

JianYan Testing Group Shenzhen Co., Ltd.

Report No.: JYTSZ-R12-2200592

FCC RF Test Report

Applicant: Hangzhou Roombanker Technology Co., Ltd.

Address of Applicant: A#801 Wantong center, Hangzhou, China

Equipment Under Test (EUT)

Product Name: Indoor Nodle Miner

Model No.: DSGW-210N

Trade Mark: N/A

FCC ID: 2AUXBDSGW-210N

Applicable Standards: FCC CFR Title 47 Part 2, 22H, 24E

Date of Sample Receipt: 23 Mar., 2022

Date of Test: 24 Mar., to 11 Apr., 2022

Date of Report Issued: 18 Apr., 2022

Test Result: PASS

Reviewed by: Date: 18 Apr., 2022

Approved by: Date: 18 Apr., 2022

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in above the application standard version. Test results reported herein relate only to the item(s) tested.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2. Version

Version No.	Date	Description
00	12 Apr., 2022	Original
01	18 Apr., 2022	Update page 10/12.

3. Contents

		Page
1. (Cover Page	1
2. \	Version	2
3. (Contents	3
	General Information	
4.1		
4.2		
4.3		
4.4		
4.5	,	
4.6		
4.7	=======================================	
4.8	,	
4.9		
5. N	Measurement Setup and Procedure	7
5.1	Test Channel	7
5.2		
5.3	Test Procedure	9
6. 1	Test Results	10
6.1	Summary	10
6.2	·	
6.3		

4. General Information

4.1 Client Information

Applicant:	Hangzhou Roombanker Technology Co., Ltd.
Address:	A#801 Wantong center, Hangzhou, China
Manufacturer:	Hangzhou Roombanker Technology Co., Ltd.
Address:	A#801 Wantong center, Hangzhou, China

4.2 General Description of E.U.T.

Product Name:	Indoor Nodle Miner				
Model No.:	DSGW-210	N			
Operation Frequency Range:	GSM850:	824.2 MHz - 848.8 MHz			
	PCS1900:	1850.2 MHz - 1909.8 MHz			
Modulation Type:	□Voice(GMSK) □GPRS(GMSK) □EGPRS(GMSK, 8PSK)				
Antenna Type:	FPC Antenna				
Antenna Gain:	GSM 850: 2.84 dBi (declare by Applicant)				
	PCS1900: 2.84 dBi (declare by Applicant)				
AC Adapter:	Model: KA1501A-0503000US				
	Input: AC100-240V, 50/60Hz, 0.55A MAX				
	Output: DC 5.0V, 3000mA				
Test Sample Condition:	The test samples were provided in good working order with no visible				
	defects.				

Report No.: JYTSZ-R12-2200592

4.3 Test Model and Environment

Test Mode:		
GPRS mode:	Keep the EUT communication with simulated station in GPRS mode	
EGPRS mode:	Keep the EUT communication with simulated station in EGPRS mode	
Remark: The FLIT has been tested under continuous transmitting mode. Channel Low, Mid and High for		

Remark: The EUT has been tested under continuous transmitting mode. Channel Low, Mid and High for each type band with rated data rate were chosen for full testing. The field strength of spurious radiation emission was measured as EUT stand-up position (H mode) and lie down position (E1, E2 mode) for these modes. Just the worst case position (H mode) shown in report.

Operating Environment:

Temperature:	Normal: 15° C ~ 35° C, Extreme: -30° C ~ $+50^{\circ}$ C
Humidity:	20 % ~ 75 % RH
Atmospheric Pressure:	1008 mbar
Voltage:	Nominal: 5.00 Vdc, Extreme: Low 4.25 Vdc, High 5.75 Vdc

4.4 Description of Test Auxiliary Equipment

Test Equipment	Manufacturer	Model No.	Serial No.	
Simulated Station	Anritsu	MT8820C	6201026545	

4.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%(U = 2Uc(y)))
Conducted Emission for LISN (9kHz ~ 150kHz)	±3.11 dB
Conducted Emission for LISN (150kHz ~ 30MHz)	±2.62 dB
Radiated Emission (30MHz ~ 1GHz) (3m SAC)	±4.45 dB
Radiated Emission (1GHz ~ 18GHz) (3m SAC)	±5.34 dB
Radiated Emission (18GHz ~ 40GHz) (3m SAC)	±5.34 dB

Note: All the measurement uncertainty value were shown with a coverage k=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

4.6 Additions to, Deviations, or Exclusions from the Method

No

4.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

JianYan Testing Group Shenzhen Co., Ltd. Report Template No.: JYTSZ4b-150-C No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366

4.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd. Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community,

Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366 Email: info-JYTee@lets.com, Website: http://jyt.lets.com

4.9 Test Instruments List

Radiated Emission:	Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Manage No.	Cal.Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	ETS	9m*6m*6m	WXJ001-1	01-19-2021	01-18-2024	
BiConiLog Antenna	Schwarzbeck	VULB9163	WXJ002	02-17-2022	02-16-2023	
Biconical Antenna	Schwarzbeck	VUBA9117	WXJ002-1	06-20-2021	06-19-2022	
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ002-2	02-17-2022	02-16-2023	
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ002-3	06-18-2021	06-17-2022	
Pre-amplifier (30MHz ~ 1GHz)	Schwarzbeck	BBV9743B	WXG001-7	02-17-2022	02-16-2023	
Pre-amplifier (1GHz ~ 18GHz)	SKET	LNPA_0118G-50	WXG001-3	02-17-2022	02-16-2023	
Pre-amplifier (18GHz ~ 40GHz)	RF System	TRLA-180400G45B	WXG001-9	02-17-2022	02-16-2023	
EMI Test Receiver	Rohde & Schwarz	ESRP7	WXJ003-1	02-17-2022	02-16-2023	
Spectrum Analyzer	KEYSIGHT	N9010B	WXJ004-2	10-27-2022	10-26-2022	
Simulated Station	Anritsu	MT8820C	WXJ008-4	03-03-2021	03-02-2023	
David Dailant Filtan Onsura	T	100000 F	1407 1000	04-06-2021	04-05-2022	
Band Reject Filter Group	Tonscend	JS0806-F	WXJ089	04-01-2022	03-31-2023	
Coaxial Cable (30MHz ~ 1GHz)	JYT	JYT3M-1G-NN-8M	WXG001-4	02-17-2022	02-16-2023	
Coaxial Cable (1GHz ~ 18GHz)	JYT	JYT3M-18G-NN-8M	WXG001-5	02-17-2022	02-16-2023	
Coaxial Cable (18GHz ~ 40GHz)	JYT	JYT3M-40G-SS-8M	WXG001-7	02-17-2022	02-16-2023	
Test Software	Tonscend	TS+		Version: 3.0.0.1		

Conducted Method:						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
Spectrum Analyzer	Keysight	N9020B	WXJ081-1	07-02-2021	07-01-2022	
Simulated Station	Rohde & Schwarz	CMW500	WXJ081	07-02-2021	07-01-2022	
DC Power Supply	Keysight	E3642A	WXJ025-2	10-25-2021	10-24-2022	
Temperature Humidity Chamber	ZHONG ZHI	CZ-A-80D	WXJ032-3	03-19-2021	03-18-2023	
RF Control Unit	Tonscend	JS0806-1	WXG010	N/A		
Band Reject Filter Group	Tonscend	JS0806-F	WXG010-1	N	I/A	
Test Software	Tonscend	TS+	\	Version: 2.6.9.0526		

810

1909.8

5. Measurement Setup and Procedure

5.1 Test Channel

According to ANSI C63.26-2015 chapter 5.1.2.1 Table 2 requirement, select lowest channel, middle channel, and highest channel in the frequency range in which device operates for testing. The detailed frequency points are as follows:

GSM850						
Lowe	est channel	Middle channel		Highest channel		
Channel No. Frequency (MHz)		Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	
128 824.2		190	836.6	251	848.8	
	PCS1900					
Lowest channel		Middle channel		Highest channel		
L Channel No T		Frequency (MHz)	Channel No.	Frequency (MHz)		

5.2 Test Setup

512

1) Radiated emission measurement:

1850.2

1880.0

661

Above 1GHz (3m SAC)

5.3 Test Procedure

J.J TEST FIOCEGUIE	3 Test Flocedule				
Test method	Test step				
Radiated emission	For below 1GHz:1. The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 3 m semi anechoic chamber. The measurement distance from the EUT to the receiving antenna is 3 m.				
	 EUT works in each mode of operation that needs to be tested, and having the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data. 				
	For above 1GHz: 1. The EUT was placed on the tabletop of a rotating table 1.5 m the ground at a 3 m fully anechoic room. The measurement distance from the EUT to the receiving antenna is 3 m.				
	 EUT works in each mode of operation that needs to be tested, and having the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data. 				
Conducted test method	 The GSM antenna port of EUT was connected to the test port of the test system through an RF cable. The EUT is keeping in continuous transmission mode and tested in all modulation modes. Open the test software, prepare a test plan, and control the system through the software. After the test is completed, the test report is exported through 				

6. Test Results

6.1 Summary

6.1.1 Clause and Data Summary

Test items	Standard clause	Test data	Result
RF Exposure (SAR)	Part 1.1307 Part 2.1093	Report JYTSZ-R12-2200596	Pass
RF Output Power	Part 2.1046 Part 22.913 (a)(5) Part 24.232 (c)	See Section 6.2	Pass
Peak-to-Average Power Ratio	Part 24.232 (d)	Report HR20191001601	Pass*
Modulation Characteristics	Part 2.1047	Report HR20191001601	Pass*
26dB Emission Bandwidth 99% Occupied Bandwidth	Part 2.1049 Part 22.917(b) Part 24.238(b)	Report HR20191001601	Pass*
Out of Band Emission at Antenna Terminals	Part 2.1053 Part 22.917 (a) Part 24.238 (a)	Report HR20191001601	Pass*
Field Strength of Spurious Radiation	Part 22.917 (a) Part 24.238 (a)	See Section 6.3	Pass
Frequency Stability vs. Temperature	Part 22.355 Part 24.235 Part 2.1055(a)(1)(b)	Report HR20191001601	Pass*
Frequency Stability vs. Voltage	Part 22.355 Part 24.235 Part 2.1055(d)(2)	Report HR20191001601	Pass*

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (Fundamental Frequency below 1GHz)/1.0dB (Fundamental Frequency above 1GHz) (provided by the customer).
- 3. Pass*: Refer to the FCC ID: XMR201903EG25G, Report No. HR20191001601.

Test Method: ANSI/TIA-603-E-2016 ANSI C63.26-2015

6.1.2 Test Limit

GSM850: 7W PCS1900: 2W The peak-to-average exceed 13 dB N/A N/A	ratio (PAR) of th	e transmissio	n may no	t
exceed 13 dB N/A	ratio (PAR) of th	e transmissio	n may no	t
N/A				
14//1				
The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting powe (P) by a factor of at least 43 + 10 log(P) dB.				
GSM850:				
each transmitter in the within the tolerances	ne Public Mobile S given in Table C	Services must -1 of this secti	be maint	tained
Frequency range (MHz)	Base, fixed	Mobile >3 watts	≤3 wat	
25 to 50	2	0.0	20.0	50.0
450 to 450			5.0	50.0 5.0
821 to 896		1.5	2.5	2.5
928 to 929 929 to 960		5.0 1.5	n/a n/a	n/a n/a
	frequency ranges mu (P) by a factor of at le GSM850: Except as otherwise each transmitter in th within the tolerances TABLE C-1—FREQUE Frequency range (MHz) 25 to 50 50 to 450 450 to 512	frequency ranges must be attenuated (P) by a factor of at least 43 + 10 log(I GSM850: Except as otherwise provided in this peach transmitter in the Public Mobile S within the tolerances given in Table C TABLE C-1—FREQUENCY TOLERANCE FOR T SERVICES Frequency range (MHz) Base, fixed (ppm) 20 50 to 450 50 to 512 50 to	frequency ranges must be attenuated below the trai (P) by a factor of at least 43 + 10 log(P) dB. GSM850: Except as otherwise provided in this part, the carrier each transmitter in the Public Mobile Services must within the tolerances given in Table C-1 of this section Table C-1—Frequency Tolerance for Transmitters in the Services Frequency range (MHz) Base, fixed Mobile >3 watts (ppm)	frequency ranges must be attenuated below the transmitting (P) by a factor of at least 43 + 10 log(P) dB. GSM850: Except as otherwise provided in this part, the carrier frequen each transmitter in the Public Mobile Services must be maint within the tolerances given in Table C-1 of this section. Table C-1—Frequency Tolerance for Transmitters in the Public Moservices Requency range (MHz) Base, fixed Mobile >3 watts (ppm) (pp

Tel: +86-755-23118282, Fax: +86-755-23116366

6.2 Effective (Isotropic) Radiated Power Output Data

6.2.1 Test Result(GSM)

BAND	Channel	Power(dBm)	ERP(dBm)	Limit(dBm)	Verdict
GSM850	128	32.32	33.01	38.45	PASS
GSM850	190	32.53	33.22	38.45	PASS
GSM850	251	32.20	32.89	38.45	PASS
EGPRS850	128	26.51	27.20	38.45	PASS
EGPRS850	190	26.67	27.36	38.45	PASS
EGPRS850	251	26.67	27.36	38.45	PASS

BAND	Channel	Power(dBm)	EIRP(dBm)	Limit(dBm)	Verdict
GSM1900	512	29.66	32.50	33.00	PASS
GSM1900	661	29.41	32.25	33.00	PASS
GSM1900	810	29.18	32.02	33.00	PASS
EGPRS1900	512	26.20	29.04	33.00	PASS
EGPRS1900	661	25.92	28.76	33.00	PASS
EGPRS1900	810	25.67	28.51	33.00	PASS

Remark: EIRP (dBm) = Conducted power (dBm) + Antenna Gain (dBi). (For GSM1900)

ERP(dBm) = EIRP(dBm) - 2.15(dB). (For GSM850)

6.3 Field Strength of Spurious Radiation Measurement

			GSM850				
Lowest channel							
Frequency (MHz)	Reading Level (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Polarization	
1648.40	-30.41	-11.10	-41.51	-13.00	28.51	Vertical	
2472.60	-34.89	-6.19	-41.08	-13.00	28.08	Vertical	
3296.80	-48.45	-4.94	-53.39	-13.00	40.39	Vertical	
1648.40	-36.49	-11.00	-47.49	-13.00	34.49	Horizonta	
2472.60	-32.84	-6.54	-39.38	-13.00	26.38	Horizonta	
3296.80	-48.36	-5.21	-53.57	-13.00	40.57	Horizonta	
Middle channel							
Frequency (MHz)	Reading Level (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Polarizatio	
1673.20	-30.71	-11.13	-41.84	-13.00	28.84	Vertical	
2509.80	-34.55	-6.21	-40.76	-13.00	27.76	Vertical	
3346.40	-48.33	-5.02	-53.35	-13.00	40.35	Vertical	
1673.20	-36.43	-11.04	-47.47	-13.00	34.47	Horizonta	
2509.80	-32.95	-6.51	-39.46	-13.00	26.46	Horizonta	
3346.40	-48.85	-5.23	-54.08	-13.00	41.08	Horizonta	
		Hi	ghest channel				
Frequency (MHz)	Reading Level (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Polarizatio	
1697.60	-30.58	-11.09	-41.67	-13.00	28.67	Vertical	
2546.40	-34.50	-6.38	-40.88	-13.00	27.88	Vertical	
3395.20	-48.60	-5.20	-53.80	-13.00	40.80	Vertical	
1697.60	-36.17	-11.15	-47.32	-13.00	34.32	Horizonta	
2546.40	-33.12	-6.06	-39.18	-13.00	26.18	Horizonta	
3395.20	-49.28	-5.09	-54.37	-13.00	41.37	Horizonta	

Remark:

^{1.} The emission levels of below 1 GHz are lower than the limit 10dB, so not show in test report.

PCS1900							
Lowest channel							
Frequency (MHz)	Reading Level (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Polarization	
3700.40	-40.02	-1.61	-41.63	-13.00	28.63	Vertical	
5550.60	-47.47	5.40	-42.07	-13.00	29.07	Vertical	
3700.40	-46.05	-2.10	-48.15	-13.00	35.15	Horizontal	
5550.60	-51.39	3.80	-47.59	-13.00	34.59	Horizontal	
	Middle channel						
Frequency (MHz)	Reading Level (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Polarization	
3760.00	-40.16	-1.31	-41.47	-13.00	28.47	Vertical	
5640.00	-47.52	6.96	-40.56	-13.00	27.56	Vertical	
3760.00	-46.24	-1.81	-48.05	-13.00	35.05	Horizontal	
5640.00	-51.11	4.29	-46.82	-13.00	33.82	Horizontal	
	Highest channel						
Frequency (MHz)	Reading Level (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Polarization	
3819.60	-40.87	-1.02	-41.89	-13.00	28.89	Vertical	
5729.40	-47.26	8.20	-39.06	-13.00	26.06	Vertical	
3819.60	-46.81	-1.49	-48.30	-13.00	35.30	Horizontal	
5729.40	-50.84	5.72	-45.12	-13.00	32.12	Horizontal	

Remark:

-----End of report-----

^{1.} The emission levels of below 1 GHz are lower than the limit 10dB, so not show in test report.