

FCC Part 1 Subpart I FCC Part 2 Subpart J

RF EXPOSURE REPORT

FOR

MEDIA STREAMING DEVICE

FCC ID: A4RH2G2-2A

REPORT NUMBER: 14U18503-E6

ISSUE DATE: SEPTEMBER 15, 2014

Prepared for GOOGLE INC.
1600 AMPHITHEATRE PARKWAY MOUNTAIN VIEW, CA 94043, U.S.A.

Prepared by UL VERIFICATION SERVICES INC.

47173 BENICIA STREET FREMONT, CA 94538, U.S.A.

TEL: (510) 771-1000 FAX: (510) 661-0888

Revision History

Rev.	Issue Date	Revisions	Revised By
	9/15/14	Initial Issue	G. Victorine

TABLE OF CONTENTS

,	5.3.	LIMITS	ε
,	5.2.	EQUATIONS	7
,	5.1.	FCC RULES	<i>6</i>
		XIMUM PERMISSIBLE RF EXPOSURE	
4.	FAC	CILITIES AND ACCREDITATION	5
3.	REF	FERENCES	5
2.	TES	ST METHODOLOGY	5
1_		TESTATION OF TEST RESULTS	Δ

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: GOOGLE INC.

1600 AMPHITHEATRE PARKWAY MOUNTAIN VIEW, CA 94043, U.S.A.

EUT DESCRIPTION: MEDIA STREAMING DEVICE

UNIQUE IDENTIFIER: FCC ID: A4RH2G2-2A

SERIAL NUMBER: 4728102ZZB82 (CONDUCTED); 4729102ZZCA9 (RADIATED)

DATE TESTED: AUGUST 13, 2014 – AUGUST 20, 2014

APPLICABLE STANDARDS

STANDARD

TEST RESULTS

FCC PART 1 SUBPART I & PART 2 SUBPART J

Pass

UL Verification Services Inc. calculated the RF Exposure of the above equipment in accordance with the requirements set forth in the above standards, using test results reported in the test report documents referenced below and/or documentation furnished by the applicant. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations of these calculations. The results show that the equipment is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For

UL Verification Services Inc. By:

Calculated By:

GARY VICTORINE PROJECT LEAD

UL Verification Services Inc.

TINA CHU LAB TECHNICIAN

UL Verification Services Inc.

2. TEST METHODOLOGY

All calculations were made in accordance with FCC OET Bulletin 65 Edition 97-01.

3. REFERENCES

All measurements were made as documented in test report UL Verification Services Inc. Document 14U18503-E1 for 2.4 GHz band.

Output power, Duty cycle and Antenna gain data is excerpted from the applicable test reports.

Antenna gain data is excerpted from the applicable test reports.

4. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, Fremont, California, USA.

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://ts.nist.gov/standards/scopes/2000650.htm.

DATE: SEPTEMBER 15, 2014

5. MAXIMUM PERMISSIBLE RF EXPOSURE

5.1. **FCC RULES**

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)			
(A) Limits for Occupational/Controlled Exposures							
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842/f 61.4	1.63 4.89# 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 6			
(B) Limits	for General Populati	on/Uncontrolled Exp	oosure				
0.3–1.34	614 824/f	1.63 2.19/f	*(100) *(180/f²)	30 30			

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)	
30–300	27.5	0.073	0.2	30	
300-1500			f/1500	30	
1500-100,000			1.0	30	

f = frequency in MHz

exposure or can not exercise control over their exposure.

^{† =} frequency in MHz

* = Plane-wave equivalent power density

NoTE 1 To TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their
employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure.

Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposure or one not exercise control over their exposure.

5.2. EQUATIONS

POWER DENSITY

Power density is given by:

 $S = EIRP / (4 * Pi * D^2)$

Where

S = Power density in mW/cm^2 EIRP = Equivalent Isotropic Radiated Power in mW D = Separation distance in cm

Power density in units of mW/cm² is converted to units of W/m² by multiplying by 10.

DISTANCE

Distance is given by:

D = SQRT (EIRP / (4 * Pi * S))

Where

D = Separation distance in cm EIRP = Equivalent Isotropic Radiated Power in mW S = Power density in mW/cm^2

SOURCE-BASED DUTY CYCLE

Where applicable (for example, multi-slot cell phone applications) a duty cycle factor may be applied.

Source-based time-averaged EIRP = (DC / 100) * EIRP

Where

DC = Duty Cycle in %, as applicable EIRP = Equivalent Isotropic Radiated Power in W DATE: SEPTEMBER 15, 2014

5.3. **LIMITS**

VARIABLE LIMITS

For mobile radio equipment operating in the cellular phone band, the lowest power density limit is calculated using the lowest frequency:

 $824 \text{ MHz} / 1500 = 0.55 \text{ mW/cm}^2 \text{ (FCC)}$

FIXED LIMITS

For operation in the PCS band, the 2.4 GHz band and the 5 GHz bands:

From FCC §1.1310 Table 1 (B), the maximum value of S = 1.0 mW/cm^2

6. RF EXPOSURE RESULTS

In the table(s) below, Power and Gain are entered in units of dBm and dBi respectively and conversions to linear forms are used for the calculations.

Single Chain and non-colocated transmitters							
Band	Mode	Separation	Output	Antenna	Duty	EIRP	FCC Power
		Distance	AVG	Gain	Cycle		Density
			Power				
		(cm)	(dBm)	(dBi)	(%)	(mW)	(mW/cm^2)
2.4 GHz	WLAN	20	20.00	1.90	100.0	154.9	0.031

The device operates above 1.5 GHz with a maximum power density of 0.031 mW/cm². The FCC power density limit is 1 mW/cm². Therefore, the device meets the FCC limits for maximum permissible exposure (MPE).

Notes:

- 1) The manufacturer configures output power so that the maximum power, after accounting for manufacturing tolerances, will never exceed 20 dBm.
- 2) The output power in the tables above is the maximum power per chain among various channels and various modes within the specific band.
- 3) The antenna gain in the tables above is the maximum antenna gain among various channels within the specified band.

END OF REPORT