Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Element Certificate No: D1900V2-5d148 Feb22 # **CALIBRATION CERTIFICATE** Object D1900V2 - SN:5d148 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz BN 02-10-202 Calibration date: February 21, 2022 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | Power sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | Power sensor NRP-Z91 | SN: 103245 | 09-Apr-21 (No. 217-03292) | Apr-22 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 09-Apr-21 (No. 217-03343) | Apr-22 | | Type-N mismatch combination | SN: 310982 / 06327 | 09-Apr-21 (No. 217-03344) | Apr-22 | | Reference Probe EX3DV4 | SN: 7349 | 31-Dec-21 (No. EX3-7349_Dec21) | Dec-22 | | DAE4 | SN: 601 | 01-Nov-21 (No. DAE4-601_Nov21) | Nov-22 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-22 | | | Name | Fun ctio n | Signature | | Calibrated by: | Aldonia Georgiadou | Laboratory Technician | # J | | | | | Y MAD | | Approved by: | Niels Kuster | Quality Manager | | | | | | | Issued: February 24, 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D1900V2-5d148 Feb22 # **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 000 0400 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.6 ± 6 % | 1.41 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 10.1 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 40.1 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.26 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 21.0 W/kg ± 16.5 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 53.0 ± 6 % | 1.50 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL | SAR averaged over 1 cm³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.90 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 39.9 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.19 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.9 W/kg ± 16.5 % (k=2) | ## Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | $53.9 \Omega + 6.5 j\Omega$ | |--------------------------------------|-----------------------------| | Return Loss | - 22.8 dB | ## **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | $49.0~\Omega + 8.0~\mathrm{j}\Omega$ | |--------------------------------------|--------------------------------------| | Return Loss | - 21.8 dB | ### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.198 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| ## **DASY5 Validation Report for Head TSL** Date: 21.02.2022 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d148 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.41 \text{ S/m}$; $\varepsilon_r = 39.6$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.43, 8.43, 8.43) @ 1900 MHz; Calibrated: 31,12,2021 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 01.11.2021 • Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 • DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 110.0 V/m; Power Drift = 0.04 dB Peak SAR
(extrapolated) = 18.6 W/kg #### SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.26 W/kg Smallest distance from peaks to all points 3 dB below = 9.8 mm Ratio of SAR at M2 to SAR at M1 = 54.6% Maximum value of SAR (measured) = 15.5 W/kg 0 dB = 15.5 W/kg = 11.90 dBW/kg # Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 21.02.2022 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d148 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.50 \text{ S/m}$; $\varepsilon_r = 53.0$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ## DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.42, 8.42, 8.42) @ 1900 MHz; Calibrated: 31.12.2021 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 01.11.2021 • Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 • DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) # Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 105.3 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 18.4 W/kg ### SAR(1 g) = 9.90 W/kg; SAR(10 g) = 5.19 W/kg Smallest distance from peaks to all points 3 dB below = 9.5 mm Ratio of SAR at M2 to SAR at M1 = 55% Maximum value of SAR (measured) = 15.3 W/kg 0 dB = 15.3 W/kg = 11.84 dBW/kg # Impedance Measurement Plot for Body TSL # element ## **ELEMENT MATERIALS TECHNOLOGY** (formerly PCTEST) 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.element.com # **Certification of Calibration** Object D1900V2 – SN: 5d148 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extension Calibration date: 02/02/2023 Description: SAR Validation Dipole at 1900 MHz. Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |-----------------------|---------------|---|------------|--------------|------------|---------------| | Agilent | N5182A | MXG Vector Signal Generator | 11/30/2022 | Annual | 11/30/2023 | MY47420603 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 343971 | | Anritsu | MA2411B | Pulse Power Sensor | 3/28/2022 | Annual | 3/28/2023 | 1339007 | | Anritsu | MA2411B | Pulse Power Sensor | 3/2/2022 | Annual | 3/2/2023 | 1126066 | | Anritsu | ML2496A | Power Meter | 3/31/2022 | Annual | 3/31/2023 | 1138001 | | Anritsu | ML2496A | Power Meter | 3/17/2022 | Annual | 3/17/2023 | 941001 | | Control Company | 4040 | Therm./ Clock/ Humidity Monitor | 3/12/2021 | Biennial | 3/12/2023 | 210202100 | | Control Company | 4352 | Long Stem Thermometer | 9/10/2021 | Biennial | 9/10/2023 | 210774678 | | Mini-Circuits | NLP-2950+ | Low Pass Filter DC to 2700 MHz | CBT | N/A | CBT | N/A | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Pasternack | PE5011-1 | Torque Wrench | 12/21/2021 | Biennial | 12/21/2023 | 82475 | | Mini-Circuits | ZHDC-16-63-S+ | Coupler | CBT | N/A | CBT | N/A | | Rohde & Schwarz | ZNLE6 | Vector Network Analyzer | 10/21/2022 | Annual | 10/21/2023 | 101307 | | SPEAG | DAK-3.5 | Dielectric Assessment Kit | 5/12/2022 | Annual | 5/12/2023 | 1070 | | Keysight Technologies | 85033E | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 6/21/2022 | Annual | 6/21/2023 | MY53402352 | | SPEAG | EX3DV4 | SAR Probe | 11/11/2022 | Annual | 11/11/2023 | 7551 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 11/10/2022 | Annual | 11/10/2023 | 1323 | # Measurement Uncertainty = ±23% (k=2) | | Name | Function | Signature | |----------------|-----------------|-----------------------------|-----------| | Calibrated By: | Tho Tong | Test Engineer | The Tong | | Approved By: | Kaitlin O'Keefe | Senior Technical
Manager | 3COK | | Object: | Date Issued: | Page 1 of 4 | |---------------------|--------------|-------------| | D1900V2 - SN: 5d148 | 02/02/2023 | rage 1014 | # **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date: | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | Certificate
SAR Target
Head (1g)
W/kg @ 20.0
dBm | Measured
Head SAR (1g)
W/kg @ 20.0
dBm | 79/3 | | (10a) W/ka @ | Deviation 10g
(%) | Certificate
Impedance
Head (Ohm)
Real | Measured
Impedance
Head (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Head (Ohm)
Imaginary | Measured
Impedance
Head (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Head (dB) | Measured
Return Loss
Head (dB) | Deviation (%) | PASS/FAIL | |---------------------|----------------|---|--|---|--------|---|--------------|----------------------|--|---|--------------------------|---|--|----------------------------------|---|--------------------------------------|---------------|-----------| | 2/21/2022 | 2/2/2023 | 1.198 | 4.01 | 3.95 | -1.50% | 2.1 | 2.06 | -1.90% | 53.9 | 49.1 | 4.8 | 6.5 | 5.7 | 0.8 | -22.8 | -24.7 | -8.30% | PASS | | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | Certificate
SAR Target
Body (1g)
W/kg @ 20.0
dBm | Measured
Body SAR (1g)
W/kg @ 20.0
dBm | (9/.) | Certificate
SAR Target
Body (10g)
W/kg @ 20.0
dBm | (10a) W/ka @ | Deviation 10g
(%) | | Measured
Impedance
Body (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Body (Ohm)
Imaginary | Measured
Impedance
Body (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Body (dB) | Measured
Return Loss
Body (dB) | Deviation (%) | PASS/FAIL | | 2/21/2022 | 2/2/2023 | 1.198 | 3.99 | 3.96 | -0.75% | 2.09 | 2.07 | -0.96% | 49 | 45.2 | 3.8 | 8 | 5.2 | 2.8 | -21.8 | -22.6 | -3.60% | PASS | | Object: | Date Issued: | Page 2 of 4 | |---------------------|--------------|--------------| | D1900V2 - SN: 5d148 | 02/02/2023 | r age 2 01 4 | ### Impedance & Return-Loss Measurement Plot for Head TSL # Impedance & Return-Loss Measurement Plot for Body TSL ## **Calibration Laboratory of** Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Element . Yangin, Republic of Korea S Certificate No. D1900V2-5d141_Apr23 # **CALIBRATION CERTIFICATE** Object D1900V2 - SN:5d141 Calibration procedure(s) QA CAL-05.v12 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: April 18, 2023 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP2 | SN: 104778 | 30-Mar-23 (No. 217-03804/03805) | Mar-24 | | Power sensor NRP-Z91 | SN: 103244 | 30-Mar-23 (No. 217-03804) | Mar-24 | | Power sensor NRP-Z91 | SN: 103245 | 30-Mar-23 (No. 217-03805) | Mar-24 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 30-Mar-23 (No. 217-03809) | Mar-24 | | Type-N mismatch combination | SN: 310982 / 06327 | 30-Mar-23 (No. 217-03810) | Mar-24 | | Reference Probe EX3DV4 | SN: 7349 | 10-Jan-23 (No. EX3-7349_Jan23) | Jan-24 | | DAE4 | SN: 601 | 19-Dec-22 (No. DAE4-601_Dec22) | Dec-23 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-22) | In house check: Oct-24 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-22) | In house check: Oct-24 | | | Name | Function | Signature | | Calibrated by: | Paulo Pina |
Laboratory Technician | | | | | | / <u></u> | | Approved by: | Sven Kühn | Technical Manager | 0.1 | | | | | 0.4 | Issued: April 19, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x.v.z not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ## **Additional Documentation:** c) DASY System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied | | Temperature | Permittivity | Conductivity | |---|-----------------|--|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.9 ± 6 % | 1.39 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | The second secon | | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.99 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 39.9 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.21 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.8 W/kg ± 16.5 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.4 ± 6 % | 1.51 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 10.1 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 40.4 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.26 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.0 W/kg ± 16.5 % (k=2) | Certificate No: D1900V2-5d141_Apr23 Pag # Appendix (Additional assessments outside the scope of SCS 0108) # **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 54.4 Ω + 6.5 jΩ | |--------------------------------------|-----------------| | Return Loss | - 22.5 dB | # **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | /49.3 Ω ¥ 8.0 jΩ | |--------------------------------------|------------------| | Return Loss | (- 21.9 dB | # **General Antenna Parameters and Design** | Electrical Delay (one direction) | 4.400 | |----------------------------------|----------| | Liberious Being (one direction) | 1.199 ns | | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | 00540 |
--|-------| | Maria actarca by | SPEAG | | to the second se | | Certificate No: D1900V2-5d141_Apr23 # **DASY5 Validation Report for Head TSL** Date: 14.04.2023 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d141 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.39$ S/m; $\epsilon_r = 38.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(8.35, 8.35, 8.35) @ 1900 MHz; Calibrated: 10.01.2023 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 19.12.2022 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 • DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 110.8 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 18.2 W/kg SAR(1 g) = 9.99 W/kg; SAR(10 g) = 5.21 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 55.1% Maximum value of SAR (measured) = 15.4 W/kg 0 dB = 15.4 W/kg = 11.87 dBW/kg # Impedance Measurement Plot for Head TSL ## **DASY5 Validation Report for Body TSL** Date: 18.04.2023 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d141 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.51 \text{ S/m}$; $\varepsilon_r = 52.4$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.42, 8.42, 8.42) @ 1900 MHz; Calibrated: 10.01.2023 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 19.12.2022 Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 • DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) # Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 104.2 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 18.7 W/kg ## SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.26 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 55% Maximum value of SAR (measured) = 15.5 W/kg 0 dB = 15.5 W/kg = 11.90 dBW/kg # Impedance Measurement Plot for Body TSL # **Calibration Laboratory of** Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage Servizio svizzero di taratura S **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **Element** Tendir Republica Kares Certificate No. D1900V2-5d026 May23 # CALIBRATION CERTIFICATE Object D1900V2 - SN:5d026 Calibration procedure(s) QA CAL-05.v12 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: May 12, 2023 6/9/2023 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (Si). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP2 | SN: 104778 | 30-Mar-23 (No. 217-03804/03805) | Mar-24 | | Power sensor NRP-Z91 | SN: 103244 | 30-Mar-23 (No. 217-03804) | Mar-24 | | Power sensor NRP-Z91 | SN: 103245 | 30-Mar-23 (No. 217-03805) | Mar-24 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 30-Mar-23 (No. 217-03809) | Mar-24 | | Type-N mismatch combination | SN: 310982 / 06327 | 30-Mar-23 (No. 217-03810) | Mar-24 | | Reference Probe EX3DV4 | SN: 7349 | 10-Jan-23 (No. EX3-7349_Jan23) | Jan-24 | | DAE4 | SN: 601 | 19-Dec-22 (No. DAE4-601_Dec22) | Dec-23 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-22) | In house check: Oct-24 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-22) | In house check: Oct-24 | | | Name | Function | Signature | | Calibrated by: | Paulo Pina | Laboratory Technician | | | | | | | | Approved by: | Sven Kühn | Technical Manager | | | | | | | Issued: May 16, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D1900V2-5d026 May23 # **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1900V2-5d026_May23 Page 2 of 8 ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan
Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.7 ± 6 % | 1.40 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.79 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 38.9 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | , | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.14 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.5 W/kg ± 16.5 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.0 ± 6 % | 1.52 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 10.0 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 39.8 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.27 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.0 W/kg ± 16.5 % (k=2) | Certificate No: D1900V2-5d026_May23 Page 3 of 8 ## Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | _52,3 ¹ Ω + 7.8 ¹ Ω | |--------------------------------------|---| | Return Loss | - 22.0 dB | ## **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 47.8 Ω + 8.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 21.4 dB | ### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.199 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** Certificate No: D1900V2-5d026_May23 Page 4 of 8 ### **DASY5 Validation Report for Head TSL** Date: 12.05.2023 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d026 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.4 \text{ S/m}$; $\epsilon_r = 38.7$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(8.35, 8.35, 8.35) @ 1900 MHz; Calibrated: 10.01.2023 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 19.12.2022 • Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 • DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 109.1 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 17.9 W/kg #### SAR(1 g) = 9.79 W/kg; SAR(10 g) = 5.14 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 55.3% Maximum value of SAR (measured) = 15.1 W/kg 0 dB = 15.1 W/kg = 11.79 dBW/kg # Impedance Measurement Plot for Head TSL ## **DASY5 Validation Report for Body TSL** Date: 12.05.2023 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d026 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.52 \text{ S/m}$; $\varepsilon_r = 52$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ## DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(8.42, 8.42, 8.42) @ 1900 MHz; Calibrated: 10.01.2023 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 19.12.2022 • Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 • DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) # Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 103.4 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 18.5 W/kg SAR(1 g) = 10 W/kg; SAR(10 g) = 5.27 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 55.6% Maximum value of SAR (measured) = 15.2 W/kg 0 dB = 15.2 W/kg = 11.82 dBW/kg # Impedance Measurement Plot for Body TSL ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) Accreditation No.: SCS 0108 The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **PC Test** Certificate No: D2300V2-1116_Jun21 # **CALIBRATION CERTIFICATE** Object D2300V2 - SN:1116 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: June 03, 2021 BN 06-20-21 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). BN 05-30-22 The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) BN 06-22-2023 | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | Power sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | Power sensor NRP-Z91 | SN: 103245 | 09-Apr-21 (No. 217-03292) | Apr-22 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 09-Apr-21 (No. 217-03343) | Apr-22 | | Type-N mismatch combination | SN: 310982 / 06327 | 09-Apr-21 (No. 217-03344) | Apr-22 | | Reference Probe EX3DV4 | SN: 7349 | 28-Dec-20 (No. EX3-7349_Dec20) | Dec-21 | | DAE4 | SN: 601 | 02-Nov-20 (No. DAE4-601_Nov20) | Nov-21 | | | | | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-21 | | | Name | Function | Signature | | Calibrated by: | Jeffrey Katzman | Laboratory Technician | | | | | | O. 67 | | Approved by: | Katja Pokovic | Technical Manager | | | | | | 1645 | | | | | | Issued: June 11, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. # **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate
(SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2300V2-1116_Jun21 Page 2 of 8 ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | · | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 2300 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.5 | 1.67 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.2 ± 6 % | 1.70 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 12.6 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 49.6 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.01 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.8 W/kg ± 16.5 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.9 | 1.81 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.2 ± 6 % | 1.86 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 12.5 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 49.2 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.98 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 23.7 W/kg ± 16.5 % (k=2) | Certificate No: D2300V2-1116_Jun21 Page 3 of 8 # Appendix (Additional assessments outside the scope of SCS 0108) ### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 49.7 Ω - 3.3 jΩ | |--------------------------------------|-----------------| | Return Loss | - 29.5 dB | ## **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 46.2 Ω - 2.3 jΩ | |--------------------------------------|-----------------| | Return Loss | - 26.7 dB | ## **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.170 ns | |-----------------------------------|----------| | = restrict Policy (one direction) | 1.170113 | | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | | Y | |-----------------|-------| | Manufactured by | SPEAG | Certificate No: D2300V2-1116_Jun21 #### **DASY5 Validation Report for Head TSL** Date: 03.06.2021 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN:1116 Communication System: UID 0 - CW; Frequency: 2300 MHz Medium parameters used: f = 2300 MHz; $\sigma = 1.70 \text{ S/m}$; $\varepsilon_r = 38.2$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(7.98, 7.98, 7.98) @ 2300 MHz; Calibrated: 28.12.2020 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 02.11.2020 • Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 • DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 117.7 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 23.3 W/kg SAR(1 g) = 12.6 W/kg; SAR(10 g) = 6.01 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 54.2% Maximum value of SAR (measured) = 20.0 W/kg 0 dB = 20.0 W/kg = 13.01 dBW/kg # Impedance Measurement Plot for Head TSL # **DASY5 Validation Report for Body TSL** Date: 03.06.2021 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN:1116 Communication System: UID 0 - CW; Frequency: 2300 MHz Medium parameters used: f = 2300 MHz; $\sigma = 1.86$ S/m; $\epsilon_r = 52.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(8.13, 8.13, 8.13) @ 2300 MHz; Calibrated: 28.12.2020 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 02.11.2020 Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 • DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) # Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 110.5 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 23.5 W/kg SAR(1 g) = 12.5 W/kg; SAR(10 g) = 5.98 W/kg Smallest distance from peaks to all points 3 dB below = 8.2 mm Ratio of SAR at M2 to SAR at M1 = 54.1% Maximum value of SAR (measured) = 19.9 W/kg 0 dB = 19.9 W/kg = 12.99 dBW/kg # Impedance Measurement Plot for Body TSL # element #### **ELEMENT MATERIALS TECHNOLOGY** (formerly PCTEST) 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.element.com ## **Certification of Calibration** Object D2300V2 – SN: 1116 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extension Calibration date: 05/29/2022 Description: SAR Validation Dipole at 2300 MHz. Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |-----------------------|---------------|---|------------|--------------|------------|---------------| | Agilent | N5182A | MXG Vector Signal Generator | 6/21/2021 | Annual | 6/21/2022 | MY47420603 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 343971 | | Anritsu | MA2411B | Pulse Power Sensor | 9/21/2021 | Annual | 9/21/2022 | 1339008 | | Anritsu | MA2411B | Pulse Power Sensor | 10/21/2021 | Annual | 10/21/2022 | 1339027 | | Anritsu | ML2496A | Power Meter | 11/29/2021 | Annual | 11/29/2022 | 1840005 | | Control Company | 4040 | Therm./ Clock/ Humidity Monitor | 3/12/2021 | Biennial | 3/12/2023 | 210202100 | | Control Company | 4352 | Ultra Long Stem Thermometer | 10/25/2021 | Annual | 10/25/2022 | 200645916 | | Control Company | 4353 | Long Stem Thermometer | 10/28/2020 | Biennial | 10/28/2022 | 200670653 | | MiniCircuits | VLF-6000+ | Low Pass Filter | CBT | N/A | CBT | N/A | | Mini-Circuits | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator | CBT | N/A | CBT
| N/A | | Mini-Circuits | NLP-2950+ | Low Pass Filter DC to 2700 MHz | CBT | N/A | CBT | N/A | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Pasternack | NC-100 | Torque Wrench | 8/4/2020 | Biennial | 8/4/2022 | N/A | | Mini-Circuits | ZHDC-16-63-S+ | Coupler | CBT | N/A | CBT | N/A | | Rohde & Schwarz | ZNLE6 | Vector Network Analyzer | 10/20/2021 | Annual | 10/20/2022 | 101307 | | SPEAG | DAK-3.5 | Dielectric Assessment Kit | 8/18/2021 | Annual | 8/18/2022 | 1041 | | Keysight Technologies | 85033E | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 9/27/2021 | Annual | 9/27/2022 | MY53401181 | | SPEAG | EX3DV4 | SAR Probe | 7/20/2021 | Annual | 7/20/2022 | 7410 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 7/13/2021 | Annual | 7/13/2022 | 1583 | | SPEAG | EX3DV4 | SAR Probe | 9/20/2021 | Annual | 9/20/2022 | 7552 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 8/4/2021 | Annual | 8/4/2022 | 1680 | ## Measurement Uncertainty = ±23% (k=2) | | Name | Function | Signature | |----------------|------------------------|-----------------------------|-----------| | Calibrated By: | Bizunesh
Baldinazzo | Test Engineer | ВВ | | Approved By: | Kaitlin O'Keefe | Senior Technical
Manager | 20K | | Object: | Date Issued: | Page 1 of 4 | |-------------------|--------------|-------------| | D2300V2 - SN:1116 | 05/29/2022 | Page 1 of 4 | ## **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date: | Calibration
Date | Extension
Date | Certificate
Electrical
Delay (ns) | Certificate
SAR Target
Head (1g)
W/kg @ 20.0
dBm | Head SAR (1g) | (0/) | Certificate
SAR Target
Head (10g)
W/kg @ 20.0
dBm | (10a) W/ka @ | Deviation 10g
(%) | Certificate
Impedance
Head (Ohm)
Real | Measured
Impedance
Head (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Head (Ohm)
Imaginary | Measured
Impedance
Head (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Head (dB) | Measured
Return Loss
Head (dB) | Deviation (%) | PASS/FAIL | |---------------------|-------------------|---|--|---------------|--------|---|----------------|----------------------|--|---|--------------------------|---|--|----------------------------------|---|--------------------------------------|---------------|-----------| | 6/3/2021 | 5/29/2022 | 1.17 | 4.96 | 5 | 0.81% | 2.38 | 2.37 | -0.42% | 49.7 | 51.8 | 2.1 | -3.3 | -3.8 | 0.5 | -29.5 | -27.6 | 6.30% | PASS | | Calibration
Date | Extension
Date | Certificate
Electrical
Delay (ns) | Certificate
SAR Target
Body (1g)
W/kg @ 20.0
dBm | Body SAR (1g) | (0/) | Certificate
SAR Target
Body (10g)
W/kg @ 20.0
dBm | (40=) M/// (5) | Deviation 10g
(%) | | Measured
Impedance
Body (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Body (Ohm)
Imaginary | Measured
Impedance
Body (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Body (dB) | Measured
Return Loss
Body (dB) | Deviation (%) | PASS/FAIL | | 6/3/2021 | 5/29/2022 | 1.17 | 4.92 | 4.55 | -7.52% | 2.37 | 2.17 | -8.44% | 46.2 | 45.1 | 1.1 | -2.3 | -5.1 | 2.8 | -26.7 | -22.5 | 15.90% | PASS | | Object: | Date Issued: | Page 2 of 4 | |-------------------|--------------|-------------| | D2300V2 - SN:1116 | 05/29/2022 | raye 2 01 4 | #### Impedance & Return-Loss Measurement Plot for Head TSL ## Impedance & Return-Loss Measurement Plot for Body TSL # element #### **ELEMENT MATERIALS TECHNOLOGY** (formerly PCTEST) 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.element.com ## **Certification of Calibration** Object D2300V2 – SN: 1116 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extension Calibration date: 06/02/2023 Description: SAR Validation Dipole at 2300 MHz. Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |-----------------------|---------------|---|------------|--------------|------------|---------------| | Agilent | N5182A | MXG Vector Signal Generator | 11/30/2022 | Annual | 11/30/2023 | MY47420603 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 343971 | | Anritsu | MA2411B | Pulse Power Sensor | 10/21/2022 | Annual | 10/21/2023 | 1207364 | | Anritsu | ML2496A | Power Meter | 8/16/2022 | Annual | 8/16/2023 | 1351001 | | Control Company | 4040 | Therm./ Clock/ Humidity Monitor | 1/17/2023 | Annual | 1/17/2024 | 160574418 | | Control Company | 4352 | Long Stem Thermometer | 9/10/2021 | Biennial | 9/10/2023 | 210774678 | | Mini-Circuits | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator | CBT | N/A | CBT | N/A | | Mini-Circuits | NLP-2950+ | Low Pass Filter DC to 2700 MHz | CBT | N/A | CBT | N/A | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Pasternack | PE5011-1 | Torque Wrench | 12/21/2021 | Biennial | 12/21/2023 | 82475 | | Mini-Circuits | ZHDC-16-63-S+ | Coupler | CBT | N/A | CBT | N/A | | Rohde & Schwarz | ZNLE6 | Vector Network Analyzer | 10/21/2022 | Annual | 10/21/2023 | 101307 | | SPEAG | DAK-3.5 | Dielectric Assessment Kit | 11/14/2022 | Annual | 11/14/2023 | 1277 | | Keysight Technologies | 85033E | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 6/21/2022 | Annual | 6/21/2023 | MY53402352 | | SPEAG | EX3DV4 | SAR Probe | 6/16/2022 | Annual | 6/16/2023 | 7409 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 6/14/2022 | Annual | 6/14/2023 | 1334 | ## Measurement Uncertainty = ±23% (k=2) | | Name | Function | Signature | |----------------|-------------|--|-----------| | Calibrated By: | Tho Tong | Test Engineer | Tho Tong | | Approved By: | Greg Snyder | Executive VP of Operations, Regulatory | LuggedSpl | | Object: | Date Issued: | Page 1 of 3 | |--------------------|--------------|-------------| | D2300V2 – SN: 1116 | 06/02/2023 | rage 1013 | #### **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date: | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | Certificate
SAR Target
Head (1g)
W/kg @ 20.0
dBm | Measured
Head SAR (1g)
W/kg @ 20.0
dBm | Deviation 1g
(%) | Certificate
SAR Target
Head (10g)
W/kg @ 20.0
dBm | (10a) W/kg @ | Deviation 10g
(%) | | | | Certificate
Impedance
Head (Ohm)
Imaginary | Impedance | | Certificate
Return Loss
Head (dB) | Measured
Return Loss
Head (dB) | Deviation (%) | PASS/FAIL | |---------------------|----------------|---|--|---|---------------------|---|--------------|----------------------|------|------|-----|---|-----------|-----|---|--------------------------------------|---------------|-----------| | 6/3/2021 | 6/2/2023 | 1.17 | 4.96 | 4.94 | -0.40% | 2.38 | 2.36 | -0.84% | 49.7 | 47.5 | 2.2 | -3.3 | -5.7 | 2.4 | -29.5 | -23.8 | 19.30% | PASS | | Object: | Date Issued: | Page 2 of 3 | |--------------------|--------------|-------------| | D2300V2 – SN: 1116 | 06/02/2023 | rage 2 01 3 | #### Impedance & Return-Loss Measurement Plot for Head TSL ## Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Element Tombie Republicant come Certificate No. **D2300V2-1117 Jun23** ## CALIBRATION CERTIFICATE Object D2300V2 - SN:1117 Calibration procedure(s) QA CAL-05.v12 Calibration Procedure for SAR
Validation Sources between 0.7-3 GHz Calibration date: Deimone Characterists June 12, 2023 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID # | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--|-----------------------------------|------------------------| | Power meter NRP2 | SN: 104778 | 30-Mar-23 (No. 217-03804/03805) | Mar-24 | | Power sensor NRP-Z91 | SN: 103244 | 30-Mar-23 (No. 217-03804) | Mar-24 | | Power sensor NRP-Z91 | SN: 103245 | 30-Mar-23 (No. 217-03805) | Mar-24 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 30-Mar-23 (No. 217-03809) | Mar-24 | | Type-N mismatch combination | SN: 310982 / 06327 | 30-Mar-23 (No. 217-03810) | Mar-24 | | Reference Probe EX3DV4 | SN: 7349 | 10-Jan-23 (No. EX3-7349_Jan23) | ∖Jan-24 | | DAE4 | SN: 601 | 19-Dec-22 (No. DAE4-601_Dec22) | Dec-23 | | | | | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-22) | In house check: Oct-24 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-22) | In house check: Oct-24 | | | | | | | | Name | Function | Signature | | Calibrated by: | Paulo Pina | Laboratory Technician | Δ | | | | | 1==67 | | | 444.0034.0007.1444.607.1444.603.1444.6251.003 | | | | Approved by: | Sven Kühn | Technical Manager 🕠 🧳 | | | | | | 11. 1811WC | | | STEPS CALCUMATER AND | | | Issued: June 12, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2300 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.5 | 1.67 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.4 ± 6 % | 1.65 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 12.4 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 49.9 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.06 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.3 W/kg ± 16.5 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.9 | 1.81 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.8 ± 6 % | 1.81 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 11.8 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 47.2 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.78 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 23.1 W/kg ± 16.5 % (k=2) | Certificate No: D2300V2-1117_Jun23 ## Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 47.8 Ω + 3.5 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 27.5 dB | | ## **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 44.9 Ω + 2.6 jΩ | |--------------------------------------|-----------------| | Return Loss | - 24.4 dB | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.164 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|--------| | - Managara by | 31 LAG | ## **DASY5 Validation Report for Head TSL** Date: 09.06.2023 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN:1117 Communication System: UID 0 - CW; Frequency: 2300 MHz Medium parameters used: f = 2300 MHz; $\sigma = 1.65 \text{ S/m}$; $\varepsilon_r = 39.4$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(7.98, 7.98, 7.98) @ 2300 MHz; Calibrated: 10.01.2023 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 19.12.2022 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 • DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 116.7 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 22.2 W/kg #### SAR(1 g) = 12.4 W/kg; SAR(10 g) = 6.06 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 56.5% Maximum value of SAR (measured) = 19.1 W/kg 0 dB = 19.1 W/kg = 12.81 dBW/kg ## Impedance Measurement Plot for Head TSL ## DASY5 Validation Report for Body TSL Date: 12.06.2023 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN:1117 Communication
System: UID 0 - CW; Frequency: 2300 MHz Medium parameters used: f = 2300 MHz; $\sigma = 1.81 \text{ S/m}$; $\varepsilon_r = 52.8$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(7.97, 7.97, 7.97) @ 2300 MHz; Calibrated: 10.01.2023 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 19.12.2022 Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 106.7 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 21.5 W/kg #### SAR(1 g) = 11.8 W/kg; SAR(10 g) = 5.78 W/kg Smallest distance from peaks to all points 3 dB below = 8.9 mm Ratio of SAR at M2 to SAR at M1 = 56.1% Maximum value of SAR (measured) = 18.4 W/kg 0 dB = 18.4 W/kg = 12.65 dBW/kg ## Impedance Measurement Plot for Body TSL ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Element Certificate No: D2300V2-1008_Feb23 ## **CALIBRATION CERTIFICATE** Object D2300V2 - SN:1008 Calibration procedure(s) QA CAL-05.v12 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: February 13, 2023 실무자 기술책임자 The Jungs 2023-01-21 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 04-Apr-22 (No. 217-03525/03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-22 (No. 217-03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-22 (No. 217-03525) | Apr-23 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 04-Apr-22 (No. 217-03527) | Apr-23 | | Type-N mismatch combination | SN: 310982 / 06327 | 04-Apr-22 (No. 217-03528) | Apr-23 | | Reference Probe EX3DV4 | SN: 7349 | 10-Jan-23 (No. EX3-7349_Jan23) | Jan-24 | | DAE4 | SN: 601 | 19-Dec-22 (No. DAE4-601_Dec22) | Dec-23 | | Secondary Standards | 1D# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-22) | In house check: Oct-24 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-22) | In house check: Oct-24 | | | Name | Function | Signature | | Calibrated by: | Paulo pina | Laboratory Technician | | | | | | | | Approved by: | Sven Kühn | Technical Manager | | | | | | 2.00 | Issued: February 13, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland C Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2300V2-1008_Feb23 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 2300 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.5 | 1.67 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.8 ± 6 % | 1.68 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### **SAR result with Head TSL** | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 12.4 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 49.5 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.92 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.7 W/kg ± 16.5 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.9 | 1.81 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.8 ± 6 % | 1.82 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## **SAR result with Body TSL** | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 12.1 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 48.2 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.87 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 23.4 W/kg ± 16.5 % (k=2) | Certificate No: D2300V2-1008_Feb23 Page 3 of 8 ## Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 48.7 Ω - 1.3 jΩ | |--------------------------------------|-----------------| | Return Loss | - 34.7 dB | #### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 45.7 Ω - 2.3 jΩ | |--------------------------------------|-----------------| | Return Loss | - 25.9 dB | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.170 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might
bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | | T T T T T T T T T T T T T T T T T T T | |-----------------|---------------------------------------| | Manufactured by | SPEAG | | | 1 | Certificate No: D2300V2-1008_Feb23 Page 4 of 8 #### **DASY5 Validation Report for Head TSL** Date: 08.02.2023 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN:1008 Communication System: UID 0 - CW; Frequency: 2300 MHz Medium parameters used: f = 2300 MHz; $\sigma = 1.68$ S/m; $\varepsilon_r = 39.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(7.9, 7.9, 7.9) @ 2300 MHz; Calibrated: 10.01.2023 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 19.12.2022 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 • DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 116.7 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 22.7 W/kg #### SAR(1 g) = 12.4 W/kg; SAR(10 g) = 5.92 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 54.7% Maximum value of SAR (measured) = 19.5 W/kg #### Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 13.02.2023 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN:1008 Communication System: UID 0 - CW; Frequency: 2300 MHz Medium parameters used: f = 2300 MHz; $\sigma = 1.82$ S/m; $\varepsilon_r = 52.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(7.97, 7.97, 7.97) @ 2300 MHz; Calibrated: 10.01.2023 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 19.12.2022 • Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 • DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 108.9 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 22.3 W/kg #### SAR(1 g) = 12.1 W/kg; SAR(10 g) = 5.87 W/kg Smallest distance from peaks to all points 3 dB below = 8.9 mm Ratio of SAR at M2 to SAR at M1 = 55.8% Maximum value of SAR (measured) = 18.6 W/kg ## Impedance Measurement Plot for Body TSL #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 Client PC Test Certificate No: D2450V2-981_Nov21 ## **CALIBRATION CERTIFICATE** Obj**e**ct D2450V2 - SN:981 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz 3N,2-09-202 Calibration date: November 25, 2021 BN 11-25-22 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) S RS 01/03/24 | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | | | | Power sensor NRP-Z91 | 1 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | Power sensor NRP-Z91 | SN: 103245 | 09-Apr-21 (No. 217-03292) | Apr-22 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 09-Apr-21 (No. 217-03343) | Apr-22 | | Type-N mismatch combination | SN: 310982 / 06327 | 09-Apr-21 (No. 217-03344) | Apr-22 | | Reference Probe EX3DV4 | SN: 7349 | 28-Dec-20 (No. EX3-7349_Dec20) | Dec-21 | | DAE4 | SN: 601 | 01-Nov-21 (No. DAE4-601_Nov21) | Nov-22 | | | 1 | | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-22 | | | Name | Function | Signature | | Calibrated by: | Jeffrey Katzman | Laboratory Technician | A Landing | | | | | | | | ing grand and a second control of the | orthaugh sugaine and the se | N / Las | | Approved by: | Niels Kuster | Quality Manager | | | | The state of s | | | Issued: November 25, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------
------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 2450 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.1 ± 6 % | 1.87 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### **SAR result with Head TSL** | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.7 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 53.9 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.42 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 25.4 W/kg ± 16.5 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 51.2 ± 6 % | 2.01 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## **SAR result with Body TSL** | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 12.9 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 50.3 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.00 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 23.7 W/kg ± 16.5 % (k=2) | #### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 53.8 Ω + 5.8 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 23.6 dB | | #### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 50.4 Ω + 8.5 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 21.5 dB | | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.163 ns | |----------------------------------|----------| | <u> </u> | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| ## **DASY5 Validation Report for Head TSL** Date: 25.11.2021 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 981 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.87$ S/m; $\varepsilon_r = 39.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### **DASY52 Configuration:** Probe: EX3DV4 - SN7349; ConvF(7.96, 7.96, 7.96) @ 2450 MHz; Calibrated: 28.12.2020 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 01.11.2021 • Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 • DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 118.7 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 27.1 W/kg #### SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.42 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 51.1% Maximum value of SAR (measured) = 22.6 W/kg 0 dB = 22.6 W/kg = 13.55 dBW/kg #### Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 25.11.2021 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 981 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.01$ S/m; $\epsilon_r = 51.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### **DASY52 Configuration:** Probe: EX3DV4 - SN7349; ConvF(8.12, 8.12, 8.12) @ 2450 MHz; Calibrated: 28.12.2020 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 01.11.2021 Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 108.0 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 24.3 W/kg SAR(1 g) = 12.9 W/kg; SAR(10 g) = 6 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 54.1% Maximum value of SAR (measured) = 20.2 W/kg 0 dB = 20.2 W/kg = 13.05 dBW/kg ## Impedance Measurement Plot for Body TSL # element #### **ELEMENT MATERIALS TECHNOLOGY** (formerly PCTEST) 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.element.com ## **Certification of Calibration** Object D2450V2 – SN: 981 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extension Calibration date: 11/24/2022 Description: SAR Validation Dipole at 2450 MHz. Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |-----------------------|---------------|---|------------|--------------|------------|---------------| | Agilent | N5182A | MXG Vector Signal Generator | 1/12/2022 | Annual | 1/12/2023 | MY47420837 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 343971 | | Anritsu | MA2411B | Pulse Power Sensor | 3/28/2022 | Annual | 3/28/2023 | 1339007 | | Anritsu | MA2411B | Pulse Power Sensor | 3/2/2022 | Annual | 3/2/2023 | 1126066 | | Anritsu | ML2496A | Power Meter | 3/31/2022 | Annual | 3/31/2023 | 1138001 | | Anritsu | ML2496A | Power Meter | 3/17/2022 | Annual | 3/17/2023 | 941001 | | Control Company | 4040 | Therm./ Clock/ Humidity Monitor | 3/12/2021 | Biennial | 3/12/2023 | 210202100 | | Control Company | 4352 | Ultra Long Stem Thermometer | 1/21/2022 | Annual | 1/21/2023 | 160508097 | | Control Company | 4352 | Long Stem Thermometer | 9/10/2021 | Biennial | 9/10/2023 | 210774678 | | Mini-Circuits | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator | CBT | N/A | CBT | N/A | | Mini-Circuits | NLP-2950+ | Low Pass Filter DC to 2700 MHz | CBT | N/A | CBT | N/A | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Pasternack | PE5011-1 | Torque Wrench | 12/21/2021 | Biennial | 12/21/2023 | 82475 | | Mini-Circuits | ZHDC-16-63-S+ | Coupler | CBT | N/A | CBT | N/A | | Rohde & Schwarz | ZNLE6 | Vector Network Analyzer | 10/21/2022 | Annual | 10/21/2023 | 101307 | | SPEAG | DAK-3.5 | Dielectric Assessment Kit | 5/12/2022 | Annual | 5/12/2023 | 1070 | | Keysight Technologies | 85033E | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 6/21/2022 | Annual | 6/21/2023 | MY53402352 | | SPEAG | EX3DV4 | SAR Probe | 2/21/2022 | Annual | 2/21/2023 | 7488 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 2/23/2022 | Annual | 2/23/2023 | 1415 | | SPEAG | EX3DV4 | SAR Probe | 6/16/2022 | Annual | 6/16/2023 | 7409 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 6/14/2022 | Annual | 6/14/2023 | 1334 | ## Measurement Uncertainty = ±23% (k=2) | | Name | Function | Signature | |----------------|-----------------|-----------------------------|-----------| | Calibrated By: | Tho Tong | Test Engineer | Tho Tong | | Approved By: | Kaitlin O'Keefe | Senior Technical
Manager | 20K | | Object: | Date Issued: | Page 1 of 4 | |-------------------|--------------|-------------| | D2450V2 – SN: 981 | 11/24/2022 | Page 1 of 4 | ## **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3 requirements to have
2-year calibration period from the calibration date: | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | Certificate
SAR Target
Head (1g)
W/kg @ 20.0
dBm | Head SAR (1g) | (9/.) | | (10a) W/ka @ | Deviation 10g
(%) | Certificate
Impedance
Head (Ohm)
Real | Measured
Impedance
Head (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Head (Ohm)
Imaginary | Measured
Impedance
Head (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Head (dB) | Measured
Return Loss
Head (dB) | Deviation (%) | PASS/FAIL | |---------------------|----------------|---|--|---|--------|---|--------------|----------------------|--|---|--------------------------|---|--|----------------------------------|---|--------------------------------------|---------------|-----------| | 11/25/2021 | 11/24/2022 | 1.163 | 5.39 | 5.22 | -3.15% | 2.54 | 2.43 | -4.33% | 53.8 | 51.4 | 2.4 | 5.8 | 4.1 | 1.7 | -23.6 | -27.4 | -16.00% | PASS | | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | Certificate
SAR Target
Body (1g)
W/kg @ 20.0
dBm | Measured
Body SAR (1g)
W/kg @ 20.0
dBm | (9/.) | Certificate
SAR Target
Body (10g)
W/kg @ 20.0
dBm | (10a) W/ka @ | Deviation 10g
(%) | | Measured
Impedance
Body (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Body (Ohm)
Imaginary | Measured
Impedance
Body (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Body (dB) | Measured
Return Loss
Body (dB) | Deviation (%) | PASS/FAIL | | 11/25/2021 | 11/24/2022 | 1.163 | 5.03 | 4.88 | -2.98% | 2.37 | 2.27 | -4.22% | 50.4 | 47.9 | 2.5 | 8.5 | 4.6 | 3.9 | -21.5 | -25.7 | -19.70% | PASS | | Object: | Date Issued: | Page 2 of 4 | |-------------------|--------------|-------------| | D2450V2 – SN: 981 | 11/24/2022 | Fage 2 01 4 | #### Impedance & Return-Loss Measurement Plot for Head TSL ## Impedance & Return-Loss Measurement Plot for Body TSL # element #### **ELEMENT MATERIALS TECHNOLOGY** (formerly PCTEST) 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.element.com ## **Certification of Calibration** Object D2450V2 – SN: 981 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extension Calibration date: 11/10/2023 Description: SAR Validation Dipole at 2450 MHz. Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |-----------------------|---------------|---|------------|--------------|------------|---------------| | Agilent | N5182A | MXG Vector Signal Generator 1 | | Annual | 11/30/2023 | MY47420603 | | Amplifier Research | 15S1G6 | Amplifier | | N/A | CBT | 343971 | | Anritsu | MA2411B | Pulse Power Sensor | 1/10/2023 | Annual | 1/10/2024 | 1315051 | | Anritsu | ML2496A | Power Meter | 6/15/2023 | Annual | 6/15/2024 | 1138001 | | Control Company | 4040 | Therm./ Clock/ Humidity Monitor | 1/17/2023 | Biennial | 1/17/2024 | 160574418 | | Control Company | 4353 | Long Stem Thermometer | 9/15/2022 | Biennial | 9/15/2024 | 221767767 | | Mini-Circuits | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator | CBT | N/A | CBT | N/A | | Mini-Circuits | NLP-2950+ | Low Pass Filter DC to 2700 MHz | CBT | N/A | CBT | N/A | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Pasternack | PE5011-1 | Torque Wrench | 12/21/2021 | Biennial | 12/21/2023 | 82475 | | Mini-Circuits | ZHDC-16-63-S+ | Coupler | CBT | N/A | CBT | N/A | | Anritsu | MS46322A | Vector Network Analyzer | 9/6/2023 | Biennial | 9/6/2025 | 82288 | | SPEAG | DAK-3.5 | Dielectric Assessment Kit | 11/13/2023 | Annual | 11/13/2024 | 1277 | | Keysight Technologies | 85033E | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 11/11/2022 | Annual | 11/11/2023 | MY53401181 | | SPEAG | EX3DV4 | SAR Probe | 6/15/2023 | Annual | 6/15/2024 | 7409 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 6/15/2023 | Annual | 6/15/2024 | 1334 | ## Measurement Uncertainty = ±23% (k=2) | | Name | Function | Signature | |----------------|-------------|--|-----------| | Calibrated By: | Tho Tong | Test Engineer | Tho Tong | | Approved By: | Greg Snyder | Executive VP of Operations, Regulatory | Lugg What | | Object: | Date Issued: | Page 1 of 3 | |-------------------|--------------|-------------| | D2450V2 – SN: 981 | 11/10/2023 | rage 1013 | ### **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date: | Calibra
Date | on Extension Date | Certificate
Electrical
Delay (ns) | Certificate
SAR Target
Head (1g)
W/kg @ 20.0
dBm | Head SAR (1g) | Deviation 1g
(%) | Certificate
SAR Target
Head (10g)
W/kg @ 20.0
dBm | Head SAR | Deviation 10g
(%) | | | | Certificate
Impedance
Head (Ohm)
Imaginary | | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Head (dB) | Measured
Return Loss
Head (dB) | Deviation (%) | PASS/FAIL | |-----------------|-------------------|---|--|---------------|---------------------|---|----------|----------------------|------|------|-----|---|-----|----------------------------------|---|--------------------------------------|---------------|-----------| | 11/25/2 | 21 11/10/2023 | 1.163 | 5.39 | 5.53 | 2.60% | 2.54 | 2.56 | 0.79% | 53.8 | 53.1 | 0.7 | 5.8 | 4.4 | 1.4 | -23.6 | -25.7 | -9.00% | PASS | | Object: | Date Issued: | Page 2 of 3 | |-------------------|--------------|-------------| | D2450V2 - SN: 981 | 11/10/2023 | rage 2 01 3 | #### Impedance & Return-Loss Measurement Plot for Head TSL ## **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **PC Test** Certificate No: D2450V2-719_Aug21 # CALIBRATION CERTIFICATE Object D2450V2 - SN:719 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: August 18, 2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------
--|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | Power sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | Power sensor NRP-Z91 | SN: 103245 | 09-Apr-21 (No. 217-03292) | Apr-22 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 09-Apr-21 (No. 217-03343) | Apr-22 | | Type-N mismatch combination | SN: 310982 / 06327 | 09-Apr-21 (No. 217-03344) | Apr-22 | | Reference Probe EX3DV4 | SN: 7349 | 28-Dec-20 (No. EX3-7349_Dec20) | Dec-21 | | DAE4 | SN: 601 | 02-Nov-20 (No. DAE4-601_Nov20) | Nov-21 | | | • | | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | in house check: Oct-22 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check; Oct-22 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-21 | | | Name | Function | Signature | | Calibrated by: | Jeton Kastrati | Laboratory Technician | 1 1/1/2 | | | | | 7 W- | | | The second of th | | V | | Approved by: | Katja Pokovic | Technical Manager | | | | | | | Issued: August 18, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D2450V2-719_Aug21 Page 1 of 8 ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ### Glossary: **TSL** tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### **Additional Documentation:** Certificate No: D2450V2-719_Aug21 c) DASY System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Page 2 of 8 ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | The following parameters and salications were app. | Temperature | Permittivity | Conductivity | |--|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.9 ± 6 % | 1.87 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 14.1 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 55.0 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.53 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 25.7 W/kg ± 16.5 % (k=2) | ### **Body TSL parameters** The following parameters and calculations were applied. | The following particular to th | Temperature | Permittivity | Conductivity | |--|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.0 ± 6 % | 2.03 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | _ 4 44 50 | # SAR result with Body TSL | SAR averaged over 1 cm³ (1 g) of Body TSL | Condition | |
---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.3 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 52.0 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.26 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 24.7 W/kg ± 16.5 % (k=2) | Certificate No: D2450V2-719_Aug21 Page 3 of 8 # Appendix (Additional assessments outside the scope of SCS 0108) ### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | $55.9~\Omega+6.0~\mathrm{j}\Omega$ | |--------------------------------------|------------------------------------| | Return Loss | - 22.0 dB | ### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 51.3 Ω + 8.4 jΩ | |--------------------------------------|-----------------| | Return Loss | - 21.5 dB | ### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.149 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| | 1 | | Certificate No: D2450V2-719_Aug21 ### **DASY5 Validation Report for Head TSL** Date: 17.08.2021 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:719 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz, $\sigma = 1.87$ S/m; $\epsilon_r = 37.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(7.96, 7.96, 7.96) @ 2450 MHz; Calibrated: 28.12.2020 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 02.11.2020 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 • DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 119.5 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 28.1 W/kg ### SAR(1 g) = 14.1 W/kg; SAR(10 g) = 6.53 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 50.5% Maximum value of SAR (measured) = 22.8 W/kg 0 dB = 22.8 W/kg = 13.58 dBW/kg # Impedance Measurement Plot for Head TSL ### **DASY5 Validation Report for Body TSL** Date: 18.08.2021 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:719 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.03 \text{ S/m}$; $\varepsilon_r = 52$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.12, 8.12, 8.12) @ 2450 MHz; Calibrated: 28.12.2020 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 02.11.2020 • Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 • DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) # Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 111.3 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 24.8 W/kg # SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.26 W/kg Smallest distance from peaks to all points 3 dB below = 8.2 mm Ratio of SAR at M2 to SAR at M1 = 54.6% Maximum value of SAR (measured) = 21.1 W/kg 0 dB = 21.1 W/kg = 13.24 dBW/kg # Impedance Measurement Plot for Body TSL # **ELEMENT MATERIALS TECHNOLOGY** (formerly PCTEST) 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.element.com # **Certification of Calibration** Object D2450V2 – SN: 719 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extension Calibration date: 08/10/2022 Description: SAR Validation Dipole at 2450 MHz. Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |-----------------------|---------------|---|------------|--------------|------------|---------------| | Agilent | N5182A | MXG Vector Signal Generator | 6/21/2022 | Annual | 6/21/2023 | MY47420651 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 343971 | | Anritsu | MA2411B | Pulse Power Sensor | 9/21/2021 | Annual | 9/21/2022 | 1339008 | | Anritsu | MA2411B | Pulse Power Sensor | 10/21/2021 | Annual | 10/21/2022 | 1339027 | | Anritsu | ML2496A | Power Meter | 11/29/2021 | Annual | 11/29/2022 | 1840005 | | Control Company | 4040 | Therm./ Clock/ Humidity Monitor | 3/12/2021 | Biennial | 3/12/2023 | 210202100 | | Control Company | 4352 | Ultra Long Stem Thermometer | 10/25/2021 | Annual | 10/25/2022 | 200645916 | | Control Company | 4353 | Long Stem Thermometer | 10/28/2020 | Biennial | 10/28/2022 | 200670653 | | MiniCircuits | VLF-6000+ | Low Pass Filter | CBT | N/A | CBT | N/A | | Mini-Circuits | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator | CBT | N/A | CBT | N/A | | Mini-Circuits | NLP-2950+ | Low Pass Filter DC to 2700 MHz | CBT | N/A | CBT | N/A | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Pasternack | NC-100 | Torque Wrench | 3/19/2022 | Annual | 3/19/2023 | N/A | | Mini-Circuits | ZHDC-16-63-S+ | Coupler | CBT | N/A | CBT | N/A | | Rohde & Schwarz | ZNLE6 | Vector Network Analyzer | 10/20/2021 | Annual | 10/20/2022 | 101307 | | SPEAG | DAK-3.5 | Dielectric Assessment Kit | 8/18/2021 | Annual | 8/18/2022 | 1041 | | Keysight Technologies | 85033E | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 9/27/2021 | Annual | 9/27/2022 | MY53401181 | | SPEAG | EX3DV4 | SAR Probe | 2/22/2022 | Annual | 2/22/2023 | 7417 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 2/22/2022 | Annual | 2/22/2023 | 665 | ## Measurement Uncertainty = ±23% (k=2) | | Name | Function | Signature | |----------------|------------------------|-----------------------------|-----------| | Calibrated By: | Bizunesh
Baldinazzo | Test Engineer | BB | | Approved By: | Kaitlin O'Keefe | Senior Technical
Manager | 20K | | Object: | Date Issued: | Page 1 of 4 | |-------------------|--------------|-------------| | D2450V2 – SN: 719 | 08/10/2022 | Page 1 of 4 | ### **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date: | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | | Measured
Head SAR (1g)
W/kg @ 20.0
dBm | Deviation 1g
(%) | Certificate
SAR Target
Head (10g)
W/kg @ 20.0
dBm | Measured
Head SAR
(10g) W/kg @
20.0 dBm | Deviation 10g
(%) | Certificate
Impedance
Head (Ohm)
Real | Measured
Impedance
Head (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Head (Ohm)
Imaginary | Measured
Impedance
Head (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Head (dB) | Measured
Return Loss
Head (dB) | Deviation (%) | PASS/FAIL | |---------------------|----------------|---|-----|---|---------------------|---|--|----------------------|--|---|--------------------------|---|--|----------------------------------|---|--------------------------------------|---------------|-----------| | 8/18/2021 | 8/10/2022 | 1.149 | 5.5 | 5.22 | -5.09% | 2.57 | 2.33 | -9.34% | 55.9 | 54.5 | 1.4 | 6 | 1.3 | 4.7 | -22 | -26.2 | -19.00% | PASS | | Calibration
Date | Extension Date | Certificate
Electrical
Delay (ns) | | Measured
Body SAR (1g)
W/kg @ 20.0
dBm | Deviation 1g
(%) | Certificate
SAR Target
Body (10g)
W/kg @ 20.0
dBm | Measured
Body SAR
(10g) W/kg @
20.0 dBm | Deviation 10g
(%) | Certificate
Impedance
Body (Ohm)
Real | Measured
Impedance
Body (Ohm)
Real |
Difference
(Ohm) Real | Certificate
Impedance
Body (Ohm)
Imaginary | Measured
Impedance
Body (Ohm)
Imaginary | Difference
(Ohm)
Imaginary | Certificate
Return Loss
Body (dB) | Measured
Return Loss
Body (dB) | Deviation (%) | PASS/FAIL | | 8/18/2021 | 8/10/2022 | 1.149 | 5.2 | 4.93 | -5.19% | 2.47 | 2.32 | -6.07% | 51.3 | 50.6 | 0.7 | 8.4 | 5.4 | 3 | -21.5 | -25.3 | -17.80% | PASS | | Object: | Date Issued: | Page 2 of 4 | |-------------------|--------------|-------------| | D2450V2 - SN: 719 | 08/10/2022 | rage 2 01 4 | #### Impedance & Return-Loss Measurement Plot for Head TSL ## Impedance & Return-Loss Measurement Plot for Body TSL # element ### **ELEMENT MATERIALS TECHNOLOGY** (formerly PCTEST) 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.element.com # **Certification of Calibration** Object D2450V2 – SN: 719 Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles. Extension Calibration date: 08/01/2023 Description: SAR Validation Dipole at 2450 MHz. Calibration Equipment used: | Manufacturer | Model | Description | Cal Date | Cal Interval | Cal Due | Serial Number | |-----------------------|---------------|---|------------|--------------|------------|---------------| | Agilent | N5182A | MXG Vector Signal Generator | 11/30/2022 | Annual | 11/30/2023 | MY47420603 | | Amplifier Research | 15S1G6 | Amplifier | CBT | N/A | CBT | 343971 | | Anritsu | MA2411B | Pulse Power Sensor | 10/21/2022 | Annual | 10/21/2023 | 1207364 | | Anritsu | ML2496A | Power Meter | 8/16/2022 | Annual | 8/16/2023 | 1351001 | | Control Company | 4040 | Therm./ Clock/ Humidity Monitor | 1/17/2023 | Biennial | 1/17/2024 | 160574418 | | Control Company | 4352 | Long Stem Thermometer | 9/10/2021 | Biennial | 9/10/2023 | 210774678 | | Mini-Circuits | BW-N20W5+ | DC to 18 GHz Precision Fixed 20 dB Attenuator | CBT | N/A | CBT | N/A | | Mini-Circuits | NLP-2950+ | Low Pass Filter DC to 2700 MHz | CBT | N/A | CBT | N/A | | Narda | 4772-3 | Attenuator (3dB) | CBT | N/A | CBT | 9406 | | Pasternack | PE5011-1 | Torque Wrench | 12/21/2021 | Biennial | 12/21/2023 | 82475 | | Mini-Circuits | ZHDC-16-63-S+ | Coupler | CBT | N/A | CBT | N/A | | Rohde & Schwarz | ZNLE6 | Vector Network Analyzer | 10/21/2022 | Annual | 10/21/2023 | 101307 | | SPEAG | DAK-3.5 | Dielectric Assessment Kit | 11/14/2022 | Annual | 11/14/2023 | 1277 | | Keysight Technologies | 85033E | Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm) | 11/11/2022 | Annual | 11/11/2023 | MY53401181 | | SPEAG | EX3DV4 | SAR Probe | 6/15/2023 | Annual | 6/15/2024 | 7409 | | SPEAG | DAE4 | Dasy Data Acquisition Electronics | 6/15/2023 | Annual | 6/15/2024 | 1334 | ## Measurement Uncertainty = $\pm 23\%$ (k=2) | | Name | Function | Signature | |----------------|-------------|--|---------------| | Calibrated By: | Tho Tong | Test Engineer | Tho Tong | | Approved By: | Greg Snyder | Executive VP of Operations, Regulatory | Sugge M. Sola | | Object: | Date Issued: | Page 1 of 3 | |-------------------|--------------|-------------| | D2450V2 – SN: 719 | 08/01/2023 | rage 1015 | ## **DIPOLE CALIBRATION EXTENSION** Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements: - 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate. - 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement. - 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement. The following dipole was checked to pass the above 3 requirements to have 3-year calibration period from the calibration date: | Calibration
Date | Extension
Date | | Certificate
SAR Target
Head (1g)
W/kg @ 20.0
dBm | | Deviation 1g
(%) | Certificate
SAR Target
Head (10g)
W/kg @ 20.0
dBm | Measured
Head SAR
(10g) W/kg @
20.0 dBm | Deviation 10g
(%) | Certificate
Impedance
Head (Ohm)
Real | Measured
Impedance
Head (Ohm)
Real | Difference
(Ohm) Real | Certificate
Impedance
Head (Ohm)
Imaginary | Impedance | Difference
(Ohm)
Imaginary | Return Loss | Measured
Return Loss
Head (dB) | Deviation (%) | PASS/FAIL | |---------------------|-------------------|-------|--|------|---------------------|---|--|----------------------|--|---|--------------------------|---|-----------|----------------------------------|-------------|--------------------------------------|---------------|-----------| | 8/18/2021 | 8/1/2023 | 1.149 | 5.5 | 5.34 | -2.91% | 2.57 | 2.49 | -3.11% | 55.9 | 54.1 | 1.8 | 6 | 2.6 | 3.4 | -22 | -26.4 | -19.90% | PASS | | Object: | Date Issued: | Page 2 of 3 | |-------------------|--------------|-------------| | D2450V2 - SN: 719 | 08/01/2023 | rage 2 01 3 | #### Impedance & Return-Loss Measurement Plot for Head TSL # **Calibration Laboratory of** Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Element Yough Republic of Kores Certificate No. D2450V2-945 May 23 # CALIBRATION CERTIFICATE Object D2450V2 - SN:945 Calibration procedure(s) QA CAL-05.v12 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: May 11, 2023 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP2 | SN: 104778 | 30-Mar-23 (No. 217-03804/03805) | Mar-24 | | Power sensor NRP-Z91 | SN: 103244 | 30-Mar-23 (No. 217-03804) | Mar-24 | | Power sensor NRP-Z91 | SN: 103245 | 30-Mar-23 (No. 217-03805) | Mar-24 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 30-Mar-23 (No. 217-03809) | Mar-24 | | Type-N mismatch combination | SN: 310982 / 06327 | 30-Mar-23 (No. 217-03810) | Mar-24 | | Reference Probe EX3DV4 | SN: 7349 | 10-Jan-23 (No. EX3-7349_Jan23) | Jan-24 | | DAE4 | SN: 601 | 19-Dec-22 (No. DAE4-601_Dec22) | Dec-23 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-22) | In house check: Oct-24 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-22) | In house check: Oct-24 | | | Name | Function | Signature | | Calibrated by: | Paulo Pina | Laboratory Technician | | | | | | fer a fee | | Approved by: | Sven Kühn | Technical Manager | | | | | | 2.65 | Issued: May 16, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Accreditation No.: SCS 0108 S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### Additional Documentation: c) DASY System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No
uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | 300 | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | **** | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.7 ± 6 % | 1.86 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | # SAR result with Head TSL | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.3 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 51.9 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.23 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.6 W/kg ± 16.5 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.6 ± 6 % | 2.02 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 12.7 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 49.9 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.01 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 23.8 W/kg ± 16.5 % (k=2) | Certificate No: D2450V2-945_May23 Page 3 of 8 # Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 54.4 Ω + 1.8 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 26.8 dB | | # **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 50.4 Ω + 4.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 26.4 dB | ## **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.157 ns | |----------------------------------|-----------| | (one amount) | 1.137 115 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SDEAC | |-----------------|-----------| | Wartara by | I SPEAG I | | | L | Certificate No: D2450V2-945_May23 Page 4 of 8 ### **DASY5 Validation Report for Head TSL** Date: 11.05.2023 Test Laboratory: SPEAG, Zurich, Switzerland **DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:945** Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.86 \text{ S/m}$; $\varepsilon_r = 37.7$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(7.9, 7.9, 7.9) @ 2450 MHz; Calibrated: 10.01.2023 Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 19.12.2022 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 115.4 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 25.8 W/kg ## SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.23 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 51.7% Maximum value of SAR (measured) = 21.7 W/kg 0 dB = 21.7 W/kg = 13.36 dBW/kg Certificate No: D2450V2-945_May23 Page 5 of 8 # Impedance Measurement Plot for Head TSL ### **DASY5 Validation Report for Body TSL** Date: 09.05.2023 Test Laboratory: SPEAG, Zurich, Switzerland ### **DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:945** Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.02 \text{ S/m}$; $\varepsilon_r = 52.6$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(7.96, 7.96, 7.96) @ 2450 MHz; Calibrated: 10.01.2023 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 19.12.2022 Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 • DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) # Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 107.6 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 23.4 W/kg ### SAR(1 g) = 12.7 W/kg; SAR(10 g) = 6.01 W/kg Smallest distance from peaks to all points 3 dB below = 8.9 mm Ratio of SAR at M2 to SAR at M1 = 55.9% Maximum value of SAR (measured) = 19.4 W/kg 0 dB = 19.4 W/kg = 12.88 dBW/kg Certificate No: D2450V2-945_May23 Page 7 of 8 # Impedance Measurement Plot for Body TSL