

FCC 47 CFR PART 15 SUBPART C

TEST REPORT

For

Alpha Networks Inc.

2.4GHz WLAN PCI Adapter, DWL-G520i: D-Link Airplus (TM) G-802.11g, 2.4GHz Wireless PCI Adapter with internal antenna DWL-G520e: D-Link AirPlus (TM) G-802.11g, 2.4GHz Wireless PCI Adapter with external antenna

Model: DWL-G520i; DWL-G520e

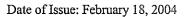
Trade Name: D-Link

Prepared for

Alpha Networks Inc. No. 20, Park Ave. II, Science-Based Industrial Park, Hsinchu, Taiwan, R.O.C.

Prepared by

Compliance Certification Services Inc. No. 81-1, Lane 210, Bade Rd. 2, Luchu Hsiang, Taoyuan Hsien, (338) Taiwan, R.O.C. TEL: 886-3-324-0332 FAX: 886-3-324-5235



Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document.

TABLE OF CONTENTS

1. T	EST RESULT CERTIFICATION	
2. E	UT DESCRIPTION	
5. T	EST METHODOLOGY	5
3.1	EUT CONFIGURATION	5
3.2	EUT EXERCISE	
3.3	GENERAL TEST PROCEDURES	
3.4	FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS	
3.5	DESCRIPTION OF TEST MODES	6
4 IN	STRUMENT CALIBRATION	7
7. II		····· /
5. FA	ACILITIES AND ACCREDITATIONS	
5.1	FACILITIES	8
5.2	EQUIPMENT	
5.3	LABORATORY ACCREDITATIONS AND LISTING	
5.4	TABLE OF ACCREDITATIONS AND LISTINGS	9
6 61	ETUP OF EQUIPMENT UNDER TEST	10
0. 51		
6.1	SUPPORT EQUIPMENT	
7. FO	CC PART 15.247 REQUIREMENTS	
7.1	6DB BANDWIDTH	
7.1	ODB BANDWIDTH PEAK POWER	
7.2	BAND EDGES MEASUREMENT	
7.4	PEAK POWER SPECTRAL DENSITY	
7.5	RADIO FREQUENCY EXPOSURE	
7.6	sPURIOUS EMISSIONS	
7.7	POWERLINE CONDUCTED EMISSIONS	

1. TEST RESULT CERTIFICATION

FCC Part 15 Subpart C

Applicant:	Alpha Networks Inc. No. 20, Park Ave. II, Science-Based Industrial Park, Hsinchu, Taiwan, R.O.C.
Equipment Under Test:	 2.4GHz WLAN PCI Adapter, DWL-G520i: D-Link Airplus (TM) G-802.11g, 2.4GHz Wireless PCI Adapter with internal antenna DWL-G520e: D-Link AirPlus (TM) G-802.11g, 2.4GHz Wireless PCI Adapter with external antenna
Trade Name:	D-Link
Model:	DWL-G520i; DWL-G520e
Date of Test:	February 13 ~ 15, 2004
	APPLICABLE STANDARDS
STAND	ARD TEST RESULT

We hereby certify that:

The above equipment was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4 and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 15.247.

The test results of this report relate only to the tested sample identified in this report.

Approved by:

and and a second

Harris.W. Lai Executive Vice President Compliance Certification Services Inc.

.

Reviewed by:

Devin Chang (/ Section Manager Compliance Certification Services Inc.

No non-compliance noted

2. EUT DESCRIPTION

Product	 2.4GHz WLAN PCI Adapter, DWL-G520i: D-Link Airplus (TM) G-802.11g, 2.4GHz Wireless PCI Adapter with internal antenna DWL-G520e: D-Link AirPlus (TM) G-802.11g, 2.4GHz Wireless PCI Adapter with external antenna 				
Trade Name	D-Link				
Model Number	DWL-G520i; DWL-G520e				
Model Discrepancy	DWL-G520e is external antenna DWL-G520i is internal antenna				
Module Trade Name	Intel				
Module Model Number	WM3B2200BG				
Power Supply	Powered from Host device				
Frequency Range	IEEE 802.11b,g: 2412 ~ 2462 MHz				
Transmit Power	IEEE 802.11b: 17.61 dBm IEEE 802.11g: 16.06 dBm				
Modulation Technique	IEEE 802.11b: DSSS (CCK; DQPSK; DBPSK) IEEE 802.11g: OFDM				
Antenna Gain	DWL-G520e: 2.2dBi (Max) DWL-G520i: -0.594dBi (Max)				
Antenna Designation	DWL-G520e: Dipole swivel antenna DWL-G520i: Integrated PIFA Antennas Embedded non-user changeable, two provided. Tx and Rx Diversity				

Note: This submittal(s) (test report) is intended for <u>*FCC ID: RRK-P0603038 filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.*</u>

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4 and FCC CFR 47 2.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055, 2.1057, and 15.247.

3.1EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

3.2EUT EXERCISE

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.247 under the FCC Rules Part 15 Subpart C.

3.3GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 13.1.4.1 of ANSI C63.4.

3.4FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 -	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.52525	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	156.7 - 156.9	3260 - 3267	23.6 - 24.0
12.29 - 12.293	162.0125 - 167.17	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	167.72 - 173.2	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	240 - 285	3600 - 4400	$(^{2})$
13.36 - 13.41	322 - 335.4		

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

3.5DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition.

Software used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

IEEE802.11b: Channel 1(2412MHz), Channel 6(2437MHz) and Channel 11(2462MHz) with 1Mbps highest data rate (worst case) are chosen for the final testing.

IEEE802.11g: Channel 1(2412MHz), Channel 6(2437MHz) and Channel 11(2462MHz) with 6Mbps data rate (the worst case) are chosen for the final testing.

4. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

5. FACILITIES AND ACCREDITATIONS

5.1FACILITIES

All measurement facilities used to collect the measurement data are located at

- No. 81-1, Lane 210, Bade Rd. 2, Luchu Hsiang, Taoyuan Hsien, Taiwan, R.O.C.
- No. 199, Chunghsen Road, Hsintien City, Taipei Hsien, Taiwan, R.O.C.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.3 LABORATORY ACCREDITATIONS AND LISTING

The test facilities used to perform radiated and conducted emissions tests are accredited by National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code: 200600-0 to perform Electromagnetic Interference tests according to FCC PART 15 AND CISPR 22 requirements. No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government. In addition, the test facilities are listed with Federal Communications Commission (Registration no: 93105 and 90471).

5.4TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo
USA	NVLAP*	EN 55011, EN 55014-1, AS/NZS 1044, CNS 13783-1, EN 55022, CNS 13438, EN 61000-3-2, EN 61000-3-3, ANSI C63.4, FCC OST/MP-5, AS/NZS CISPR 22, IEC 61000-4-2, IEC 61000-4-3, IEC 61000-4-4, IEC 61000-4-5, IEC 61000-4-6, IEC 61000-4-8, IEC 61000-4-11	NVLAD 200600-0
USA	FCC	3/10 meter Open Area Test Sites to perform FCC Part 15/18 measurements	FC 93105, 90471
Japan	VCCI	4 3/10 meter Open Area Test Sites to perform conducted/radiated measurements	VCCI R-393/1066/725/879 C-402/747/912
Norway	NEMKO	EN 50081-1/2, EN 50082-1/2, IEC 61000-6-1/2, EN 50091-2, EN 50130-4, EN 55011, EN 55013, EN 55014-1/2, EN 55015, EN 55022, EN 55024, EN 61000-3-2/3, EN 61326-1, IEC 61000-4-2/3/4/5/6/8/11, EN 60601-1-2, EN 300 328-2, EN 300 422-2, EN 301 419-1, EN 301 489-01/03/07/08/09/17, EN 301 419-2/3, EN 300 454-2, EN 301 357-2	ELA 124a ELA 124b ELA 124c
Taiwan	CNLA	EN 300 328-1/2, EN 300 220-1/2/3, EN 300 440-1/2, EN 61000-3-2, EN 61000-3-3, 47 CFR FCC Part 15 Subpart C/D/E, EN 55013, CNS 13439, EN 55014-1, CNS 13783-1, EN 55022, CNS 13438, CISPR 22, AS/NZS 3548, EN 61000-4-2/3/4/5/6/8/11, ENV 50204, IEEE Std 1528, FCC OET Bulletin, 65+Supplement C, EN50360, EN50361, EN50371, RSS102	O 3 6 3 ILAC MRA
Taiwan	BSMI	CNS 13438, CNS 13783-1, CNS 13439, CNS 14115	SL2-IS-E-0014 SL2-IN-E-0014 SL2-A1-E-0014 SL2-R1-E-0014 SL2-R2-E-0014 SL2-L1-E-0014
Canada	Industry Canada	RSS212, Issue 1	Canadä IC 3991-3 IC 3991-4

* No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government.

6. SETUP OF EQUIPMENT UNDER TEST

6.1 SUPPORT EQUIPMENT

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

6.2 SUPPORT EQUIPMENT

Device Type	M/N	S/N	FCC ID	Trade Name	Data Cable	Power Cord
PC	D51C	7251 KN8Z 0014	FCC DoC	Compaq	Unshielded, 1.8m	Unshielded, 1.8m
Monitor	959NF	AQ19H2RT706122K	FCC DoC		Unshielded, 1.8m with two cores	Unshielded, 1.8m
USB Keyboard	KB-0133	N/A	FCC DoC	Compaq	Unshielded, 1.8m	N/A
USB Mouse	M-S69	N/A	FCC DoC	Compaq	Unshielded, 1.8m	N/A
Printer	STYLUS C60	DR3K039633	FCC DoC	EPSON	Unshielded, 1.8m	Unshielded, 1.8m

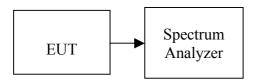
Notes:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

7. FCC PART 15.247 REQUIREMENTS

7.1 6dB BANDWIDTH

LIMIT


For the direct sequence systems, the minimum 6dB bandwidth shall be at least 500kHz.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	US42510252	04/28/2004

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

TEST PROCEDURE

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW = 100kHz, VBW = RBW, Span = 20MHz, Sweep = auto.
- 4. Mark the peak frequency and –6dB (upper and lower) frequency.
- 5. Repeat until all the rest channels are investigated.

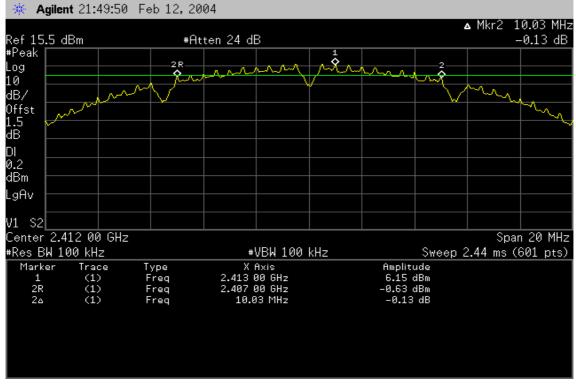
TEST RESULTS

No non-compliance noted

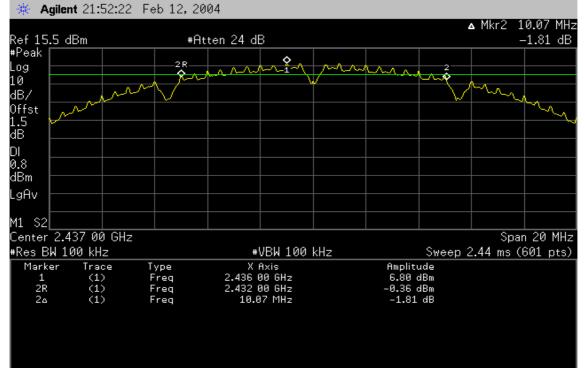
<u>Test Data</u>

Test mode: IEEE 802.11b

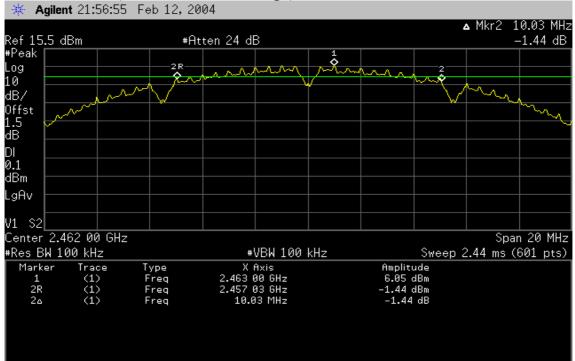
Channel	Frequency (MHz)	Bandwidth (kHz)	Limit (kHz)	Margin (kHz)
Low	2412	10030		PASS
M id	2437	10070	> 5 0 0	PASS
High	2462	10030		PASS

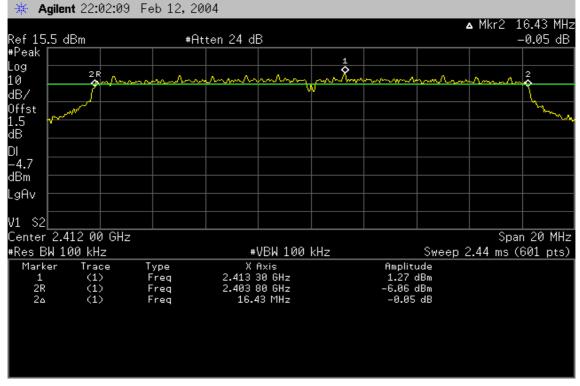

Test mode: IEEE 802.11g

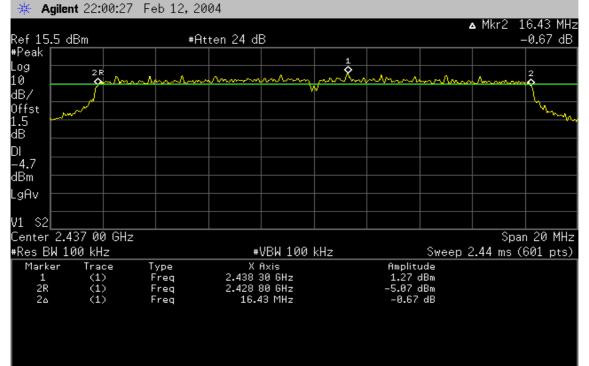
Channel	Frequency (MHz)	Bandwidth (kHz)	Limit (kHz)	M argin (k H z)
Low	2412	16430		PASS
M id	2437	16430	> 5 0 0	PASS
High	2462	16400		PASS

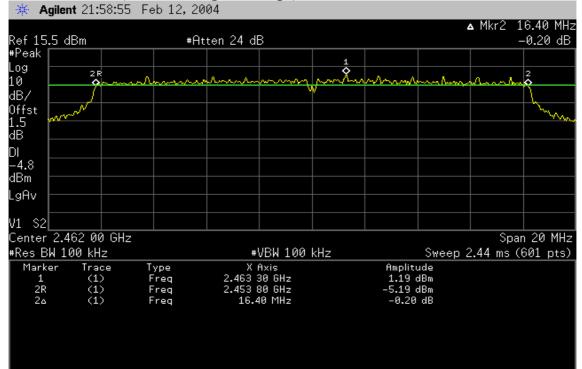


Test Plot


6dB Bandwidth (IEEE 802.11b / CH Low)


6dB Bandwidth (IEEE 802.11b / CH Mid)


6dB Bandwidth (IEEE 802.11b / CH High)


6dB Bandwidth (IEEE 802.11g / CH Low)

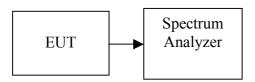
6dB Bandwidth (IEEE 802.11g /CH Mid)

6dB Bandwidth (IEEE 802.11g / CH High)

7.2 PEAK POWER

LIMIT

The maximum peak output power of the intentional radiator shall not exceed the following:


- 1. For systems using digital modulation in the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz: 1 watt.
- 2. Except as shown in paragraphs (b)(3) (i), (ii) and (iii) of this section, if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

MEASUREMENT EQUIPMENT USED

Name of Equipment Manufacturer		Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	US42510252	04/28/2004

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

TEST PROCEDURE

The transmitter output is connected to the Spectrum analyzer. The Spectrum analyzer is set to the peak power detection.

TEST RESULTS

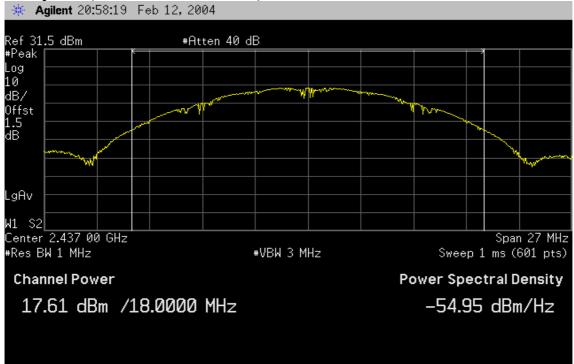
No non-compliance noted

<u>Test Data</u>

Test mode: IEEE 802.11b

Channel	Frequency (MHz)	Output Power (dBm)	Factor (dB)	Output Power (dBm)	Output Power (W)	Limit (W)	Result
Low	2412.00	15.93	1.50	17.43	0.05534		PASS
Mid	2437.00	16.11	1.50	17.61	0.05768	1	PASS
High	2462.00	15.65	1.50	17.15	0.05188		PASS

Test mode: IEEE 802.11g

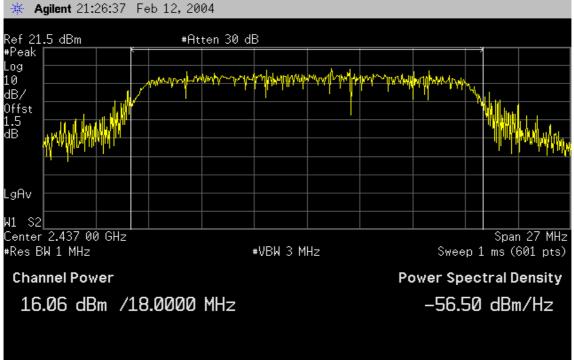

Channel	Frequency (MHz)	Output Power (dBm)	Factor (dB)	Output Power (dBm)	Output Power (W)	Limit (W)	Result
Low	2412.00	14.50	1.50	16.00	0.03981		PASS
Mid	2437.00	14.56	1.50	16.06	0.04036	1	PASS
High	2462.00	14.53	1.50	16.03	0.04009		PASS

Test Plot

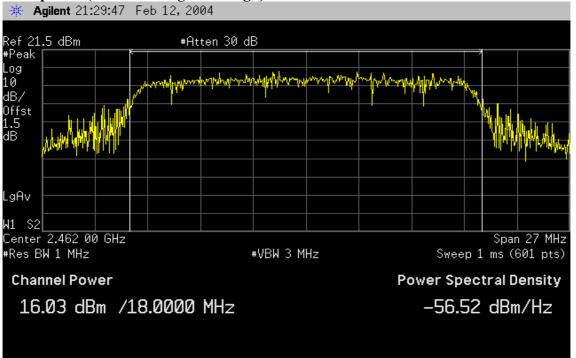


Peak power (IEEE 802.11b / CH Mid)

Peak power (IEEE 802.11b / CH High)



Peak power (IEEE 802.11g / CH Low)

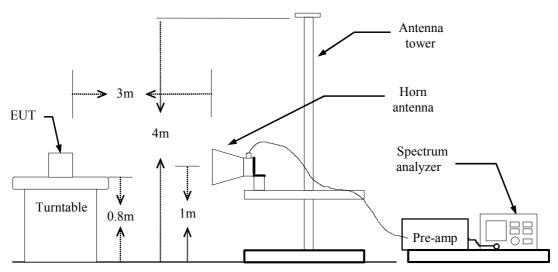


Peak power (IEEE 802.11g / CH Mid)

Peak power (IEEE 802.11g / CH High)

7.3 BAND EDGES MEASUREMENT

LIMIT


According to §15.247(c), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in15.209(a).

MEASUREMENT EQUIPMENT USED

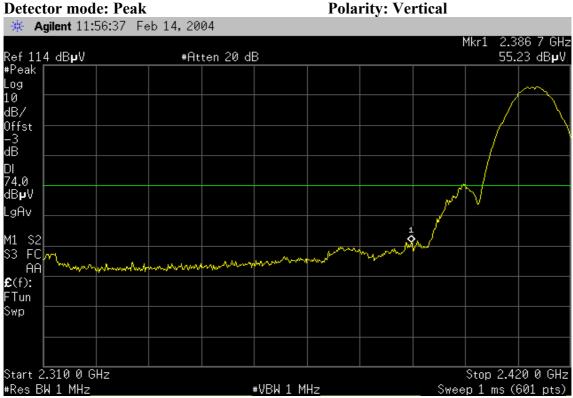
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	US42510252	04/28/2004
Spectrum Analyzer	R&S	FSP30	1093.4495.30	07/22/2004

Remark: Each piece of equipment is scheduled for calibration once a year.

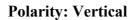
Test Configuration

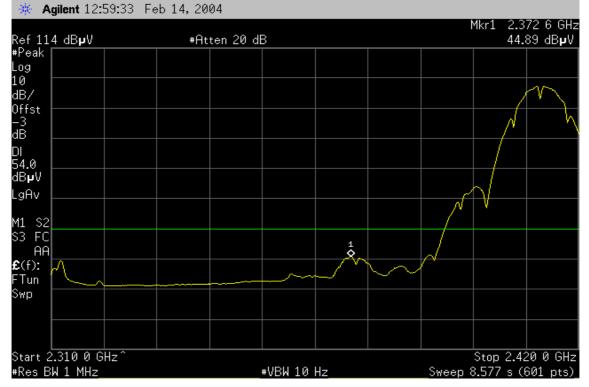
TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 0.8m above the ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 4. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
 - (a) PEAK: RBW=VBW=1MHz / Sweep=AUTO
 - (b) AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO
- 5. Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are measured.


TEST RESULTS

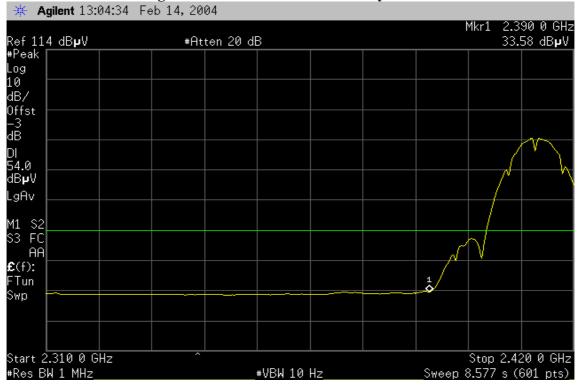
Refer to attach spectrum analyzer data chart.




Band Edges (IEEE 802.11b / CH Low) / DWL-G520e

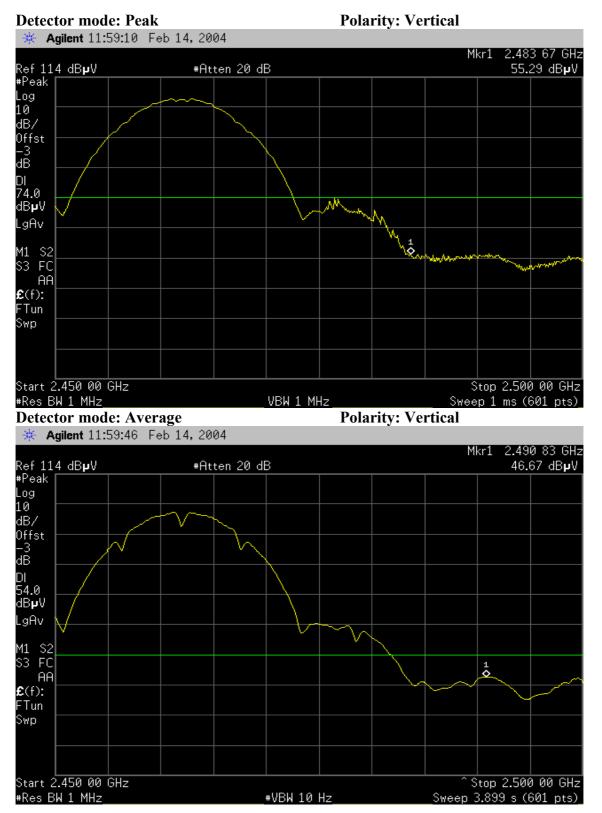
Detector mode: Peak

Detector mode: Average

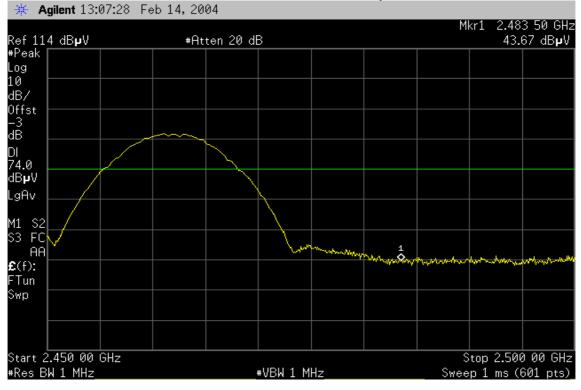


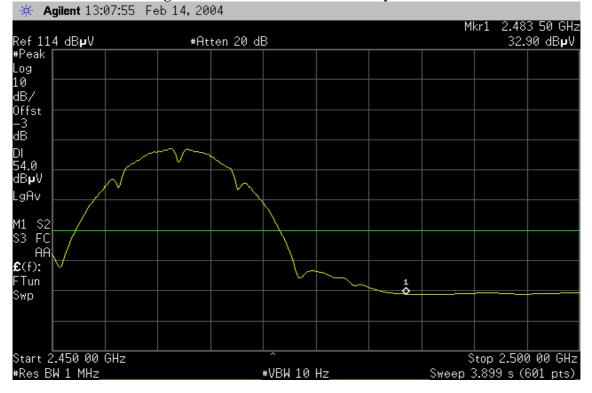
Detector mode: Peak

Polarity: Horizontal Agilent 13:03:45 Feb 14, 2004 Mkr1 2.390 0 GHz Ref 114 dB**µ**V #Peak 43.40 dB**µ**V #Atten 20 dB #Peak Log 10 dB/ Offst -3 dB DI 74.0 dB**µ**V _gAv M1 S2 S3 FC 1 AΑ **£**(f): FTun Swp Start 2.310 0 GHz Stop 2.420 0 GHz #Res BW 1 MHz #VBW 1 MHz Sweep 1 ms (601 pts)

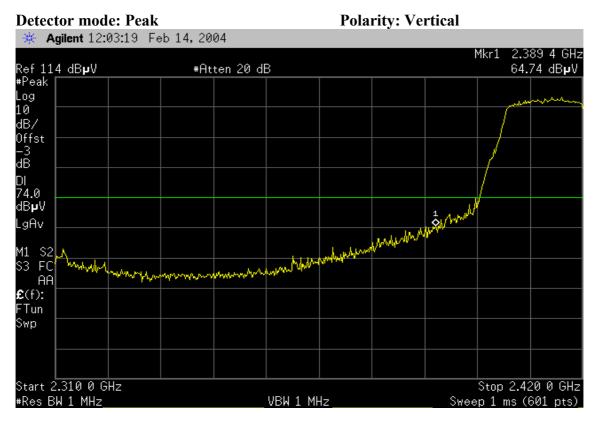

Detector mode: Average

Polarity: Horizontal

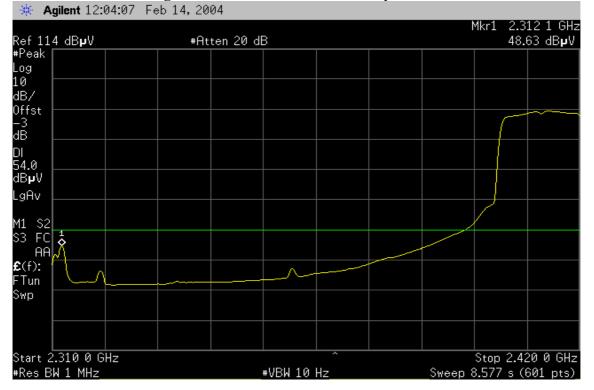

Band Edges (IEEE 802.11b / CH High)


Detector mode: Peak

Polarity: Horizontal

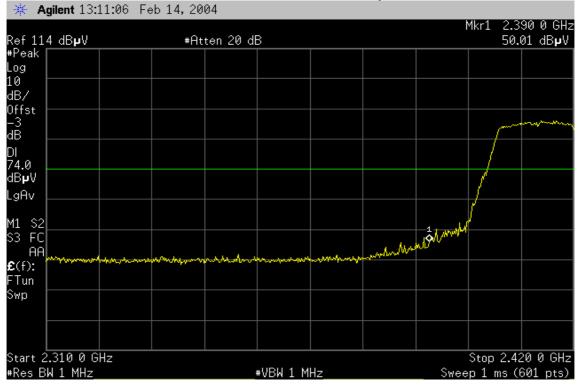

Detector mode: Average

Polarity: Horizontal



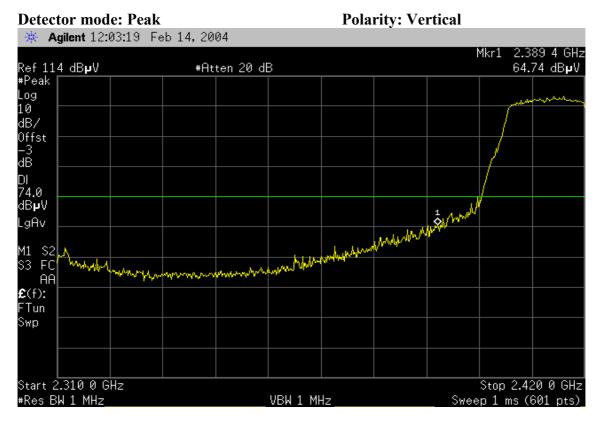
Band Edges (IEEE 802.11g / CH Low)

Detector mode: Average

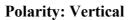

Polarity: Vertical

Detector mode: Peak

Polarity: Horizontal

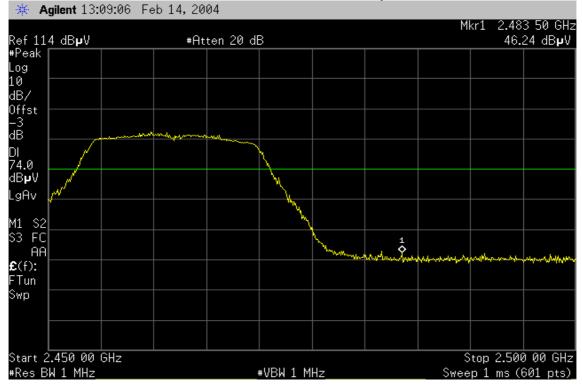

Detector mode: Average

Polarity: Horizontal


🔆 Agilent 13:11:3	0 Feb 14, 2004			
Ref 114 dB µ V	#Atten 20 d	٩R	Mkı	1 2.390 0 GHz 36.53 dBµV
#Peak				00.00 dD P V
Log 10				
10 dB/				
ab/ Affst				
Offst –3 dB				
dB				
DI 54.0 dB µ V				
dBµV				
LgAv				
M1 S2 S3 FC				
S3 FC AA				
£(f):				
FTun				
Swp				
Start 2.310 0 GHz ´			<u> </u>	op 2.420 0 GHz
#Res BW 1 MHz		_#VBW 10 Hz		ор 2.420 0 ОН2 77 s (601 pts)_
			010000 0.0	

Band Edges (IEEE 802.11g / CH High)

Detector mode: Average

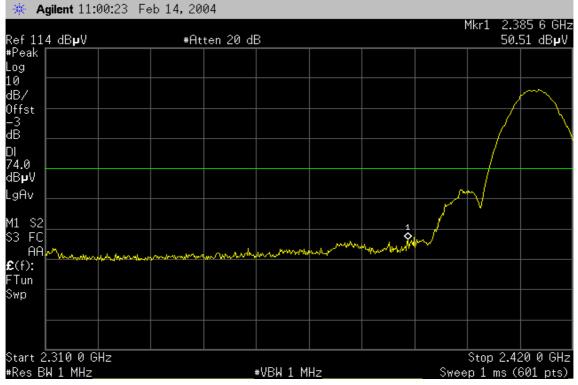


Detector mode: Peak

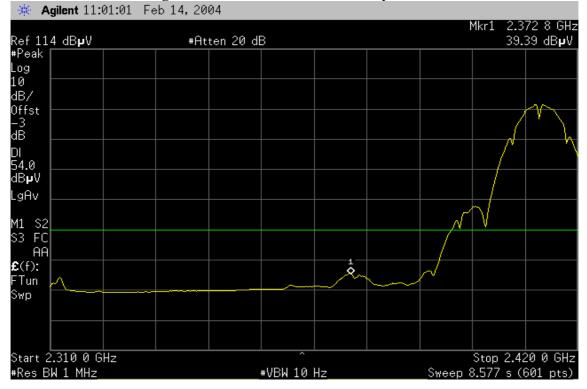
Polarity: Horizontal

Detector mode: Average

Polarity: Horizontal

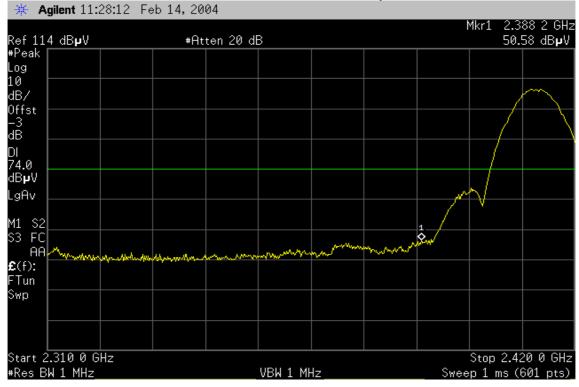

Agilent 13:09:35	Feb 14, 2004			Ml-1 0.40	
Ref 114 dB µ V	#Atten 20 dB				3 50 GH: 53 dB µ V
ŧPeak					
_og LØ					
10 1B/					
)ffst					
Iffst -3 IB					
Ι 4.0 Β μ Ϋ					
gAv	}				
11 S2					
3 FC					
:(f): Tun					
мр			_		
tart 2.450 00 GHz				Stop 2.500	00 GH:
Res BW 1 MHz	#VE	3W 10 Hz	Swe	ep 3.899 s (6	

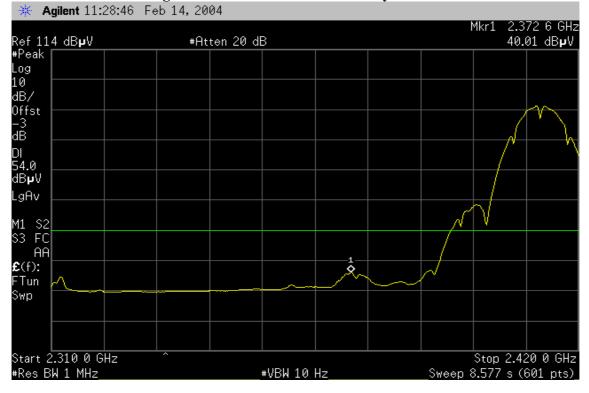
Band Edges (IEEE 802.11b / CH Low) / DWL-G520i


Detector mode: Peak

Polarity: Vertical

Detector mode: Average

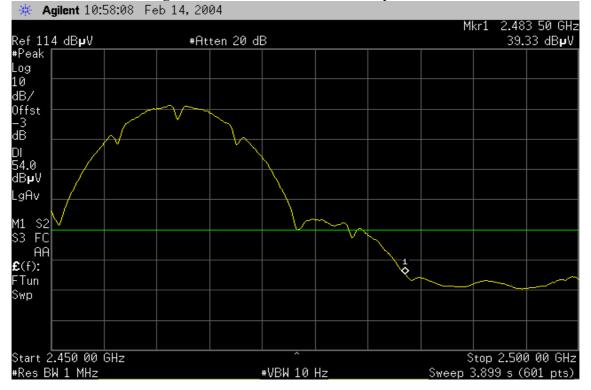

Polarity: Vertical


Detector mode: Peak

Polarity: Horizontal

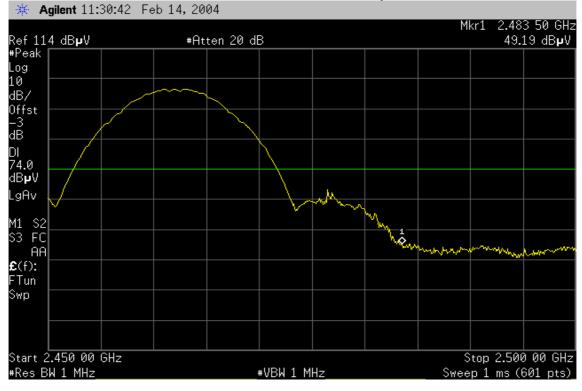

Detector mode: Average

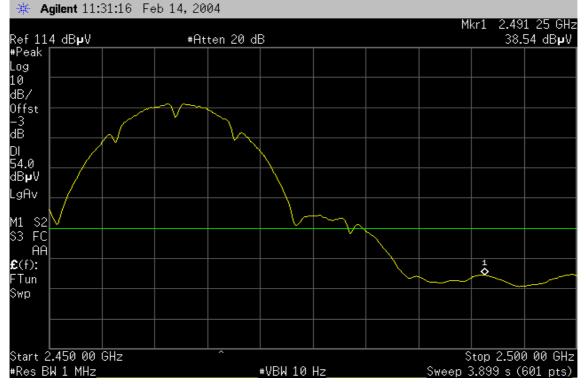
Polarity: Horizontal



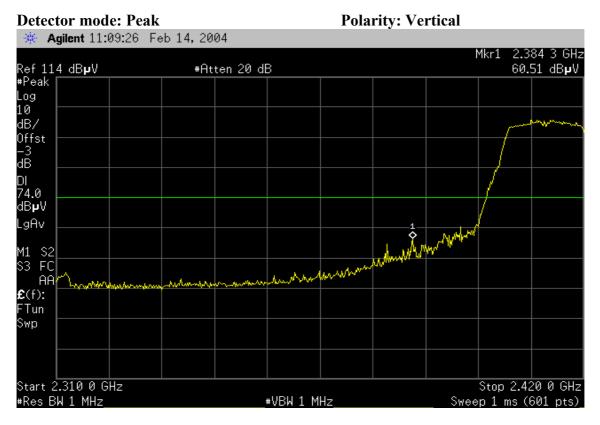
Band Edges (IEEE 802.11b / CH High)

Detector mode: Average

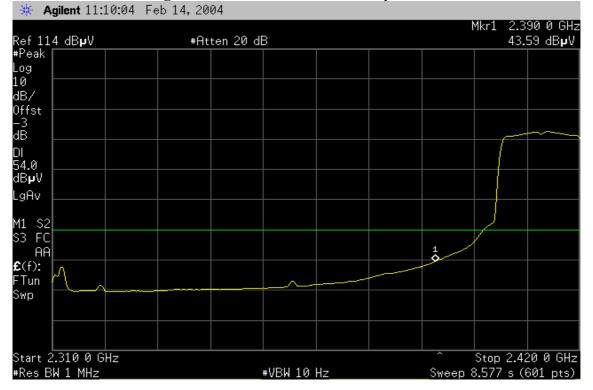

Polarity: Vertical


Detector mode: Peak

Polarity: Horizontal


Detector mode: Average

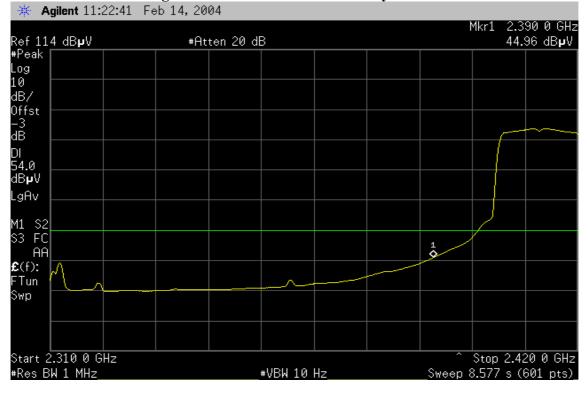
Polarity: Horizontal



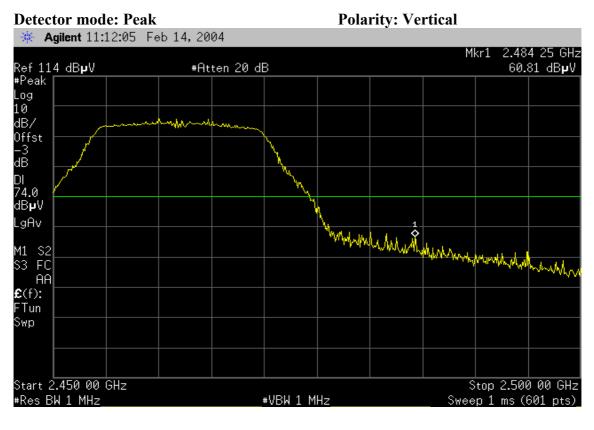
Band Edges (IEEE 802.11g / CH Low)

Detector mode: Average

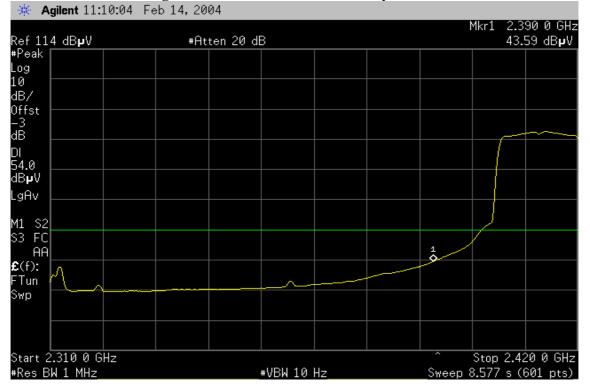
Polarity: Vertical


Detector mode: Peak

Polarity: Horizontal


Detector mode: Average

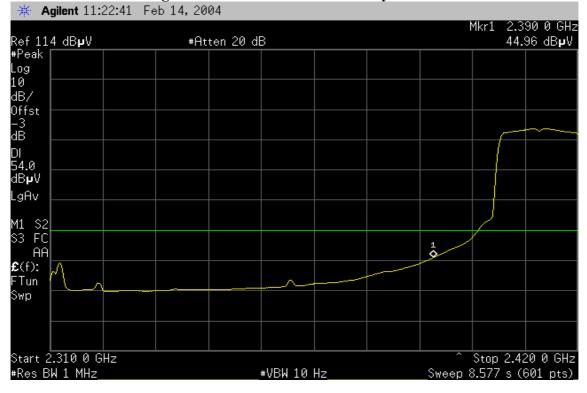
Polarity: Horizontal



Band Edges (IEEE 802.11g / CH High)

Detector mode: Average

Polarity: Vertical


Detector mode: Peak

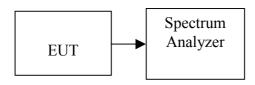
Polarity: Horizontal

Detector mode: Average

Polarity: Horizontal

7.4 PEAK POWER SPECTRAL DENSITY

LIMIT


- 1. For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band during any time interval of continuous transmission.
- 2. The direct sequence operating of the hybrid system, with the frequency hopping operation turned off, shall comply with the power density requirements of paragraph (d) of this section.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	US42510252	04/28/2004

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

TEST PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 2. Set the spectrum analyzer as RBW = 3kHz, VBW = 10kHz, Span = 300kHz, Sweep=100s
- 3. Record the max. reading.
- 4. Repeat the above procedure until the measurements for all frequencies are completed.

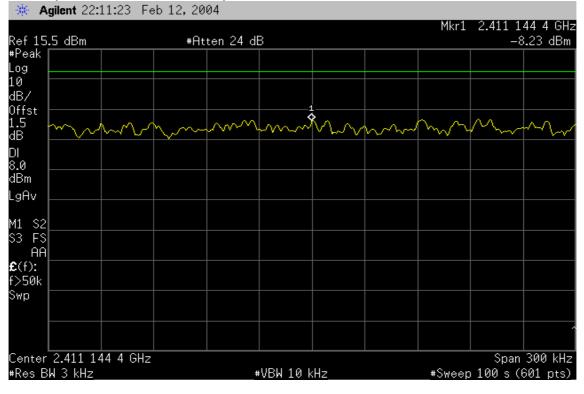
TEST RESULTS

No non-compliance noted

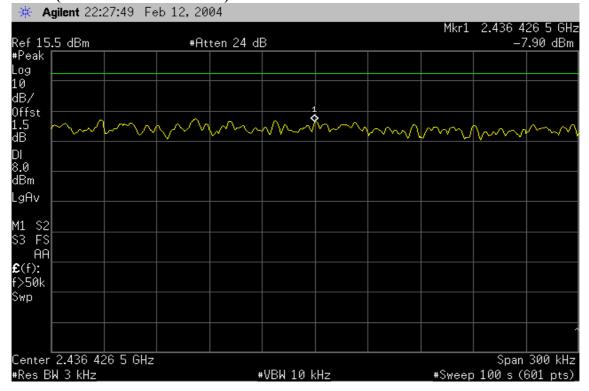
<u>Test Data</u>

Test mode: IEEE 802.11b

Channel	Frequency	Reading (dBm)	Factor (dB)	PPSD (dBm)	Limit (dBm)	Result
Low	2412	-6.73	1.50	-8.23		PASS
M id	2437	-6.40	1.50	-7.90	8.00	PASS
High	2462	-6.24	1.50	-7.74		PASS

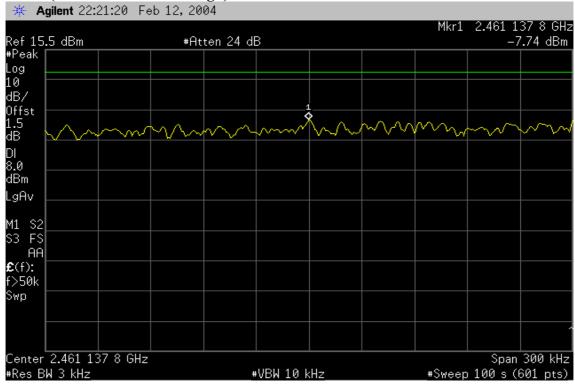

Test mode: IEEE 802.11g

Channel	Frequency	Reading (dBm)	Factor (dB)	PPSD (dBm)	Limit (dBm)	Result
Low	2412	-14.92	1.50	-13.42		P A S S
M id	2437	-14.70	1.50	-13.20	8.00	P A S S
High	2462	-14.23	1.50	-12.73		PASS



Test Plot

PPSD (IEEE 802.11b / CH Low)



PPSD (IEEE 802.11b / CH Mid)

PPSD (IEEE 802.11b / CH High)

PPSD (IEEE 802.11g / CH Low)

Agilent 22:35:58	Feb 12, 2004			
5.5 dBm	#Atten 24 c	IB	Mkr1	2.411 365 9 -13.42 d
where the second	when hat Myrrow Myral and mark	mar market march	And in monthly and a second second	where where the work of the second
Ward and the second second				a second second stand stand of
2				
S				
ــــــــــــــــــــــــــــــــــــــ				
r 2.411 365 9 GH		<u>I</u> I		
BW 3 kHz		#VBW 10 kHz	#Swee;	
BW 3 kHz D (IEEE 802.11	g / CH Mid)	₩VBW 10 kHz	#Sweet	
BW 3 kHz D (IEEE 802.11 Agilent 23:22:57	g / CH Mid) Feb 12, 2004			2.437 923 6
BW 3 kHz D (IEEE 802.11 Agilent 23:22:57 5.5 dBm	g / CH Mid)			2.437 923 6
BW 3 kHz D (IEEE 802.11 Agilent 23:22:57	g / CH Mid) Feb 12, 2004			2.437 923 6
BW 3 kHz D (IEEE 802.11 Agilent 23:22:57 5.5 dBm	g / CH Mid) Feb 12, 2004			2.437 923 6
BW 3 kHz D (IEEE 802.11 Agilent 23:22:57 5.5 dBm	g / CH Mid) Feb 12, 2004			2.437 923 6
BH 3 kHz D (IEEE 802.11 Agilent 23:22:57 5.5 dBm	g / CH Mid) Feb 12, 2004 #Atten 24 c	B	Mkr1	2.437 923 6 -13.20 c
BW 3 kHz D (IEEE 802.11 Agilent 23:22:57 5.5 dBm	g / CH Mid) Feb 12, 2004 #Atten 24 c		Mkr1	2.437 923 6 -13.20 c
BH 3 kHz D (IEEE 802.11 Agilent 23:22:57 5.5 dBm	g / CH Mid) Feb 12, 2004 #Atten 24 c	B	Mkr1	2.437 923 6 -13.20 c
BH 3 kHz D (IEEE 802.11 Agilent 23:22:57 5.5 dBm	g / CH Mid) Feb 12, 2004 #Atten 24 c	B	Mkr1	2.437 923 6 -13.20 c
BW 3 kHz D (IEEE 802.11 Agilent 23:22:57 5.5 dBm	g / CH Mid) Feb 12, 2004 #Atten 24 c	B	Mkr1	2.437 923 6 -13.20 d
BW 3 kHz D (IEEE 802.11 Agilent 23:22:57 5.5 dBm	g / CH Mid) Feb 12, 2004 #Atten 24 c	B	Mkr1	2.437 923 6 -13.20 c
BW 3 kHz D (IEEE 802.11 Agilent 23:22:57 5.5 dBm	g / CH Mid) Feb 12, 2004 #Atten 24 c	B	Mkr1	2.437 923 6 -13.20 c
BW 3 kHz D (IEEE 802.11 Agilent 23:22:57 5.5 dBm	g / CH Mid) Feb 12, 2004 #Atten 24 c	B	Mkr1	2.437 923 6 -13.20 c
BW 3 kHz D (IEEE 802.11 Agilent 23:22:57 5.5 dBm	g / CH Mid) Feb 12, 2004 #Atten 24 c	B	Mkr1	2.437 923 6 -13.20 c
BW 3 kHz D (IEEE 802.11 Agilent 23:22:57 5.5 dBm	g / CH Mid) Feb 12, 2004 #Atten 24 c	B	Mkr1	2.437 923 6 -13.20 c
BW 3 kHz D (IEEE 802.11 Agilent 23:22:57 5.5 dBm	g / CH Mid) Feb 12, 2004 #Atten 24 c	B	Mkr1	Span 300 5 100 s (601 p 2.437 923 6 -13.20 d
BW 3 kHz D (IEEE 802.11 Agilent 23:22:57 5.5 dBm	g / CH Mid) Feb 12, 2004 #Atten 24 c	B	Mkr1	2.437 923 6 -13.20 d

PPSD (IEEE 802.11g / CH High)

Mkr1 2.463 251 3 G Ref 15.5 dBm #Atten 24 dB -12.73 dB #Peak Log
#Peak Log
Log
10 dB/
Offst
o.0
M1 S2
\$3 F\$
AA
£ (f):
f>50k
Swp
Center 2.463 251 3 GHz ^ Span 300 kH
#Res BW 3 kHz #VBW 10 kHz #Sweep 100 s (601 pts

7.5 RADIO FREQUENCY EXPOSURE

LIMIT

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See 15.247(b)(4) and 1.1307(b)(1) of this chapter.

EUT Specification

EUT	2.4GHz WLAN PCI Adapter
Frequency band (Operating)	 WLAN: 2.412GHz ~ 2.462GHz WLAN: 5.745GHz ~ 5.825GHz Others
Device category	 Portable (<20cm separation) Mobile (>20cm separation) Others
Exposure classification	Occupational/Controlled exposure $(S = 5mW/cm^2)$ General Population/Uncontrolled exposure $(S=1mW/cm^2)$
Antenna diversity	 Single antenna Multiple antennas TX diversity RX diversity TX/RX diversity
Max. output power	IEEE 802.11b: 17.61dBm (57.678mW) IEEE 802.11g: 16.06 dBm (40.365mW)
Antenna gain (Max)	DWL-G520e: 2.2 dBi (Numeric gain: 1.66) DWL-G520i: -0.594dBi (Numeric gain:0.872)
Evaluation applied	MPE Evaluation SAR Evaluation*

Note:

- 1. The maximum output power is <u>17.61dBm (57.678mW)</u> at IEEE 802.11b.
- 2. DTS device is not subject to routine RF evaluation; MPE estimate is used to justify the compliance.
- 3. For mobile or fixed location transmitters, no SAR consideration applied. The minimum separation generally be used is at least 20 cm, even if the calculations indicate that the MPE distance would be lesser.

TEST RESULTS

No non-compliance noted.

Calculation

Given

 $E = \sqrt{\frac{30 \times P \times G}{d}} & \& S = \frac{E^2}{3770}$ Where E = Field Strength in Volts / meter P = Power in Watts G=Numeric antenna gain d=Distance in meters S=Power Density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$d = \sqrt{\frac{30 \times P \times G}{3770 \times S}}$$

Changing to units of mW and cm, using:

$$P(mW) = P(W) / 1000 \text{ and}$$

 $d(cm) = 100 * d(m)$

Yields

$$d = 100 \times \sqrt{\frac{30 \times (P/1000) \times G}{3770 \times S}} = 0.282 \times \sqrt{\frac{P \times G}{S}}$$

Where $d = distance$ in cm
 $P = Power$ in mW
 $G = Numeric$ antenna gain
 $S = Power$ Density in mW/cm^2

Substituting the logarithmic form of power and gain using:

$$P(mW) = 10^{(Hmm)} (P(dBm) / 10)$$
 and
 $G(numeric) = 10^{(G(dBi) / 10)}$

Yields

$$d = 0.282 \times \frac{10^{(P+G)/20}}{\sqrt{20}}$$

Equation 1

Where d = MPE safe distance in cm P = Power in dBm G = Antenna Gain in dBiS = Power Density Limit in mW/cm^2

Maximum Permissible Exposure

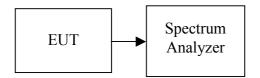
EUT output power = 17.61dBm (57.678mW) Antenna Gain = 2.2dBi (Numeric gain: 1.66) $S = 1.0 \text{ mW} / \text{cm}^2$ from 1.1310 Table 1 Substituting these parameters into the above Equation 1: \rightarrow MPE Safe Distance = 2.76cm

(For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.)

7.6 SPURIOUS EMISSIONS

7.6.1 Conducted Measurement

LIMIT


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	US42510252	04/28/2004

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

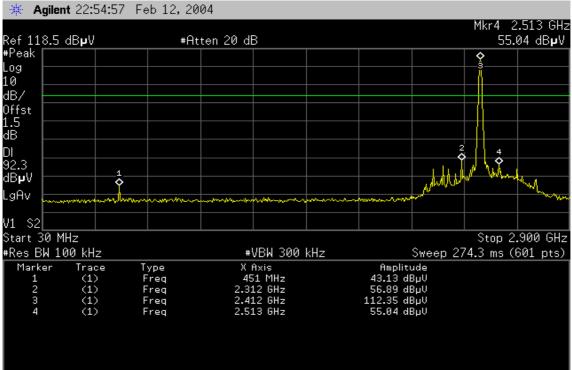
TEST PROCEDURE

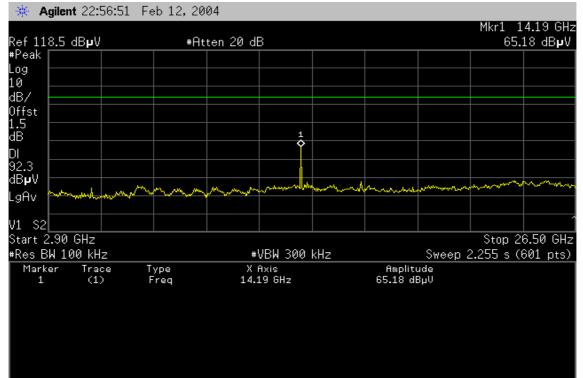
Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 100 kHz.

Measurements are made over the 30MHz to 26GHz range with the transmitter set to the lowest, middle, and highest channels.

TEST RESULTS

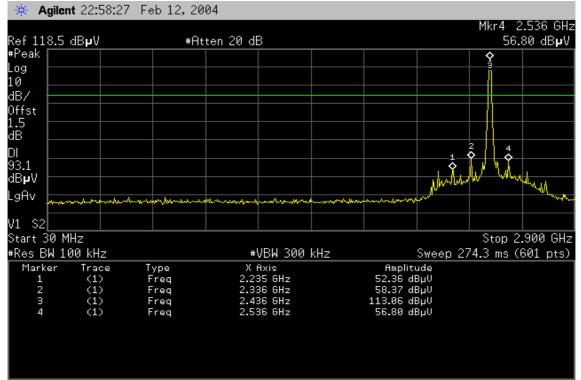

No non-compliance noted

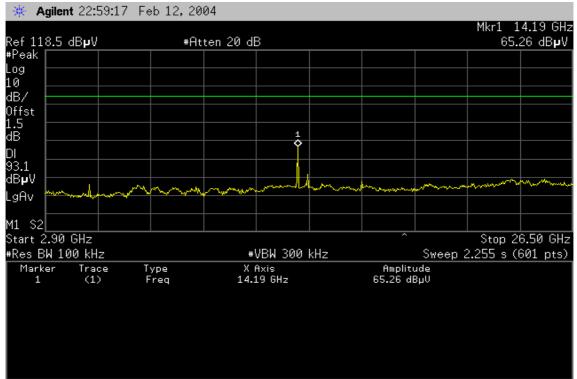


Test Plot

IEEE 802.11b / CH Low

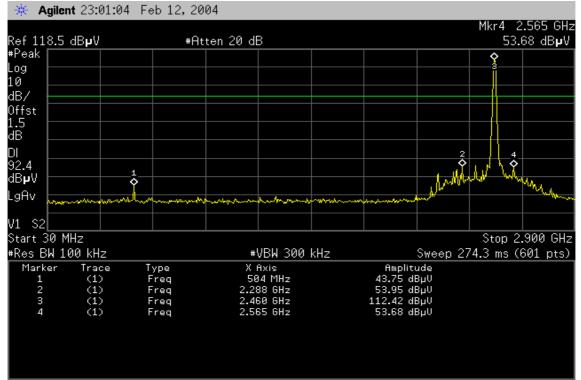
30MHz ~ 2.9GHz

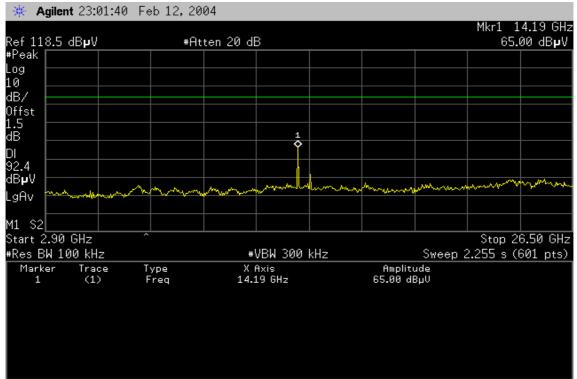




IEEE 802.11b / CH Mid

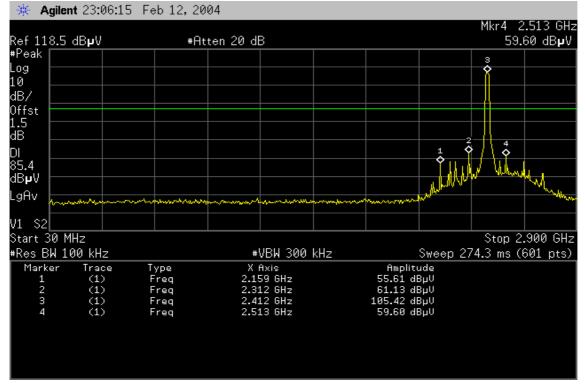
30MHz ~ 2.9GHz

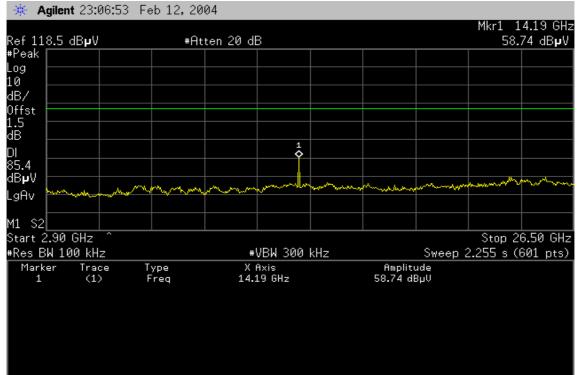




IEEE 802.11b / CH High

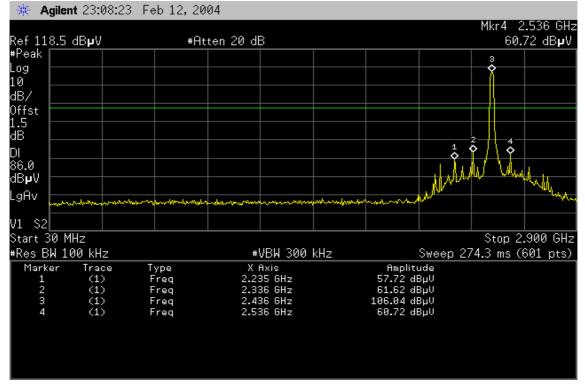
30MHz ~ 2.9GHz

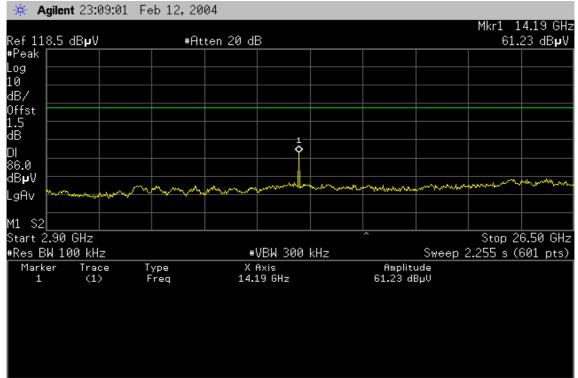




IEEE 802.11g / CH Low

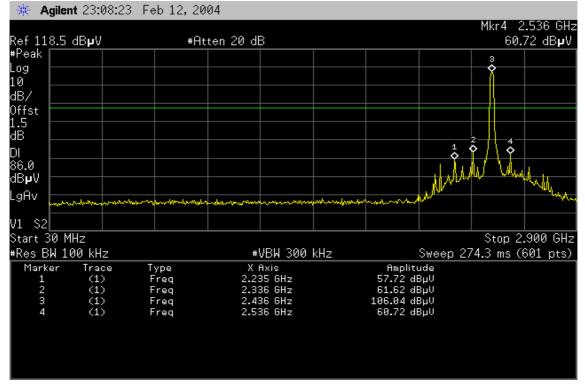
30MHz ~ 2.9GHz

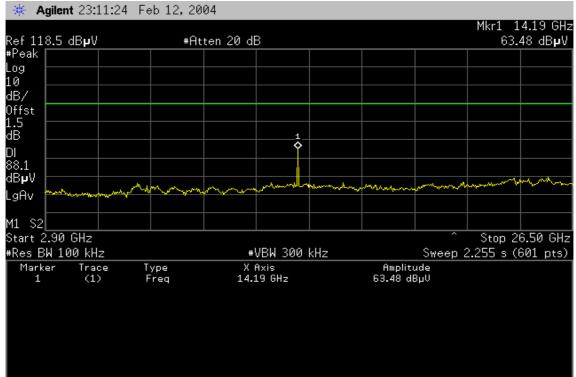




IEEE 802.11g / CH Mid

30MHz ~ 2.9GHz





IEEE 802.11g / CH High

30MHz ~ 2.9GHz

7.6.2 Radiated Emissions

LIMIT

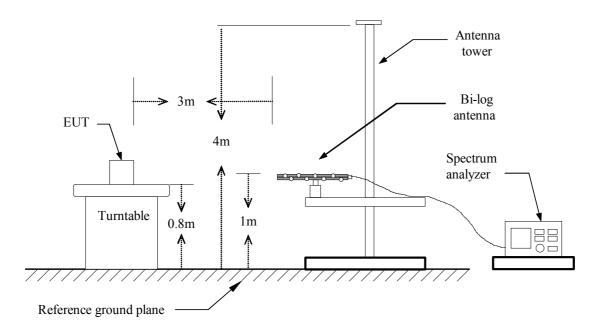
1. Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (mV/m)	Measurement Distance (m)
30-88	100*	3
88-216	150*	3
216-960	200*	3
Above 960	500	3

Note: Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

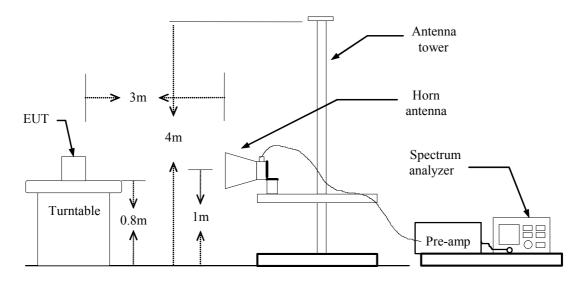
2. In the above emission table, the tighter limit applies at the band edges.

Frequency (Hz)	Field Strength (μV/m at 3-meter)	Field Strength (dBµV/m at 3-meter)
30-88	100	40
88-216	150	43.5
216-960	200	46
Above 960	500	54


Open Area Test Site # 3							
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due			
Spectrum Analyzer	ADVANTEST	R3261A	N/A	03/18/2004			
EMI Test Receiver	R&S	ESVS20	838804/004	01/04/2005			
Pre-Amplifier	HP	8447D	2944A09173	03/03/2005			
Bilog Antenna	SCHWAZBECK	VULB9163	145	07/05/2004			
Turn Table	EMCO	2081-1.21	9709-1885	N.C.R			
Antenna Tower	EMCO	2075-2	9707-2060	N.C.R			
Controller	EMCO	2090	9709-1256	N.C.R			
RF Switch	ANRITSU	MP59B	M53867	N.C.R			
Site NSA	C&C	N/A	N/A	09/06/2004			
Horn antenna	Schwarzbeck	BBHA 9120	D210	02/23/2005			
Loop Antenna	EMCO	6502	2356	07/10/2004			
Pre-Amplifier	HP	8449B	3008B00965	10/02/2004			

MEASUREMENT EQUIPMENT USED

Remark: Each piece of equipment is scheduled for calibration once a year.


Test Configuration

Below 1 GHz

Compliance Certification Services Inc.Report No: B40211601-RPFCC ID: RRK-P0603038

Above 1 GHz

TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.

TEST RESULTS

Below 1 GHz / Model No.: DWL-G520e

Operation Mode: TX / IEEE 802.11b / CH Low

Temperature: 20°C

Humidity: 68% RH

Test Date:	February 14, 2004
Tested by:	Max Yan
Polarity:	Ver. / Hor.

Freq. (MHz)	Ant.Pol. H/V	Detector Mode (PK/QP)	Reading (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limit 3m (dBuV/m)	Safe Margin (dB)
34.95	V	QP	34.34	-1.93	32.41	40.00	-7.59
49.35	V	QP	39.17	-5.98	33.19	40.00	-6.81
55.20	V	QP	39.00	-5.56	33.44	40.00	-6.56
88.50	V	QP	51.67	-18.93	32.74	43.50	-10.76
226.20	V	QP	52.67	-14.84	37.83	46.00	-8.17
299.10	V	QP	48.34	-12.46	35.88	46.00	-10.12
31.80	Н	QP	32.00	-0.88	31.12	40.00	-8.88
119.10	Н	QP	48.67	-18.80	29.87	43.50	-13.63
299.10	Н	QP	52.84	-12.46	40.38	46.00	-5.62
300.00	Н	QP	49.67	-12.42	37.25	46.00	-8.75
696.67	Н	QP	42.34	-5.79	36.55	46.00	-9.45
930.00	Н	QP	41.00	-3.31	37.69	46.00	-8.31

- 1. Measuring frequencies from 30 MHz to the 1GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using Peak detector mode.
- 3. Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. The IF bandwidth of SPA between 30MHz to 1GHz was 100kHz.

Operation Mode: TX / IEEE 802.11b / CH Mid

Temperature: 20°C

Humidity: 68% RH

Test Date:February 14, 2004Tested by:Max YanPolarity:Ver. / Hor.

Freq. (MHz)	Ant.Pol. H/V	Detector Mode (PK/QP)	Reading (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limit 3m (dBuV/m)	Safe Margin (dB)
34.95	V	QP	33.34	-1.93	31.41	40.00	-8.59
48.00	V	QP	39.34	-6.07	33.27	40.00	-6.73
62.40	V	QP	42.17	-9.60	32.57	40.00	-7.43
113.25	V	QP	48.17	-17.90	30.27	43.50	-13.23
226.20	V	QP	50.67	-14.84	35.83	46.00	-10.17
298.65	V	QP	46.00	-12.49	33.51	46.00	-12.49
34.50	Н	QP	29.84	-1.81	28.03	40.00	-11.97
100.65	Н	QP	47.67	-18.20	29.47	43.50	-14.03
113.25	Н	QP	48.34	-18.72	29.62	43.50	-13.88
127.65	Н	QP	47.50	-18.22	29.28	43.50	-14.22
299.10	Н	QP	52.84	-12.46	40.38	46.00	-5.62
930.00	Н	QP	40.84	-3.31	37.53	46.00	-8.47

Notes:

- 2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using Peak detector mode.
- 3. Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. The IF bandwidth of SPA between 30MHz to 1GHz was 100kHz.

Operation Mode: TX / IEEE 802.11b / CH High

Temperature: 20°C

Humidity: 68% RH

Test Date:February 14,2004Tested by:Max YanPolarity:Ver. / Hor.

Freq. (MHz)	Ant.Pol. H/V	Detector Mode (PK/QP)	Reading (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limit 3m (dBuV/m)	Safe Margin (dB)
35.40	V	QP	33.50	-2.05	31.45	40.00	-8.55
49.35	V	QP	37.84	-5.98	31.86	40.00	-8.14
63.30	V	QP	43.50	-10.11	33.39	40.00	-6.61
113.25	V	QP	48.50	-17.90	30.60	43.50	-12.90
226.20	V	QP	50.50	-14.84	35.66	46.00	-10.34
299.10	V	QP	45.84	-12.46	33.38	46.00	-12.62
31.80	Н	QP	31.34	-0.88	30.46	40.00	-9.54
113.25	Н	QP	48.67	-18.72	29.95	43.50	-13.55
299.10	Н	QP	51.84	-12.46	39.38	46.00	-6.62
300.00	Н	QP	50.50	-12.42	38.08	46.00	-7.92
696.67	Н	QP	42.00	-5.79	36.21	46.00	-9.79
930.00	Н	QP	40.84	-3.31	37.53	46.00	-8.47

Notes:

- 2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using Peak detector mode.
- 3. Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. The IF bandwidth of SPA between 30MHz to 1GHz was 100kHz.

Operation Mode: TX / IEEE 802.11g / CH Low

Temperature: 20°C

Humidity: 68% RH

Test Date:February 14,2004Tested by:Max YanPolarity:Ver. / Hor.

Freq. (MHz)	Ant.Pol. H/V	Detector Mode (PK/QP)	Reading (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limit 3m (dBuV/m)	Safe Margin (dB)
34.95	V	QP	33.50	-1.93	31.57	40.00	-8.43
61.50	V	QP	41.67	-9.10	32.57	40.00	-7.43
93.45	V	QP	49.84	-18.70	31.14	43.50	-12.36
113.25	V	QP	48.84	-17.90	30.94	43.50	-12.56
226.20	V	QP	51.34	-14.84	36.50	46.00	-9.50
298.65	V	QP	46.34	-12.49	33.85	46.00	-12.15
30.90	Н	QP	31.34	-0.72	30.62	40.00	-9.38
128.55	Н	QP	48.34	-18.14	30.20	43.50	-13.30
299.10	Н	QP	52.17	-12.46	39.71	46.00	-6.29
300.00	Н	QP	50.17	-12.42	37.75	46.00	-8.25
699.00	Н	QP	41.67	-5.76	35.91	46.00	-10.09
928.83	Н	QP	41.00	-3.33	37.67	46.00	-8.33

Notes:

- 2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using Peak detector mode.
- 3. Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. The IF bandwidth of SPA between 30MHz to 1GHz was 100kHz.

Operation Mode: TX / IEEE 802.11g / CH Mid

Temperature: 20°C

Humidity: 68% RH

Test Date:February 14,2004Tested by:Max YanPolarity:Ver. / Hor.

Freq. (MHz)	Ant.Pol. H/V	Detector Mode (PK/QP)	Reading (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limit 3m (dBuV/m)	Safe Margin (dB)
35.85	V	QP	34.00	-2.18	31.82	40.00	-8.18
54.75	V	QP	37.17	-5.48	31.69	40.00	-8.31
63.30	V	QP	42.50	-10.11	32.39	40.00	-7.61
113.25	V	QP	48.34	-17.90	30.44	43.50	-13.06
226.20	V	QP	51.50	-14.84	36.66	46.00	-9.34
299.10	V	QP	47.00	-12.46	34.54	46.00	-11.46
30.90	Н	QP	32.84	-0.72	32.12	40.00	-7.88
131.25	Н	QP	48.17	-18.09	30.08	43.50	-13.42
298.65	Н	QP	52.00	-12.49	39.51	46.00	-6.49
300.00	Н	QP	49.50	-12.42	37.08	46.00	-8.92
696.67	Н	QP	41.67	-5.79	35.88	46.00	-10.12
928.83	Н	QP	40.67	-3.33	37.34	46.00	-8.66

Notes:

- 2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using Peak detector mode.
- 3. Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. The IF bandwidth of SPA between 30MHz to 1GHz was 100kHz.

Operation Mode: TX / IEEE 802.11g / CH High

Temperature: 20°C

Humidity: 68% RH

Test Date:February 14,2004Tested by:Max YanPolarity:Ver. / Hor.

Freq. (MHz)	Ant.Pol. H/V	Detector Mode (PK/QP)	Reading (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limit 3m (dBuV/m)	Safe Margin (dB)
34.95	V	QP	34.00	-1.93	32.07	40.00	-7.93
48.00	V	QP	37.84	-6.07	31.77	40.00	-8.23
63.30	V	QP	41.84	-10.11	31.73	40.00	-8.27
226.20	V	QP	51.67	-14.84	36.83	46.00	-9.17
300.00	V	QP	44.50	-12.42	32.08	46.00	-13.92
930.00	V	QP	37.34	-3.31	34.03	46.00	-11.97
30.90	Н	QP	32.34	-0.72	31.62	40.00	-8.38
113.25	Н	QP	48.84	-18.72	30.12	43.50	-13.38
298.65	Н	QP	51.84	-12.49	39.35	46.00	-6.65
300.00	Н	QP	51.00	-12.42	38.58	46.00	-7.42
696.67	Н	QP	42.00	-5.79	36.21	46.00	-9.79
928.83	Н	QP	40.00	-3.33	36.67	46.00	-9.33

Notes:

- 2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using Peak detector mode.
- 3. Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. The IF bandwidth of SPA between 30MHz to 1GHz was 100kHz.

Above 1 GHz

Operation Mode: TX / IEEE 802.11b / CH Low

Temperature: 20°C

Humidity: 68% RH

Test Date:February 14,2004Tested by:Max YanPolarity:Ver. / Hor.

Freq.	Ant. Pol	Peak	AV	Ant. / CL	Actu	al Fs	Peak	AV	Margin	
(MHz)	H/V	Reading (dBuV)	Reading (dBuV)	CF (dB)	Peak (dBuV/m)	AV (dBuV/m)	Limit (dBuV/m)	Limit (dBuV/m)	$(d\mathbf{R})$	Remark
1096.67	V	48.34		-9.74	38.60		74.00	54.00	-15.40	Peak
1196.67	V	51.84		-9.03	42.81		74.00	54.00	-11.19	Peak
N/A										
1096.67	Н	48.67		-9.74	38.93		74.00	54.00	-15.07	Peak
1200.00	Н	52.00		-9.01	42.99		74.00	54.00	-11.01	Peak
N/A										

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms.
- 5. Spectrum AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms

Operation Mode: TX / IEEE 802.11b / CH Mid

Temperature: 20°C

Humidity: 68% RH

Test Date:February 14,2004Tested by:Max YanPolarity:Ver. / Hor.

Freq.	Ant. Pol	Peak	AV	Ant. / CL	Actu	al Fs	Peak	AV	Margin	
(MHz)	H/V	Reading	0		Peak	AV	Limit	Limit	$(d\mathbf{R})$	Remark
· · ·		(dBuV)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	()	
1096.67	V	49.00		-9.74	39.26		74.00	54.00	-14.74	Peak
1196.67	V	51.84		-9.03	42.81		74.00	54.00	-11.19	Peak
2333.33	V	49.84		-3.27	46.57		74.00	54.00	-7.43	Peak
2536.67	V	51.17		-2.67	48.50		74.00	54.00	-5.50	Peak
N/A										
1093.33	Н	49.00		-9.76	39.24		74.00	54.00	-14.76	Peak
1196.67	Н	52.50		-9.03	43.47		74.00	54.00	-10.53	Peak
1170.07	11	52.50		-7.05	тт/		74.00	54.00	-10.55	1 Cak
1393.33	Н	50.17		-8.29	41.88		74.00	54.00	-12.12	Peak
2470.00	Н	53.67		-2.85	50.82		74.00	54.00	-3.18	Peak
N/A										

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms.
- 5. Spectrum AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms

Operation Mode: TX / IEEE 802.11b / CH High

Temperature: 20°C

Humidity: 68% RH

Test Date:February 14,2004Tested by:Max YanPolarity:Ver. / Hor.

Freq.	Ant. Pol	Peak	AV	Ant. / CL	Actu	al Fs	Peak	AV	Margin	
(MHz)	H/V	Reading (dBuV)	Reading (dBuV)	CF (dB)	Peak	AV (dBuV/m)	Limit (dBuV/m)	Limit (dBuV/m)	$(d\mathbf{R})$	Remark
2356.67	V	49.50	(uDu v)	-3.20	46.30	(uDu v/III) 	74.00	54.00	-7.70	Peak
2420.00	V	52.67		-3.01	49.66		74.00	54.00	-4.34	Peak
2500.00	V	53.84		-2.75	51.09		74.00	54.00	-2.91	Peak
N/A										
1093.33	Н	48.50		-9.76	38.74		74.00	54.00	-15.26	Peak
1193.33	Н	52.17		-9.06	43.11		74.00	54.00	-10.89	Peak
1393.33	Н	50.34		-8.29	42.05		74.00	54.00	-11.95	Peak
N/A										

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms.
- 5. Spectrum AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms

Operation Mode: TX / IEEE 802.11g / CH Low

Temperature: 20°C

Humidity: 68% RH

Test Date:February 14,2004Tested by:Max YanPolarity:Ver. / Hor.

Freq.	Ant. Pol	Peak	AV	Ant. / CL	Actu	al Fs	Peak	AV	Margin	
(MHz)	H/V	Reading (dBuV)	Reading (dBuV)	CF (dB)	Peak (dBuV/m)	AV (dBuV/m)	Limit (dBuV/m)	Limit (dBuV/m)	(dB)	Remark
1193.33	V	51.17		-9.06	42.11		74.00	54.00	-11.89	Peak
1843.33	V	48.50		-5.45	43.05		74.00	54.00	-10.95	Peak
2310.00	V	53.34		-3.34	50.00		74.00	54.00	-4.00	Peak
N/A										
1093.33	Н	49.00		-9.76	39.24		74.00	54.00	-14.76	Peak
1193.33	Н	52.34		-9.06	43.28		74.00	54.00	-10.72	Peak
1393.33	Н	51.00		-8.29	42.71		74.00	54.00	-11.29	Peak
N/A										

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms.
- 5. Spectrum AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms

Operation Mode: TX / IEEE 802.11g / CH Mid

Temperature: 20°C

Humidity: 68% RH

Test Date:February 14,2004Tested by:Max YanPolarity:Ver. / Hor.

Freq.	Ant. Pol	Peak	AV	Ant. / CL	Actu	al Fs	Peak	AV	Margin	
(MHz)	H/V	Reading (dBuV)	Reading (dBuV)	CF (dB)	Peak (dBuV/m)	AV (dBuV/m)	Limit (dBuV/m)	Limit (dBuV/m)	(dB)	Remark
1196.67	V	51.50		-9.03	42.47		74.00	54.00	-11.53	Peak
2230.00	V	50.67		-3.62	47.05		74.00	54.00	-6.95	Peak
2333.33	V	52.17		-3.27	48.90		74.00	54.00	-5.10	Peak
N/A										
1096.67	Н	49.00		-9.74	39.26		74.00	54.00	-14.74	Peak
1196.67	Н	53.17		-9.03	44.14		74.00	54.00	-9.86	Peak
1396.67	Н	50.00		-8.27	41.73		74.00	54.00	-12.27	Peak
N/A										

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms.
- 5. Spectrum AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms

Operation Mode: TX / IEEE 802.11g / CH High

Temperature: 20°C

Humidity: 68% RH

Test Date:February 14,2004Tested by:Max YanPolarity:Ver. / Hor.

(dBuV) 50.17 52.00	Reading (dBuV) 	CF (dB) -3.42 -3.20	46.75	AV (dBuV/m) 	Limit (dBuV/m) 74.00	Limit (dBuV/m) 54.00	Margin (dB) -7.25	Remark
52.00					74.00	54 00	7 25	Deals
		-3 20				51.00	-7.23	Peak
50.67		0.20	48.80		74.00	54.00	-5.20	Peak
30.07		-2.61	48.06		74.00	54.00	-5.94	Peak
48.50		-9.74	38.76		74.00	54.00	-15.24	Peak
53.84		-9.03	44.81		74.00	54.00	-9.19	Peak
50.67		-8.29	42.38		74.00	54.00	-11.62	Peak
-	53.84	48.50 53.84	48.50 -9.74 53.84 -9.03	48.50 -9.74 38.76 53.84 -9.03 44.81	48.50 -9.74 38.76 53.84 -9.03 44.81	48.50 -9.74 38.76 74.00 53.84 -9.03 44.81 74.00	48.50 -9.74 38.76 74.00 54.00 53.84 -9.03 44.81 74.00 54.00	48.50 -9.74 38.76 74.00 54.00 -15.24 53.84 -9.03 44.81 74.00 54.00 -9.19

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms.
- 5. Spectrum AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms

Below 1 GHz / Model No.: DWL-G520i

Operation Mode:	TX / IEEE 802.11b / CH Low	Test Date:	February 15,2004
Temperature:	20°C	Tested by:	Max Yan
Humidity:	68% RH	Polarity:	Ver. / Hor.

Freq. (MHz)	Ant.Pol. H/V	Detector Mode (PK/QP)	Reading (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limit 3m (dBuV/m)	Safe Margin (dB)
34.95	V	QP	34.34	-1.93	32.41	40.00	-7.59
48.00	V	QP	40.17	-6.07	34.10	40.00	-5.90
61.95	V	QP	43.34	-9.35	33.99	40.00	-6.01
226.20	V	QP	50.00	-14.84	35.16	46.00	-10.84
298.65	V	QP	47.34	-12.49	34.85	46.00	-11.15
932.33	V	QP	35.50	-3.26	32.24	46.00	-13.76
31.35	Н	QP	32.84	-0.80	32.04	40.00	-7.96
298.65	Н	QP	53.34	-12.49	40.85	46.00	-5.15
300.00	Н	QP	52.34	-12.42	39.92	46.00	-6.08
696.67	Н	QP	40.00	-5.79	34.21	46.00	-11.79
863.50	Н	QP	38.17	-4.23	33.94	46.00	-12.06
928.83	Н	QP	41.00	-3.33	37.67	46.00	-8.33

Notes:

- 2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using Peak detector mode.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. The IF bandwidth of SPA between 30MHz to 1GHz was 100kHz.

Operation Mode: TX / IEEE 802.11b / CH Mid

Temperature: 20°C

Humidity: 68% RH

Test Date:February 15,2004Tested by:Max YanPolarity:Ver. / Hor.

Freq. (MHz)	Ant.Pol. H/V	Detector Mode (PK/QP)	Reading (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limit 3m (dBuV/m)	Safe Margin (dB)
31.35	V	QP	33.84	-0.80	33.04	40.00	-6.96
48.90	V	QP	38.84	-6.01	32.83	40.00	-7.17
62.85	V	QP	43.84	-9.86	33.98	40.00	-6.02
84.90	V	QP	50.00	-18.87	31.13	40.00	-8.87
226.20	V	QP	50.00	-14.84	35.16	46.00	-10.84
299.10	V	QP	47.17	-12.46	34.71	46.00	-11.29
30.90	Н	QP	32.34	-0.72	31.62	40.00	-8.38
298.65	Н	QP	53.17	-12.49	40.68	46.00	-5.32
300.00	Н	QP	51.34	-12.42	38.92	46.00	-7.08
697.83	Н	QP	39.50	-5.77	33.73	46.00	-12.27
863.50	Н	QP	37.84	-4.23	33.61	46.00	-12.39
927.67	Н	QP	41.17	-3.36	37.81	46.00	-8.19

Notes:

- 2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using Peak detector mode.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. The IF bandwidth of SPA between 30MHz to 1GHz was 100kHz.

Operation Mode: TX / IEEE 802.11b / CH High

Temperature: 20°C

Humidity: 68% RH

Test Date:February 15,2004Tested by:Max YanPolarity:Ver. / Hor.

Freq. (MHz)	Ant.Pol. H/V	Detector Mode (PK/QP)	Reading (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limit 3m (dBuV/m)	Safe Margin (dB)
34.50	V	QP	33.84	-1.81	32.03	40.00	-7.97
49.35	V	QP	36.84	-5.98	30.86	40.00	-9.14
61.95	V	QP	43.00	-9.35	33.65	40.00	-6.35
226.20	V	QP	50.00	-14.84	35.16	46.00	-10.84
298.65	V	QP	46.84	-12.49	34.35	46.00	-11.65
300.00	V	QP	46.17	-12.42	33.75	46.00	-12.25
30.90	Н	QP	32.84	-0.72	32.12	40.00	-7.88
32.25	Н	QP	32.50	-1.01	31.49	40.00	-8.51
298.65	Н	QP	53.00	-12.49	40.51	46.00	-5.49
300.00	Н	QP	52.17	-12.42	39.75	46.00	-6.25
864.67	Н	QP	38.84	-4.22	34.62	46.00	-11.38
928.83	Н	QP	41.17	-3.33	37.84	46.00	-8.16

Notes:

- 2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using Peak detector mode.
- 3. Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. The IF bandwidth of SPA between 30MHz to 1GHz was 100kHz.

Operation Mode: TX / IEEE 802.11g / CH Low

Temperature: 20°C

Humidity: 68% RH

Test Date:February 15,2004Tested by:Max YanPolarity:Ver. / Hor.

Freq. (MHz)	Ant.Pol. H/V	Detector Mode (PK/QP)	Reading (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limit 3m (dBuV/m)	Safe Margin (dB)
34.50	V	QP	34.50	-1.81	32.69	40.00	-7.31
62.40	V	QP	43.67	-9.60	34.07	40.00	-5.93
86.25	V	QP	49.84	-18.90	30.94	40.00	-9.06
226.20	V	QP	50.00	-14.84	35.16	46.00	-10.84
298.65	V	QP	46.84	-12.49	34.35	46.00	-11.65
300.00	V	QP	45.84	-12.42	33.42	46.00	-12.58
30.90	Н	QP	33.34	-0.72	32.62	40.00	-7.38
298.65	Н	QP	52.84	-12.49	40.35	46.00	-5.65
300.00	Н	QP	52.50	-12.42	40.08	46.00	-5.92
697.83	Н	QP	40.00	-5.77	34.23	46.00	-11.77
863.50	Н	QP	38.50	-4.23	34.27	46.00	-11.73
927.67	Н	QP	41.00	-3.36	37.64	46.00	-8.36

Notes:

- 2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using Peak detector mode.
- 3. Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. The IF bandwidth of SPA between 30MHz to 1GHz was 100kHz.

Operation Mode: TX / IEEE 802.11g / CH Mid

Temperature: 20°C

Humidity: 68% RH

Test Date:February 15,2004Tested by:Max YanPolarity:Ver. / Hor.

Freq. (MHz)	Ant.Pol. H/V	Detector Mode (PK/QP)	Reading (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limit 3m (dBuV/m)	Safe Margin (dB)
35.40	V	QP	34.17	-2.05	32.12	40.00	-7.88
48.00	V	QP	38.34	-6.07	32.27	40.00	-7.73
62.40	V	QP	43.67	-9.60	34.07	40.00	-5.93
85.35	V	QP	49.84	-18.88	30.96	40.00	-9.04
226.20	V	QP	50.17	-14.84	35.33	46.00	-10.67
298.65	V	QP	47.17	-12.49	34.68	46.00	-11.32
30.90	Н	QP	32.00	-0.72	31.28	40.00	-8.72
85.80	Н	QP	46.84	-18.89	27.95	40.00	-12.05
298.65	Н	QP	52.67	-12.49	40.18	46.00	-5.82
300.00	Н	QP	51.67	-12.42	39.25	46.00	-6.75
699.00	Н	QP	39.84	-5.76	34.08	46.00	-11.92
928.83	Н	QP	41.00	-3.33	37.67	46.00	-8.33

Notes:

- 2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using Peak detector mode.
- 3. Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. The IF bandwidth of SPA between 30MHz to 1GHz was 100kHz.

Operation Mode: TX / IEEE 802.11g / CH High

Temperature: 20°C

Humidity: 68% RH

Test Date:February 15,2004Tested by:Max YanPolarity:Ver. / Hor.

Freq. (MHz)	Ant.Pol. H/V	Detector Mode (PK/QP)	Reading (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limit 3m (dBuV/m)	Safe Margin (dB)
34.95	V	QP	34.34	-1.93	32.41	40.00	-7.59
48.00	V	QP	37.84	-6.07	31.77	40.00	-8.23
63.30	V	QP	43.67	-10.11	33.56	40.00	-6.44
86.25	V	QP	49.67	-18.90	30.77	40.00	-9.23
226.20	V	QP	50.17	-14.84	35.33	46.00	-10.67
298.65	V	QP	46.84	-12.49	34.35	46.00	-11.65
31.80	Н	QP	30.67	-0.88	29.79	40.00	-10.21
299.10	Н	QP	53.34	-12.46	40.88	46.00	-5.12
300.00	Н	QP	52.17	-12.42	39.75	46.00	-6.25
696.67	Н	QP	39.67	-5.79	33.88	46.00	-12.12
863.50	Н	QP	38.17	-4.23	33.94	46.00	-12.06
927.67	Н	QP	40.50	-3.36	37.14	46.00	-8.86

Notes:

- 2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using Peak detector mode.
- 3. Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. The IF bandwidth of SPA between 30MHz to 1GHz was 100kHz.

Above 1 GHz

Operation Mode: TX / IEEE 802.11b / CH Low

Temperature: 20°C

Humidity: 68% RH

Test Date:February 15,2004Tested by:Max YanPolarity:Ver. / Hor.

Freq.	Ant. Pol	Peak	AV	Ant. / CL	Actu	al Fs	Peak	AV	Margin	
(MHz)	H/V	Reading (dBuV)	Reading (dBuV)	CF (dB)	Peak (dBuV/m)	AV (dBuV/m)	Limit (dBuV/m)	Limit (dBuV/m)	$(d\mathbf{R})$	Remark
1096.67	V	50.67		-9.74	40.93		74.00	54.00	-13.07	Peak
1196.67	V	54.67		-9.03	45.64		74.00	54.00	-8.36	Peak
N/A										
1096.67	Н	49.67		-9.74	39.93		74.00	54.00	-14.07	Peak
1196.67	Н	53.67		-9.03	44.64		74.00	54.00	-9.36	Peak
N/A										

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms.
- 5. Spectrum AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms

Operation Mode: TX / IEEE 802.11b / CH Mid

Temperature: 20°C

Humidity: 68% RH

Test Date:February 15,2004Tested by:Max YanPolarity:Ver. / Hor.

Freq.	Ant. Pol	Peak	AV	Ant. / CL	Actu	al Fs	Peak	AV	Margin	
(MHz)	H/V	Reading (dBuV)	Reading (dBuV)	CF (dB)	Peak (dBuV/m)	AV (dBuV/m)	Limit (dBuV/m)	Limit (dBuV/m)	$(d\mathbf{R})$	Remark
1096.67	V	50.17		-9.74	40.43		74.00	54.00	-13.57	Peak
1193.33	V	54.50		-9.06	45.44		74.00	54.00	-8.56	Peak
N/A										
1096.67	Н	49.50		-9.74	39.76		74.00	54.00	-14.24	Peak
1196.67	Н	53.50		-9.03	44.47		74.00	54.00	-9.53	Peak
N/A										
N7 .								1		

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms.
- 5. Spectrum AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms

Operation Mode: TX / IEEE 802.11b / CH High

Temperature: 20°C

Humidity: 68% RH

Test Date:February 15,2004Tested by:Max YanPolarity:Ver. / Hor.

Ant Dol	Peak	AV	Ant. / CL	Actu	al Fs	Peak	AV	Margin	
H/V	Reading (dBuV)	Reading (dBuV)	CF (dB)	Peak (dBuV/m)	AV (dBuV/m)	Limit (dBuV/m)	Limit (dBuV/m)	(dB)	Remark
V	51.34		-9.74	41.60		74.00	54.00	-12.40	Peak
V	54.50		-9.03	45.47		74.00	54.00	-8.53	Peak
Н	49.00		-9.74	39.26		74.00	54.00	-14.74	Peak
Н	53.50		-9.03	44.47		74.00	54.00	-9.53	Peak
	H/V V V H	Ant. Pol Reading (dBuV) V 51.34 V 54.50 Image: Constraint of the state	Ant. Poi H/V Reading (dBuV) Reading (dBuV) V 51.34 V 54.50 V 54.50 Image: Constraint of the state of th	Ant. Pol H/V Reading (dBuV) Reading (dBuV) CF (dB) V 51.34 -9.74 V 54.50 -9.03 V 54.50 -9.03 Image: CF March State Sta	Ant. Pol H/V Reading (dBuV) Reading (dBuV) CF (dBuV) Peak (dBuV/m) V 51.34 -9.74 41.60 V 54.50 -9.03 45.47 V 54.50 -9.03 45.47 Image: CF Image: CF Image: CF Image: CF 1mage: CF V 51.34 -9.74 41.60 V 54.50 -9.03 45.47 Image: CF Image: CF Image: CF Image: CF Image: CF Image: CF Image: CF Image: CF Image: CF Image: CF Image: CF Image: CF Image: CF Image: CF Image: CF Image: CF Image: CF Image: CF Image: CF Image: CF Image: CF Image: CF Image: CF Image: CF Image: CF Image: CF Image: CF Image: CF Image: CF Image: CF Image: CF Image: CF Image: CF Image: CF Image: CF <t< td=""><td>Ant. Pol H/V Reading (dBuV) Reading (dBuV) CF (dB) Peak (dBuV/m) AV (dBuV/m) V 51.34 -9.74 41.60 V 54.50 -9.03 45.47 V 54.50 -9.03 45.47 V 54.50 Interpreter Interpreter Interpreter Interpreter V 54.50 Interpreter Interpreter Interpreter Interpreter V 54.50 Interpreter Interpreter Interpreter Interpreter Interpreter Interpreter Interpreter Interpreter Interpreter Interpreter Interpreter H 49.00 Interpreter Interpreter Interpreter Interpreter Interpreter</td><td>Ant. Pol H/VReading (dBuV)CF (dBuV)Peak (dBuV/m)AV (dBuV/m)Limit (dBuV/m)V$51.34$$-9.74$$41.60$$74.00V54.50$$-9.03$$45.47$$74.00V54.50$$-9.03$$45.47$$74.00U54.50$$-9.03$$45.47$$74.00U54.50$InterplayInterplayInterplay100InterplayU54.50InterplayInterplayInterplayInterplay100UInterplayInterplayInterplayInterplayInterplayInterplayH49.00InterplayInterplay39.26Interplay74.00</td><td>Ant. Pol (dBuV) Reading (dBuV) Reading (dBuV) CF (dBuV) Peak (dBuV/m) AV (dBuV/m) Limit (dBuV/m) Limit (dBuV/m) V 51.34 -9.74 41.60 74.00 54.00 V 54.50 -9.03 45.47 74.00 54.00 V 54.50 9.03 45.47 74.00 54.00 V 54.50 9.03 1.01 1.01 1.01 1.01 V 54.50 9.03 1.01 1.01 1.01 1.01 V 54.50 9.74 39.26 74.00 54.00</td><td>Ant. Pol (dBuV) Reading (dBuV) CF (dBuV) Peak (dBuV) AV (dBuV) Limit (dBuV) Margin (dBuV) V 51.34 -9.74 41.60 74.00 54.00 -12.40 V 54.50 -9.03 45.47 74.00 54.00 -8.53 Image: CF -9.03 45.47 74.00 54.00 -8.53 Image: CF -9.03 45.47 74.00 54.00 -8.53 Image: CF -9.03 45.47 Image: CF 74.00 54.00 -8.53 Image: CF Image: CF -9.03 45.47 Image: CF 74.00 54.00 -8.53 Image: CF Image: CF</td></t<>	Ant. Pol H/V Reading (dBuV) Reading (dBuV) CF (dB) Peak (dBuV/m) AV (dBuV/m) V 51.34 -9.74 41.60 V 54.50 -9.03 45.47 V 54.50 -9.03 45.47 V 54.50 Interpreter Interpreter Interpreter Interpreter V 54.50 Interpreter Interpreter Interpreter Interpreter V 54.50 Interpreter Interpreter Interpreter Interpreter Interpreter Interpreter Interpreter Interpreter Interpreter Interpreter Interpreter H 49.00 Interpreter Interpreter Interpreter Interpreter Interpreter	Ant. Pol H/VReading (dBuV)CF (dBuV)Peak (dBuV/m)AV (dBuV/m)Limit (dBuV/m)V 51.34 -9.74 41.60 74.00 V 54.50 -9.03 45.47 74.00 V 54.50 -9.03 45.47 74.00 U 54.50 -9.03 45.47 74.00 U 54.50 InterplayInterplayInterplay 100 InterplayU 54.50 InterplayInterplayInterplayInterplay 100 UInterplayInterplayInterplayInterplayInterplayInterplayH 49.00 InterplayInterplay 39.26 Interplay 74.00	Ant. Pol (dBuV) Reading (dBuV) Reading (dBuV) CF (dBuV) Peak (dBuV/m) AV (dBuV/m) Limit (dBuV/m) Limit (dBuV/m) V 51.34 -9.74 41.60 74.00 54.00 V 54.50 -9.03 45.47 74.00 54.00 V 54.50 9.03 45.47 74.00 54.00 V 54.50 9.03 1.01 1.01 1.01 1.01 V 54.50 9.03 1.01 1.01 1.01 1.01 V 54.50 9.74 39.26 74.00 54.00	Ant. Pol (dBuV) Reading (dBuV) CF (dBuV) Peak (dBuV) AV (dBuV) Limit (dBuV) Margin (dBuV) V 51.34 -9.74 41.60 74.00 54.00 -12.40 V 54.50 -9.03 45.47 74.00 54.00 -8.53 Image: CF -9.03 45.47 74.00 54.00 -8.53 Image: CF -9.03 45.47 74.00 54.00 -8.53 Image: CF -9.03 45.47 Image: CF 74.00 54.00 -8.53 Image: CF Image: CF -9.03 45.47 Image: CF 74.00 54.00 -8.53 Image: CF Image: CF

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms.
- 5. Spectrum AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms

Operation Mode: TX / IEEE 802.11g / CH Low

Temperature: 20°C

Humidity: 68% RH

Test Date:February 15,2004Tested by:Max YanPolarity:Ver. / Hor.

Freq.	Ant. Pol	Peak	AV	Ant. / CL	Actu	al Fs	Peak	AV	Margin	
(MHz)	H/V	Reading (dBuV)	Reading (dBuV)	CF (dB)	Peak (dBuV/m)	AV (dBuV/m)	Limit (dBuV/m)	Limit (dBuV/m)	(dB)	Remark
1096.67	V	51.00		-9.74	41.26		74.00	54.00	-12.74	Peak
1196.67	V	54.34		-9.03	45.31		74.00	54.00	-8.69	Peak
N/A										
1106 (7		52.24		0.02	44.01		74.00	54.00	0.60	D 1
1196.67	Н	53.34		-9.03	44.31		74.00	54.00	-9.69	Peak
1393.33	Н	51.00		-8.29	42.71		74.00	54.00	-11.29	Peak
N/A										
N T /	1									

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms.
- 5. Spectrum AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms

Operation Mode: TX / IEEE 802.11g / CH Mid

Temperature: 20°C

Humidity: 68% RH

Test Date:February 15,2004Tested by:Max YanPolarity:Ver. / Hor.

Reading (dBuV) 50.84	Reading (dBuV)	(dB)	Peak (dBuV/m)	AV (dBuV/m)	Limit	Limit	Margin	Remark
		0.76		(ubu //m)	(dBuV/m)	(dBuV/m)	(dB)	
5121		-9.76	41.08		74.00	54.00	-12.92	Peak
54.34		-9.03	45.31		74.00	54.00	-8.69	Peak
49.67		-9.74	39.93		74.00	54.00	-14.07	Peak
53.84		-9.03	44.81		74.00	54.00	-9.19	Peak

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms.
- 5. Spectrum AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms

Operation Mode: TX / IEEE 802.11g / CH High

Temperature: 20°C

Humidity: 68% RH

Test Date:February 15,2004Tested by:Max YanPolarity:Ver. / Hor.

Freq. (MHz)	Ant. Pol H/V	Peak Reading (dBuV)	AV Reading (dBuV)	Ant. / CL CF (dB)	Peak	al Fs AV (dBuV/m)	Peak Limit (dBuV/m)	AV Limit (dBuV/m)	Margin (dB)	Remark
1093.33	V	51.67		-9.76	41.91		74.00	54.00	-12.09	Peak
1196.67	V	54.84		-9.03	45.81		74.00	54.00	-8.19	Peak
N/A										
1096.67	Н	49.00		-9.74	39.26		74.00	54.00	-14.74	Peak
1196.67	Н	53.17		-9.03	44.14		74.00	54.00	-9.86	Peak
N/A										

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms.
- 5. Spectrum AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms

7.7 POWERLINE CONDUCTED EMISSIONS

LIMIT

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Frequency Range (MHz)	Limits (dBµV)					
Frequency Range (WIIIZ)	Quasi-peak	Average				
0.15 to 0.50	66 to 56	56 to 46				
0.50 to 5	56	46				
5 to 30	60	50				

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESCS30	847793/012	12/20/2004
LISN	R&S	ESH2-Z5	843285/010	12/15/2004
LISN	ЕМСО	3825/2	9003-1628	07/25/2004

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

- 1. The conducted emission tests were performed in the test site, using the setup in accordance with the ANSI C63.4.
- 2. The EUT was plug-in the host PC via USB port. The host PC system was placed on the center of the back edge on the test table. The peripherals like modem, monitor printer, K/B, and mouse were placed on the side of the host PC system. The rear of the EUT and peripherals were placed flushed with the rear of the tabletop.
- 3. The keyboard was placed directly in the front of the monitor, flushed with the front tabletop. The mouse was placed next to the Keyboard, flushed with the back of keyboard.
- 4. The spacing between the peripherals was 10 centimeters.
- 5. External I/O cables were draped along the edge of the test table and bundle when necessary.
- 6. The host PC system was connected with 110Vac/60Hz power source.

The EUT is set to transmit in a continuous mode.

TEST PROCEDURE

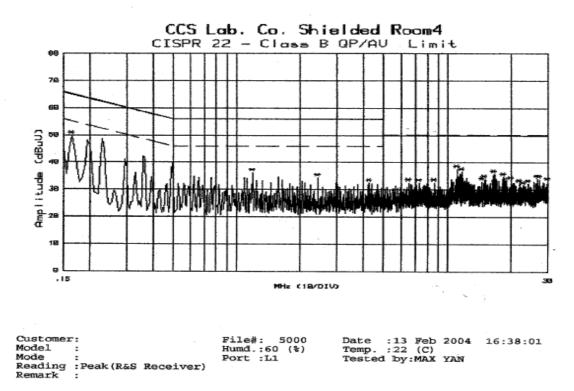
- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.

TEST RESULTS

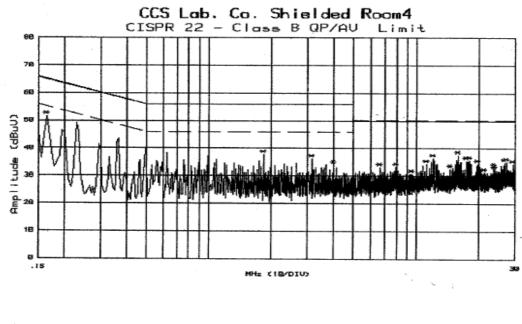
The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

Test Data / Model No.: DWL-G520e

Operation Mode:	TX + RX mode	Test Date:	February 13, 2004
Temperature:	22°C	Tested by:	Max Yan
Humidity:	60% RH		


Freq.	Q.P.	A V G	Q.P.	A V G	Q.P.	A V G	
(MHz)	Raw	Raw	Limit	Limit	M argin	M argin	Note
(M II Z)	(d B u V)	(d B u V)	(d B u V)	(d B u V)	(d B)	(d B)	
0.165	49.70		65.20		-15.50		L 1
1.190	36.20		56.00		-19.80		L 1
2.440	34.30		56.00		-21.70		L 1
4.290	32.30		56.00		-23.70		L 1
6.530	32.50		60.00		-27.50		L 1
7.320	32.40		60.00		-27.60		L 1
0.165	51.50		65.20		-13.70		L 2
1.850	37.70		56.00		-18.30		L 2
3.170	36.20		56.00		-19.80		L 2
4.030	33.80		56.00		-22.20		L 2
6.670	33.00		60.00		-27.00		L 2
7.990	33.10		60.00		-26.90		L 2

- 1. Measuring frequencies from 0.15 MHz to 30MHz.
- 2. The emissions measured in frequency range from 0.15 MHz to 30MHz were made with an instrument using Quasi-peak detector and average detector.
- 3. "---" denotes the emission level was or more than 2dB below the Average limit
- 4. The IF bandwidth of SPA between 0.15MHz to 30MHz was 10kHz; the IF bandwidth of Test Receiver between 0.15MHz to 30MHz was 9kHz;
- 5. *L1* = *Line One (Live Line)* / *L2* = *Line Two (Neutral Line)*



Test Plots

Conducted emissions (Line 1)

Conducted emissions (Line 2)

Customer:	File#: 4999	Date :13 Feb	2004 16:18:13
Model :	Humd.:60 (%)	Temp. :22 (C)	20110.15
Mode : Reading :Peak(R&S Receiver) Remark :	Port :L2	Tested by:MAX	YAN