

FCC Radio Test Report

FCC ID: SPYMC432

Report No. Equipment Model Name Brand Name Applicant Address	BTL-FCCP-6-2012T187 Mobile Computer MC432 iMotion iWaylink Inc. 6F., NO. 288, SEC. 6, CIVIC BLVD., XINYI DIST., TAIPEI CITY 11087, TAIWAN (R.O.C.)	
Radio Function	NFC (13.56 MHz)	
FCC Rule Part(s) Measurement Procedure(s)	FCC Part 15, Subpart C (15.225) ANSI C63.10-2013	
Date of Receipt Date of Test Issued Date	2021/1/26 2021/1/26 ~ 2021/3/30 2021/4/21	

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by Peter Chen, Engineer **ac-**MRA Testing Laboratory 0659 Approved by Scott Hsu, Manager BTL Inc. No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the ISO/IEC 17025 requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

BL

CONTENTS

REVISO	N HISTOR	Y	4
1	SUMMA	RY OF TEST RESULTS	5
1.1	TEST	FACILITY	6
1.2	MEAS	UREMENT UNCERTAINTY	6
1.3	TEST	ENVIRONMENT CONDITIONS	6
2	GENERA	AL INFORMATION	7
2.1	DESC	RIPTION OF EUT	7
2.2	TEST	MODES	8
2.3	BLOC	K DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	9
2.4	SUPP	ORT UNITS	10
3	AC POW	ER LINE CONDUCTED EMISSIONS TEST	11
3.1	LIMIT		11
3.2	TEST	PROCEDURE	11
3.3	DEVIA	ATION FROM TEST STANDARD	11
3.4	TEST	SETUP	12
3.5	TEST	RESULT	12
4	RADIATE	ED EMISSIONS TEST	13
4.1	LIMIT		13
4.2	TEST	PROCEDURE	14
4.3	DEVIA	ATION FROM TEST STANDARD	14
4.4	TEST	SETUP	14
4.5	EUT C	DPERATING CONDITIONS	15
4.6	TEST	RESULT – 9 KHZ TO 30 MHZ– FCC PART 15.209	16
4.7	TEST	RESULT – 30 MHZ TO 1 GHZ – FCC PART 15.209	16
4.8	TEST	RESULT – FCC PART 15.225	16
5	FREQUE	NCY STABILITY	17
5.1	LIMIT		17
5.2	TEST	PROCEDURE	17
5.3	DEVIA	ATION FROM TEST STANDARD	17
5.4	EUT C	DPERATING CONDITIONS	17
5.5	TEST	RESULT	17
6	20 DB B/	ANDWIDTH	18
6.1	LIMIT		18
6.2	TEST	PROCEDURE	18
6.3	DEVIA	ATION FROM TEST STANDARD	18
6.4	TEST	SETUP	18
6.5	EUT C	DPERATING CONDITIONS	18
6.6	TEST	RESULT	18
7	LIST OF	MEASURING EQUIPMENTS	19
8	EUT TES	ЭТ РНОТО	21
9	EUT PHO	DTOS	21
APPEND	IX A	AC POWER LINE CONDUCTED EMISSIONS	22
APPEND	IX B	RADIATED EMISSIONS - 9 KHZ TO 30 MHZ	27
APPEND	IX C	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ	32
APPEND	IX D	RADIATED EMISSIONS - FCC PART 15.225	35
APPEND	IX E	FREQUENCY STABILITY MEASUREMENT	38
APPEND	IX F	20 DB BANDWIDTH	40

REVISON HISTORY

	Issued Date	1
BTL-FCCP-6-2012T187 R00 Original Report.	2021/4/21	

SUMMARY OF TEST RESULTS 1

Test procedures according to the technical standards.

	FCC Part 15, Subpart C (15.225)							
Standard(s) Section	Standard(s) Section Description Test Result							
15.207	AC Power Line Conducted Emissions	APPENDIX A	Pass					
15.35 15.205 15.209 15.225	Radiated Emissions	APPENDIX B APPENDIX C APPENDIX D	Pass					
15.225(e)	Frequency Stability	APPENDIX E	Pass					
15.203	Antenna Requirement		Pass					
15.215(c)	20 dB Bandwidth	APPENDIX F	Pass					

NOTE:

"N/A" denotes test is not applicable in this Test Report.
 The report format version is TP.1.1.1.

1.1 TEST FACILITY

The test facilities used to collect the test data in this report:

	3-1, Ln. 169, Se							
The te	est sites and fac	ilities a	re covered	d under FC	C RN:674	4415; FCC DI	N:TW0659	
\boxtimes	C05		CB08		CB11	\boxtimes	CB15	CB16
\boxtimes	SR05							

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = 2$, providing a level of confidence of approximately **95**%. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 U_{cispr} requirement.

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U (dB)		
C05	CISPR	150 kHz ~ 30MHz	3.44		

B. Radiated emissions test :

Test Site	Method	Measurement Frequency Range	U,(dB)
CB15	CISPR	9 kHz ~ 150 kHz	2.82
(3m)	CISER	150 kHz ~ 30 MHz	2.58

Test Site	Method	Measurement Frequency Range	Ant. H / V	U,(dB)
		30 MHz ~ 200 MHz	V	4.20
CB15	CISPR	30 MHz ~ 200 MHz	Н	3.64
(3m)	CISER	200 MHz ~ 1,000 MHz	V	4.56
		200 MHz ~ 1,000 MHz	Н	3.90

NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Test Voltage	Tested by
AC Power Line Conducted Emissions	23 °C, 70 %	AC 120V	Vincent Lee
Radiated emissions (9KHz-30MHz)	22 °C, 67 %	AC 120V	Jay Kao
Radiated emissions (30MHz TO 1000MHz)	22 °C, 67 %	AC 120V	Jay Kao
Frequency Stability	23.5 °C, 51 %	AC 120V	William Wei
20 dB Bandwidth	23.5 °C, 51 %	AC 120V	William Wei

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

Equipment	Mobile Computer
Model Name	MC432
Brand Name	iMotion
Model Difference	The EUT includes two types Reader and memory: Honeywell: 64GB & Datalogic: 32GB.
Power Source	(1) DC Voltage supplied from AC/DC adapter.(2) Battery supplied.
Power Rating	 (1) #1 (US type) I/P: 100-240V~50 / 60Hz, 0.5A O/P: 5V, 2.5A / 9V, 2A / 12V, 1.5A #2 (EU type) I/P: 100-240V~50 / 60Hz, 0.5A O/P: 5V, 3A / 9V, 2A / 12V, 1.5A #3 (UK Type) I/P: 100-240V~50 / 60Hz, 0.7A O/P: 5V, 3A / 9V, 2A / 12V, 1.5A (2) I/P: DC 3.85V, 3900mAh / 15.01Wh
Products Covered	 1 * Travel Charger: Dongguan Aohai Technology Co., Ltd. / A138A-120150U-US2 2 * Reader: (1) Honeywell (memory: 64GB) (2) Datalogic (memory: 32GB) 2 * Power Adapter: (1) Jiangxi Jian Aohai Tecnology Co., Ltd. / A138A-120150U-EU4 (2) Dongguan Aohai Power Techology Co., Ltd. / A824-120150U-UK1 1 * Battery: ZhuHai COSMX / 1400-900057G 1 * Type C Cable: HOTRON/ D0017100R2SCZ
Frequency Range	13.56 MHz
Antenna Designation	LOOP Antenna
Max H-field strength	63.66 dBuV/m@3m(Peak)
Test Model	MC432
Sample Status	Engineering Sample
EUT Modification(s)	N/A
	IWA

NOTE:

(1) For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

(2) Channel List:

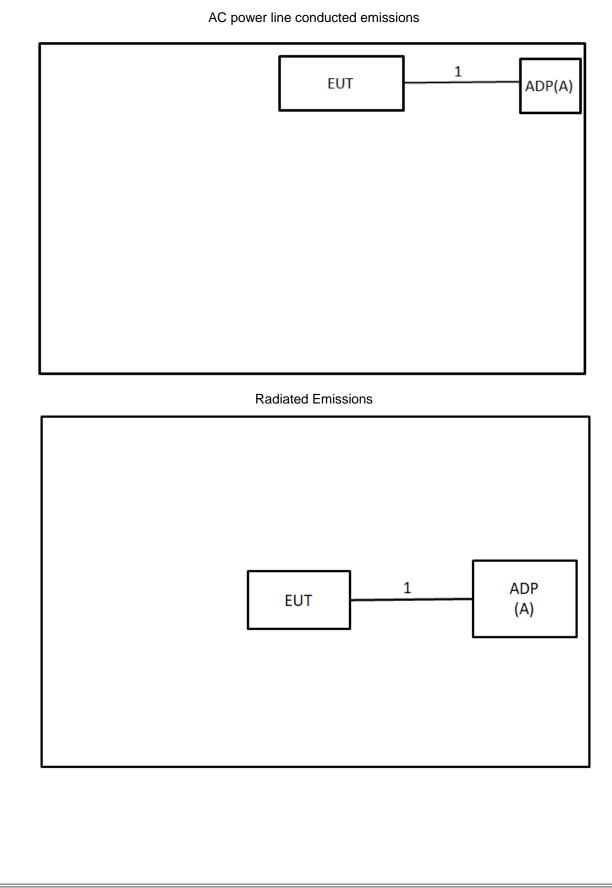
ChannelFrequency (MHz)0113.56

(3) Table for Filed Antenna:

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	Inpaq	IT4301	loop antenna	N/A	N/A

2.2 TEST MODES

Test Items	Test mode	Channel	Note
AC power line conducted emissions	Normal	-	-
Radiated emissions (9KHz-30MHz)	ТХ	01	-
Radiated emissions (30MHz TO 1000MHz)	ТХ	01	
Frequency Stability	ТХ	01	-
20 dB Bandwidth	ТХ	01	-


NOTE:

(1) The Radiated emissions test was verified based on the worst conducted power and Bandwidth test results reported in the original report.

2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

2.4 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.	Remarks
А	ADP	Dongguan Aohai Technology Co,. Ltd.	A138A-120150U- US2	N/A	Supplied by test requester
Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
1	NA	NA	1m	Type C Cable	Furnished by test lab.

3 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1 LIMIT

Frequency	Limit (dBµV)
(MHz)	Quasi-peak	Average
0.15 - 0.5	66 - 56 *	56 - 46 *
0.50 - 5.0	56	46
5.0 - 30.0	60	50

NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use) Margin Level = Measurement Value – Limit Value Calculation example:

38.22 + 3.45	=	41.67

Measurement Value		Limit Value		Margin Level
41.67	-	60	Π	-18.33

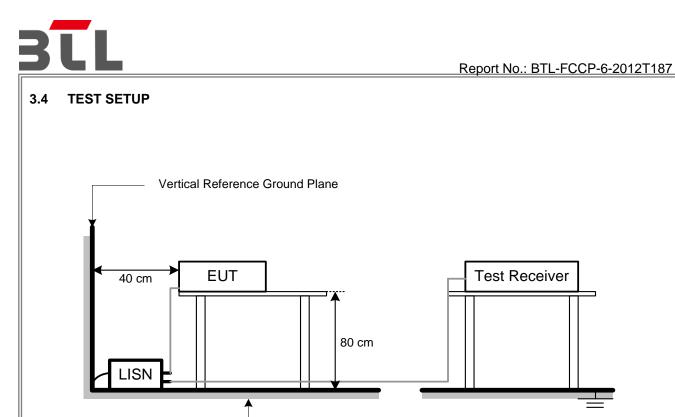
The following table is the setting of the receiver.

Receiver Parameter	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

3.2 TEST PROCEDURE

a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN).
 All other support equipment were powered from an additional LISN(s).

The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.


- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- c. Excess I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable will be terminated, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. The LISN is spaced at least 80 cm from the nearest part of the EUT chassis.
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

NOTE:

- In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.

3.3 DEVIATION FROM TEST STANDARD

No deviation.

—— Horizontal Reference Ground Plane

3.5 TEST RESULT

Please refer to the APPENDIX A.

4 RADIATED EMISSIONS TEST

4.1 LIMIT

		F	CC Part 15.209	
Frequency	Field Strength Lir	nitation	Field Strength Limitatio	n at 3m Measurement Dist
(MHz)	(uV/m)	Dist	(uV/m)	(dBuV/m)
0.009 - 0.490	2400 / F(KHz)	300m	10000 * 2400/F(KHz)	20log 2400/F(KHz) + 80
0.490 – 1.705	24000 / F(KHz)	30m	100 * 24000/F(KHz)	20log 24000/F(KHz) + 40
1.705 – 30.00	30	30m	100* 30	20log 30 + 40
30.0 - 88.0	100	3m	100	20log 100
88.0 - 216.0	150	3m	150	20log 150
216.0 - 960.0	200	3m	200	20log 200
Above 960.0	500	3m	500	20log 500
		FCC P	Part 15.225(a)/(b)/(c)	
Frequency	Field Strength Lir	nitation	Field Strength Limitatio	n at 3m Measurement Dist
(MHz)	(uV/m)	Dist	(uV/m)	(dBuV/m)
13.553 – 13.567	15,848	30 m	15,848*100	124
13.567 – 13.710	334	30 m	334*100	90.5
13.110 – 13.410 13.710 – 14.010	106	30 m	106*100	80.5

NOTE:

- (1) The tighter limit shall apply at the boundary between two frequency range.
- (2) Limitation expressed in dBuV/m is calculated by 20log Emission Level (uV/m).
- (3) If measurement is made at 3m distance, then F.S Limitation at 3m distance is adjusted by using the formula of $L_{d1} = L_{d2} * (d_2/d_1)^2$.

Example:

F.S Limit at 30m distance is 30uV/m, then F.S Limitation at 3m distance is adjusted as $L_{d1} = L_1 = 30uV/m * (10)^2 = 100 * 30 uV/m$ (4) The test result calculated as following:

4) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor(if use) Margin Level = Measurement Value – Limit Value

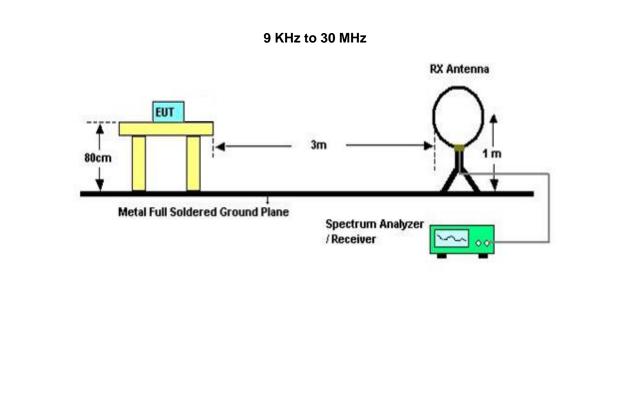
4.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz).
- b. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- c. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- d. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

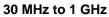
NOTE: (FCC PART 15.209)

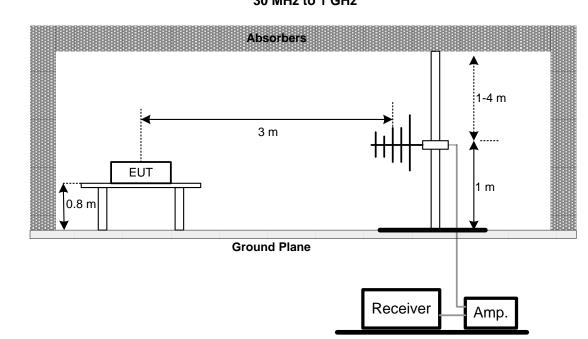
- a. Reading in which marked as QP or Peak means measurements by using are Quasi-Peak Mode with Detector BW=120 kHz.
- All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
 NOTE: (FCC PART 15.225)

a. Spectrum Setting:


9 KHz – 150 KHz, RBW= 200Hz, VBW=200Hz, Sweep time = 200 ms. 150 K Hz – 30 MHz, RBW= 10 KHz, VBW=10 KHz, Sweep time = 200 ms.

- 30 MHz 1000 MHz, RBW= 100KHz, VBW=100KHz, Sweep time = 200 ms.
- b. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- c. The Log-Bicon Antenna will use to test frequency range from 30MHz to 1000MHz and the Loop Antenna will use to test frequency below 30MHz.


4.3 DEVIATION FROM TEST STANDARD


No deviation.

4.4 TEST SETUP

4.5 **EUT OPERATING CONDITIONS**

The EUT was programmed to be in continuously transmitting mode.

4.6 TEST RESULT – 9 kHZ TO 30 MHZ– FCC PART 15.209

Please refer to the APPENDIX B

4.7 TEST RESULT – 30 MHZ TO 1 GHZ – FCC PART 15.209

Please refer to the APPENDIX C.

4.8 TEST RESULT – FCC PART 15.225

Please refer to the APPENDIX D.

NOTE:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

5 FREQUENCY STABILITY

5.1 LIMIT

FCC Part 15.225(e)

The frequency tolerance of the carrier signal shall be maintained within \pm -0.01% of the operating frequency over a temperature variation of - 20 degrees to + 50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.

For battery operated equipment, the equipment tests shall be performed using a new battery.

5.2 TEST PROCEDURE

- a. The equipment under test was connected to an external AC power supply and the RF output was connected to a frequency counter via feed through attenuators. The EUT was placed inside the temperature chamber.
- b. At room temperature (25±5°C), an external variable AC power supply was connected to the EUT. The frequency of the transmitter was measured for 115%, 100% and 85% of the nominal operating input voltage.

5.3 DEVIATION FROM TEST STANDARD

No deviation.

5.4 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

5.5 TEST RESULT

Please refer to the APPENDIX E.

6 20 DB BANDWIDTH

6.1 LIMIT

FCC Part 15.215(c)

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §15.217 through §15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

6.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting : RBW= 1 kHz, VBW=1 kHz, Sweep time = 20 ms.

6.3 DEVIATION FROM TEST STANDARD

No deviation.

6.4 TEST SETUP

6.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

6.6 TEST RESULT

Please refer to the APPENDIX F.

7 LIST OF MEASURING EQUIPMENTS

		AC Pow	er Line Conducted	d Emissions		
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	TWO-LINE V-NETWORK	R&S	ENV216	101050	2020/6/11	2021/6/10
2	Test Cable	EMCI	EMC400-BM-BM- 5000	170501	2020/6/8	2021/6/7
3	EMI Test Receiver	R&S	ESCI	100080	2020/6/15	2021/6/14
4	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A

			Radiated Emission	ons		
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Preamplifier	EMCI	EMC001340	980555	2020/4/10	2021/4/9
2	Preamplifier	EMCI	EMC02325B	980217	2020/4/10	2021/4/9
3	Test Cable	EMCI	EMC-SM-SM-100 0	180809	2020/4/10	2021/4/9
4	Test Cable	EMCI	EMC104-SM-SM- 3000	151205	2020/4/10	2021/4/9
5	Test Cable	EMCI	EMC-SM-SM-700 0	180408	2020/4/10	2021/4/9
6	MXE EMI Receiver	Agilent	N9038A	MY554200087	2020/6/10	2021/6/9
7	Signal Analyzer	Agilent	N9010A	MY56480554	2020/8/25	2021/8/24
8	Loop Ant	Electro-Metrics	EMCI-LPA600	274	2020/6/16	2021/6/15
9	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	VULB 9168-352	2020/7/24	2021/7/23
10	5dB Attenuator	EMCI	EMCI-N-6-05	AT-N0625	2020/7/24	2021/7/23
11	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A

		Freque	ency Stability Mea	asurement		
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Spectrum Analyzer	R&S	FSP 40	100129	2020/6/15	2021/6/14
2	Thermal Chamber	HOLINK	H-TH-2SP-B	EK04101902	2020/7/2	2021/7/1

		20 dE	Bandwidth Meas	surement		
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Spectrum Analyzer	R&S	FSP 40	100129	2020/6/15	2021/6/14

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

8 EUT TEST PHOTO

Please refer to document Appendix No.: TP-2012T187-FCCP-2 (APPENDIX-TEST PHOTOS).

9 EUT PHOTOS

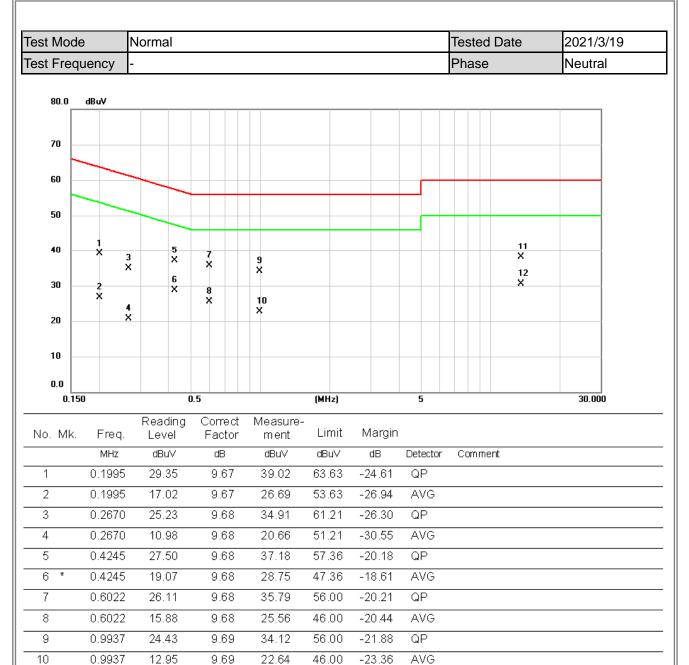
Please refer to document Appendix No.: EP-2012T187-1 (APPENDIX-EUT PHOTOS).

APPENDIX A AC POWER LINE CONDUCTED EMISSIONS

F									
Test Mod	de	Normal						Tested Date	2021/3/19
Test Fre	quency	-						Phase	Line
80.0	dBuV								
70									
60									
50									
40	1 X	3 X	5 X	7		9		11 ×	
30		4	6	×		×		12 X	
20	2 X	ž	×	8 ×		10 X			
10									
0.0	150		0.5		(MHz)		5		30.000
	150				נאחצו		5		50.000
No. Mk			Factor	Measure- ment	Limit	Margin			
1	MHz 0.1838	dBu∨ 25.95	dB 9.67	dBu∨ 35.62	dBu∨ 64.31	dB -28.69	Detector QP	Comment	
2	0.1838		9.67	21.26	54.31	-33.05	AVG		
3	0.3907		9.68	38.19	58.05	-19.86	QP		
4	0.3907		9.68	23.83	48.05	-24.22	AVG		
5	0.5370	26.27	9.68	35.95	56.00	-20.05	QP		
6	0.5370	15.09	9.68	24.77	46.00	-21.23	AVG		
7	0.9465	24.70	9.69	34.39	56.00	-21.61	QP		
8	0.9465	12.53	9.69	22.22	46.00	-23.78	AVG		
9	2.6340		9.76	32.83	56.00	-23.17	QP		
10	2.6340		9.76	21.25	46.00	-24.75	AVG		
11	13.5600	30.23	9.94	40.17	60.00	-19.83	QP		

REMARKS:

12 * 13.5600


Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value - Limit Value.

9.94

31.90

50.00 -18.10 AVG

21.96

REMARKS:

11

12

13.5600

13.5600

(1) Measurement Value = Reading Level + Correct Factor.

9.94

9.94

38.03

30.43

60.00

50.00

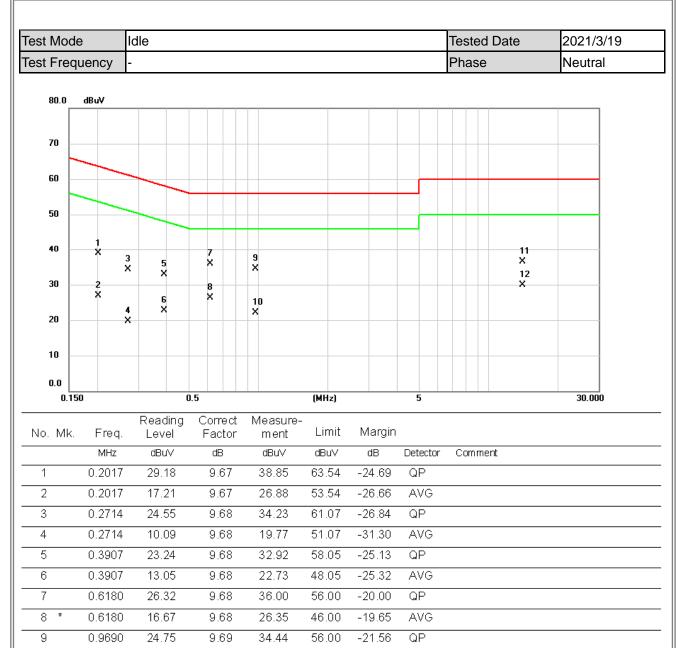
-21.97

-19.57

QP

AVG

(2) Margin Level = Measurement Value - Limit Value.


28.09

20.49

	.I.,	1.01.						TUIN	- 1 - 000	4/0/40
est Mod		Idle						Tested Da		1/3/19
est ⊢re	quency	-						Phase	Line	
80.0	dBuV									_
70										_
60										_
50										
40	1 X	э Х	5 X			7		9	11 × 12	
30	2	4	6			×		10 ×	X	_
20	2 X	×	×			8 ×		×		_
10										_
0.0										
U.1	150	l).5		(MHz)		5		30.	.000
No. Mk	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin				
No. Mk	MHz				Limit dBu∨	Margin dB	Detector	Comment		
1	MHz 0.1995	Level dBuV 28.69	Factor dB 9.67	ment dBu∨ 38.36	dBuV 63.63	dB -25.27	QP	Comment		
1	MHz 0.1995 0.1995	Level dBuV 28.69 14.40	Factor dB 9.67 9.67	ment dBuV 38.36 24.07	dBu∨ 63.63 53.63	dB -25.27 -29.56	QP AVG	Comment		
1 2 3	MHz 0.1995 0.1995 0.3952	Level dBuV 28.69 14.40 27.09	Factor dB 9.67 9.67 9.68	ment dBuV 38.36 24.07 36.77	dBu∨ 63.63 53.63 57.95	dB -25.27 -29.56 -21.18	QP AVG QP	Comment		
1 2 3 4	MHz 0.1995 0.1995 0.3952 0.3952	Level dBuV 28.69 14.40 27.09 14.37	Factor dB 9.67 9.67 9.68 9.68	ment dBuV 38.36 24.07 36.77 24.05	dBuV 63.63 53.63 57.95 47.95	dB -25.27 -29.56 -21.18 -23.90	QP AVG QP AVG	Comment		
1 2 3 4 5	MHz 0.1995 0.3952 0.3952 0.3952 0.5932	Level dBuV 28.69 14.40 27.09 14.37 25.95	Factor dB 9.67 9.68 9.68 9.68 9.68	ment dBuV 38.36 24.07 36.77 24.05 35.63	dBuV 63.63 53.63 57.95 47.95 56.00	dB -25.27 -29.56 -21.18 -23.90 -20.37	QP AVG QP AVG QP	Comment		
1 2 3 4 5 6	MHz 0.1995 0.1995 0.3952 0.3952 0.5932 0.5932	Level dBuV 28.69 14.40 27.09 14.37 25.95 13.99	Factor dB 9.67 9.68 9.68 9.68 9.68 9.68	ment dBuV 38.36 24.07 36.77 24.05 35.63 23.67	dBu∨ 63.63 53.63 57.95 47.95 56.00 46.00	dB -25.27 -29.56 -21.18 -23.90 -20.37 -22.33	QP AVG QP AVG QP AVG	Comment		
1 2 3 4 5 6 7	MHz 0.1995 0.3952 0.3952 0.3952 0.5932 0.5932 2.8253	Level dBuV 28.69 14.40 27.09 14.37 25.95 13.99 23.10	Factor dB 9.67 9.68 9.68 9.68 9.68 9.68 9.76	ment dBuV 38.36 24.07 36.77 24.05 35.63 23.67 32.86	dBu∨ 63.63 53.63 57.95 47.95 56.00 46.00 56.00	dB -25.27 -29.56 -21.18 -23.90 -20.37 -22.33 -23.14	QP AVG QP AVG QP AVG QP	Comment		
1 2 3 4 5 6 7 8	MHz 0.1995 0.3952 0.3952 0.3952 0.5932 0.5932 2.8253 2.8253	Level dBuV 28.69 14.40 27.09 14.37 25.95 13.99 23.10 11.86	Factor dB 9.67 9.68 9.68 9.68 9.68 9.68 9.76 9.76	ment dBuV 38.36 24.07 36.77 24.05 35.63 23.67 32.86 21.62	dBu∨ 63.63 53.63 57.95 47.95 56.00 46.00 56.00	dB -25.27 -29.56 -21.18 -23.90 -20.37 -22.33 -23.14 -23.14	QP AVG QP AVG QP AVG QP AVG	Comment		
1 2 3 4 5 6 7 8 9	MHz 0.1995 0.3952 0.3952 0.3952 0.5932 0.5932 2.8253 2.8253 8.9633	Level dBuV 28.69 14.40 27.09 14.37 25.95 13.99 23.10 11.86 23.47	Factor dB 9.67 9.68 9.68 9.68 9.68 9.76 9.76 9.91	ment dBuV 38.36 24.07 36.77 24.05 35.63 23.67 32.86 21.62 33.38	dBu∨ 63.63 53.63 57.95 47.95 56.00 46.00 56.00 46.00 60.00	dB -25.27 -29.56 -21.18 -23.90 -20.37 -22.33 -23.14 -24.38 -26.62	QP AVG QP AVG QP AVG QP AVG QP	Comment		
1 2 3 4 5 6 7 8 9 10	MHz 0.1995 0.3952 0.3952 0.5932 0.5932 2.8253 2.8253 2.8253 8.9633 8.9633	Level dBuV 28.69 14.40 27.09 14.37 25.95 13.99 23.10 11.86 23.47 13.88	Factor dB 9.67 9.68 9.68 9.68 9.68 9.76 9.76 9.91 9.91	ment dBuV 38.36 24.07 36.77 24.05 35.63 23.67 32.86 21.62 33.38 23.79	dBu∨ 63.63 53.63 57.95 47.95 56.00 46.00 56.00 46.00 60.00	dB -25.27 -29.56 -21.18 -23.90 -20.37 -22.33 -23.14 -24.38 -26.62 -26.21	QP AVG QP AVG AVG QP AVG QP AVG	Comment		
1 2 3 4 5 6 7 8 9	MHz 0.1995 0.3952 0.3952 0.3952 0.5932 0.5932 2.8253 2.8253 8.9633	Level dBuV 28.69 14.40 27.09 14.37 25.95 13.99 23.10 11.86 23.47	Factor dB 9.67 9.68 9.68 9.68 9.68 9.76 9.76 9.91	ment dBuV 38.36 24.07 36.77 24.05 35.63 23.67 32.86 21.62 33.38	dBu∨ 63.63 53.63 57.95 47.95 56.00 46.00 56.00 46.00 60.00	dB -25.27 -29.56 -21.18 -23.90 -20.37 -22.33 -23.14 -24.38 -26.62	QP AVG QP AVG QP AVG QP AVG QP	Comment		

REMARKS:

Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value - Limit Value.

REMARKS:

0.9690

14.0100

14.0100

10

11

12

(1) Measurement Value = Reading Level + Correct Factor.

9.69

9.94

9.94

22.12

36.49

29.95

46.00

60.00

50.00

-23.88

-23.51

-20.05

AVG

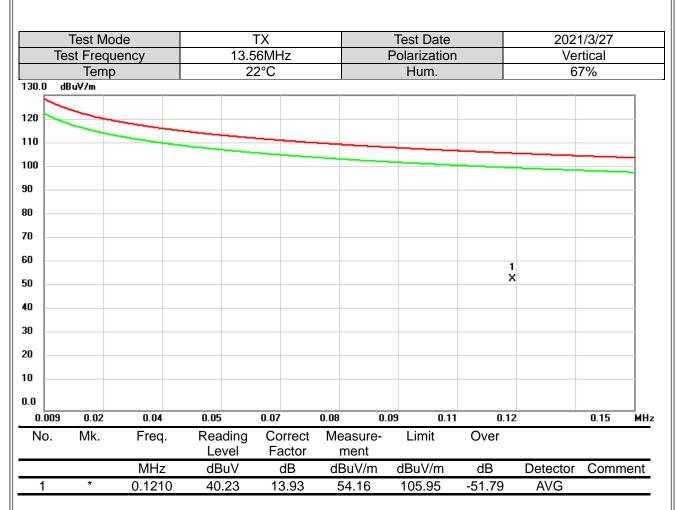
QP

AVG

(2) Margin Level = Measurement Value - Limit Value.

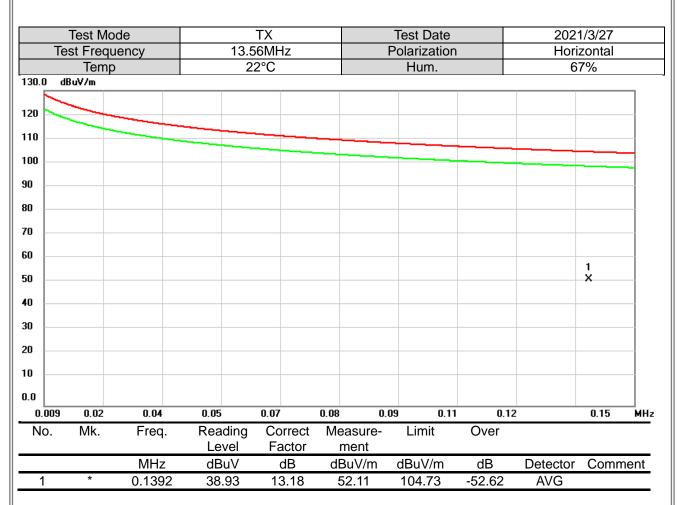
12.43

26.55


20.01

APPENDIX B RADIATED EMISSIONS - 9 KHZ TO 30 MHZ

(1) Measurement Value = Reading Level + Correct Factor.


(2) Margin Level = Measurement Value - Limit Value.

Test Mode Test Frequency			13.5	TX 56MHz		Test Date Polarization	n		1/3/27 rtical		
	Temp			2°C		Hum.			67%		
30.0 d	dBuV/m					-					
20											
10											
00											
A											
0											
o											
o 📐											
0	2				5						
0	×	3 K			5 X			6			
0	1 X			4 ×				×			
o 📃											
0											
o											
.0											
0.150	3.14	6.12	9.10	12.09	15.08 1	8.06 21.	04 24.0	3	30.00	 мн	
No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over				
		•	Level	Factor	ment						
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comm	nent	
1		1.5231	44.44	-2.10	42.34	63.95	-21.61	QP			
2		2.0305	54.63	-3.08	51.55	69.54	-17.99	QP			
3		3.7618	52.50	-4.91	47.59	69.54	-21.95	QP			
4		12.0004	46.79	-4.44	42.35	69.54	-27.19	QP			
5	*	15.3735	56.85	-4.87	51.98	69.54	-17.56	QP			
6		27.0150	47.22	-3.47	43.75	69.54	-25.79	QP			

Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value - Limit Value.

(1) Measurement Value = Reading Level + Correct Factor.

(2) Margin Level = Measurement Value - Limit Value.

Test Mode Test Frequency		13 !	TX 56MHz		Test Date Polarizatio			2021/3/27 Horizontal		
	Temp			2°C		Hum.			7%	
30.0 d	IBuV/m	,	-	20					1 /0	
20										_
)0										
) <mark>N</mark> —										
)										
'										-
) \										
)	-									
, 📃										
1										1
) <u>×</u>		2	3		4 ×		5	6		
)		×	×		^		×	ſ	•	
,										
0				40.00	15.00					
0.150	3.14	6.12	9.10 Deceliae	12.09		1.06 21. Limit		13	30.00	MH
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comm	nent
1	*	0.5978	32.25	2.05	34.30	72.07	-37.77	QP	Comm	iont
2		5.6125	30.62	-5.07	25.55	69.54	-43.99	QP		
3		9.7617	27.26	-4.24	23.02	69.54	-46.52	QP		
4		15.8511	31.83	-4.92	26.91	69.54	-42.63	QP		
5		21.3136	30.06	-5.06	25.00	69.54	-44.54	QP		
6		27.1344	30.73	-3.42	27.31	69.54	-42.23	QP		

Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value - Limit Value.

APPENDIX C RADIATED EMISSIONS - 30 MHZ TO 1 GHZ

-	Test Mode				ТΧ				Test Date				2021/3/27		
Tes	st Frequ				56MH	Ηz			Polariza			Vertical 67%			
	Temp			2	2°C				Hum	•					
80.0 dB	uV/m													_	
70															
60															
50															
40															
•0 . X		2											6		
30		2 X					4			5 X			6 X		
					3 X		4 ×								
20															
10															
0.0															
30.000	127.00	224.00) 32	1.00	418.	.00	515.	00 6	12.00	709.0	00 806	.00	1000.00	⊣мн	
No.	Mk.	Freq.		eading _evel		orrect actor		easure- ment	Limit		Over				
		MHz		BuV		dB		BuV/m	dBuV/ı	m	dB	Detector	Comm	ent	
1	*	30.970		3.62		9.05		34.57	40.00		-5.43	peak		-	
2		203.630		2.49		0.75		31.74	43.50		-11.76	peak			
3		393.750		28.14		5.00	2	23.14	46.00		-22.86	peak			
4		497.540	0 2	28.66	-2	2.79	2	25.87	46.00)	-20.13	peak			
5		705.120	0 2	28.86	0).93	2	29.79	46.00)	-16.21	peak			
6		932.100	0 2	27.15	2	1.75	3	31.90	46.00)	-14.10	peak			

REMARKS:

Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value - Limit Value.

	Test Mo		10	TX		Test Date	_	2021/3/27 Horizontal 67%		
les	st Frequ			.56MHz		Polarizatio	n			
80.0 dB	Temp uV/m			22°C		Hum.		6	/%	
8U.U AB	uv/m									
70										
60										
50										
40										
30	J	1 X	2 X			3 X	4 5 X X		e E	
20										
10										
0.0										
30.000	127.00	224.00	321.00	418.00	515.00 61	12.00 709	9.00 806	.00	1000.00 MI	
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	*	203.6300	42.55	-10.75	31.80	43.50	-11.70	QP		
2		312.2700	37.73	-7.07	30.66	46.00	-15.34	peak		
3		645.9500	27.76	-0.01	27.75	46.00	-18.25	peak		
4		705.1200	32.18	0.93	33.11	46.00	-12.89	peak		
5		773.0200	30.86	2.22	33.08	46.00	-12.92	peak		
6		967.0200	27.11	5.30	32.41	54.00	-21.59	peak		

Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value - Limit Value.

APPENDIX D RADIATED EMISSIONS - FCC PART 15.225

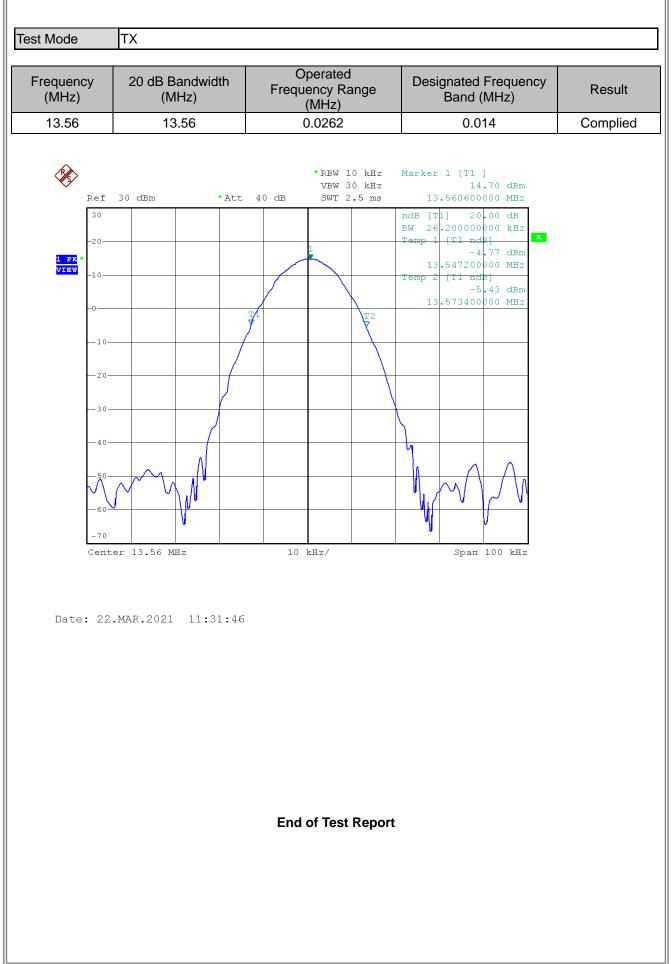
	Test Mo			ТХ		Test Date			1/3/27	
Tes	st Frequ			56MHz	Polarization			Vertical		
	Temp		2	2°C		Hum.		6	7%	
30.0 dB	uV/m									_
20										
10										
00										1
io										-
0					L					-
0										
;o										
					×					
i0										
10										_
30										
20										-
10.0										
13.510	13.52	13.53	13.54	13.55	13.56 13	8.57 13.5	8 13.5	9	13.61	МН
No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over			
			Level	Factor	ment					
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comm	ent
1	*	13.5604	61.70	-4.63	57.07	124.00	-66.93	peak		

(1) Measurement Value = Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.

	Test Mo			ТΧ		Test Date			1/3/27		
Tes	st Frequ			56MHz		Polarization			Horizontal		
	Temp		2	2°C		Hum.		6	7%		
30.0 dB	uV/m									_	
20											
10											
00										1	
io										-	
					IL						
0					1						
:0					1 X						
io 📃											
10										-	
30											
20											
10.0											
13.510	13.52	13.53	13.54	13.55		3.57 13.5		9	13.61	MH	
No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over				
			Level	Factor	ment	ID \//		<u> </u>			
	*	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comm	ent	
1	~	13.5602	68.29	-4.63	63.66	124.00	-60.34	peak			

(1) Measurement Value = Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.

APPENDIX E FREQUENCY STABILITY MEASUREMENT


										-		
Test Mod	de TX	,					Te	ested D	ate	202	1/3/22	
	Condition		Frequency Error (ppm)									
Temperature	Modulation Mode	Test Freq.	0 min	2 min	5 min	10 min	0 min	2 min	5 min	10 min	Limit (ppm)	Result
						No	ormal					
T _{20°C} Vmax	CW	13.56	13.560800	13.560800	13.560800	13.560810	59.00	59.00	59.00	59.73	400	Pass
T _{20°C} Vmin	CW	13.56	13.560800	13.560800	13.560800	13.560800	59.00	59.00	59.00	59.00	100	Pass
						Ext	treme					
T _{50°C} Vnom	CW	13.56	13.560600	13.560600	13.560610	13.560610	44.25	44.25	44.99	44.99		Pass
T _{40°C} Vnom	CW	13.56	13.560800	13.560800	13.560810	13.560810	59.00	59.00	59.73	59.73		Pass
T _{30°C} Vnom	CW	13.56	13.560800	13.560800	13.560810	13.560810	59.00	59.00	59.73	59.73		Pass
T _{20°C} Vnom	CW	13.56	13.560800	13.560800	13.560800	13.560800	59.00	59.00	59.00	59.00	400	Pass
T _{10°C} Vnom	CW	13.56	13.560800	13.560800	13.560800	13.560800	59.00	59.00	59.00	59.00	100	Pass
T _{0°C} Vnom	CW	13.56	13.560800	13.560800	13.560800	13.560800	59.00	59.00	59.00	59.00	1	Pass
T. _{10°C} Vnom	CW	13.56	13.560600	13.560600	13.560600	13.560610	44.25	44.25	44.25	44.99		Pass
T. _{20°C} Vnom	CW	13.56	13.560600	13.560600	13.560600	13.560610	44.25	44.25	44.25	44.99	1	Pass

NOTE: 0.01 % = 100 ppm.

APPENDIX F	20 DB BANDWIDTH	

