TEST REPORT Applicant Name: Kirisun Communication Co., Ltd. Address: FCC:3rd Floor, Building A, Tongfang Information Habour, No.11 Langshan Road Nanshan District, Shenzhen 518057 China IC: 3rd Floor, Building A, Tongfang Information Habour, No.11 Langshan Road Nanshan Dist. Shenzhen 518057 China (Peoples Republic Of) Report Number: SZ4231215-75913E-RF-00A FCC ID: Q5EDP58501 IC: 8922A-DP58501 #### Test Standard (s) FCC PART 15.247; RSS-GEN ISSUE 5, FEBRUARY 2021 AMENDMENT 2; RSS-247 ISSUE 3, AUGUST 2023 #### **Sample Description** Product Type: DMR Two Way Radio Model No.: DP580 Multiple Model(s) No.: DP585 Trade Mark: KIRISUN Date Received: 2023/12/15 Issue Date: 2024/04/07 Test Result: Pass▲ ▲ In the configuration tested, the EUT complied with the standards above. Prepared and Checked By: Approved By: Black Chen Namy Wang Black Chen Nancy Wang RF Engineer RF Supervisor Note: The information marked # is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Customer model name, addresses, names, trademarks etc. are included. This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available to a valid be reported by the Adobe software above version 7.0. This report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP or any agency of the U.S. Government. This report may contain data that are not covered by the NVLAP accreditation and are marked with an asterisk " ∇ ". #### Bay Area Compliance Laboratories Corp. (Shenzhen) 5F(B-West), 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn TR-EM-RF009 Page 1 of 106 Version 1.0 (2023/10/07) **TABLE OF CONTENTS** Report No.: SZ4231215-75913E-RF-00A | DOCUMENT REVISION HISTORY | 4 | |--|------| | GENERAL INFORMATION | 5 | | PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT) | 5 | | Objective | _ | | TEST METHODOLOGY | | | Measurement Uncertainty
Test Facility | | | | | | SYSTEM TEST CONFIGURATION | | | DESCRIPTION OF TEST CONFIGURATION | | | EUT Exercise Software Special Accessories | | | EQUIPMENT MODIFICATIONS | | | SUPPORT EQUIPMENT LIST AND DETAILS | | | EXTERNAL I/O CABLE | | | BLOCK DIAGRAM OF TEST SETUP | | | SUMMARY OF TEST RESULTS | 10 | | | | | TEST EQUIPMENT LIST | | | FCC§15.247 (I), §1.1307 (B) (1) &§2.1093 – RF EXPOSURE | | | APPLICABLE STANDARD | 12 | | RSS-102 § 6.3 –EXEMPTION LIMITS FOR ROUTINE EVALUATION- SAR EXEMPTION LIMI | TS13 | | APPLICABLE STANDARD | 13 | | Test Result: | 14 | | FCC §15.203 & RSS-GEN §6.8 – ANTENNA REQUIREMENT | 15 | | APPLICABLE STANDARD | 15 | | ANTENNA CONNECTOR CONSTRUCTION | 15 | | FCC §15.207 (A) & RSS-GEN § 8.8 – AC LINE CONDUCTED EMISSIONS | 16 | | APPLICABLE STANDARD | 16 | | EUT Setup | | | EMI Test Receiver Setup | | | TEST PROCEDURE | | | FACTOR & OVER LIMIT CALCULATION | | | Test Data | | | FCC §15.209, §15.205 & §15.247(D) & RSS-247§ 5.5 - SPURIOUS EMISSIONS | | | APPLICABLE STANDARD | | | EUT SETUP | | | EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP | | | TEST PROCEDURE | | | TEST DATA | | | FCC §15.247(A) (1) & RSS-247 § 5.1 (B) -CHANNEL SEPARATION TEST | | | APPLICABLE STANDARD | | | TEST PROCEDURE | | | TEST DATA | | Report No.: SZ4231215-75913E-RF-00A ## **DOCUMENT REVISION HISTORY** | Revision Number | Report Number | Description of Revision | Date of Revision | |-----------------|-------------------------|-------------------------|------------------| | 0 | SZ4231215-75913E-RF-00A | Original Report | 2024/04/07 | Report No.: SZ4231215-75913E-RF-00A TR-EM-RF009 Page 4 of 106 Version 1.0 (2023/10/07) #### **GENERAL INFORMATION** #### **Product Description for Equipment under Test (EUT)** | HVIN | DP58001, DP58501 | |------------------------------------|--| | FVIN | V5.3.6.28 | | Product | DMR Two Way Radio | | Tested Model | DP580 | | Multiple Model(s) | DP585 | | Frequency Range | Bluetooth: 2402-2480MHz | | Transmit Power | 9.45dBm | | Modulation Technique | Bluetooth: GFSK, π/4-DQPSK, 8DPSK | | Antenna Specification [#] | 0dBi (provided by the applicant) | | Voltage Range | DC7.4V form battery or DC 12V from charger base | | Sample serial number | DP580: 2FAG-10 for Conducted and Radiated Emissions Test
DP585: 2FAG-5 for Conducted and Radiated Emissions Test
2FAG-1 for RF Conducted Test (Assigned by BACL, Shenzhen) | | Sample/EUT Status | Good condition | | Adapter Information | Model: TPQ-236A120100UW01
Input: AC 100-240V, 50/60Hz, 0.4A
Output: DC 12.0V, 1.0A | | Note: The Multiple mode | els are electrically identical with the test model except for screen and keyboard. Please | Report No.: SZ4231215-75913E-RF-00A refer to the declaration letter# for more detail, which was provided by manufacturer. #### **Objective** This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commissions rules and RSS-247 Issue 3, August 2023, RSS-GEN Issue 5, Feb. 2021Amendment 2 of the Innovation, Science and Economic Development Canada rules. #### **Test Methodology** All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices and RSS-247 Issue 3, August 2023, RSS-GEN Issue 5, Feb. 2021Amendment 2 of the Innovation, Science and Economic Development Canada rules. All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters. Each test item follows test standards and with no deviation. #### **Measurement Uncertainty** | Parameter | | | Uncertainty | |----------------------------|--|------------------------|---------------------------------------| | Occupied Channel Bandwidth | | | ±5% | | RF outpu | t power, c | onducted | 0.72 dB(k=2, 95% level of confidence) | | AC Power Lines Cond | ucted | 9kHz-150kHz | 3.94dB(k=2, 95% level of confidence) | | Emissions | | 150kHz-30MHz | 3.84dB(k=2, 95% level of confidence) | | | 9kHz - 30MHz | | 3.30dB(k=2, 95% level of confidence) | | | 30MHz~200MHz (Horizontal) | | 4.48dB(k=2, 95% level of confidence) | | | 30MHz~200MHz (Vertical) | | 4.55dB(k=2, 95% level of confidence) | | Radiated Emissions | 200MH | z~1000MHz (Horizontal) | 4.85dB(k=2, 95% level of confidence) | | Radiated Ellissions | 200MHz~1000MHz (Vertical)
1GHz - 6GHz | | 5.05dB(k=2, 95% level of confidence) | | | | | 5.35dB(k=2, 95% level of confidence) | | | 6GHz - 18GHz | | 5.44dB(k=2, 95% level of confidence) | | | 18GHz - 40GHz | | 5.16dB(k=2, 95% level of confidence) | | Temperature | | | ±1°C | | | Humidity | | ±1% | | Sur | ply volta | ges | ±0.4% | Report No.: SZ4231215-75913E-RF-00A Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty. #### **Test Facility** The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 5F(B-West), 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China. The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 715558, the FCC Designation No.: CN5045. The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0023. TR-EM-RF009 Page 6 of 106 Version 1.0 (2023/10/07) #### SYSTEM TEST CONFIGURATION #### **Description of Test Configuration** The system was configured for testing in an engineering mode. | Channel | Frequency
(MHz) | Channel | Frequency
(MHz) | |---------|--------------------|---------|--------------------| | 0 | 2402 | 40 | 2442 | | 1 | 2403 | 41 | 2443 | | 2 | 2404 | 42 | 2444 | | | | ••• | | | | | ••• | | | 36 | 2438 | 75 | 2477 | | 37 | 2439 | 76 | 2478 | | 38 | 2440 | 77 | 2479 | | 39 | 2441 | 78 | 2480 | Report No.: SZ4231215-75913E-RF-00A EUT was tested with Channel 0, 39 and 78. #### **EUT Exercise Software** "FCC_v2.24.exe" exercise software was used and the power level is 5[#]. The software and power level was provided by the applicant. #### **Special Accessories** No special accessory. #### **Equipment Modifications** No modification was made to the EUT tested. #### **Support Equipment List and Details** | Manufacturer | Description | Model | Serial Number | |--------------|-------------|-------|---------------| | / | / | / | / | TR-EM-RF009 Page 7 of 106 Version 1.0 (2023/10/07) #### **External I/O Cable** | Cable Description | Length (m) | From Port | То | |-----------------------------------|------------|-----------|---------| | Un-shielding Detachable USB Cable | 1.0 | EUT | Adapter | Report No.: SZ4231215-75913E-RF-00A ## **Block Diagram of Test Setup** For Conducted Emissions: #### For Radiated Emissions: ## SUMMARY OF TEST RESULTS | Rules | Description of Test | Result | |---|--|-----------| | §1.1307 ,§2.1093 | RF Exposure |
Compliant | | RSS-102 § 6.3 | Exemption Limits For Routine Evaluation-
SAR Exemption Limits | Compliant | | FCC §15.203
RSS-Gen §6.8 | Antenna Requirement | Compliant | | FCC §15.207(a)
RSS-Gen §8.8 | AC Line Conducted Emissions | Compliant | | FCC §15.205, §15.209, §15.247(d)
RSS-247 § 5.5, RSS-GEN § 8.10 | Radiated Emissions | Compliant | | FCC §15.247(a)(1)
RSS-247 § 5.1(a), RSS-GEN § 6.7 | 20 dB Emission Bandwidth & 99% Occupied Bandwidth | Compliant | | FCC §15.247(a)(1)
RSS-247 § 5.1 (b) | Channel Separation Test | Compliant | | FCC §15.247(a)(1)(iii)
RSS-247 § 5.1 (d) | Time of Occupancy (Dwell Time) | Compliant | | FCC §15.247(a)(1)(iii)
RSS-247 § 5.1 (d) | Quantity of hopping channel Test | Compliant | | FCC §15.247(b)(1)
RSS-247 § 5.1(b) &§ 5.4(b) | Peak Output Power Measurement | Compliant | | FCC §15.247(d)
RSS-247 § 5.5 | Band edges | Compliant | Report No.: SZ4231215-75913E-RF-00A TR-EM-RF009 Page 10 of 106 Version 1.0 (2023/10/07) #### **TEST EQUIPMENT LIST** | Manufacturer | Description | Model | Serial Number | Calibration
Date | Calibration
Due Date | |----------------------|------------------------------|---------------------------------|----------------------------|---------------------|-------------------------| | | Co | onducted Emissi | on Test | | | | Rohde & Schwarz | EMI Test Receiver | ESCI | 101120 | 2023/02/08 | 2024/02/07 | | Rohde & Schwarz | LISN | ENV216 | 101613 | 2023/02/08 | 2024/02/07 | | Rohde & Schwarz | Transient Limiter | ESH3Z2 | DE25985 | 2023/08/03 | 2024/08/02 | | Unknown | CE Cable | CE Cable | UF A210B-1-
0720-504504 | 2023/08/03 | 2024/08/02 | | Audix | EMI Test software | E3 | 191218 | NCR | NCR | | | R | adiated Emissio | n Test | | | | R&S | EMI Test Receiver | ESR3 | 102455 | 2023/02/08 | 2024/02/07 | | Sonoma instrument | Pre-amplifier | 310 N | 186238 | 2023/06/08 | 2024/06/07 | | Sunol Sciences | Broadband Antenna | JB1 | A040904-1 | 2023/07/20 | 2024/07/19 | | ETS | Passive Loop Antenna | 6512 | 29604 | 2023/07/07 | 2024/07/06 | | Unknown | Cable | Chamber
Cable 1 | F-03-EM236 | 2023/08/03 | 2024/08/02 | | Unknown | Cable | Chamber
Cable 4 | EC-007 | 2023/08/03 | 2024/08/02 | | Audix | EMI Test software | E3 | 19821b(V9) | NCR | NCR | | Rohde & Schwarz | Spectrum Analyzer | FSV40 | 101605 | 2023/04/18 | 2024/04/17 | | COM-POWER | Pre-amplifier | PA-122 | 181919 | 2023/06/29 | 2024/06/28 | | Schwarzbeck | Horn Anetenna | BBHA9120D(
1201) | 1143 | 2023/07/26 | 2024/07/25 | | Unknown | RF Cable | KMSE | 0735 | 2023/10/08 | 2024/10/07 | | Unknown | RF Cable | UFA147 | 219661 | 2023/10/08 | 2024/10/07 | | Unknown | RF Cable | XH750A-N | J-10M | 2023/10/08 | 2024/10/07 | | SNSD | 2.4G Band Reject
filter | BSF2402-
2480MN-
0898-001 | 2.4G filter | 2023/08/03 | 2024/08/02 | | Audix | EMI Test software | E3 | 191218(V9) | NCR | NCR | | A.H.System | Pre-amplifier | PAM-1840VH | 190 | 2023/08/03 | 2024/08/02 | | Electro-Mechanics Co | Horn Antenna | 3116 | 2026 | 2023/09/18 | 2026/09/17 | | UTIFLEX | RF Cable | NO. 13 | 232308-001 | 2023/08/03 | 2024/08/02 | | | | RF Conducted | Test | | | | Tonscend | RF control Unit | JS0806-2 | 19D8060154 | 2023/09/06 | 2024/09/05 | | Rohde & Schwarz | Signal and Spectrum Analyzer | FSV40 | 101473 | 2024/02/07 | 2025/02/06 | | Micro-Tronics | RF Cable | 8082135 | W1113 | 2023/07/04 | 2024/07/03 | Report No.: SZ4231215-75913E-RF-00A TR-EM-RF009 Page 11 of 106 Version 1.0 (2023/10/07) ^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI). #### FCC§15.247 (i), §1.1307 (b) (1) &§2.1093 – RF EXPOSURE #### **Applicable Standard** According to FCC §2.1093 and §1.1307(b) (1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline. Report No.: SZ4231215-75913E-RF-00A According to KDB 447498 D01 General RF Exposure Guidance The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by: [(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where - 1. f(GHz) is the RF channel transmit frequency in GHz. - 2. Power and distance are rounded to the nearest mW and mm before calculation. - 3. The result is rounded to one decimal place for comparison. - 4. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion. #### **Measurement Result** #### For worst case: | Mode | Frequency
(MHz) | Max tune-up
conducted
power [#]
(dBm) | Max tune-up
conducted
power [#]
(mW) | Distance (mm) | Calculated
value | Threshold
(1-g SAR) | SAR Test
Exclusion | |------|--------------------|---|--|---------------|---------------------|------------------------|-----------------------| | BT | 2402-2480 | 9.5 | 8.91 | 25 | 0.6 | 3 | Yes | **Result: Compliant** ## RSS-102 § 6.3 –EXEMPTION LIMITS FOR ROUTINE EVALUATION- SAR EXEMPTION LIMITS Report No.: SZ4231215-75913E-RF-00A #### **Applicable Standard** According to RSS-102 Issue 6 §6.3, Devices operating at or below the applicable output power levels (adjusted for tune-up tolerance) specified in table 11, based on the separation distance, are exempt from SAR evaluation. The separation distance, defined as the distance between the user and/or bystander and the antenna and/or radiating element of the device or the outer surface of the device, shall be less than or equal to 20 cm for these exemption limits to apply. Table 11: Power limits for exemption from routine SAR evaluation based on the separation distance | Frequency
(MHz) | ≤ 5 mm
(mW) | 10
mm
(mW) | 15 mm
(mW) | 20 mm
(mW) | 25 mm
(mW) | 30 mm
(mW) | 35 mm
(mW) | 40 mm
(mW) | 45 mm
(mW) | > 50 mm
(mW) | |--------------------|----------------|------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|-----------------| | ≤ 300 | 45 | 116 | 139 | 163 | 189 | 216 | 246 | 280 | 319 | 362 | | 450 | 32 | 71 | 87 | 104 | 124 | 147 | 175 | 208 | 248 | 296 | | 835 | 21 | 32 | 41 | 54 | 72 | 96 | 129 | 172 | 228 | 298 | | 1900 | 6 | 10 | 18 | 33 | 57 | 92 | 138 | 194 | 257 | 323 | | 2450 | 3 | 7 | 16 | 32 | 56 | 89 | 128 | 170 | 209 | 245 | | 3500 | 2 | 6 | 15 | 29 | 50 | 72 | 94 | 114 | 134 | 158 | | 5800 | 1 | 5 | 13 | 23 | 32 | 41 | 54 | 74 | 102 | 128 | The exemption limits in table 11 are based on measurements and simulations of half-wave dipole antennas at separation distances of 5 mm to 50 mm from a flat phantom, which provides a SAR value of approximately 0.4 W/kg for 1 g of tissue. For limb-worn devices where the 10 gram of tissue applies, the exemption limits for routine evaluation in table 11 are multiplied by a factor of 2.5. For controlled-use devices where the 8 W/kg for 1 gram of tissue applies, the exemption limits for routine evaluation in table 11 Table 11 are multiplied by a factor of 5. When the operating frequency of the device is between two frequencies located in table 11, linear interpolation shall be applied for the applicable separation distance. If the separation distance of the device is between two distances located in table 11, linear interpolation may be applied for the applicable frequency. Alternatively, the limit corresponding to the smaller distance may be employed. For example, in case of a 7 mm separation distance, either use the exception value for a 5 mm separation distance or interpolate between the limits corresponding to 5 mm and 10 mm separation distances. For implanted medical devices, the exemption limit for routine SAR evaluation is set at an output power of 1mW, regardless of frequency. The SAR levels from exempted transmitters shall be included in the compliance assessment and the determination of the TER. Detailed guidance is included in sections 7.1.8 and 8.2.2.1. #### **Test Result:** For worst case: #### For BT mode: The higher of the conducted or equivalent isotropically radiated power (e.i.r.p.) source-based, time-averaged output power: The minimum distance at the far end is 25mm, so the exemption limit of 2450MHz is P= 56mW. The maximum tune up conducted power is 9.5dBm The antenna gain# is 0dBi So the maximum output power is 9.5dBm (8.91mW), which less than 56mW@2450MHz exemption limit So the stand-alone SAR test is not required. #### FCC §15.203 & RSS-GEN §6.8 – ANTENNA REQUIREMENT #### **Applicable Standard** According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. Report No.: SZ4231215-75913E-RF-00A According to FCC § 15.203, the applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the
applicable RSS, when the transmitter is equipped with any antenna type, selected from this list. For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report (and in the notice to be included in the user manual, provided below). When measurements at the antenna port are used to determine the RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna's manufacturer. The test report shall state the RF power, output power setting and spurious emission measurements with each antenna type that is used with the transmitter being tested. For licence-exempt equipment with detachable antennas, the user manual shall also contain the following notice in a conspicuous location: This radio transmitter [enter the device's ISED certification number] has been approved by Innovation, Science and Economic Development Canada to operate with the antenna types listed below, with the maximum permissible gain indicated. Antenna types not included in this list that have a gain greater than the maximum gain indicated for any type listed are strictly prohibited for use with this device. Immediately following the above notice, the manufacturer shall provide a list of all antenna types which can be used with the transmitter, indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna type. #### **Antenna Connector Construction** The EUT has one internal antenna arrangement which was permanently attached for Bluetooth and the maximum antenna gain[#] is 0dBi, fulfill the requirement of this section. Please refer to the EUT photos. | Antenna Type | Antenna Gain [#] | ntenna Gain [#] Impedance | | |--------------|---------------------------|------------------------------------|------------| | Wire | 0dBi | 50Ω | 2.4~2.5GHz | #### **Result: Compliant** ### FCC §15.207 (a) & RSS-GEN § 8.8 – AC LINE CONDUCTED EMISSIONS Report No.: SZ4231215-75913E-RF-00A #### **Applicable Standard** FCC §15.207(a), RSS-GEN § 8.8 #### **EUT Setup** Note: 1. Support units were connected to second LISN. 2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units. The measurement procedure of EUT setup is according with ANSI C63.10-2013. The related limit was specified in FCC Part 15.207 & RSS-Gen. The spacing between the peripherals was 10 cm. #### **EMI Test Receiver Setup** The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz. During the conducted emission test, the EMI test receiver was set with the following configurations: | Frequency Range | IF B/W | |------------------|--------| | 150 kHz – 30 MHz | 9 kHz | #### **Test Procedure** Maximizing procedure was performed on the six (6) highest emissions of the EUT. All final data was recorded in the Quasi-peak and average detection mode. TR-EM-RF009 Page 16 of 106 Version 1.0 (2023/10/07) #### **Factor & Over Limit Calculation** The factor is calculated by adding LISN VDF (Voltage Division Factor) and Cable Loss. The basic equation is as follows: Report No.: SZ4231215-75913E-RF-00A ``` Factor = LISN VDF + Cable Loss ``` The "Over limit" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over limit of -7 dB means the emission is 7 dB below the limit. The equation for calculation is as follows: ``` Over Limit = Level – Limit Level = Read Level + Factor ``` Note: The term "cable loss" refers to the combination of a cable and a 10dB transient limiter (attenuator). #### **Test Data** #### **Environmental Conditions** | Temperature: | 25~27 °C | |--------------------|----------| | Relative Humidity: | 33~54 % | | ATM Pressure: | 101 kPa | The testing was performed by Macy Shi on 2024-01-27. EUT operation mode: Transmitting (Maximum output mode, 8DPSK low channel) Report No.: SZ4231215-75913E-RF-00A #### For Model: DP580 #### AC 120V/60 Hz, Line Condition: Line Project : SZ4231215-75913E-RF Tester : Macy shi Note : BT | | | Read | | LISN | Cable | Limit | 0ver | | |----|-------|-------|-------|--------|-------|-------|--------|---------| | | Freq | Level | Level | Factor | Loss | Line | Limit | Remark | | | | | | | | | | | | | MHz | dBuV | dBuV | dB | dB | dBuV | dB | | | 1 | 0.17 | 18.81 | 39.56 | 10.60 | 10.15 | 55.03 | -15.47 | Average | | 2 | 0.17 | 31.81 | 52.56 | 10.60 | 10.15 | 65.03 | -12.47 | QP | | 3 | 0.21 | 14.20 | 34.93 | 10.61 | 10.12 | 53.10 | -18.17 | Average | | 4 | 0.21 | 22.92 | 43.65 | 10.61 | 10.12 | 63.10 | -19.45 | QP | | 5 | 0.48 | 20.67 | 41.53 | 10.69 | 10.17 | 46.41 | -4.88 | Average | | 6 | 0.48 | 25.87 | 46.73 | 10.69 | 10.17 | 56.41 | -9.68 | QP | | 7 | 0.59 | 14.48 | 35.39 | 10.70 | 10.21 | 46.00 | -10.61 | Average | | 8 | 0.59 | 20.91 | 41.82 | 10.70 | 10.21 | 56.00 | -14.18 | QP | | 9 | 2.44 | 10.12 | 31.07 | 10.74 | 10.21 | 46.00 | -14.93 | Average | | 10 | 2.44 | 16.98 | 37.93 | 10.74 | 10.21 | 56.00 | -18.07 | QP | | 11 | 16.57 | 9.57 | 30.17 | 10.50 | 10.10 | 50.00 | -19.83 | Average | | 12 | 16.57 | 16.68 | 37.28 | 10.50 | 10.10 | 60.00 | -22.72 | QP | TR-EM-RF009 Page 18 of 106 Version 1.0 (2023/10/07) #### AC 120V/60 Hz, Neutral Condition: Neutral Project : SZ4231215-75913E-RF Tester : Macy shi Note : BT | | Freq | Read
Level | Level | LISN
Factor | Cable
Loss | Limit
Line | Over
Limit | Remark | |----|-------|---------------|-------|----------------|---------------|---------------|---------------|---------| | | MHz | dBuV | dBuV | dB | dB | dBuV | dB | | | 1 | 0.21 | 20.11 | 40.91 | 10.70 | 10.10 | 53.36 | -12.45 | Average | | 2 | 0.21 | 26.81 | 47.61 | 10.70 | 10.10 | 63.36 | -15.75 | QP | | 3 | 0.23 | 14.82 | 35.71 | 10.72 | 10.17 | 52.30 | -16.59 | Average | | 4 | 0.23 | 24.99 | 45.88 | 10.72 | 10.17 | 62.30 | -16.42 | QP | | 5 | 0.31 | 16.71 | 37.59 | 10.75 | 10.13 | 50.02 | -12.43 | Average | | 6 | 0.31 | 25.11 | 45.99 | 10.75 | 10.13 | 60.02 | -14.03 | QP | | 7 | 0.51 | 19.02 | 39.96 | 10.78 | 10.16 | 46.00 | -6.04 | Average | | 8 | 0.51 | 26.49 | 47.43 | 10.78 | 10.16 | 56.00 | -8.57 | QP | | 9 | 2.29 | 5.36 | 26.26 | 10.70 | 10.20 | 46.00 | -19.74 | Average | | 10 | 2.29 | 12.60 | 33.50 | 10.70 | 10.20 | 56.00 | -22.50 | QP | | 11 | 16.75 | 3.72 | 24.44 | 10.62 | 10.10 | 50.00 | -25.56 | Average | | 12 | 16.75 | 9.78 | 30.50 | 10.62 | 10.10 | 60.00 | -29.50 | OP | TR-EM-RF009 Page 19 of 106 Version 1.0 (2023/10/07) s Corp. (Shenzhen) Report No.: SZ4231215-75913E-RF-00A For Model: DP585 #### AC 120V/60 Hz, Line Condition: Line Project : SZ4231215-75913E-RF Tester : Macy shi Note : BT | | | Read | | LISN | Cable | Limit | 0ver | | |----|-------|-------|-------|--------|-------|-------|--------|---------| | | Freq | Level | Level | Factor | Loss | Line | Limit | Remark | | | | | | | | | | | | | MHz | dBuV | dBuV | dB | dB | dBuV | dB | | | 1 | 0.16 | 20.30 | 41.05 | 10.60 | 10.15 | 55.47 | -14.42 | Average | | 2 | 0.16 | 36.80 | 57.55 | 10.60 | 10.15 | 65.47 | -7.92 | QP | | 3 | 0.19 | 17.12 | 37.84 | 10.60 | 10.12 | 54.15 | -16.31 | Average | | 4 | 0.19 | 34.50 | 55.22 | 10.60 | 10.12 | 64.15 | -8.93 | QP | | 5 | 0.21 | 14.76 | 35.49 | 10.61 | 10.12 | 53.10 | -17.61 | Average | | 6 | 0.21 | 31.76 | 52.49 | 10.61 | 10.12 | 63.10 | -10.61 | QP | | 7 | 0.34 | 8.92 | 29.73 | 10.66 | 10.15 | 49.31 | -19.58 | Average | | 8 | 0.34 | 23.97 | 44.78 | 10.66 | 10.15 | 59.31 | -14.53 | QP | | 9 | 0.55 | 17.60 | 38.49 | 10.70 | 10.19 | 46.00 | -7.51 | Average | | 10 | 0.55 | 28.17 | 49.06 | 10.70 | 10.19 | 56.00 | -6.94 | QP | | 11 | 0.61 | 15.10 | 36.02 | 10.70 | 10.22 | 46.00 | -9.98 | Average | | 12 | 0.61 | 25.10 | 46.02 | 10.70 | 10.22 | 56.00 | -9.98 | QP | | 13 | 14.29 | 13.95 | 34.49 | 10.42 | 10.12 | 50.00 | -15.51 | Average | | 14 | 14.29 | 24.37 | 44.91 | 10.42 | 10.12 | 60.00 | -15.09 | QP | TR-EM-RF009 Page 20 of 106 Version 1.0 (2023/10/07) ## AC 120V/60 Hz, Neutral Report No.: SZ4231215-75913E-RF-00A Condition: Neutral Project : SZ4231215-75913E-RF Tester : Macy shi Note : BT | | Freq | Read
Level | Level | LISN
Factor | Cable
Loss | Limit
Line | Over
Limit | Remark | |----|------|---------------|-------|----------------|---------------|---------------|---------------|---------| | | MHz | dBuV | dBuV | dB | dB | dBuV | dB | | | 1 | 0.19 | 18.29 | 38.86 | 10.45 | 10.12 | 54.15 | -15.29 | Average | | 2 | 0.19 | 35.29 | 55.86 | 10.45 | 10.12 | 64.15 | -8.29 | QP | | 3 | 0.23 | 11.74 | 32.34 | 10.44 | 10.16 | 52.48 | -20.14 | Average | | 4 | 0.23 | 29.90 | 50.50 | 10.44 | 10.16 | 62.48 | -11.98 | QP | | 5 | 0.46 | 10.39 | 31.24 | 10.67 | 10.18 | 46.76 | -15.52 | Average | | 6 | 0.46 | 23.85 | 44.70 | 10.67 | 10.18 | 56.76 | -12.06 | QP | | 7 | 0.49 | 9.10 | 29.95 | 10.69 | 10.16 | 46.14 | -16.19 | Average | | 8 | 0.49 | 20.20 | 41.05 | 10.69 | 10.16 | 56.14 | -15.09 | QP | | 9 | 0.55 | 14.28 | 35.16 | 10.70 | 10.18 | 46.00 | -10.84 | Average | | 10 | 0.55 | 24.87 | 45.75 | 10.70 | 10.18 | 56.00 | -10.25 | QP | | 11 | 0.61 | 12.20 | 33.12 | 10.70 | 10.22 | 46.00 | -12.88 | Average | | 12 | 0.61 | 22.30 | 43.22 | 10.70 | 10.22 | 56.00 | -12.78 | OP | TR-EM-RF009 Page 21 of 106 Version 1.0 (2023/10/07) # FCC §15.209, §15.205 & §15.247(D) & RSS-247§ 5.5 - SPURIOUS EMISSIONS Report No.: SZ4231215-75913E-RF-00A #### **Applicable Standard** FCC §15.205; §15.209; §15.247(d); RSS-247§ 5.5; RSS-GEN § 8.10 #### **EUT Setup** #### 9 kHz-30MHz: #### 30MHz-1GHz: TR-EM-RF009 Page 22 of 106 Version 1.0 (2023/10/07) #### **Above 1GHz:** Report No.: SZ4231215-75913E-RF-00A The radiated emission performed in the 3 meters, using the setup accordance with the ANSI
C63.10-2013. The specification used was the FCC 15.209, FCC 15.247, RSS-247, RSS-Gen limits. #### **EMI Test Receiver & Spectrum Analyzer Setup** The EMI test receiver & Spectrum Analyzer Setup were set with the following configurations: | Frequency Range | RBW | Video B/W | IF B/W | Measurement | |-------------------|---------|-----------|---------|-------------| | 9 kHz – 150 kHz | / | / | 200 Hz | QP | | 9 кп2 — 130 кп2 | 300 Hz | 1 kHz | / | PK | | 150 kHz – 30 MHz | / | / | 9 kHz | QP | | 130 KHZ – 30 MHZ | 10 kHz | 30 kHz | / | PK | | 30 MHz – 1000 MHz | / | / | 120 kHz | QP | | 30 MHZ – 1000 MHZ | 100 kHz | 300 kHz | / | PK | | Above 1 GHz | 1MHz | 3 MHz | / | PK | | Above I GHZ | 1MHz | 10 Hz | / | AV | If the maximized peak measured value complies with under the QP/Average limit more than 6dB, then it is unnecessary to perform an QP/Average measurement. TR-EM-RF009 Page 23 of 106 Version 1.0 (2023/10/07) #### **Test Procedure** Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations. Report No.: SZ4231215-75913E-RF-00A Version 1.0 (2023/10/07) All final data was recorded in Quasi-peak detection mode except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz, average detection modes for frequency bands 9–90 kHz and 110–490 kHz, peak and average detection modes for frequencies above 1 GHz. For 9 kHz-30MHz, the report shall list the six emissions with the smallest margin relative to the limit, for each of the three antenna orientations (parallel, perpendicular, and ground-parallel) unless the margin is greater than 20 dB. All emissions under the average limit and under the noise floor have not recorded in the report. #### Factor & Over Limit/Margin Calculation The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows: Factor = Antenna Factor + Cable Loss - Amplifier Gain The "Over Limit/Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows: Over Limit/Margin = Level / Corrected Amplitude – Limit Level / Corrected Amplitude = Read Level + Factor #### **Test Data** #### **Environmental Conditions** | Temperature: | 22~25.1 °C | |--------------------|------------| | Relative Humidity: | 51~55 % | | ATM Pressure: | 101 kPa | The testing was performed by Warren Huang on 2024-01-26 for below 1GHz and Dylan Yang from 2024-02-27 to 2024-03-11 for above 1GHz. EUT operation mode: Transmitting *Note: After pre-scan in the X, Y and Z axes of orientation, the worst case as below:* For Model: DP580 9 kHz - 30MHz(Maximum output mode EDR (8DPSK) low channel): #### Parallel (worst case) Report No.: SZ4231215-75913E-RF-00A Site : chamber Condition : 3m Project Number: SZ4231215-75913E-RF Note : BT Tester : Warren Huang | | Frea | Factor | | Level | | Over
Limit | Remark | |---|------|--------|-------|--------|--------|---------------|--------| | | | | | | | | | | | MHz | dB/m | dBuV | dBuV/m | dBuV/m | dB | | | 1 | 0.01 | 52.40 | 17.89 | 70.29 | 125.37 | -55.08 | Peak | | 2 | 0.02 | 50.50 | 33.45 | 83.95 | 121.96 | -38.01 | Peak | | 3 | 0.04 | 43.49 | 24.59 | 68.08 | 115.16 | -47.08 | Peak | | 4 | 0.05 | 41.85 | 26.53 | 68.38 | 114.12 | -45.74 | Peak | | 5 | | 35.94 | 18.42 | 54.36 | 108.82 | -54.46 | Peak | | 6 | 0.11 | 33.68 | 15.42 | 49.10 | 106.87 | -57.77 | Peak | TR-EM-RF009 Page 25 of 106 Version 1.0 (2023/10/07) Site : chamber Condition : 3m Project Number: SZ4231215-75913E-RF Note : BT Tester : Warren Huang | | | | Read | | Limit | 0ver | | |---|------|--------|-------|--------|--------|--------|--------| | | Freq | Factor | Level | Level | Line | Limit | Remark | | | | | | 15 | 1= | | | | | MHZ | dB/m | dBuV | dBuV/m | dBuV/m | dB | | | 1 | 0.21 | 28.80 | 23.07 | 51.87 | 101.36 | -49.49 | Peak | | 2 | 0.24 | 27.54 | 25.18 | 52.72 | 99.97 | -47.25 | Peak | | 3 | | 22.04 | 26.25 | 48.29 | 95.10 | -46.81 | Peak | | 4 | 0.51 | 20.87 | 29.63 | 50.50 | 73.51 | -23.01 | Peak | | 5 | 1.29 | 14.02 | 23.56 | 37.58 | 65.23 | -27.65 | Peak | | 6 | 1.40 | 13.47 | 25.23 | 38.70 | 64.50 | -25.80 | Peak | TR-EM-RF009 Page 26 of 106 Version 1.0 (2023/10/07) **30MHz-1GHz:** (Maximum output mode EDR (8DPSK) low channel) #### Horizontal Report No.: SZ4231215-75913E-RF-00A Site : chamber Condition : 3m Horizontal Project Number: SZ4231215-75913E-RF Note : BT Tester : Warren Huang | | | | Read | | Limit | 0ver | | |---|--------|--------|-------|--------|--------|--------|--------| | | Freq | Factor | Level | Level | Line | Limit | Remark | | | | | | | | | | | | MHz | dB/m | dBu∨ | dBuV/m | dBuV/m | dB | | | 1 | 41.11 | -11.10 | 23.79 | 12.69 | 40.00 | -27.31 | QP | | 2 | 98.88 | -14.04 | 24.84 | 10.80 | 43.50 | -32.70 | QP | | 3 | 143.33 | -10.94 | 30.11 | 19.17 | 43.50 | -24.33 | QP | | 4 | 265.79 | -11.25 | 29.66 | 18.41 | 46.00 | -27.59 | QP | | 5 | 680.56 | -1.88 | 26.97 | 25.09 | 46.00 | -20.91 | QP | | 6 | 849.54 | 0.18 | 25.75 | 25.93 | 46.00 | -20.07 | QP | TR-EM-RF009 Page 27 of 106 Version 1.0 (2023/10/07) #### Vertical Report No.: SZ4231215-75913E-RF-00A Site : chamber Condition : 3m Vertical Project Number: SZ4231215-75913E-RF Note : BT Tester : Warren Huang | | Freq | Factor | | | Limit
Line | | Remark | |---|--------|--------|-------|--------|---------------|--------|--------| | - | MHz | dB/m | dBuV | dBuV/m | dBuV/m | dB | | | 1 | 42.67 | -13.41 | 26.91 | 13.50 | 40.00 | -26.50 | QP | | 2 | 55.71 | -17.53 | 34.11 | 16.58 | 40.00 | -23.42 | QP | | 3 | 144.27 | -11.47 | 30.61 | 19.14 | 43.50 | -24.36 | QP | | 4 | 392.96 | -7.93 | 26.22 | 18.29 | 46.00 | -27.71 | QP | | 5 | 548.30 | -4.88 | 26.80 | 21.92 | 46.00 | -24.08 | QP | | 6 | 722.36 | -2.02 | 30.84 | 28.82 | 46.00 | -17.18 | QP | TR-EM-RF009 Page 28 of 106 Version 1.0 (2023/10/07) For Model: DP585 9 kHz - 30MHz (Maximum output mode EDR (8DPSK) low channel): #### Parallel (worst case) Report No.: SZ4231215-75913E-RF-00A Site : Chamber A Condition : 3m Project Number: SZ4231215-75913E-RF Note : BT Tester : Warren Huang | | | | | | | 0ver | | |---|------|--------|-------|--------|--------|--------|--------| | | Freq | Factor | Level | Level | Line | Limit | Remark | | | | | | | | | | | | MHz | dB/m | dBuV | dBuV/m | dBuV/m | dB | | | 1 | 0.01 | 52.41 | 17.31 | 69.72 | 125.39 | -55.67 | Peak | | 2 | 0.02 | 50.80 | 32.14 | 82.94 | 122.42 | -39.48 | Peak | | 3 | 0.02 | 50.47 | 33.43 | 83.90 | 121.92 | -38.02 | Peak | | 4 | 0.04 | 43.00 | 25.48 | 68.48 | 114.83 | -46.35 | Peak | | 5 | 0.09 | 35.92 | 21.53 | 57.45 | 108.82 | -51.37 | Peak | | 6 | 0.11 | 33.65 | 18.12 | 51.77 | 106.82 | -55.05 | Peak | TR-EM-RF009 Page 29 of 106 Version 1.0 (2023/10/07) Site : Chamber A Condition : 3m Project Number: SZ4231215-75913E-RF Note : BT Tester : Warren Huang | | Freq | Factor | | | Limit
Line | | Remark | | |---|------|--------|-------|--------|---------------|--------|--------|---| | - | MHz | dB/m | dBuV | dBuV/m | dBuV/m | ——dB | | - | | 1 | 0.21 | 28.70 | 25.13 | 53.83 | 101.23 | -47.40 | Peak | | | 2 | 0.24 | 27.64 | 28.74 | 56.38 | 100.08 | -43.70 | Peak | | | 3 | 0.51 | 20.82 | 26.81 | 47.63 | 73.44 | -25.81 | Peak | | | 4 | 1.29 | 14.01 | 24.77 | 38.78 | 65.21 | -26.43 | Peak | | | 5 | 1.39 | 13.51 | 25.07 | 38.58 | 64.56 | -25.98 | Peak | | | 6 | 2.55 | 9.17 | 22.70 | 31.87 | 69.54 | -37.67 | Peak | | TR-EM-RF009 Page 30 of 106 Version 1.0 (2023/10/07) #### Horizontal Report No.: SZ4231215-75913E-RF-00A Site : Chamber A Condition : 3m Horizontal Project Number: SZ4231215-75913E-RF Note : BT Tester : Warren Huang | | | | Read | | Limit | 0ver | | | |---|--------|--------|-------|--------|--------|--------|--------|--| | | Freq | Factor | Level | Level | Line | Limit | Remark | | | | | | | | | | | | | | MHz | dB/m | dBuV | dBuV/m | dBuV/m | dB | | | | 1 | 41.35 | -11.25 | 24.28 | 13.03 | 40.00 | -26.97 | QP | | | 2 | 136.40 | -10.56 | 33.79 | 23.23 | 43.50 | -20.27 | QP | | | 3 | 150.01 | -11.35 | 39.66 | 28.31 | 43.50 | -15.19 | QP | | | 4 | 325.17 | -9.91 | 34.05 | 24.14 | 46.00 | -21.86 | QP | | | 5 | 679.96 | -1.89 | 26.34 | 24.45 | 46.00 | -21.55 | QP | | | 6 | 835.51 | -0.02 | 25.40 | 25.38 | 46.00 | -20.62 | OP | | TR-EM-RF009 Page 31 of 106 Version 1.0 (2023/10/07) #### Vertical Report No.: SZ4231215-75913E-RF-00A Site : Chamber A Condition : 3m Vertical Project Number: SZ4231215-75913E-RF Note : BT Tester : Warren Huang | | | | | | Limit | | | |---|--------|--------|-------|--------|--------|--------|--------| | | Freq | Factor | Level | Level | Line | Limit | Remark | | | | | | | | | | | | MHz | dB/m | dBuV | dBuV/m | dBuV/m | dB | | | 1 | 42.71 | -13.43 | 26.49 | 13.06 | 40.00 | -26.94 | QP | | 2 | 57.62 | -17.56 | 40.95 | 23.39 | 40.00 | -16.61 | QP | | 3 | 136.82 | -11.16 | 36.84 | 25.68 | 43.50 | -17.82 | QP | | 4 | 150.01 | -11.65 | 36.20 | 24.55 | 43.50 | -18.95 | QP | | 5 | 320.64 | -10.27 | 28.07 | 17.80 | 46.00 | -28.20 | QP | | 6 | 866.85 | 0.13 | 24.83 | 24.96 | 46.00 | -21.04 | QP | TR-EM-RF009 Page 32 of 106 Version 1.0 (2023/10/07) ## Above 1GHz (DP580 was worst case): | | Recei | ver | | | Corrected | Limit | | | | | | |--------------------|-----------------------|-----|------------------------|---------------|--------------------|-------|----------------|--|--|--|--| | Frequency
(MHz) | Reading (dBµV) PK/Ave | | Polar
(H/V) | Factor (dB/m) | Factor Amplitude | | Margin
(dB) | | | | | | • | GFSK | | | | | | | | | | | | | Low Channel 2402MHz | | | | | | | | | | | | 4804.00 | 55.51 | PK | Н | 2.42 | 57.93 | 74 | -16.07 | | | | | | 4804.00 | 45.68 | AV | Н | 2.42 | 48.10 | 54 | -5.90 | | | | | | 4804.00 | 53.81 | PK | V | 2.42 | 56.23 | 74 | -17.77 | | | | | | 4804.00 | 44.62 | AV | V | 2.42 | 47.04 | 54 | -6.96 | | | | | | | | | Middle Channel 2441MHz | | | | | | | | | | 4882.00 | 55.56 | PK
| Н | 2.58 | 58.14 | 74 | -15.86 | | | | | | 4882.00 | 45.47 | AV | Н | 2.58 | 48.05 | 54 | -5.95 | | | | | | 4882.00 | 53.93 | PK | V | 2.58 | 56.51 | 74 | -17.49 | | | | | | 4882.00 | 44.09 | AV | V | 2.58 | 46.67 | 54 | -7.33 | | | | | | | | • | High Channel 2480MHz | • | | | • | | | | | | 4960.00 | 54.44 | PK | Н | 2.68 | 57.12 | 74 | -16.88 | | | | | | 4960.00 | 43.63 | AV | Н | 2.68 | 46.31 | 54 | -7.69 | | | | | | 4960.00 | 52.64 | PK | V | 2.68 | 55.32 | 74 | -18.68 | | | | | | 4960.00 | 42.88 | AV | V | 2.68 | 45.56 | 54 | -8.44 | | | | | | | | | π/4-DQPSK | | | | | | | | | | | | | Low Channel 2402MHz | | | | | | | | | | 4804.00 | 53.62 | PK | Н | 2.42 | 56.04 | 74 | -17.96 | | | | | | 4804.00 | 42.53 | AV | Н | 2.42 | 44.95 | 54 | -9.05 | | | | | | 4804.00 | 52.48 | PK | V | 2.42 | 54.90 | 74 | -19.10 | | | | | | 4804.00 | 42.27 | AV | V | 2.42 | 44.69 | 54 | -9.31 | | | | | | | | • | Middle Channel 2441MHz | • | | | • | | | | | | 4882.00 | 55.55 | PK | Н | 2.58 | 58.13 | 74 | -15.87 | | | | | | 4882.00 | 43.37 | AV | Н | 2.58 | 45.95 | 54 | -8.05 | | | | | | 4882.00 | 52.24 | PK | V | 2.58 | 54.82 | 74 | -19.18 | | | | | | 4882.00 | 42.16 | AV | V | 2.58 | 44.74 | 54 | -9.26 | | | | | | | | L | High Channel 2480MHz | 1 | | | ı | | | | | | 4960.00 | 55.83 | PK | Н | 2.68 | 58.51 | 74 | -15.49 | | | | | | 4960.00 | 43.68 | AV | Н | 2.68 | 46.36 | 54 | -7.64 | | | | | | 4960.00 | 52.87 | PK | V | 2.68 | 55.55 | 74 | -18.45 | | | | | | 4960.00 | 42.66 | AV | V | 2.68 | 45.34 | 54 | -8.66 | | | | | Report No.: SZ4231215-75913E-RF-00A | | Receiver | | | | Corrected | | | | | | | |--------------------|---------------------|--------|------------------------|---------------|--------------------|-------------------|----------------|--|--|--|--| | Frequency
(MHz) | Reading
(dBμV) | PK/Ave | Polar
(H/V) | Factor (dB/m) | Amplitude (dBµV/m) | Limit
(dBμV/m) | Margin
(dB) | | | | | | 8DPSK | | | | | | | | | | | | | | Low Channel 2402MHz | | | | | | | | | | | | 4804.00 | 53.89 | PK | Н | 2.42 | 56.31 | 74 | -17.69 | | | | | | 4804.00 | 41.88 | AV | Н | 2.42 | 44.30 | 54 | -9.70 | | | | | | 4804.00 | 52.64 | PK | V | 2.42 | 55.06 | 74 | -18.94 | | | | | | 4804.00 | 40.69 | AV | V | 2.42 | 43.11 | 54 | -10.89 | | | | | | | | | Middle Channel 2441MHz | | | | | | | | | | 4882.00 | 55.23 | PK | Н | 2.58 | 57.81 | 74 | -16.19 | | | | | | 4882.00 | 43.66 | AV | Н | 2.58 | 46.24 | 54 | -7.76 | | | | | | 4882.00 | 53.95 | PK | V | 2.58 | 56.53 | 74 | -17.47 | | | | | | 4882.00 | 43.21 | AV | V | 2.58 | 45.79 | 54 | -8.21 | | | | | | | | | High Channel 2480MHz | | | | | | | | | | 4960.00 | 55.61 | PK | Н | 2.68 | 58.29 | 74 | -15.71 | | | | | | 4960.00 | 44.35 | AV | Н | 2.68 | 47.03 | 54 | -6.97 | | | | | | 4960.00 | 53.91 | PK | V | 2.68 | 56.59 | 74 | -17.41 | | | | | | 4960.00 | 43.82 | AV | V | 2.68 | 46.50 | 54 | -7.50 | | | | | #### Test plots for Band Edge Measurements (Radiated): Report No.: SZ4231215-75913E-RF-00A Condition : Horizontal Project No.: SZ4231215-75913E Tester : Dylan Note : BT_DH5_2402 | | Freq | Factor | Read
Level | | Limit
Line | | Over
Limit | |---|----------|--------|---------------|--------|---------------|---------|---------------| | | MHz | dB/m | dBuV | dBuV/m | dBuV/m | | dB | | 1 | 2367.530 | -3.17 | 39.92 | 36.75 | 54.00 | Average | -17.25 | | 2 | 2367.530 | -3.17 | 54.58 | 51.41 | 74.00 | peak | -22.59 | TR-EM-RF009 Page 35 of 106 Version 1.0 (2023/10/07) **GFSK** Condition : Vertical Project No.: SZ4231215-75913E Tester : Dylan Note : BT_DH5_2402 | | Freq | Factor | Read
Level | | Limit
Line | | Over
Limit | |---|----------|--------|---------------|--------|---------------|---------|---------------| | | MHz | dB/m | dBuV | dBuV/m | dBuV/m | | dB | | 1 | 2359.802 | -3.16 | 39.07 | 35.91 | 54.00 | Average | -18.09 | | 2 | 2359.802 | -3.16 | 54.21 | 51.05 | 74.00 | peak | -22.95 | TR-EM-RF009 Page 36 of 106 Version 1.0 (2023/10/07) **GFSK** Condition : Horizontal Project No.: SZ4231215-75913E Tester : Dylan Note : BT_DH5_2480 | | Freq | Factor | Level | | Limit | Remark | Limit | |---|----------|--------|-------|--------|--------|---------|--------| | | MHz | dB/m | dBuV | dBuV/m | dBuV/m | | dB | | 1 | 2484.425 | -3.17 | 42.15 | 38.98 | 54.00 | Average | -15.02 | | 2 | 2484.425 | -3.17 | 56.44 | 53.27 | 74.00 | peak | -20.73 | TR-EM-RF009 Page 37 of 106 Version 1.0 (2023/10/07) **GFSK** Condition : Vertical Project No.: SZ4231215-75913E Tester : Dylan Note : BT_DH5_2480 | | Freq | Factor | Read
Level | | Limit
Line | | Over
Limit | |---|----------|--------|---------------|--------|---------------|---------|---------------| | | MHz | dB/m | dBuV | dBuV/m | dBuV/m | | dB | | 1 | 2498.850 | -3.20 | 41.25 | 38.05 | 54.00 | Average | -15.95 | | 2 | 2498.850 | -3.20 | 54.67 | 51.47 | 74.00 | peak | -22.53 | TR-EM-RF009 Page 38 of 106 Version 1.0 (2023/10/07) $\pi/4$ -DQPSK Condition : Horizontal Project No.: SZ4231215-75913E Tester : Dylan Note : BT_2DH5_2402 | | Freq | Factor | Read
Level | | Limit
Line | | Over
Limit | |---|----------|--------|---------------|--------|---------------|---------|---------------| | | MHz | dB/m | dBuV | dBuV/m | dBuV/m | | dB | | 1 | 2387.275 | -3.19 | 40.18 | 36.99 | 54.00 | Average | -17.01 | | 2 | 2387.275 | -3.19 | 54.71 | 51.52 | 74.00 | peak | -22.48 | $\pi/4$ -DQPSK Condition : Vertical Project No.: SZ4231215-75913E Tester : Dylan Note : BT_2DH5_2402 | | Freq | Factor | Read
Level | | Limit
Line Remark | Over
Limit | | |---|----------|--------|---------------|--------|----------------------|---------------|--------| | | MHz | dB/m | dBuV | dBuV/m | dBuV/m | | dB | | 1 | 2364.147 | -3.17 | 40.65 | 37.48 | 54.00 | Average | -16.52 | | 2 | 2364.147 | -3.17 | 55.24 | 52.07 | 74.00 | peak | -21.93 | TR-EM-RF009 Page 40 of 106 Version 1.0 (2023/10/07) Condition : Horizontal Project No.: SZ4231215-75913E Tester : Dylan Note : BT_2DH5_2480 | | Freq | Factor | Level | | Limit | Remark | Limit | |---|----------|--------|-------|--------|--------|---------|--------| | | MHz | dB/m | dBuV | dBuV/m | dBuV/m | | dB | | 1 | 2483.906 | -3.17 | 42.21 | 39.04 | 54.00 | Average | -14.96 | | 2 | 2483.906 | -3.17 | 56.24 | 53.07 | 74.00 | peak | -20.93 | Condition : Vertical Project No.: SZ4231215-75913E Tester : Dylan Note : BT_2DH5_2480 | | Freq | Factor | Level | Level | Line | Remark | Limit | |---|----------|--------|-------|--------|--------|---------|--------| | | MHz | dB/m | dBuV | dBuV/m | dBuV/m | | dB | | 1 | 2483.575 | -3.17 | 42.33 | 39.16 | 54.00 | Average | -14.84 | | 2 | 2483.575 | -3.17 | 56.61 | 53.44 | 74.00 | peak | -20.56 | TR-EM-RF009 Page 42 of 106 Version 1.0 (2023/10/07) Condition : Horizontal Project No.: SZ4231215-75913E Tester : Dylan Note : BT_3DH5_2402 | | Freq | Factor | Read
Level | | Limit
Line | | Over
Limit | |---|----------|--------|---------------|--------|---------------|---------|---------------| | | MHz | dB/m | dBuV | dBuV/m | dBuV/m | | dB | | 1 | 2331.601 | -3.13 | 39.49 | 36.36 | 54.00 | Average | -17.64 | | 2 | 2331.601 | -3.13 | 54.61 | 51.48 | 74.00 | peak | -22.52 | 8DPSK Condition : Vertical Project No.: SZ4231215-75913E Tester : Dylan Note : BT_3DH5_2402 | | Freq | Factor | Read
Level | | Limit
Line | | Over
Limit | |---|----------|--------|---------------|--------|---------------|---------|---------------| | | MHz | dB/m | dBuV | dBuV/m | dBuV/m | | dB | | 1 | 2373.291 | -3.18 | 40.11 | 36.93 | 54.00 | Average | -17.07 | | 2 | 2373.291 | -3.18 | 55.42 | 52.24 | 74.00 | peak | -21.76 | TR-EM-RF009 Page 44 of 106 Version 1.0 (2023/10/07) Condition : Horizontal Project No.: SZ4231215-75913E Tester : Dylan Note : BT_3DH5_2480 | | Freq | Factor | Level | | Line | Remark | Limit | |---|----------|--------|-------|--------|--------|---------|--------| | | MHz | dB/m | dBuV | dBuV/m | dBuV/m | | dB | | 1 | 2483.619 | -3.17 | 42.73 | 39.56 | 54.00 | Average | -14.44 | | 2 | 2483.619 | -3.17 | 56.48 | 53.31 | 74.00 | peak | -20.69 | 8DPSK Condition : Vertical Project No.: SZ4231215-75913E Tester : Dylan Note : BT_3DH5_2480 | | Freq | Factor | Read
Level | | Limit
Line | | Over
Limit | |---|----------|--------|---------------|--------|---------------|---------|---------------| | | MHz | dB/m | dBuV | dBuV/m | dBuV/m | | dB | | 1 | 2483.837 | -3.17 | 42.25 | 39.08 | 54.00 | Average | -14.92 | | 2 | 2483.837 | -3.17 | 56.12 | 52.95 | 74.00 | peak | -21.05 | #### Report No.: SZ4231215-75913E-RF-00A ## Listed with the worst harmonic margin test plot (BDR Mode Low channel was the worst): ## FCC §15.247(a) (1) & RSS-247 § 5.1 (b) -CHANNEL SEPARATION TEST Report No.: SZ4231215-75913E-RF-00A #### **Applicable Standard** According to FCC §15.247(a) (1): Frequency hopping systems shall have hoping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. According to RSS-247 § 5.1 (b): Frequency hopping systems (FHSs) shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the -20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, FHSs operating in the band 2400-2483.5 MHz may have hopping channel carrier frequencies
that are separated by 25 kHz or two thirds of the -20 dB bandwidth of the hopping channel, whichever is greater, provided that the systems operate with an output power no greater than 0.125 W. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. #### **Test Procedure** Test Method: ANSI C63.10-2013 Clause 7.8.2 - 1. Set the EUT in transmitting mode, max hold the channel. - 2. Set the adjacent channel of the EUT and max hold another trace. - 3. Measure the channel separation. TR-EM-RF009 Page 53 of 106 Version 1.0 (2023/10/07) ## **Test Data** ## **Environmental Conditions** | Temperature: | 25.6 ℃ | |--------------------|-----------| | Relative Humidity: | 43 % | | ATM Pressure: | 102.5 kPa | Report No.: SZ4231215-75913E-RF-00A The testing was performed by Tom Liu on 2024-02-27. EUT operation mode: Transmitting ## FCC §15.247(a) (1) & RSS-247 § 5.1 (a), RSS-GEN § 6.7 – 20 dB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH Report No.: SZ4231215-75913E-RF-00A ## **Applicable Standard** According to FCC §15.247(a) (1): Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. According to RSS-247 § 5.1 (a), RSS-GEN § 6.7: The occupied bandwidth or the "99% emission bandwidth" is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained. The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs. In some cases, the "20 dB bandwidth" is required, which is defined as the frequency range between two points, one at the lowest frequency below and one at the highest frequency above the carrier frequency, at which the maximum power level of the transmitted emission is attenuated 20 dB below the maximum inband power level of the modulated signal, where the two points are on the outskirts of the in-band emission. #### **Test Procedure** Test Method: ANSI C63.10-2013 Clause 7.8.7 & Clause 6.9.2 The following conditions shall be observed for measuring the occupied bandwidth and 20 dB bandwidth: - The transmitter shall be operated at its maximum carrier power measured under normal test conditions. - The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span. - The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / 20 dB bandwidth if the device is not transmitting continuously. - \bullet The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / 20 dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted. TR-EM-RF009 Page 55 of 106 Version 1.0 (2023/10/07) Note: It may be necessary to repeat the measurement a few times until the RBW and VBW are in compliance with the above requirement. For the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth). Report No.: SZ4231215-75913E-RF-00A #### **Test Data** #### **Environmental Conditions** | Temperature: | 25.6 ℃ | |--------------------|-----------| | Relative Humidity: | 43 % | | ATM Pressure: | 102.5 kPa | The testing was performed by Tom Liu on 2024-02-27. EUT operation mode: Transmitting ## FCC §15.247(a) (1) (iii) & RSS-247 § 5.1 (d) - QUANTITY OF HOPPING CHANNEL TEST Report No.: SZ4231215-75913E-RF-00A ## **Applicable Standard** According to FCC §15.247(a) (1) (iii): Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used. According to RSS-247 § 5.1 (d): Frequency hopping systems (FHSS) operating in the band 2400-2483.5 MHz shall use at least 15 hopping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed. Transmissions on particular hopping frequencies may be avoided or suppressed provided that at least 15 hopping channels are used. #### **Test Procedure** Test Method: ANSI C63.10-2013 Clause 7.8.3 - 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator. - 2. Set the EUT in hopping mode from first channel to last. - 3. By using the max-hold function record the quantity of the channel. TR-EM-RF009 Page 57 of 106 Version 1.0 (2023/10/07) ## **Test Data** ## **Environmental Conditions** | Temperature: | 25.6 ℃ | | | |--------------------|-----------|--|--| | Relative Humidity: | 43 % | | | | ATM Pressure: | 102.5 kPa | | | The testing was performed by Tom Liu on 2024-02-27. Report No.: SZ4231215-75913E-RF-00A EUT operation mode: Transmitting # FCC §15.247(a) (1) (iii) & RSS-247 § 5.1 (d) - TIME OF OCCUPANCY (DWELL TIME) Report No.: SZ4231215-75913E-RF-00A ## **Applicable Standard** According to FCC §15.247(a) (1) (iii): Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used. According to RSS-247 § 5.1 (d): Frequency hopping systems (FHSs) operating in the band 2400-2483.5 MHz shall use at least 15 hopping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed. Transmissions on particular hopping frequencies may be avoided or suppressed provided that at least 15 hopping channels are used. #### **Test Procedure** Test Method: ANSI C63.10-2013 Clause 7.8.4 - 1. The EUT was worked in channel hopping. - 2. Set the RBW to: 1MHz. - 3. Set the VBW \geq 3×RBW. - 4. Set the span to 0Hz. - 5. Detector = peak. - 6. Sweep time = auto couple. - 7. Trace mode = max hold. - 8. Allow trace to fully stabilize. - 9. Recorded the time of single pulses TR-EM-RF009 Page 59 of 106 Version 1.0 (2023/10/07) ## **Test Data** ## **Environmental Conditions** | Temperature: | 25.6 °C | | | |--------------------|-----------|--|--| | Relative Humidity: | 43 % | | | | ATM Pressure: | 102.5 kPa | | | The testing was performed by Tom Liu on 2024-02-27. Report No.: SZ4231215-75913E-RF-00A EUT operation mode: Transmitting ## FCC §15.247(b) (1) & RSS-247§ 5.1(b) &§ 5.4(b) - PEAK OUTPUT POWER MEASUREMENT Report No.: SZ4231215-75913E-RF-00A ## **Applicable Standard** According to FCC §15.247(b) (1): For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. And for all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts. According to RSS-247§ 5.1(b) &§ 5.4(b): For frequency hopping systems (FHSs) operating in the band 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1.0 W if the hopset uses 75 or more hopping channels; the maximum peak conducted output power shall not exceed 0.125 W if the hopset uses less than 75 hopping channels. The e.i.r.p. shall not exceed 4 W (see Section 5.4(e) for exceptions). Frequency hopping systems (FHSs) shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the -20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, FHSs operating in the band 2400-2483.5 MHz may have hopping channel carrier frequencies that are separated by 25 kHz or two thirds of the -20 dB bandwidth of the hopping channel, whichever is greater, provided that the systems operate with an output power no greater than 0.125 W. #### **Test Procedure** Test Method: ANSI C63.10-2013 Clause 7.8.5 - 1. Place the EUT on a bench and set in transmitting mode. - 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment. - 3. Add a correction factor to the display. TR-EM-RF009 Page 61 of 106 Version 1.0 (2023/10/07) ## **Test Data** ## **Environmental Conditions** | Temperature: | 25.6 °C | | | |--------------------|-----------|--|--| | Relative Humidity: | 43 % | | | | ATM Pressure: | 102.5 kPa | | | The testing was performed by Tom Liu on 2024-02-27. Report No.:
SZ4231215-75913E-RF-00A EUT operation mode: Transmitting ## FCC §15.247(d) & RSS-247 § 5.5 - BAND EDGES TESTING ## **Applicable Standard** According to FCC §15.247(d). In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). Report No.: SZ4231215-75913E-RF-00A According to RSS-247 § 5.5. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(e), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required. #### **Test Procedure** Test Method: ANSI C63.10-2013 Clause 7.8.6 & Clause 6.10 - 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator. - 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range. - 3. Set RBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge. - 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency. - 5. Repeat above procedures until all measured frequencies were complete. TR-EM-RF009 Page 63 of 106 Version 1.0 (2023/10/07) ## **Test Data** ## **Environmental Conditions** | Temperature: | 25.6 °C | | | |--------------------|-----------|--|--| | Relative Humidity: | 43 % | | | | ATM Pressure: | 102.5 kPa | | | Report No.: SZ4231215-75913E-RF-00A The testing was performed by Tom Liu on 2024-02-27. EUT operation mode: Transmitting | Bay Area Compliance Laboratories | Corp. (Shenzhen) | Report No.: SZ4231215-75913E | -KF-00A | |--|-----------------------|------------------------------------|------------| | EUT PHOTOGRAPHS | | | | | | | | DET | | Please refer to the attachment Sphoto. | Z4231215-75913E-RF Ex | ternal photo and SZ4231215-75913E- | RF Interna | | photo | Bay Area Compliance Laboratories Corp. (Shenzhen) | Report No.: SZ4231215-75913E-RF-00A | |---|-------------------------------------| | TEST SETUP PHOTOGRAPHS | | | Please refer to the attachment SZ4231215-75913E-RFA T | est Satur photo | | T lease felor to the attachment 32.4231213-73913E-KFA 1 | est Setup photo. | ## **APPENDIX** ## Appendix A: 20dB Emission Bandwidth ## **Test Result** | Test Mode | Antenna | Frequency[MHz] | 20db
EBW[MHz] | FL[MHz] | FH[MHz] | Limit[MHz] | Verdict | |-----------|---------|----------------|------------------|---------|---------|------------|---------| | DH1 | | 2402 | 0.96 | 2401.53 | 2402.49 | | | | | Ant1 | 2441 | 0.96 | 2440.53 | 2441.49 | | | | | | 2480 | 0.95 | 2479.53 | 2480.48 | | | | 2DH1 | Ant1 | 2402 | 1.25 | 2401.38 | 2402.63 | | | | | | 2441 | 1.26 | 2440.38 | 2441.63 | | | | | | | 2480 | 1.25 | 2479.38 | 2480.63 | | | 3DH1 | Ant1 | 2402 | 1.23 | 2401.39 | 2402.61 | | | | | | 2441 | 1.23 | 2440.39 | 2441.61 | | | | | | 2480 | 1.22 | 2479.39 | 2480.61 | | | Report No.: SZ4231215-75913E-RF-00A Report No.: SZ4231215-75913E-RF-00A ProjectNo.:SZ4231215-75913E-RF Tester:Tom.Liu Date: 27.FEB.2024 11:07:56 ProjectNo.:SZ4231215-75913E-RF Tester:Tom.Liu # Appendix B: Occupied Channel Bandwidth ### **Test Result** | 10011100011 | | | | | | | | |-------------|---------|----------------|-----------|-----------|-----------|------------|---------| | Test Mode | Antenna | Frequency[MHz] | OCB [MHz] | FL[MHz] | FH[MHz] | Limit[MHz] | Verdict | | DH1 | Ant1 | 2402 | 0.89 | 2401.5475 | 2402.4376 | | | | | | 2441 | 0.896 | 2440.5445 | 2441.4406 | | | | | | 2480 | 0.896 | 2479.5445 | 2480.4406 | | I | | 2DH1 | Ant1 | 2402 | 1.163 | 2401.4126 | 2402.5754 | | I | | | | 2441 | 1.166 | 2440.4126 | 2441.5784 | | | | | | 2480 | 1.166 | 2479.4126 | 2480.5784 | | | | 3DH1 | Ant1 | 2402 | 1.145 | 2401.4246 | 2402.5694 | | - | | | | 2441 | 1.145 | 2440.4246 | 2441.5694 | | | | | | 2480 | 1.145 | 2479.4246 | 2480.5694 | | | Report No.: SZ4231215-75913E-RF-00A Date: 27.FEB.2024 11:08:02 1.144855145 MHz # Appendix C: Maximum conducted output power ### **Test Result Peak** | Test
Mode | Antenna | Frequency[MHz] | Conducted Peak Powert[dBm] | Conducted Limit[dBm] | Verdict | |--------------|---------|----------------|----------------------------|----------------------|---------| | | | 2402 | 8.64 | ≤30 | PASS | | DH1 | Ant1 | 2441 | 8.58 | ≤30 | PASS | | | | 2480 | 8.38 | ≤30 | PASS | | 2DH1 | Ant1 | 2402 | 9.15 | ≤20.97 | PASS | | | | 2441 | 9.04 | ≤20.97 | PASS | | | | 2480 | 8.81 | ≤20.97 | PASS | | 3DH1 | | 2402 | 9.45 | ≤20.97 | PASS | | | Ant1 | 2441 | 9.3 | ≤20.97 | PASS | | | | 2480 | 9.02 | ≤20.97 | PASS | Report No.: SZ4231215-75913E-RF-00A TR-EM-RF009 Page 79 of 106 Version 1.0 (2023/10/07) Report No.: SZ4231215-75913E-RF-00A Spectrum 10 dBm -30 dBm -40 dBm -70 dBm CF 2.441 GHz 10 dBm -40 dBm ProjectNo.:SZ4231215-75913E-RF Tester:Tom.Liu Count 100/100 ## Appendix D: Carrier frequency separation #### **Test Result** | Test Mode | Antenna | Frequency[MHz] | Result[MHz] | Limit[MHz] | Verdict | |-----------|---------|----------------|-------------|------------|---------| | DH1 | Ant1 | Нор | 1.006 | ≥0.960 | PASS | | 2DH1 | Ant1 | Нор | 1.003 | ≥0.840 | PASS | | 3DH1 | Ant1 | Нор | 1.006 | ≥0.820 | PASS | Report No.: SZ4231215-75913E-RF-00A Note: For DH1 mode, limit is no less than 20dB EBW, For 2DH1 and 3DH1 mode, limit in no less than two thirds of 20dB EBW. ## **Appendix E: Time of occupancy** #### **Test Result** | 1 oct 1 to oait | | | | | | | | |-----------------|---------|----------------|--------------------|--------------------|-----------|----------|---------| | Test Mode | Antenna | Frequency[MHz] | BurstWidth
[ms] | TotalHops
[Num] | Result[s] | Limit[s] | Verdict | | DH1 | Ant1 | Нор | 0.369 | 320 | 0.118 | ≤0.4 | PASS | | DH3 | Ant1 | Нор | 1.609 | 160 | 0.257 | ≤0.4 | PASS | | DH5 | Ant1 | Нор | 2.850 | 110 | 0.314 | ≤0.4 | PASS | | 2DH1 | Ant1 | Нор | 0.378 | 320 | 0.121 | ≤0.4 | PASS | | 2DH3 | Ant1 | Нор | 1.621 | 160 | 0.259 | ≤0.4 | PASS | | 2DH5 | Ant1 | Нор | 2.862 | 110 | 0.315 | ≤0.4 | PASS | | 3DH1 | Ant1 | Нор | 0.378 | 320 | 0.121 | ≤0.4 | PASS | | 3DH3 | Ant1 | Нор | 1.619 | 160 | 0.259 | ≤0.4 | PASS | | 3DH5 | Ant1 | Нор | 2.863 | 110 | 0.315 | ≤0.4 | PASS | Report No.: SZ4231215-75913E-RF-00A Note: Note: Observation time = Hopping Channel Number $\times 0.4 = 32s$ TotalHops = $10 \times \text{Hops of Observation time } /10$ Result = BurstWidth \times TotalHops. TR-EM-RF009 Page 88 of 106 Version 1.0 (2023/10/07) Report No.: SZ4231215-75913E-RF-00A 30000 pts ProjectNo.:SZ4231215-75913E-RF Tester:Tom.Liu Date: 27.FEB.2024 11:14:52 30000 pts ProjectNo.:SZ4231215-75913E-RF Tester:Tom.Liu Date: 27.FEB.2024 11:16:22 -70 dBm ProjectNo.:SZ4231215-75913E-RF Tester:Tom.Liu Date: 27.FEB.2024 11:18:29 30000 pts Date: 27.FEB.2024 11:19:28 30000 pts ProjectNo.:SZ4231215-75913E-RF Tester:Tom.Liu Date: 27.FEB.2024 11:22:35 Date: 27.FEB.2024 11:23:29 Date: 27.FEB.2024 11:23:57 # Appendix F: Number of hopping channels ## **Test Result** | Test Mode | Antenna | Frequency[MHz] | Result[Num] | Limit[Num] | Verdict | |-----------|---------|----------------|-------------|------------|---------| | DH1 | Ant1 | Нор | 79 | ≥15 | PASS | | 2DH1 | Ant1 | Нор | 79 | ≥15 | PASS | | 3DH1 | Ant1 | Нор | 79 | ≥15 | PASS | Report No.: SZ4231215-75913E-RF-00A TR-EM-RF009 Page 100 of 106 Version 1.0 (2023/10/07) ### Appendix G: Band edge measurements **Test Graphs** Report No.: SZ4231215-75913E-RF-00A TR-EM-RF009 Page 101 of 106 Version 1.0 (2023/10/07) TR-EM-RF009 Version 1.0 (2023/10/07) Page 102 of 106 TR-EM-RF009 Version 1.0 (2023/10/07) Page 103 of 106 Report No.: SZ4231215-75913E-RF-00A TR-EM-RF009 Page 104 of 106 Version 1.0 (2023/10/07)
TR-EM-RF009 Version 1.0 (2023/10/07) Page 105 of 106 #### ***** END OF REPORT ***** TR-EM-RF009 Version 1.0 (2023/10/07) Page 106 of 106