1.4.2	1				

5.2.3. Test data

CT通测检测 TESTING CENTRE TECHNOLOGY

Please refer to following diagram for individual Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz) dBu¥ 80.0 70 FICC 15C Conduction(QP) 60 ic c Conduction(AVG 50 40 30 20 10 AVG 0 -10 0.150 0.500 (MHz) 30.000 5.000 Site 844 Shielding Room Temperature: 22.8 (°C) Humidity: 49 %

 Site 844 Shielding Room
 Phase: L1
 Temperature: 22.8


 Limit: FCC Part 15C Conduction(QP)
 Power: DC 5V(Adapter Input AC 120V/60Hz)

Reading Correct Measure-No. Mk. Limit Over Freq. Level Factor ment MHz dBuV dB dBuV dBuV dB Detector Comment 0.6660 37.29 47.23 QP 1 9.94 56.00 -8.77 2 0.6660 32.07 9.94 42.01 46.00 -3.99 AVG 3 2.0020 36.50 10.02 46.52 56.00 -9.48 QP 2.0020 10.02 42.13 46.00 -3.87 AVG 4 32.11 QP 5 3.3380 35.51 10.08 45.59 56.00 -10.41 32.04 10.08 42.12 6 3.3380 46.00 -3.88 AVG 7 4.6740 33.34 10.14 43.48 56.00 -12.52 QP 4.6740 27.97 46.00 -7.89 8 10.14 38.11 AVG 9 6.1940 32.07 10.19 42.26 60.00 -17.74 QP 37.33 50.00 -12.67 10 6.1940 27.14 10.19 AVG 7.5300 10.24 41.58 QP 11 31.34 60.00 -18.42 12 7.5300 27.35 10.24 37.59 50.00 -12.41 AVG

Note:

Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$ Q.P. =Quasi-Peak AVG =average * is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Report No.: TCT250218E014

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

 Site 844 Shielding Room
 Phase: N
 Temperature: 22.8 (°C)
 Humidity: 49 %

 Limit: FCC Part 15C Conduction(QP)
 Power: DC 5V(Adapter Input AC 120V/60Hz)
 Humidity: 49 %

									,
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.6700	42.02	9.94	51.96	56.00	-4.04	QP	
2	*	0.6700	32.46	9.94	42.40	46.00	-3.60	AVG	
3		2.0019	41.32	10.02	51.34	56.00	-4.66	QP	
4		2.0019	31.67	10.02	41.69	46.00	-4.31	AVG	
5		3.3380	39.80	10.08	49.88	56.00	-6.12	QP	
6		3.3380	32.25	10.08	42.33	46.00	-3.67	AVG	
7		4.6740	37.37	10.14	47.51	56.00	-8.49	QP	
8		4.6740	29.92	10.14	40.06	46.00	-5.94	AVG	
9		6.1939	36.15	10.19	46.34	60.00	-13.66	QP	
10		6.1939	28.87	10.19	39.06	50.00	-10.94	AVG	
11		7.5300	35.84	10.24	46.08	60.00	-13.92	QP	
12		7.5300	29.43	10.24	39.67	50.00	-10.33	AVG	

Note1:

Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. =Quasi-Peak AVG =average

TCT通测检测 TEGTING CENTRE TECHNOLOGY

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Note2:

Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (Middle channel and 8DPSK) was submitted only.

Report No.: TCT250218E014

5.3. Conducted Output Power

5.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(1)			
Test Method:	KDB 558074 D01 v05r02			
Limit:	Section 15.247 (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.			
Test Setup:	Spectrum Analyzer EUT			
Test Mode:	Transmitting mode with modulation			
Test Procedure:	Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.			
Test Result:	PASS			

5.3.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB		

5.4. 20dB Occupy Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	N/A
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
Test Result:	PASS

5.4.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB	/	

5.5. Carrier Frequencies Separation

5.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report.
Test Result:	PASS

5.5.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB		

5.6. Hopping Channel Number

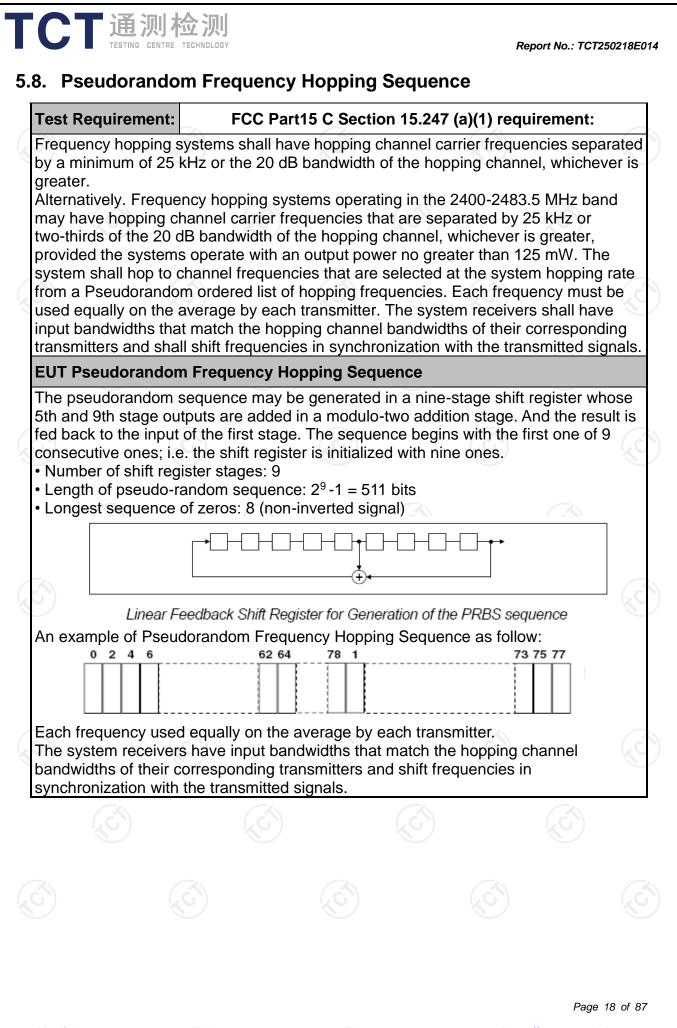
5.6.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)				
Test Method:	KDB 558074 D01 v05r02				
Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.				
Test Setup:	Spectrum Analyzer EUT				
Test Mode:	Hopping mode				
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. The number of hopping frequency used is defined as the number of total channel. Record the measurement data in report. 				
Test Result:	PASS				

5.6.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB	/	/

5.7. Dwell Time


5.7.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
Test Result:	PASS

5.7.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB		

Page 17 of 87

5.9. Conducted Band Edge Measurement

5.9.1. Test Specification

FCC Part15 C Section 15.247 (d)
KDB 558074 D01 v05r02
In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Spectrum Analyzer
Transmitting mode with modulation
 Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz (≥1% span=10MHz), VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report.
PASS

5.9.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB		

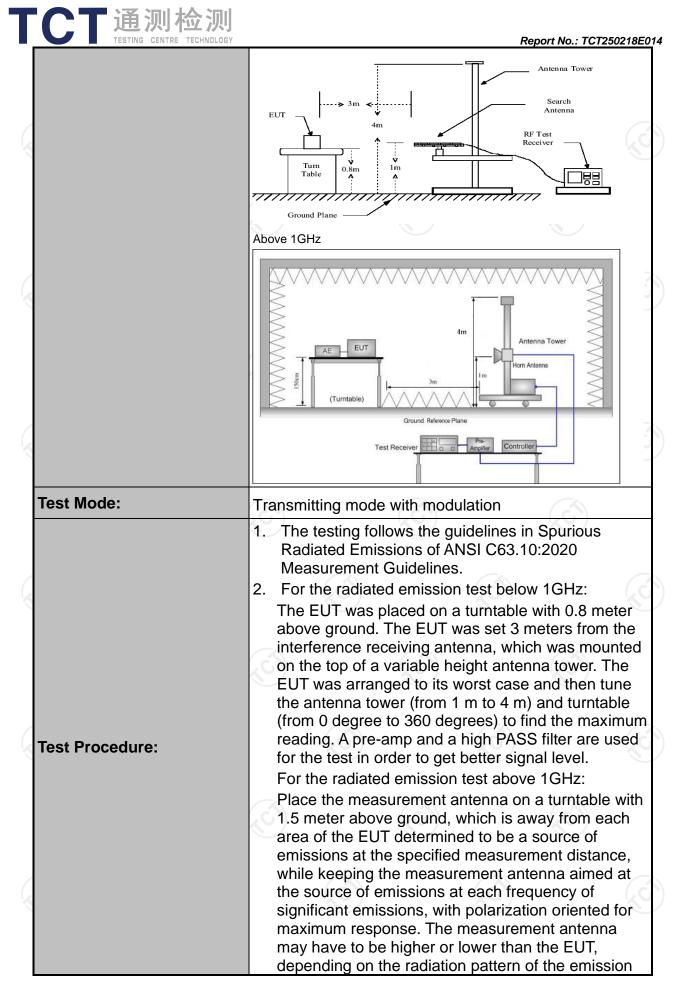
5.10. Conducted Spurious Emission Measurement

5.10.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB 558074 D01 v05r02
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Test Setup:	Spectrum Analyzer
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
Test Result:	PASS

5.10.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB		



5.11. Radiated Spurious Emission Measurement

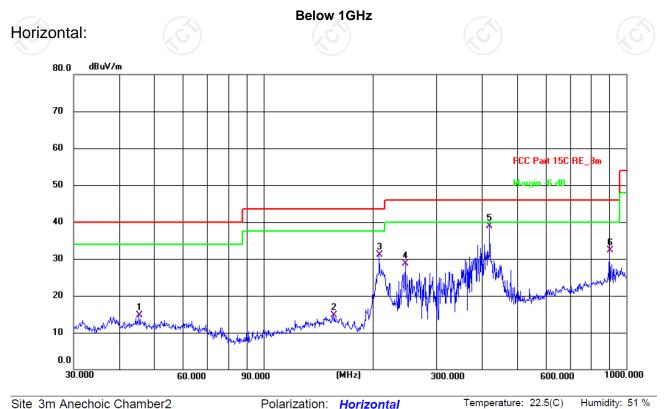
5.11.1. Test Specification

TCT 通测检测 TESTING CENTRE TECHNOLOGY

FCC Part15	C Section	15.209			
ANSI C63.10):2020				
9 kHz to 25 (GHz	3			í)
3 m	No.	9		R	
Horizontal &	Horizontal & Vertical				
Frequency	Detector	RBW	VBW		Remark
9kHz- 150kHz			1kHz		i-peak Value
150kHz- 30MHz	Quasi-peak	k 9kHz	30kHz	Quas	i-peak Value
30MHz-1GHz	Quasi-peak		300KHz		i-peak Value
Above 1GHz	Peak	1MHz	3MHz		eak Value
	Peak	1MHz	10Hz	Ave	erage Value
Frequen	CV		-		asurement
				Dista	nce (meters)
					300
			<u>NUZ)</u>		<u>30</u> 30
)	30	
				(ĉ	3
		200		3	
Above 9	60	500		3	
Freduency		-	Distan	се	Detector
Above 1GHz	<u>z</u>	500	3		Average Peak
				Comput	
30MHz to 1GHz					
	9 kHz to 25 (3 m Horizontal & Frequency 9kHz-150kHz 150kHz- 30MHz-30MHz 30MHz-1GHz Above 1GHz Frequency 0.009-0.4 0.490-1.7 1.705-3 30-88 88-216 216-96 Above 9 Frequency Above 1GHz	Horizontal & Vertical Frequency Detector 9kHz-150kHz Quasi-peak 150kHz- Quasi-peak 30MHz Quasi-peak 30MHz-1GHz Quasi-peak Above 1GHz Peak Peak Peak 0.009-0.490 0.490-1.705 1.705-30 30-88 30-88 88-216 216-960 Above 960 Frequency Field (microsove) Above 1GHz Field (microsove) For radiated emissions below Distance = 3m	9 kHz to 25 GHz 3 m Horizontal & Vertical Frequency Detector RBW 9kHz-150kHz Quasi-peak 200Hz 150kHz- Quasi-peak 9kHz 30MHz Quasi-peak 9kHz 30MHz Quasi-peak 9kHz 30MHz Quasi-peak 120KHz 30MHz Peak 1MHz Above 1GHz Peak 1MHz Frequency Field Strength (microvolts/meter) 0.009-0.490 2400/F(I 1.705-30 30 30-88 100 88-216 150 216-960 200 Above 960 500 Frequency Field Strength (microvolts/meter) Above 1GHz 500 5000 For radiated emissions below 30MHz 5000 5000	9 kHz to 25 GHz 3 m Horizontal & Vertical Frequency Detector RBW VBW 9kHz- 150kHz Quasi-peak 200Hz 1kHz 150kHz- Quasi-peak 9kHz 30kHz 30MHz 1GHz Quasi-peak 120KHz 300KHz Above 1GHz Peak 1MHz 3MHz Peak 1MHz 10Hz Frequency Field Strength (microvolts/meter) 0.009-0.490 2400/F(KHz) 1.705-30 30 30-88 100 88-216 150 216-960 200 Above 960 500 Frequency Field Strength (microvolts/meter) Distan (meter) Above 1GHz 500 3 For radiated emissions below 30MHz	9 kHz to 25 GHz 3 m Horizontal & Vertical Frequency Detector RBW VBW 9kHz-150kHz Quasi-peak 200Hz 1kHz Quasi 150kHz- Quasi-peak 9kHz 30kHz Quasi 30MHz Quasi-peak 120KHz 300KHz Quasi 30MHz Quasi-peak 120KHz 300KHz Quasi Above 1GHz Peak 1MHz 10Hz Ave Frequency Field Strength Mea (microvolts/meter) Dista 0.009-0.490 2400/F(KHz) 0.490-1.705 24000/F(KHz) 1.705-30 30 30-88 100 88-216 150 216-960 200 Above 960 500 Frequency Field Strength Measurement 0.88-216 150 216-960 200 Above 960 30 For radiated emissions below 30MHz Distance 3m Compatibility of the second secon

Page 22 of 87

	CENTRE TECHNOLOGY	rece mea max ante restr abov 3. Set EUT 4. Use (1) (2)	= max hol For averag correction 15.35(c). D	aximum sig ntenna ele emissions. on for max ange of hei nd or refere timum pow ontinuously ng spectrui wide enou eing measur 120 kHz fo ; VBW≥RE auto; Detect d for peak ge measure factor met	emission s gnal. The vation sha The meas imum emi ights of fro ence grou ver setting y. m analyze gh to fully ured; r f < 1 GH BW; ctor function ement: us hod per = On time/	final all be that surement issions sha om 1 m to nd plane. g and enal er settings: r capture th lz, RBW=1 on = peak; e duty cyc	which all be 4 m ole the ne MHz ; Trace
			Where N1 length of t Average E Level + 20 Corrected F	•	es, etc. evel = Pea cycle) ntenna Fa	ak Emissic actor + Cal	on ble
Test results:			Where N1 length of t Average E Level + 20	ype 1 pulse Emission Le)*log(Duty Reading: A	es, etc. evel = Pea cycle) ntenna Fa	ak Emissic actor + Cal	on ble
Test results:			Where N1 length of t Average E Level + 20 Corrected F	ype 1 pulse Emission Le)*log(Duty Reading: A	es, etc. evel = Pea cycle) ntenna Fa	ak Emissic actor + Cal	on ble
Test results:			Where N1 length of t Average E Level + 20 Corrected F	ype 1 pulse Emission Le)*log(Duty Reading: A	es, etc. evel = Pea cycle) ntenna Fa	ak Emissic actor + Cal	on ble
Test results:			Where N1 length of t Average E Level + 20 Corrected F	ype 1 pulse Emission Le)*log(Duty Reading: A	es, etc. evel = Pea cycle) ntenna Fa	ak Emissic actor + Cal	on ble


5.11.2. Test Instruments

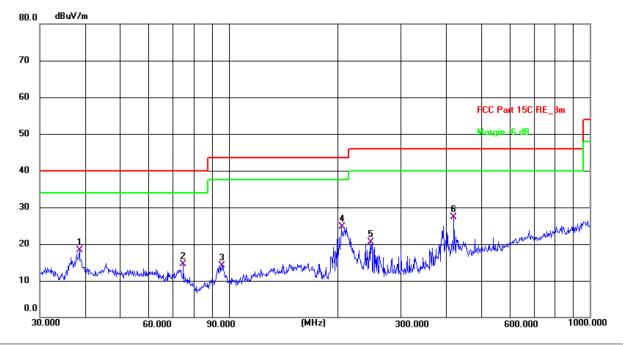
	Radiated En	nission Test Site	e (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESCI7	100529	Jan. 20, 2026
Spectrum Analyzer	R&S	FSQ40	200061	Jun. 26, 2025
Pre-amplifier	SKET	LNPA_0118G- 45	SK2021012 102	Jan. 20, 2026
Pre-amplifier	SKET	LNPA_1840G- 50	SK2021092 03500	Jan. 20, 2026
Pre-amplifier	HP	8447D	2727A05017	Jun. 26, 2025
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jun. 26, 2025
Broadband Antenna	Schwarzbeck	VULB9163	340	Jun. 28, 2025
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jun. 28, 2025
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Jan. 22, 2026
Coaxial cable	SKET	RE-03-D	/	Jun. 26, 2025
Coaxial cable	SKET	RE-03-M		Jun. 26, 2025
Coaxial cable	SKET	RE-03-L	/	Jun. 26, 2025
Coaxial cable	SKET	RE-04-D		Jun. 26, 2025
Coaxial cable	SKET	RE-04-M	K	Jun. 26, 2025
Coaxial cable	SKET	RE-04-L	/	Jun. 26, 2025
Antenna Mast	Keleto	RE-AM		GN
EMI Test Software	EZ_EMC	FA-03A2 RE+	1.1.4.2	

5.11.3. Test Data

TCT 通测检测 TESTING CENTRE TECHNOLOGY

Please refer to following diagram for individual

Site 3m Anechoic Chamber2 Limit: ECC Part 15C RE 3m

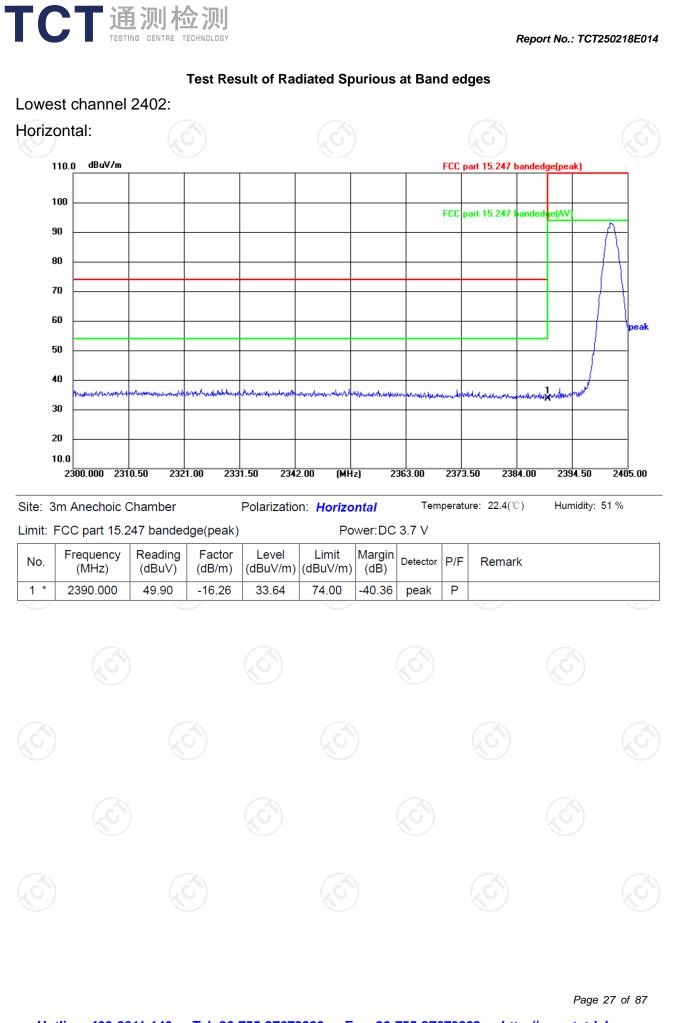

Polarization: Horizontal

Limit:	FCC Part 15C F	RE_3m				Power:	DC 3.7 V		
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	45.3754	33.35	-18.68	14.67	40.00	-25.33	QP	Ρ	
2	155.9101	31.55	-16.88	14.67	43.50	-28.83	QP	Ρ	
3	208.5801	52.15	-21.05	31.10	43.50	-12.40	QP	Ρ	
4	245.9509	48.29	-19.63	28.66	46.00	-17.34	QP	Ρ	
5 *	420.5803	53.21	-14.34	38.87	46.00	-7.13	QP	Ρ	
6	900.1474	38.31	-6.03	32.28	46.00	-13.72	QP	Ρ	

Page 25 of 87 Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Report No.: TCT250218E014

Vertical:


Site 3	m Anechoic C	hamber2		Polarization: Vertical				Temperature:	22.5(C)	Humidity: 51 %	
Limit:	FCC Part 15C F	RE_3m			Power:	DC 3.7 V					
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark		
1	38.6160	36.92	-18.66	18.26	40.00	-21.74	QP	Р			
2	74.9191	35.42	-20.91	14.51	40.00	-25.49	QP	Р			
3	95.7622	36.07	-21.88	14.19	43.50	-29.31	QP	Ρ			
4	205.6751	45.84	-21.17	24.67	43.50	-18.83	QP	Р			
5	246.8149	40.17	-19.61	20.56	46.00	-25.44	QP	Р			
6 *	420.5803	41.70	-14.34	27.36	46.00	-18.64	QP	Р			

Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

- Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK, Pi/4 DQPSK, 8DPSK) and the worst case Mode (Middle channel and 8DPSK) was submitted only.
 Freg. = Emission frequency in MHz
- S. Freq. = Emission frequency in MHZ Massurament $(dP_{\rm U})/(m) = {\rm Paading layel} (dP_{\rm U})/(m)$
- Measurement $(dB\mu V/m) = Reading level (dB\mu V) + Corr. Factor (dB)$ Correction Factor= Antenna Factor + Cable loss – Pre-amplifier
- Limit $(dB\mu V/m) = Limit$ stated in standard
- Over $(dB) = Measurement (dB\mu V/m) Limits (dB\mu V/m)$
- * is meaning the worst frequency has been tested in the test frequency range.

Page 26 of 87

Report No.: TCT250218E014



Report No.: TCT250218E014 Vertical: 110.0 dBu¥/m FCC part 15.247 bandedge(peak) 100 FCC part 15.247 bandedge(AV 90 80 70 60 eak 50 40 1 Anno maker 30 20 10.0 2300.000 2310.50 2321.00 2331.50 2342.00 (MHz) 2363.00 2373.50 2384.00 2394.50 2405.00 Site: 3m Anechoic Chamber Polarization: Vertical Temperature: 22.4(℃) Humidity: 51 % Limit: FCC part 15.247 bandedge(peak) Power: DC 3.7 V Limit Frequency Reading Factor Level Margin Detector P/F Remark No. (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 2390.000 50.64 -16.26 1 * 34.38 74.00 -39.62 peak Ρ Page 28 of 87 Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Report No.: TCT250218E014 Highest channel 2480: Horizontal: 110.0 dBuV/m 100 90 80 FCC part 15.247 bandedge(peak) 70 60 FCC part 15.247 bandedge(AV) 50 40 march Allow march march marches and mostly on and marked material workstyle ieak 30 20 10.0 2477.000 2479.80 2482.60 2485.40 2488.20 2493.80 2496.60 (MHz) 2499.40 2502.20 2505.00 Polarization: Horizontal Temperature: 22.4(℃) Humidity: 51 % Site: 3m Anechoic Chamber Limit: ECC part 15 247 bandedge(peak) Power DC 37 V

LIIIII. I	00 part 15.2		iye(peak)		Fower.DC 5.7 V				
No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	2483.500	66.98	-15.91	51.07	74.00	-22.93	peak	Ρ	

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Above 1GHz

Modulation	Type: 8D	PSK							
Low chann	el: 2402 N	1Hz							
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4804	Н	55.53		-9.51	46.02		74	54	-7.98
7206	Н	45.44		-1.41	44.03		74	54	-9.97
	H								
(C)		J ()) 	()	· ()		(\mathcal{O})	
4804	V	56.07		-9.51	46.56	<u> </u>	74	54	-7.44
7206	V	46.85		-1.41	45.44		74	54	-8.56
	V								

Middle cha	nnel: 2441	MHz		X)		10		N.
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)		n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4882	Н	55.99		-9.36	46.63	<u> </u>	74	54	-7.37
7323	KOH)	45.53		-1.14	44.39	0	74	54	-9.61
	Ĥ								
4882	V	55.88		-9.36	46.52		74	54	-7.48
7323	V	47.09		-1.14	45.95		74	54	-8.05
S-7	V			8	/				

High channel: 2480 MHz

CT通测检测 TESTING CENTRE TECHNOLOGY

i ligit chatli	ICI. 2400 IN								
Frequency	Ant Pol	Peak	AV	Correction	Emissic	n Level	Peak limit	AV/ limit	Margin
(MHz)	H/V	reading (dBµV)	reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)			(dBµV/m)	(dB)
4960	Н	54.34)	-9.20	45.14	;	74	54	-8.86
7440	Н	45.65		-0.96	44.69		74	54	-9.31
	Н								
G)		(.c.)		(.0			(.c.)		(.C
4960	V	55.71		-9.20	46.51		74	54	-7.49
7440	V	46.03		-0.96	45.07		74	54	-8.93
	V								

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

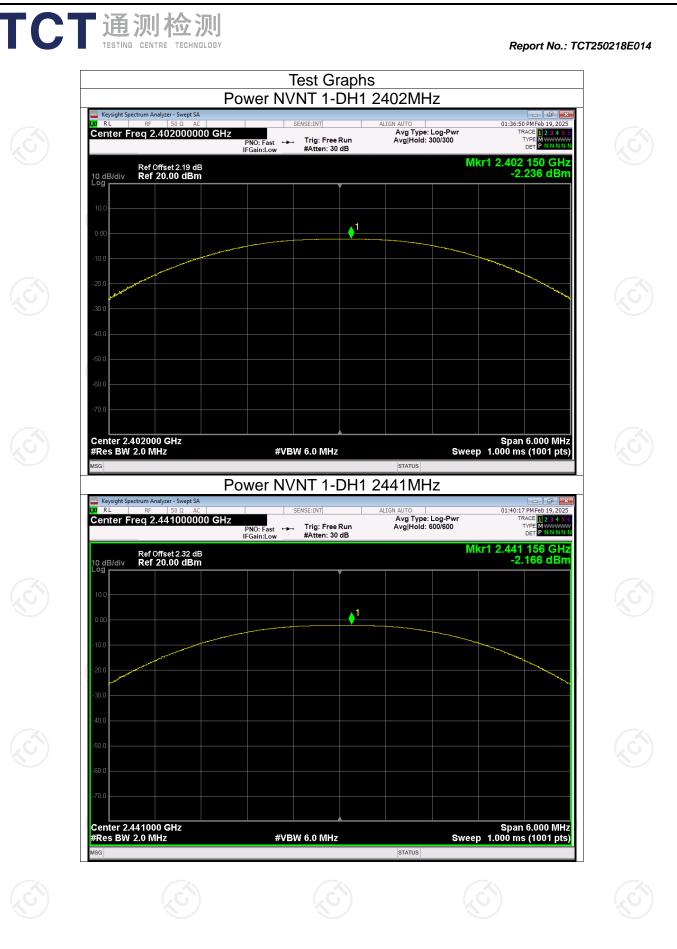
5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

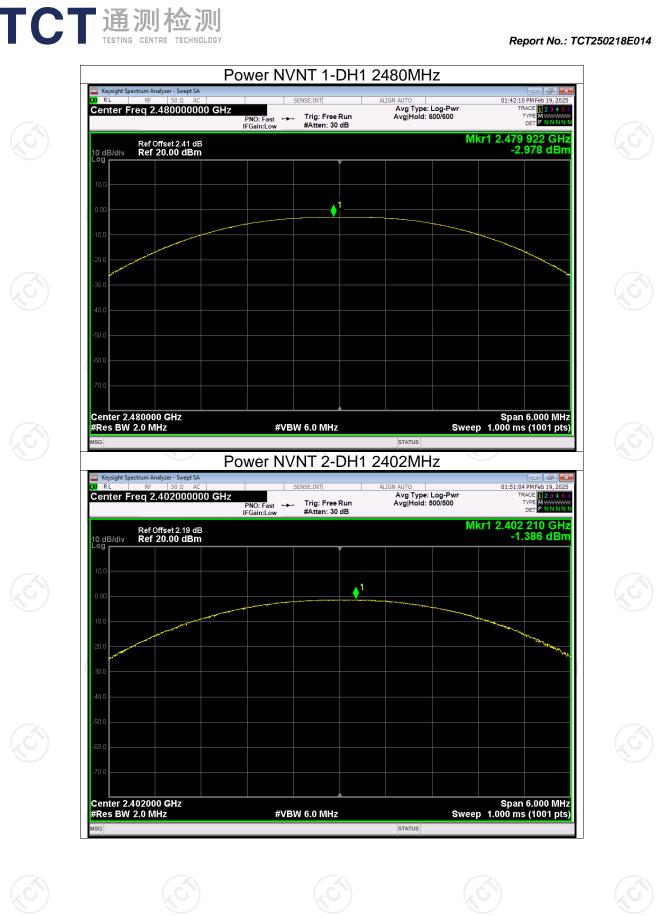
6. Measurements were conducted in all three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (8DPSK) was submitted only.

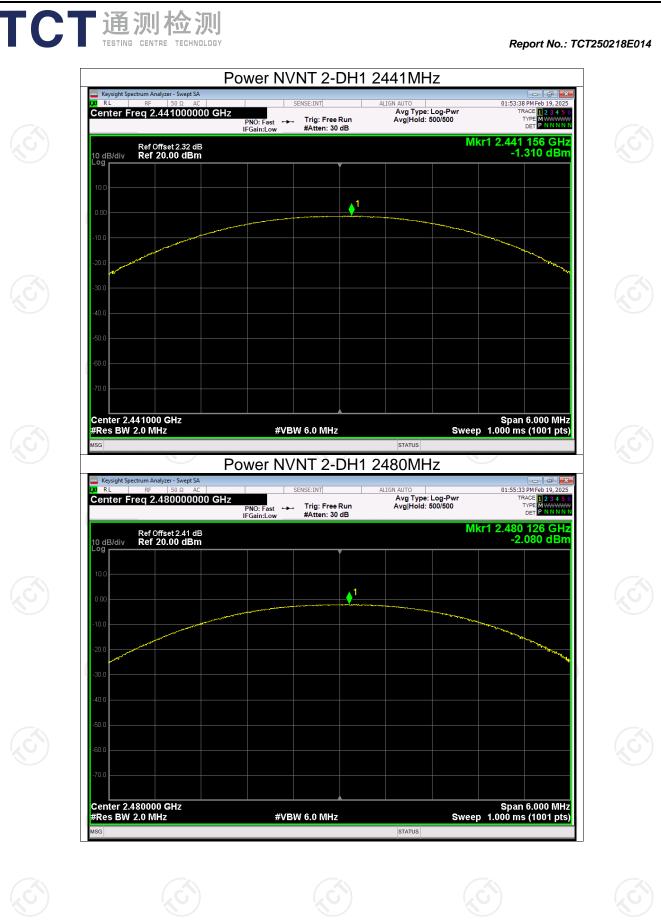
7. All the restriction bands are compliance with the limit of 15.209.

Appendix A: Test Result of Conducted Tes

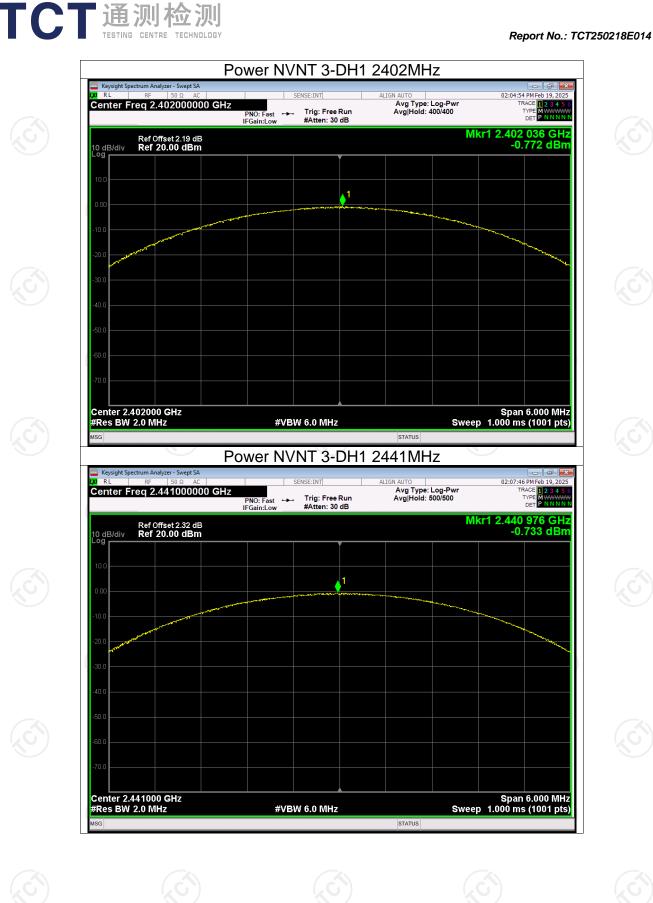
Maximum Conducted Output Power					
Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH1	2402	-2.24	21	Pass
NVNT	1-DH1	2441	-2.17	21	Pass
NVNT	1-DH1	2480	-2.98	21	Pass
NVNT	2-DH1	2402	-1.39	21	Pass
NVNT	2-DH1	2441	-1.31	21	Pass
NVNT 🔇	2-DH1	2480	-2.08	21	Pass
NVNT	3-DH1	2402	-0.77	21	Pass
NVNT	3-DH1	2441	-0.73	21	Pass
NVNT	3-DH1	2480	-1.54	21	Pass
KU /					

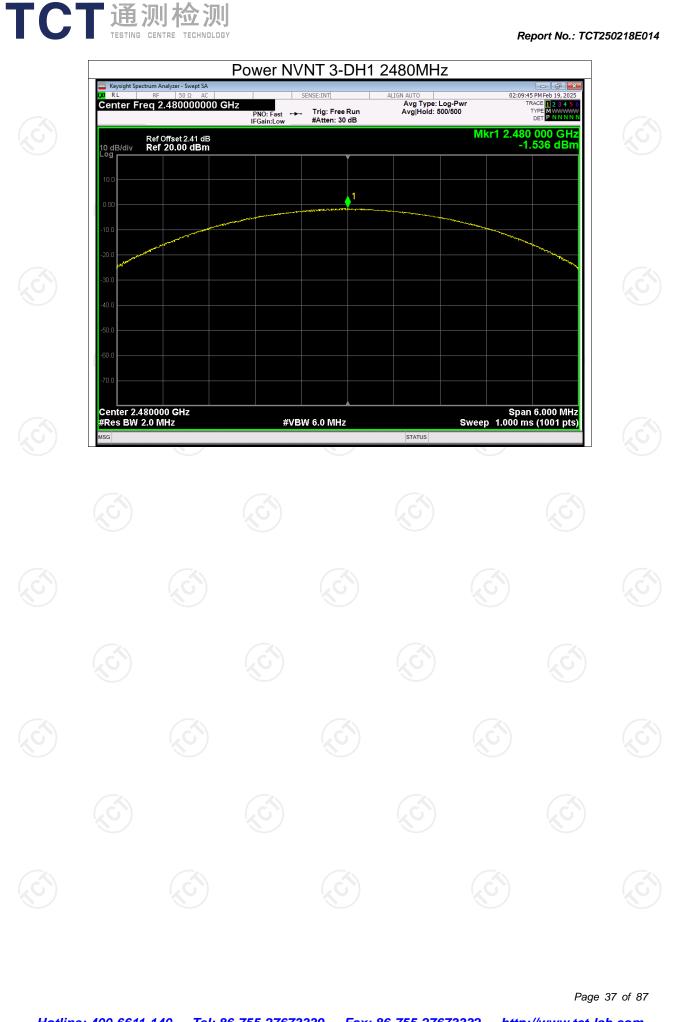






Page 32 of 87

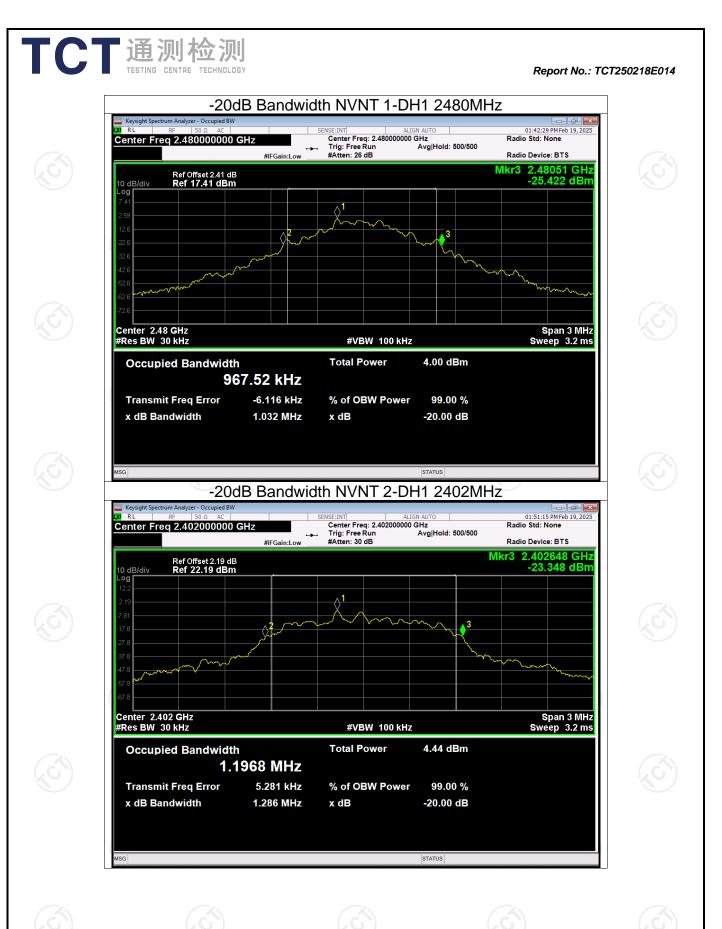

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com



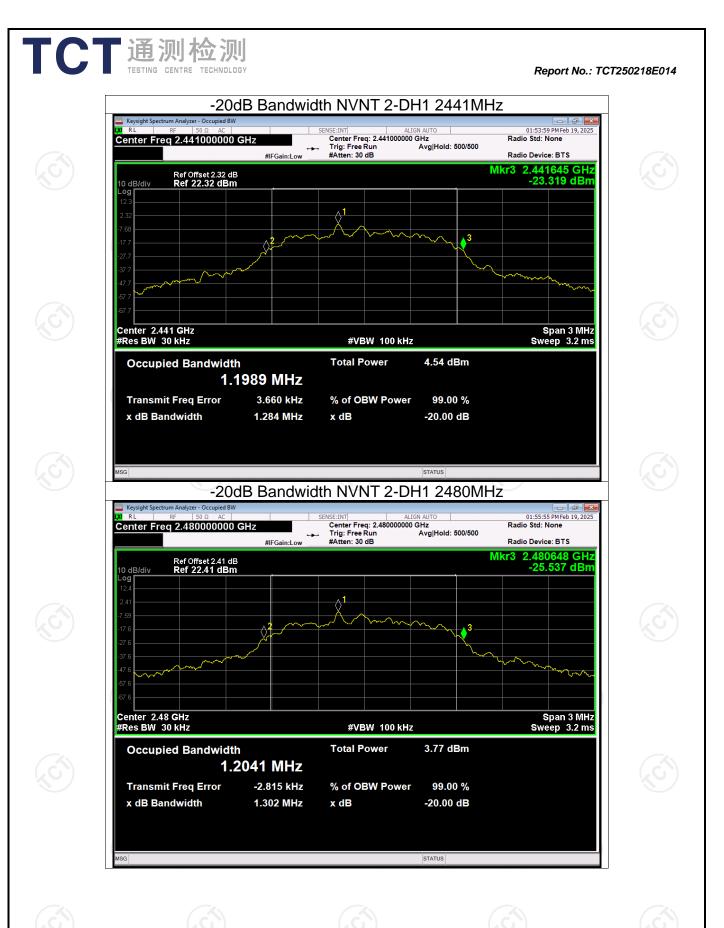
Page 35 of 87

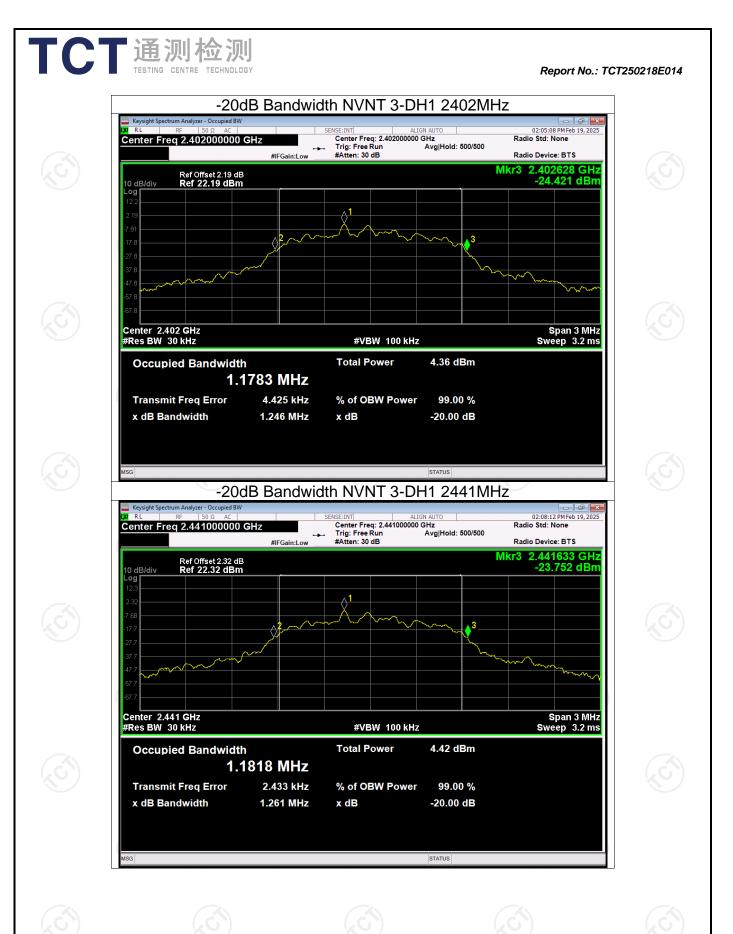
Page 36 of 87

Condition	Mode	Frequency (MHz)	-20 dB Bandwidth (MHz)	Verdict
NVNT	1-DH1	2402	1.029	Pass
NVNT 🚫	1-DH1	2441	1.028	Pass
NVNT	1-DH1	2480	1.032	Pass
NVNT	2-DH1	2402	1.286	Pass
NVNT	2-DH1	2441	1.284	Pass
NVNT	2-DH1	2480	1.302	Pass
NVNT	3-DH1	2402	1.246	Pass
NVNT	3-DH1	2441	1.261	Pass
NVNT	3-DH1	2480	1.262	Pass
X)			•

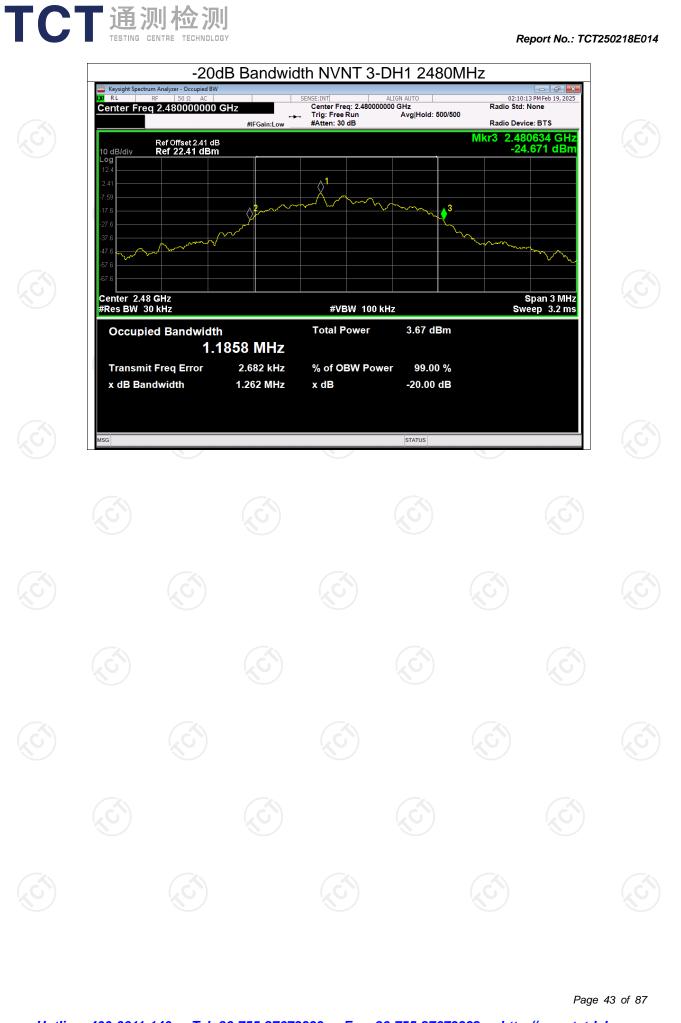


Page 38 of 87


Report No.: TCT250218E014



Page 39 of 87



Page 40 of 87

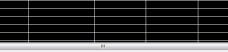
Page 42 of 87

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Condition	Mode	(MHz)	(MHz)	(MHz)	(MHz)	Verdict
NVNT	1-DH1	2401.997	2402.998	1.001	0.688	Pass
NVNT	1-DH1	2440.997	2441.997	1.000	0.688	Pass
NVNT	1-DH1	2479.002	2479.998	0.996	0.688	Pass
NVNT	2-DH1	2401.836	2402.838	1.002	0.868	Pass
NVNT	2-DH1	2440.830	2441.838	1.008	0.868	Pass
NVNT 🐇	2-DH1	2478.836	2479.838	1.002	0.868	Pass
NVNT	3-DH1	2401.836	2402.838	1.002	0.841	Pass
NVNT	3-DH1	2440.832	2441.832	1.000	0.841	Pass
NVNT	3-DH1	2478.834	2479.836	1.002	0.841	Pass

Carrier Frequencies Separation Hopping Freq1 Hopping Freq2 HFS



Report No.: TCT250218E014

Page 44 of 87

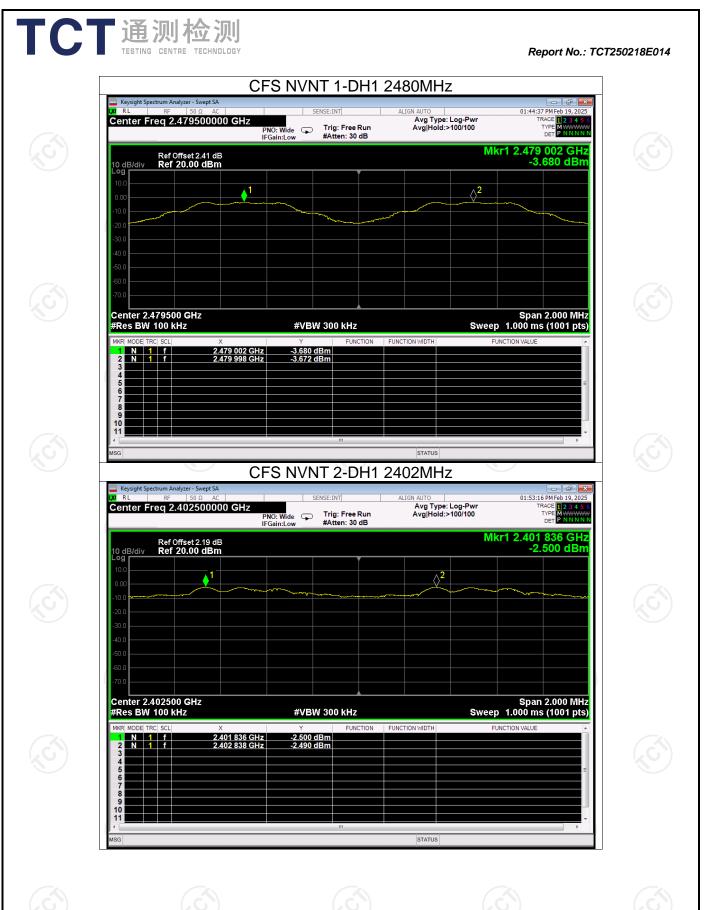
l imit

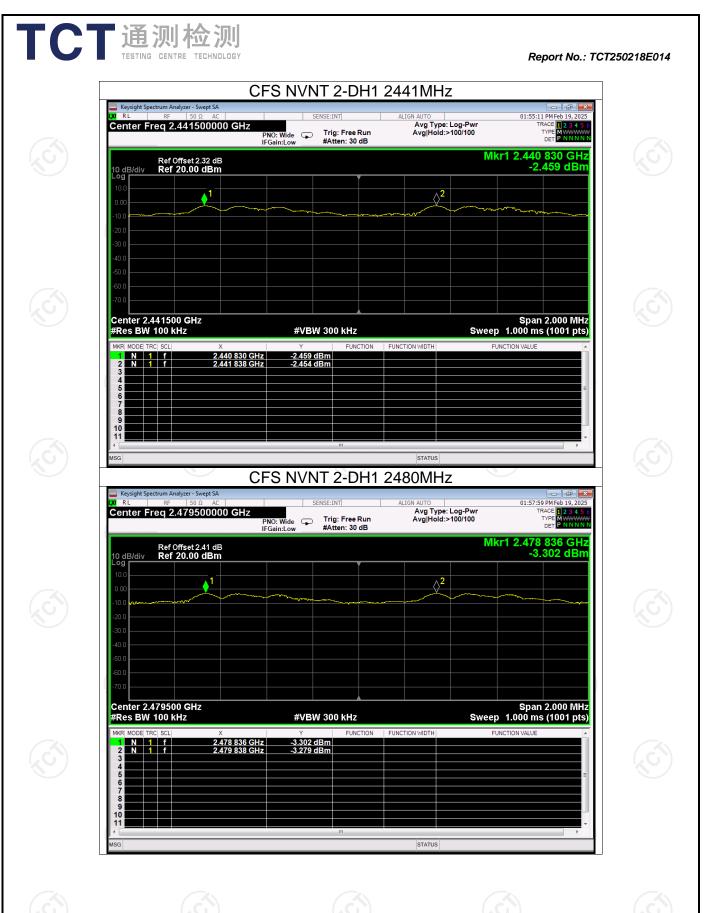
Page 45 of 87

Test Graphs CFS NVNT 1-DH1 2402MHz

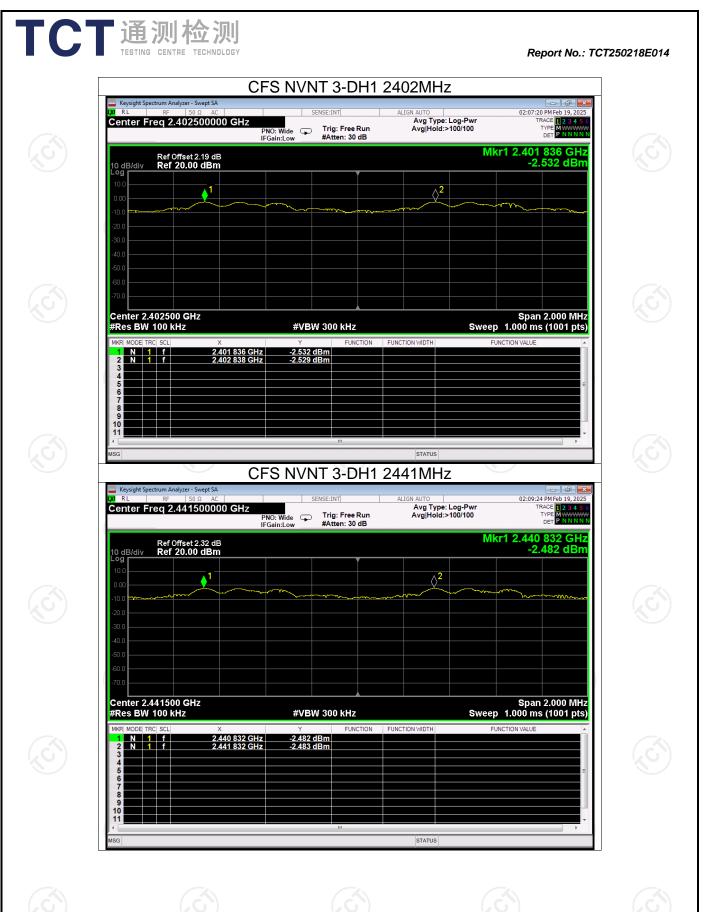
CFS NVNT 1-DH1 2441MHz

Keysight Spectrum Analyzer - Swept SA X RL _____ RF 50 Ω AC 01:41:50 PM Feb 19, 2025 ALIGN AUT Avg Type: Log-Pwr Avg Hold:>100/100 Center Freq 2.441500000 GHz PNO: Wide Trig: Free Run IFGain:Low #Atten: 30 dB TYPE DET Mkr1 2.440 997 GHz -2.953 dBm Ref Offset 2.32 dB Ref 20.00 dBm 10 dB/div Log **r ▲**1 Center 2.441500 GHz #Res BW 100 kHz Span 2.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz 2.440 997 GHz 2.441 997 GHz -2.953 dBm -2.854 dBm N 1 f N 1 f

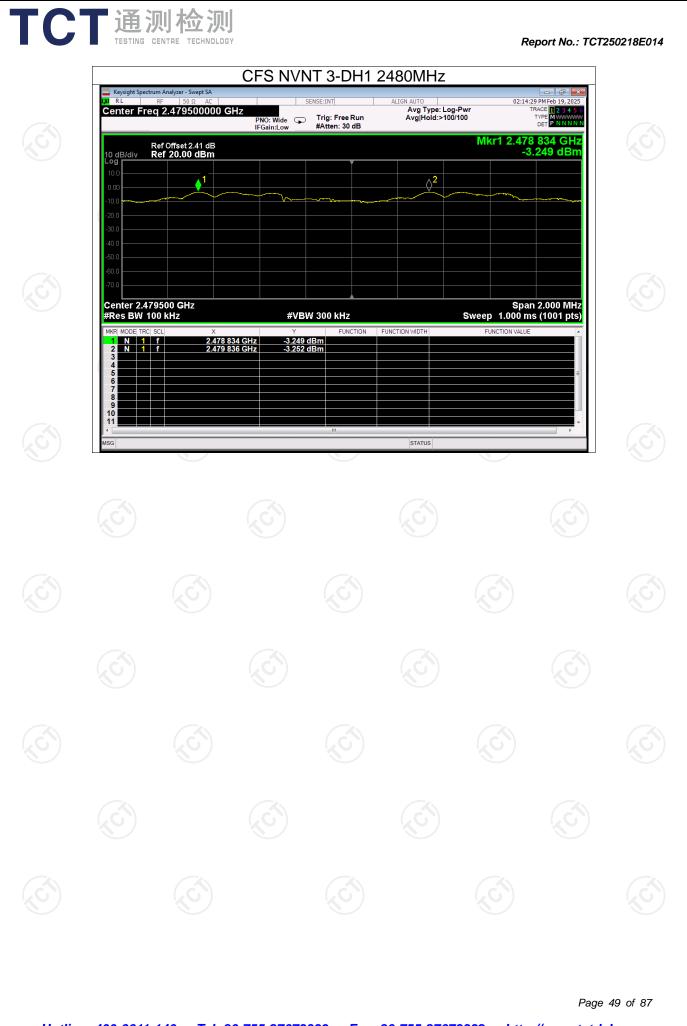

STATUS


Keysight Spectrum Analyzer - Swept SA K RL RF 50 Ω AC 01:39:22 PM Feb 19, 20 Avg Type: Log-Pwr Avg|Hold:>100/100 Center Freq 2.402500000 GHz TRACE 1 2 3 4 5 6 TYPE MWWWW DET P NNNN PNO: Wide Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.401 997 GHz -2.805 dBm Ref Offset 2.19 dB Ref 20.00 dBm 10 dB/div Log **r** 0 **∂**² Center 2.402500 GHz #Res BW 100 kHz Span 2.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz FUNCTION WIDTH ION 2.401 997 GHz 2.402 998 GHz -2.805 dBm -2.976 dBm N 1 f N 1 f 23 10 11

FCT通测检测 TESTING CENTRE TECHNOLOGY

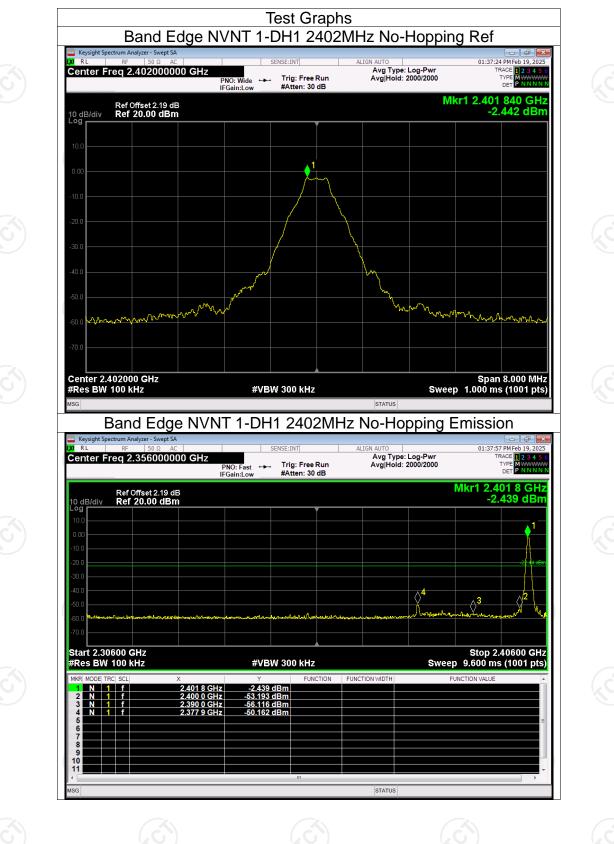

MSG

Report No.: TCT250218E014



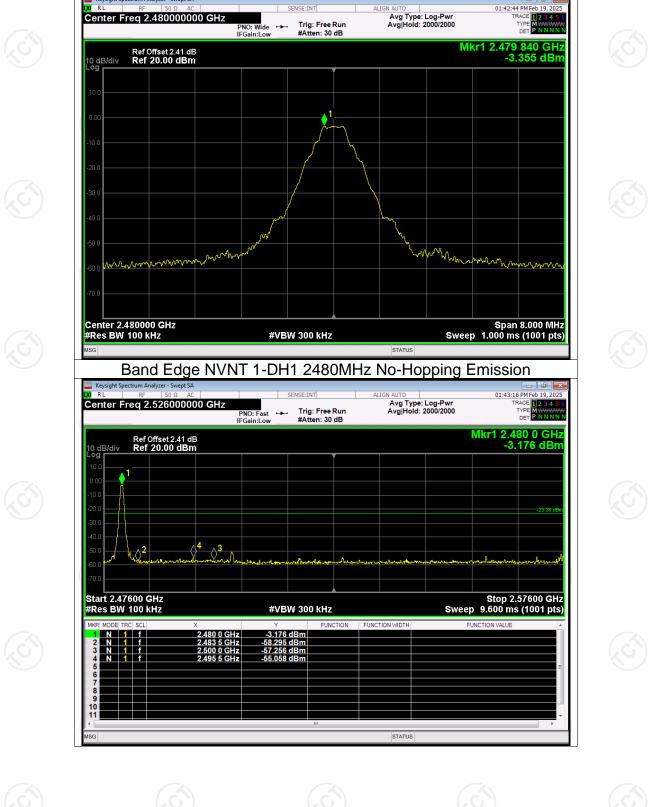
Page 47 of 87

Page 48 of 87


Condition	Mode	Frequency (MHz)	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH1	2402	No-Hopping	-47.72	-20	Pass
NVNT	1-DH1	2480	No-Hopping	-51.70	-20	Pass
NVNT	2-DH1	2402	No-Hopping	-48.14	-20	Pass
NVNT	2-DH1	2480	No-Hopping	-51.80	-20	Pass
NVNT	3-DH1	2402	No-Hopping	-48.42	-20	Pass
NVNT 🐇	3-DH1	2480	No-Hopping	-51.59	-20	Pass

	TESTING CENT	RE TECHNOLOGY			Report No.: 10	125
			Band Edge			
Condition	Mode	Frequency (MHz)	Hopping Mode	Max Value (dBc)	Limit (dBc)	V
NVNT	1-DH1	2402	No-Hopping	-47.72	-20	
NVNT	1-DH1	2480	No-Hopping	-51.70	-20	
NVNT	2-DH1	2402	No-Hopping	-48.14	-20	

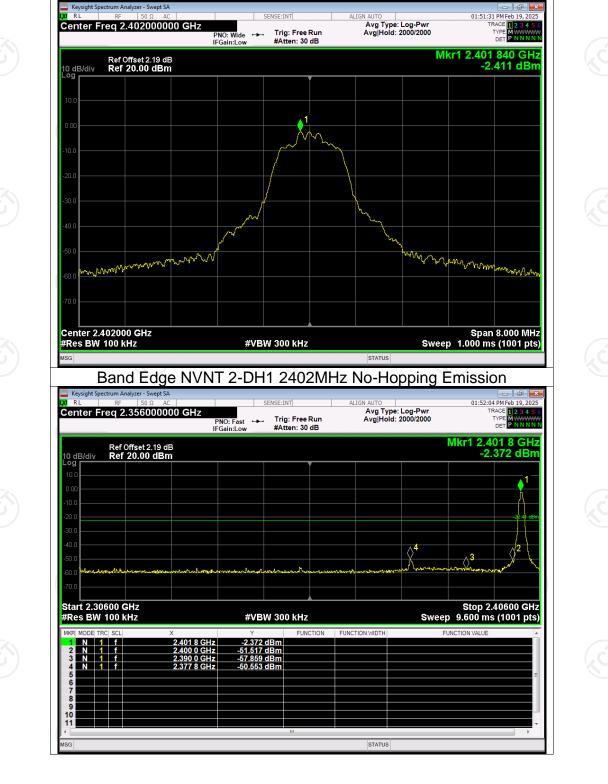
ort No.: TCT250218E014



FCT通测检测 TESTING CENTRE TECHNOLOGY

Report No.: TCT250218E014

Page 51 of 87


Band Edge NVNT 1-DH1 2480MHz No-Hopping Ref

Report No.: TCT250218E014

Page 52 of 87

🚾 Keysight Sp 🗶 R L

Band Edge NVNT 2-DH1 2402MHz No-Hopping Ref

Report No.: TCT250218E014

Page 53 of 87

PNO: Wide +++ Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.479 840 GHz -3.187 dBm Ref Offset 2.41 dB Ref 20.00 dBm 10 dB/div bg \sim an hand when Whorkton \mathcal{A} Center 2.480000 GHz #Res BW 100 kHz Span 8.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz STATUS Band Edge NVNT 2-DH1 2480MHz No-Hopping Emission Keysight Spectrum Analyzer - Swept S :45 PM Feb 19, 2025 ALIGN AU Avg Type: Log-Pwr Avg|Hold: 2000/2000 Center Freq 2.526000000 GHz TYPE MWWW PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB TYPE Mkr1 2.479 8 GHz -3.159 dBm Ref Offset 2.41 dB Ref 20.00 dBm 10 dB/div Log **r** {\}⁴ (\)³ 2 Start 2.47600 GHz #Res BW 100 kHz Stop 2.57600 GHz Sweep 9.600 ms (1001 pts) #VBW 300 kHz FUNCTION WIDTH 2.479 8 GHz 2.483 5 GHz 2.500 0 GHz 2.497 4 GHz -3.159 dBm -57.512 dBm -56.908 dBm -54.995 dBm N 1 f N 1 f

Band Edge NVNT 2-DH1 2480MHz No-Hopping Ref

Avg Type: Log-Pwr Avg|Hold: 2000/2000

🚾 Keysight Sp 🗶 R L

Center Freq 2.480000000 GHz

Report No.: TCT250218E014

Page 54 of 87

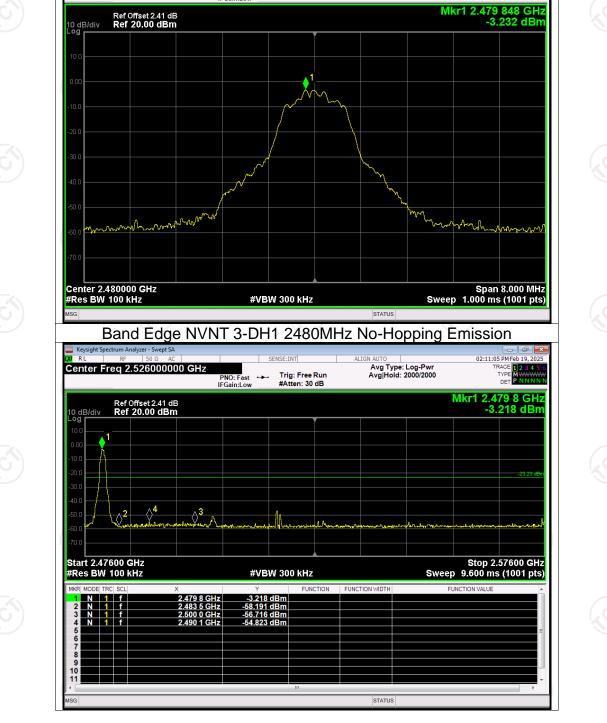
01:56:12 PM Feb 19, 202 TRACE 1 2 3 4 5 TYPE MWWW DET P N N N N

TYPE

02:05:27 PM Feb 19, 202: TRACE 1 2 3 4 5 TYPE M WWWW DET P N N N N PNO: Wide +++ Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.401 840 GHz -2.381 dBm Ref Offset 2.19 dB Ref 20.00 dBm 10 dB/div bg mhann mult m Center 2.402000 GHz #Res BW 100 kHz Span 8.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz STATUS Band Edge NVNT 3-DH1 2402MHz No-Hopping Emission Keysight Spectrum Analyzer - Swept S 02:05:59 PM Feb 19, 2025 ALIGN AUT Avg Type: Log-Pwr Avg|Hold: 2000/2000 Center Freq 2.356000000 GHz TYPE MWWW PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB TYPE Mkr1 2.402 0 GHz -2.367 dBm Ref Offset 2.19 dB Ref 20.00 dBm 10 dB/div Log δ^4 12 **∂**³ Start 2.30600 GHz #Res BW 100 kHz Stop 2.40600 GHz Sweep 9.600 ms (1001 pts) #VBW 300 kHz FUNCTION WIDTH -2.367 dBm -53.189 dBm -56.375 dBm -50.804 dBm 2.402 0 GHz 2.400 0 GHz 2.390 0 GHz 2.378 0 GHz N 1 f N 1 f

Band Edge NVNT 3-DH1 2402MHz No-Hopping Ref

AVG Type: Log-Pwr Avg Hold: 2000/2000


Center Freq 2.402000000 GHz

Keysight S XI R L

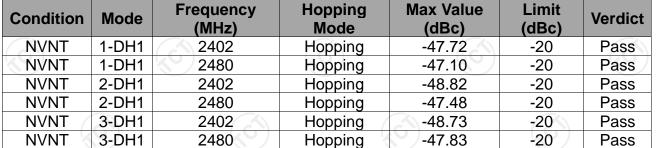
Report No.: TCT250218E014

Band Edge NVNT 3-DH1 2480MHz No-Hopping Ref

PNO: Wide ---- Trig: Free Run IFGain:Low #Atten: 30 dB

AVG Type: Log-Pwr Avg Hold: 2000/2000

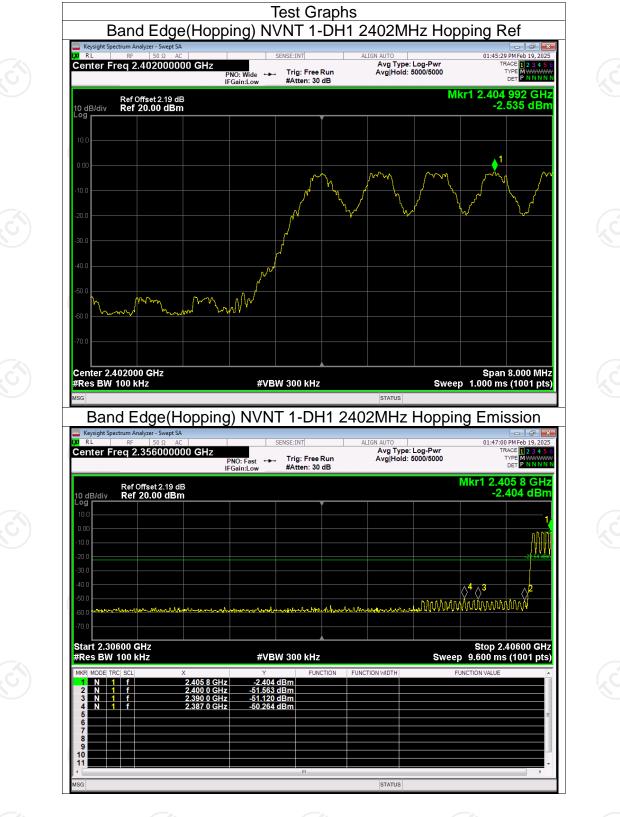
🚾 Keysight Sp 🗶 R L


Center Freq 2.480000000 GHz

Report No.: TCT250218E014

Page 56 of 87

02:10:32 PM Feb 19, 202 TRACE 1 2 3 4 5 TYPE MWWW DET P N N N N


TYPE

Band Edge(Hopping)

Report No.: TCT250218E014

			Page	57 of 87

Page 58 of 87

「CT通测检测 TESTING CENTRE TECHNOLOGY

Report No.: TCT250218E014

Page 60 of 87

Avg Type: Log-Pwr Avg|Hold: 5000/5000 Center Freq 2.480000000 GHz 1234 M PNO: Wide +++ Trig: Free Run IFGain:Low #Atten: 30 dB TYPE DET Mkr1 2.479 840 GHz -3.201 dBm Ref Offset 2.41 dB Ref 20.00 dBm nAn Mylo N.A. M man WWWW m MUMAN Center 2.480000 GHz #Res BW 100 kHz Span 8.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz STATUS Band Edge(Hopping) NVNT 2-DH1 2480MHz Hopping Emission 02:04:02 PM Feb 19, 2025 Avg Type: Log-Pwr Avg|Hold: 5000/5000 Center Freq 2.526000000 GHz Trig: Free Run #Atten: 30 dB TYP PNO: Fast +++ IFGain:Low DE

Band Edge(Hopping) NVNT 2-DH1 2480MHz Hopping Ref

Mkr1 2.479 8 GHz -3.234 dBm Ref Offset 2.41 dB Ref 20.00 dBm 10 dB/div Log 4 3 4 10 10 m. 4 ∆<mark>2</mark> Haladwind and ne have been been mere MUMM or March Merrish million a a co Start 2.47600 GHz #Res BW 100 kHz Stop 2.57600 GHz Sweep 9.600 ms (1001 pts) #VBW 300 kHz FUNCTION WIDTH 2.479 8 GHz 2.483 5 GHz 2.500 0 GHz 2.496 8 GHz 3.234 dl -56.906 dBm -52.851 dBm -50.680 dBm N 1 f N 1 f

「CT通测检测 TESTING CENTRE TECHNOLOGY

a Ri

10 dB/div

Page 61 of 87

Band Edge(Hopping) NVNT 3-DH1 2402MHz Hopping Ref

「CT通测检测 TESTING CENTRE TECHNOLOGY

Center Freq 2.402000000 GHz

a Ri

Report No.: TCT250218E014

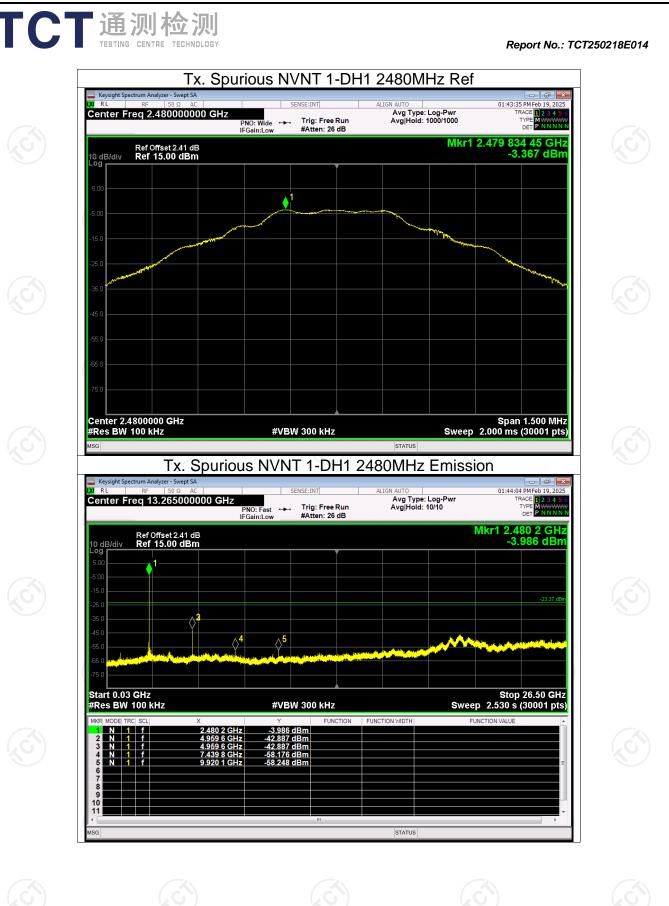
Page 62 of 87

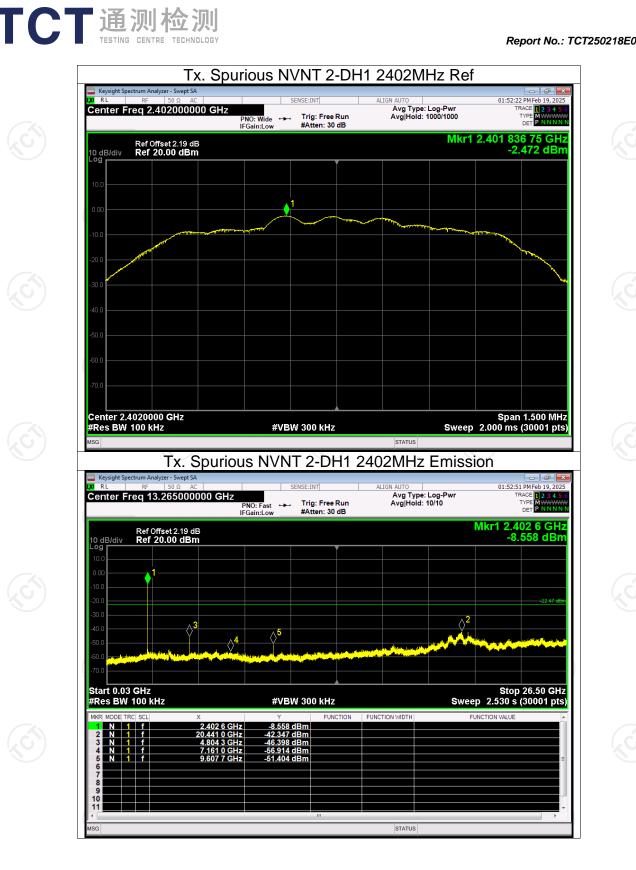
02:15:20 PM Feb 19, 2

Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict			
NVNT	1-DH1	2402	-40.35	-20	Pass			
NVNT	1-DH1	2441	-38.89	-20	Pass			
NVNT	1-DH1	2480	-39.51	-20	Pass			
NVNT	2-DH1	2402	-39.87	-20	Pass			
NVNT	2-DH1	2441	-39.47	-20	Pass			
NVNT	2-DH1	2480	-39.13	-20	Pass			
NVNT 🚫	3-DH1	2402	-38.86	-20	Pass			
NVNT	3-DH1	2441	-38.99	-20	Pass			
NVNT	3-DH1	2480	-42.51	-20	Pass			

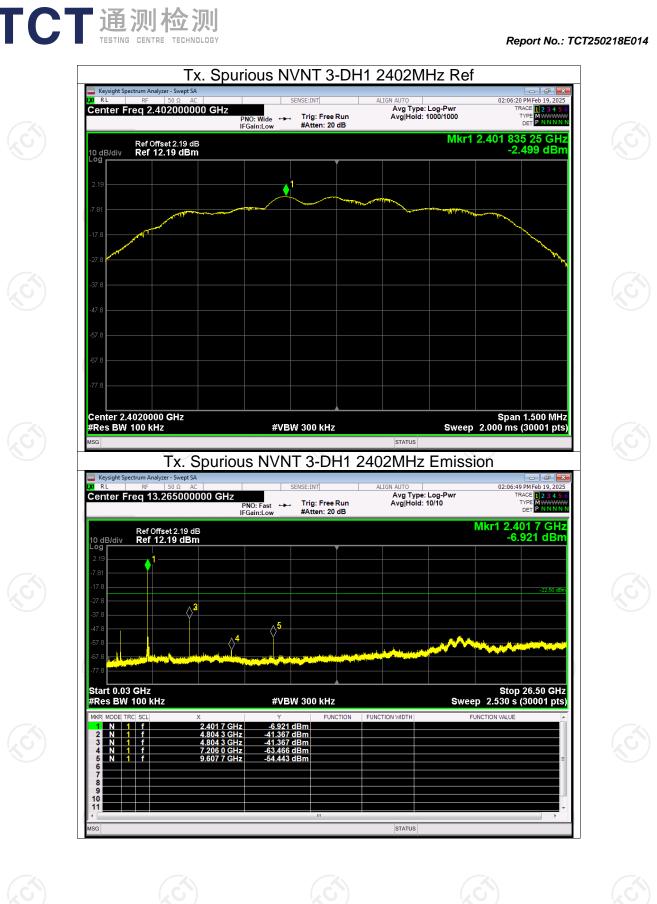
Page 64 of 87

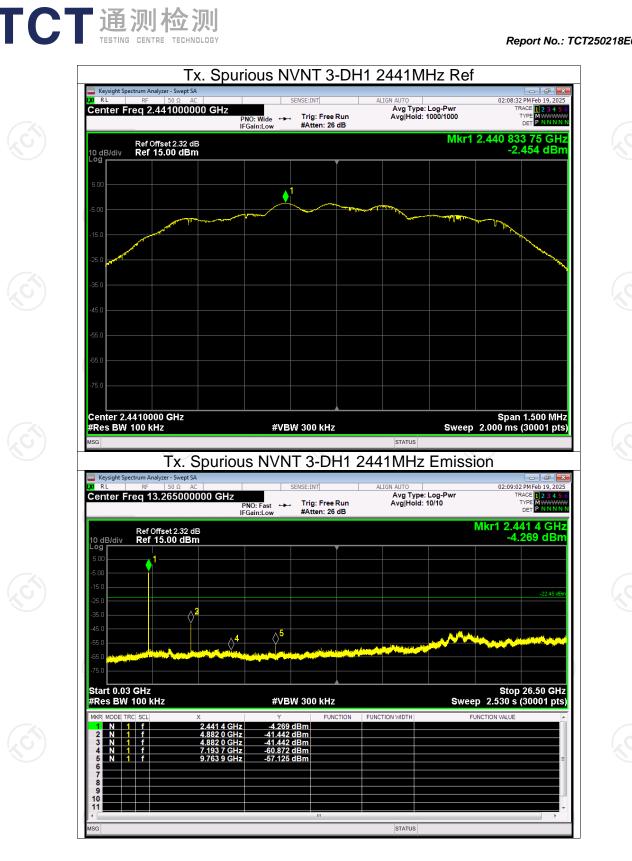

Report No.: TCT250218E014

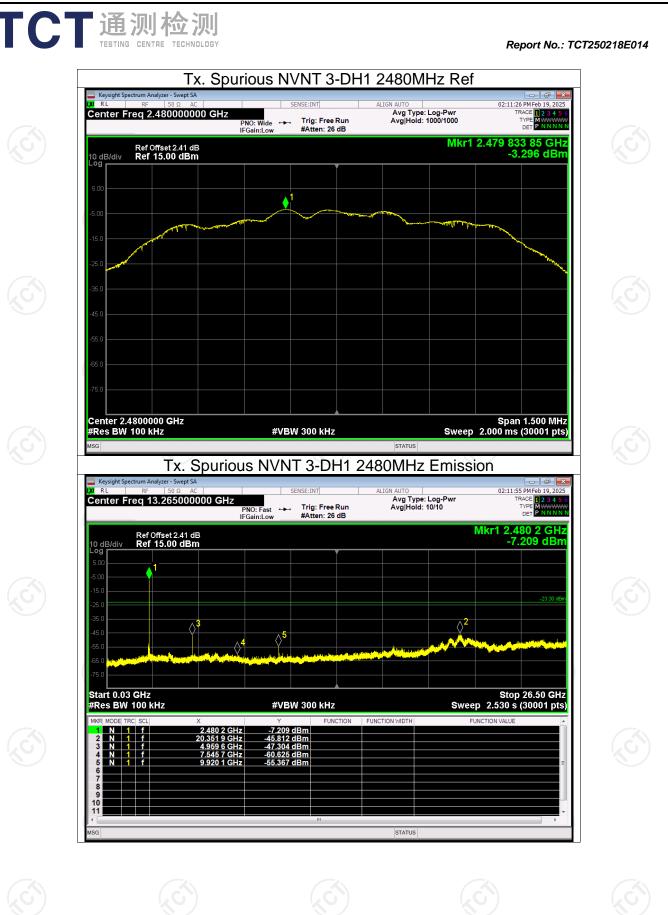


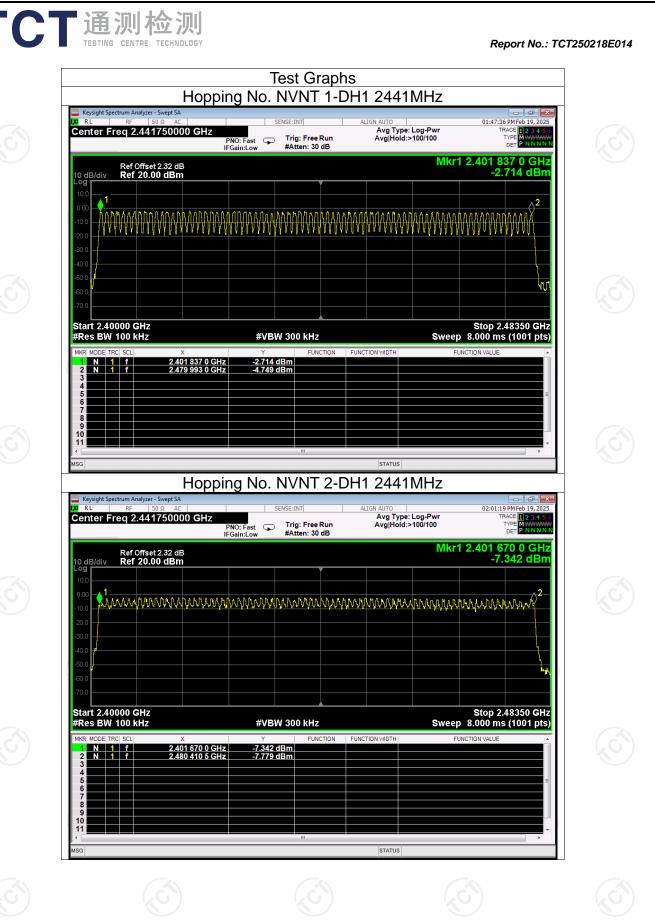
Page 66 of 87




Page 67 of 87


Page 68 of 87

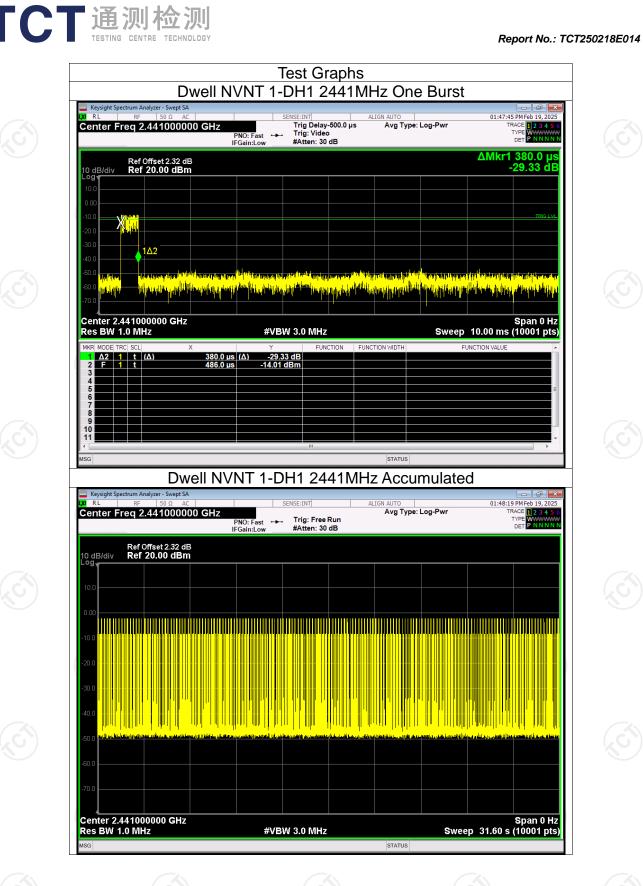



Page 71 of 87

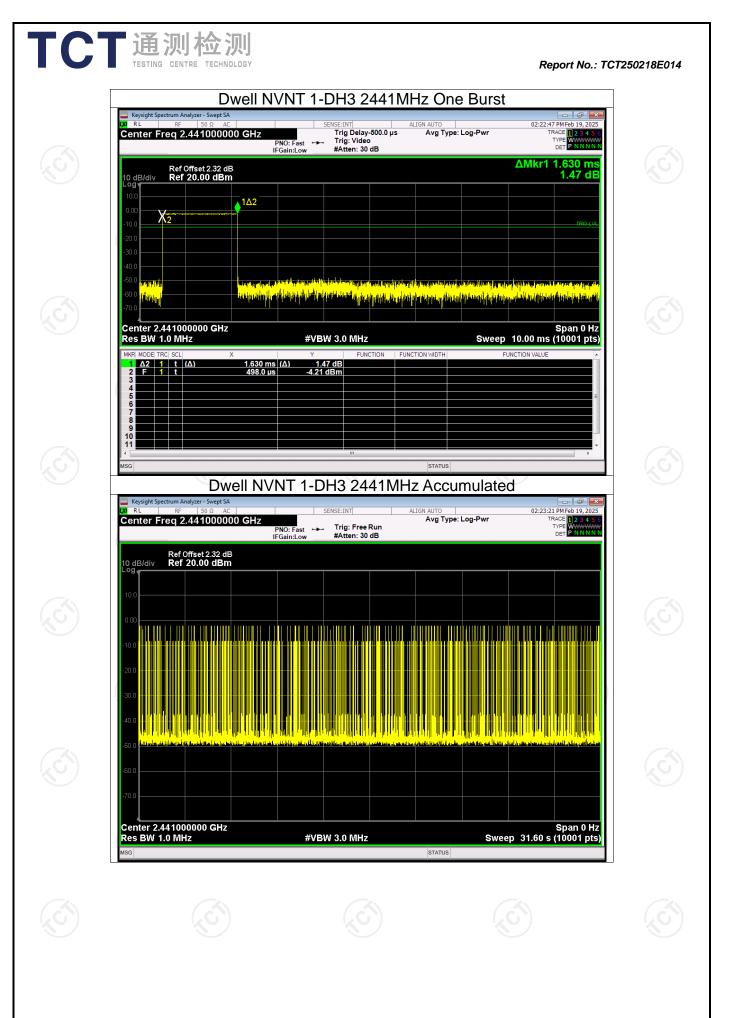
Page 73 of 87

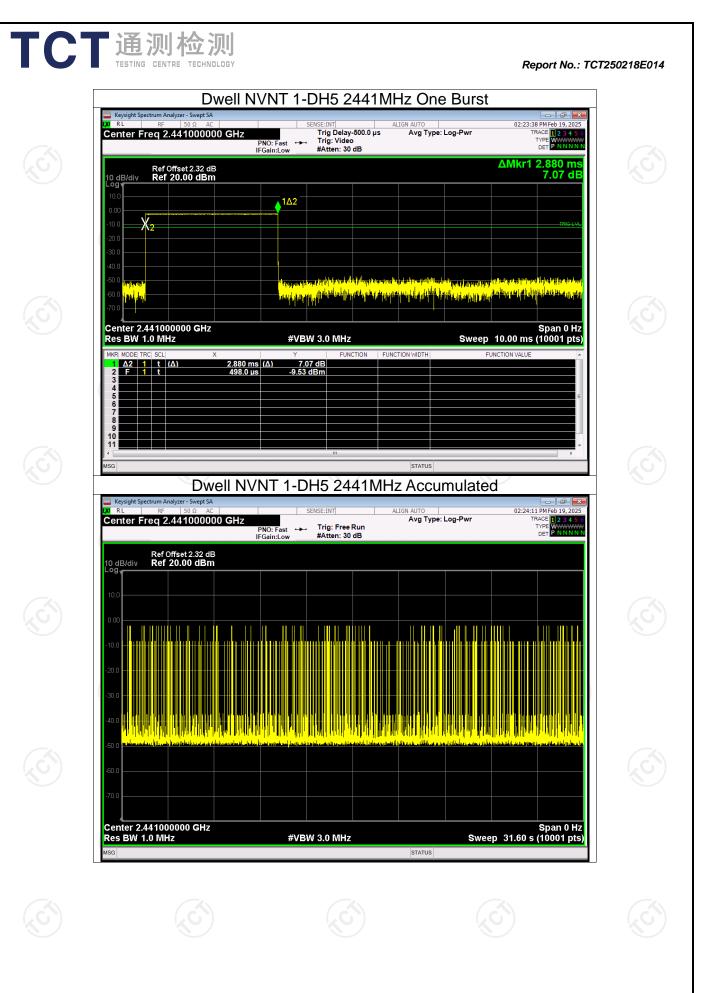
ss ss	Verd Pas Pas Pas	Limit 15 15 15) Channel umber	Hopping N1000000000000000000000000000000000000	e F 1	Mode 1-DH ² 2-DH ² 3-DH ²	Condition NVNT NVNT NVNT	

Page 75 of 87

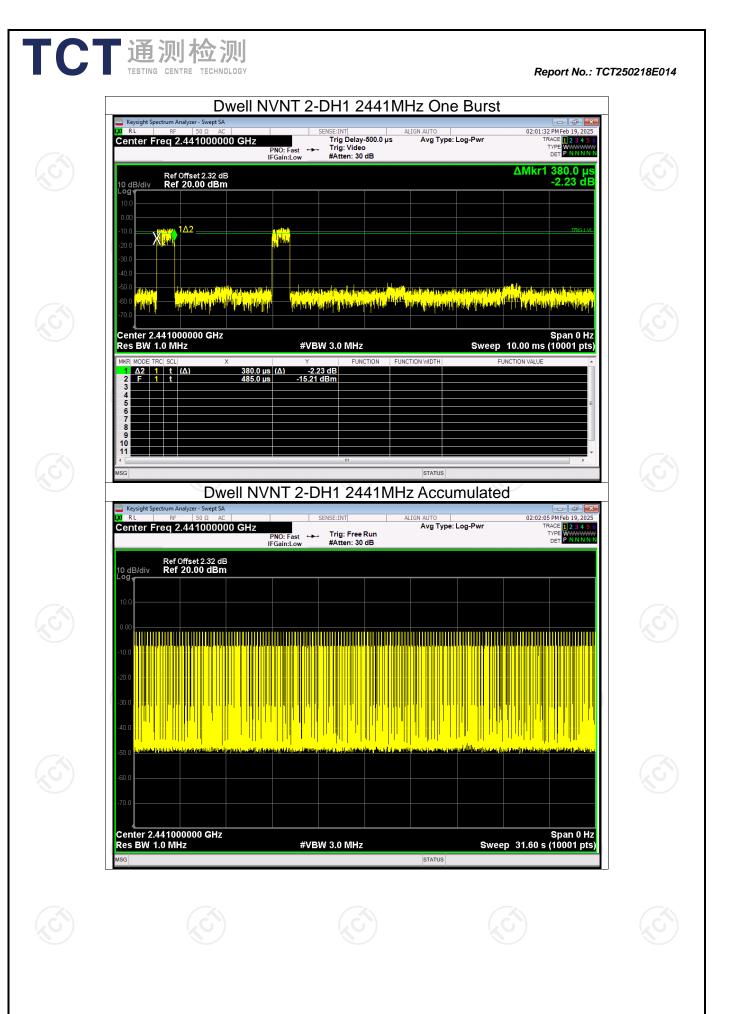

2.235 dBm	02:22:2 100 Mkr1 2.401 8 -2.	H1 2441M	SENSE:INT Trig: Free Run #Atten: 30 dB		m Analyzer - Swept SA RF 50 Ω AC Q 2.441750000 G Ref Offset 2.32 dB Ref 20.00 dBm		
	Stop 2 Sweep 8.000 m FUNCTION VALUE	FUNCTION WIDTH	dBm	7 0 GHz -2.235	00 KHz SCL X f 2.401 83	-300 -400 -500 -700 Start 2.400 #Res BW 1 MKR MODE TRC 1 N 1 2 N 1 3 4 4 5 6 6 6 7	
• •		STATUS	m			8 9 10 11 4 MSG	

Dwell Time								
Condition	Mode	Frequency (MHz)	Pulse Time (ms)	Total Dwell Time (ms)	Burst Count	Period Time (ms)	Limit (ms)	Verdict
NVNT	1-DH1	2441	0.38	120.84	318	31600	400	Pass
NVNT	1-DH3	2441	1.63	273.84	168	31600	400	Pass
NVNT	1-DH5	2441	2.88	290.88	101	31600	400	Pass
NVNT 🖔	2-DH1	2441	0.38	119.70	315	31600	400	Pass
NVNT	2-DH3	2441	1.64	265.68	162	31600	400	Pass
NVNT	2-DH5	2441	2.89	332.35	115	31600	400	Pass
NVNT	3-DH1	2441	0.39	123.63	317	31600	400	Pass
NVNT	3-DH3	2441	1.64	262.40	160	31600	400	Pass
NVNT	3-DH5	2441	2.89	358.36	124	31600	400	Pass

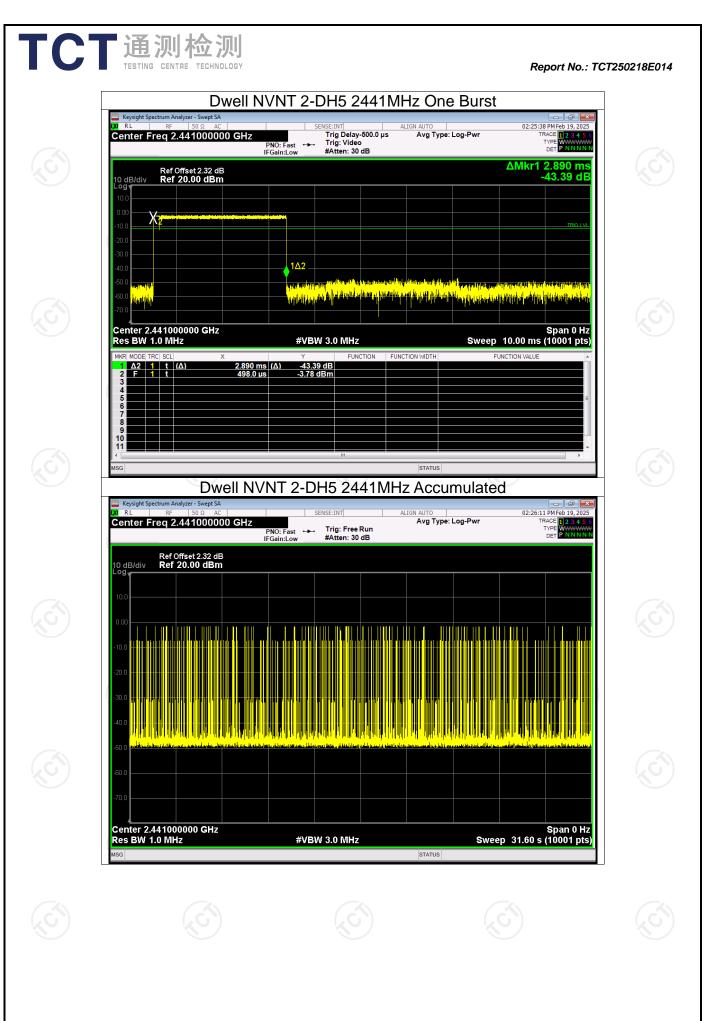

Report No.: TCT250218E014



Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

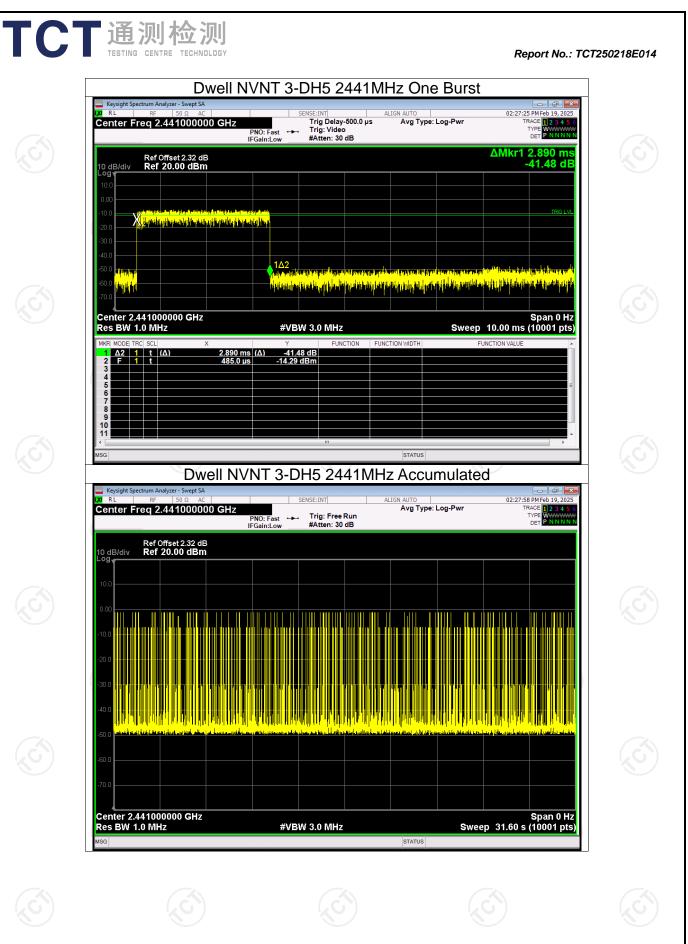

Page 78 of 87

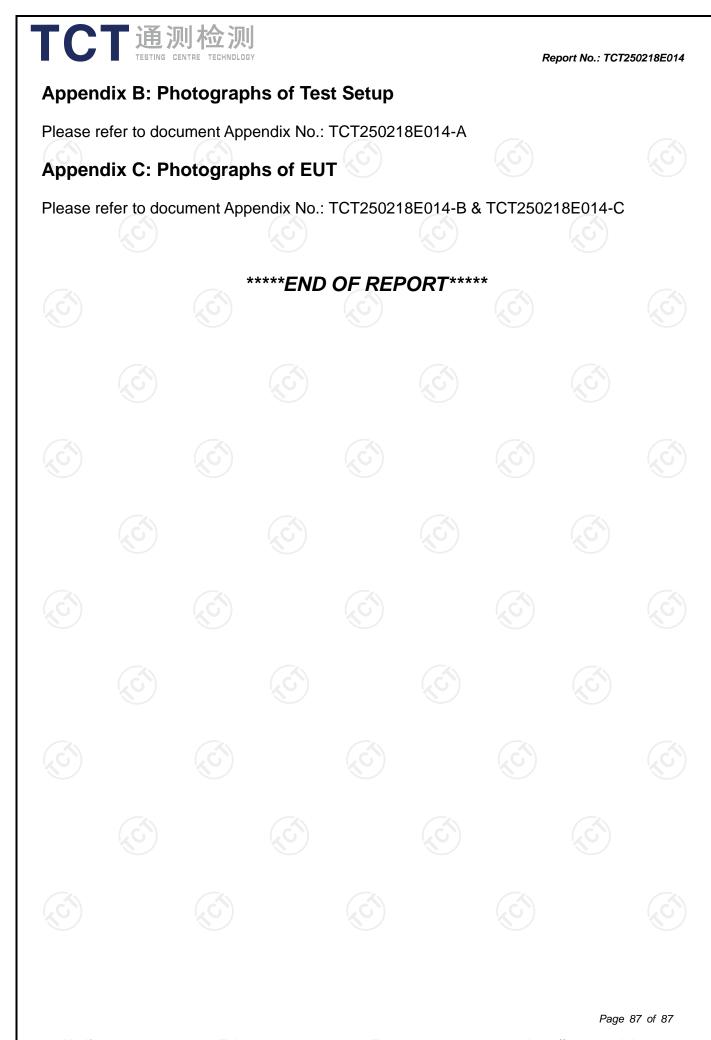
Page 80 of 87


Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Page 81 of 87

通测检测 TESTING CENTRE TECHNOLOGY	Report No.:	TCT250218E014
Dwell NVNT 2-DH3 24 Keysight Spectrum Analyzer - Swept SA SENSE:INT Center Freq 2.441000000 GHz Trig: Delay-50 PNO: Fast Frig: Video IFGain:Low Frig: Video Ref Offset 2.32 dB 00 0 dB/div Ref 20.00 dBm 0 00 Context and the second data	ALIGN AUTO 02:24:35 PM Feb 19, 2025 10.0 µs Avg Type: Log-Pwr TRACE 12 34 45 Trace 12 34 45	
-200 -300 -300 -400 -600 -400 -700 -400 -700 -400 -700 -400 -700 -400 -700 -400	Span 0 Hz Sweep 10.00 ms (10001 pts)	
3 4 5 6 7 8 9 10 10 11 4 8 9 9 10 11 4 8 9 9 10 11 4 11	AI IGN AUTO 02:25:08 PM Feb 19, 2025	
Center Freq 2.441000000 GHz PNO: Fast If rig: Free Ru IFGain:Low #Atten: 30 dB 10 dB/div Ref 20.00 dBm 10 0		
-60.0	Span 0 Hz Sweep 31.60 s (10001 pts)	
		Ś


Page 82 of 87



TC	T 通测检测 TESTING CENTRE TECHNOLOGY Report No.: TC	T250218E014
	Weil NVNT 3-DH3 2441MHz One Burst Keysight Spectrum Analyzer - Swept SA Ref 50 @ AC SENSE:INT ALIGN AUTO 02:26:30 PMFeb 19, 2025 Trig Delay-500.0 µs Avg Type: Log-Pwr TRACE Center Freq 2.441000000 GHz Trig Delay-500.0 µs Avg Type: Log-Pwr TRACE Odg/div Ref Offset 2.32 dB AMMkr1 1.640 ms 0 dB/div Ref Offset 2.32 dB AMMkr1 1.640 ms 0 dB/div Ref 20.00 dBm Trig: Video Trig: Video	
	20.0 1Δ2 1Δ2 <td< td=""><td></td></td<>	
	A AB6.0 µs -14.16 dBm A AB6.0 µs -14.16 dBm	
	Image: Note of the state	
	Center 2.441000000 GHz Span 0 Hz Res BW 1.0 MHz #VBW 3.0 MHz Sweep 31.60 s (10001 pts) MSG STATUS	

Page 85 of 87

Page 86 of 87

