FCC and ISED Test Report

Sepura Limited Model: SCG2228

In accordance with FCC 47 CFR Part 2, FCC 47 CFR Part 90, ISED RSS-119 and ISED RSS-GEN (TETRA)

Prepared for: Sepura Limited 9000 Cambridge Research Park Beach Drive Waterbeach Cambridge, CB25 9TL United Kingdom

FCC ID: XX6SCG2228M

IC: 8739A-SCG2228ME

COMMERCIAL-IN-CONFIDENCE

Document 75958868-01 Issue 01

NAME	JOB TITLE	RESPONSIBLE FOR	ISSUE DATE
Steve Marshall	Senior Engineer	• ,	23 February 2024

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD document control rules.

ENGINEERING STATEMENT

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate limited compliance with FCC 47 CFR Part 2, FCC 47 CFR Part 90, ISED RSS-119 and ISED RSS-GEN. The sample tested was found to comply with the requirements defined in the applied rules.

RESPONSIBLE FOR	NAME	DATE	SIGNATURE		
	Thomas Biddlecombe	23 February 2024	JAN		
Testing	George Williams	23 February 2024	Gwilliams		
FCC Accreditation		ISED Accreditation			
492497/UK2010 Octagon House, Fareham Test Laboratory		12669A Octagon House, Fareham	n Test Laboratory		

EXECUTIVE SUMMARY

A sample of this product was tested and found to be compliant with FCC 47 CFR Part 2: 2021, FCC 47 CFR Part 90: 2022, ISED RSS-119: Issue 12 (05-2015) and ISED RSS-GEN: Issue 5 (04-2018) + A2 (02-2021) for the tests detailed in section 1.3.

DISCLAIMER AND COPYRIGHT

This non-binding report has been prepared by TÜV SÜD with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD. No part of this document may be reproduced without the prior written approval of TÜV SÜD. © 2024 TÜV SÜD. This report relates only to the actual item/items tested. **ACCREDITATION**

Our UKAS Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our UKAS Accreditation. Results of tests not covered by our UKAS Accreditation Schedule are marked NUA (Not UKAS Accredited). Results of tests covered by our Flexible UKAS Accreditation Schedule are marked FS (Flexible Scope).

TÜV SÜD

is a trading name of TUV SUD Ltd Registered in Scotland at East Kilbride, Glasgow G75 0QF, United Kingdom Registered number: SC215164 TUV SUD Ltd is a TÜV SÜD Group Company

Phone: +44 (0) 1489 558100 Fax: +44 (0) 1489 558101 <u>www.tuvsud.com/en</u> TÜV SÜD Octagon House Concorde Way Fareham Hampshire PO15 5RL United Kingdom

Add value. Inspire trust.

TÜV SÜD

Contents

1	Report Summary	2
1.1	Report Modification Record	2
1.2	Introduction	2
1.3	Brief Summary of Results	3
1.4	Application Form	4
1.5	Product Information	7
1.6	Deviations from the Standard	7
1.7	EUT Modification Record	7
1.8	Test Location	8
2	Test Details	9
2.1	Maximum Conducted Output Power	9
2.2	Types of Emissions	17
2.3	Bandwidth Limitations	
2.4	Spurious Emissions at Antenna Terminals	
2.5	Radiated Spurious Emissions	49
2.6	Frequency Stability	
2.7	Adjacent Channel Power	70
3	Measurement Uncertainty	76

1 Report Summary

1.1 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

Issue	Description of Change	
1	First Issue	23-February-2024

Table 1

1.2 Introduction

Applicant	Sepura Limited
Manufacturer	Sepura Limited
Model Number(s)	SCG2228
Serial Number(s)	1PR002401GPT84J
Hardware Version(s)	PLX-850155A0
Software Version(s)	Development
Number of Samples Tested	1
Test Specification/Issue/Date	FCC 47 CFR Part 2: 2021 FCC 47 CFR Part 90: 2022 ISED RSS-119: Issue 12 (05-2015) ISED RSS-GEN: Issue 5 (04-2018) + A2 (02-2021)
Order Number	PLC-PO026141-1
Date	27-June-2023
Date of Receipt of EUT	19-January-2024
Start of Test	29-January-2024
Finish of Test	15-February-2024
Name of Engineer(s)	Thomas Biddlecombe and George Williams
Related Document(s)	ANCI C63.26: 2015

1.3 Brief Results

A brief summary of the tests carried out in accordance with FCC 47 CFR Part 2, FCC 47 CFR Part 90, ISED RSS-119 and ISED RSS-GEN is shown below.

Section	Specification Clause			Result	Comments/Base Standard		
Section	Part 2	Part 90	RSS-119	RSS-GEN	Test Description	Result	Comments/Base Standard
Configuration and Mode: Tetra - 806 MHz to 825 MHz							
2.1	2.1046	90.205	5.4	6.12	Maximum Conducted Output Power	Pass	ANCI C63.26: 2015
2.2	2.1047	90.207	5.2	-	Types of Emissions	Pass	
2.3	2.1049	90.209	5.5	6.7	Bandwidth Limitations	Pass	ANSI C63.26: 2015
2.4	2.1051	90.210	5.8	6.13	Spurious Emissions at Antenna Terminals	Pass	
2.5	2.1053	90.210	5.8	6.13	Radiated Spurious Emissions	Pass	ANSI C63.26: 2015
2.6	2.1055	90.213	5.3	6.11	Frequency Stability	Pass	ANSI C63.26: 2015
2.7	-	90.221	5.8.9.1	-	Adjacent Channel Power	Pass	
Configuration	on and Mode: Te	tra - 851 MHz to	870 MHz				
2.1	2.1046	90.205	5.4	6.12	Maximum Conducted Output Power	Pass	ANCI C63.26: 2015
2.2	2.1047	90.207	5.2	-	Types of Emissions	Pass	
2.3	2.1049	90.209	5.5	6.7	Bandwidth Limitations	Pass	ANSI C63.26: 2015
2.4	2.1051	90.210	5.8	6.13	Spurious Emissions at Antenna Terminals	Pass	
2.5	2.1053	90.210	5.8	6.13	Radiated Spurious Emissions Pass		ANSI C63.26: 2015
2.6	2.1055	90.213	5.3	6.11	Frequency Stability Pass ANSI C63.2		ANSI C63.26: 2015
2.7	-	90.221	5.8.9.1	-	Adjacent Channel Power	Pass	

1.4 Application Form

Equipment Description

Technical Description: (Please provide a brief description of the intended use of the equipment including the technologies the product supports)		The SCG2228 mobile terminal is a TETRA enabled radio with Bluetooth and Wi-Fi capability		
Manufacturer:		Sepura Limited	d	
Model:		SCG2228		
Part Number:		SCG2228		
Hardware Version: PL		PLX-850155A0		
Software Version:		Development	nt	
FCC ID of the product under te	est – <u>see guidar</u>	nce here	XX6SCG2228M	
IC ID of the product under test	IC ID of the product under test – see guidance here		8739A-SCG2228ME	
Device Category	Mobile 🖂		Portable	Fixed
Equipment is fitted with an Audio Low Pass Filter		Yes 🗆	No 🗆	

Table 3

Intentional Radiators

Technology	TETRA	TETRA	Bluetooth	WLAN 802.11b	WLAN 802.11g	WLAN 802.11n	BLE
Frequency Range (MHz to MHz)	806 to 824	851 to 870	2402-2480	2412- 2462	2412- 2462	2412- 2462	2402- 2480
Conducted Declared Output Power (dBm)	40	40	8	17	17	17	7.5
Antenna Gain (dBi)	5	5	1	1	1	1	1
Supported Bandwidth(s) (MHz) (e.g. 1 MHz, 20 MHz, 40 MHz)	25 kHz	25 kHz	1	20	20	20	2
Modulation Scheme(s) (e.g. GFSK, QPSK etc)	π/4 DQPSK	π/4 DQPSK	GFSK / π/4-DPSK / 8-DPSK	CCK / DBPSK / DQPSK	OFDM (BPSK / QPSK / 16-QAM / 64-QAM)	BPSK / QPSK / 16-QAM / 64-QAM)	GFSK
ITU Emission Designator (see guidance here) (not mandatory for Part 15 devices)	22K0DX W, 20K0DX W	22K0DX W, 20K0DX W	1M01F1D	19M7G1D	19M7G1D	19M7D1D	1M81F1D
Bottom Frequency (MHz)	806	851.0125	2402	2412	2412	2412	2402
Middle Frequency (MHz)	815.00	860.00	2441	2437	2437	2437	2441
Top Frequency (MHz)	824	868.9875	2480	2462	2462	2462	2480

Un-intentional Radiators

Highest frequency generated or used in the device or on which the device operates or tunes	2480 MHz			
Lowest frequency generated or used in the device or on which the device operates or tunes	32.768 kHz			
Class A Digital Device (Use in commercial, industrial or business environment)				
Class B Digital Device (Use in residential environment only) \Box				

Table 5

AC Power Source

AC supply frequency:	50	Hz
Voltage	240	V
Max current:	90W	A
Single Phase 🖂 Three Phase 🗆		

Table 6

DC Power Source

Nominal voltage:	12	V
Extreme upper voltage:	15.6	V
Extreme lower voltage:	10.8	V
Max current:	90W	A

Table 7

Battery Power Source

Voltage:			V	
End-point voltage:			V (Point at which the battery will terminate)	
Alkaline Leclanche Lithium Nickel Cadmium Lead Acid* *(Vehicle regulated)				
Other 🗆	Please detail:			

Table 8

Charging

Can the EUT transmit whilst being charged	Yes 🗆 No 🗆
---	------------

Table 9

Temperature

Minimum temperature:	-20	٥°
Maximum temperature:	+55	٦°

Cable Loss

Adapter Cable Loss (Conducted sample)	dB
(Conducted sample)	

Table 11

Antenna Characteristics

Antenna connector \boxtimes			State impedance	50	Ohm
Temporary antenna con	nector \Box		State impedance		Ohm
Integral antenna 🗆	Type:		Gain		dBi
External antenna 🖂	Type:	Panorama AFGB-S5	Gain	5	dBi
For external antenna only:					

Standard Antenna Jack 🛛 If yes, describe how user is prohibited from changing antenna (if not professional installed):

Equipment is only ever professionally installed \Box

Non-standard Antenna Jack

All part 15 applications will need to show how the antenna gain was derived either from a manufacturer data sheet or a measurement. Where the gain of the antenna is inherently accounted for as a result of the measurement, such as field strength measurements on a part 15.249 or 15.231 device, so the gain does not necessarily need to be verified. However, enough information regarding the construction of the antenna shall be provided. Such information maybe photographs, length of wire antenna etc.

Table 12

Ancillaries (if applicable)

Manufacturer:	Part Number:	
Model:	Country of Origin:	

Table 13

I hereby declare that the information supplied is correct and complete.

Prakriti Gupla

Name:Prakriti Gupta Position held: Conformance team leader Date: 23/02/2024

1.5 Product Information

1.5.1 Technical Description

The SCG2228 mobile terminal is a TETRA enabled radio with Bluetooth and Wi-Fi capability.

1.6 Deviations from the Standard

No deviations from the applicable test standard were made during testing.

1.7 EUT Modification Record

The table below details modifications made to the EUT during the test programme.

The modifications incorporated during each test are recorded on the appropriate test pages.

Modification State Description of Modification still fitted to EUT		Modification Fitted By	Date Modification Fitted	
Model: SCG2228, Serial Number: 1PR002401GPT84J				
0 As supplied by the customer Not Applicable Not Applicable				

1.8 Test Location

TÜV SÜD conducted the following tests at our Octagon House Test Laboratory.

Test Name	Name of Engineer(s)	Accreditation		
Configuration and Mode: Tetra - 806 MHz to 825 MHz				
Maximum Conducted Output Power	Thomas Biddlecombe	UKAS		
Types of Emissions	Thomas Biddlecombe	UKAS		
Bandwidth Limitations	Thomas Biddlecombe	UKAS		
Spurious Emissions at Antenna Terminals	Thomas Biddlecombe	UKAS		
Radiated Spurious Emissions	George Williams	UKAS		
Frequency Stability	Thomas Biddlecombe	UKAS		
Adjacent Channel Power	Thomas Biddlecombe	UKAS		
Configuration and Mode: Tetra - 851 MHz to 870 MHz				
Maximum Conducted Output Power	Thomas Biddlecombe	UKAS		
Types of Emissions	Thomas Biddlecombe	UKAS		
Bandwidth Limitations	Thomas Biddlecombe	UKAS		
Spurious Emissions at Antenna Terminals	Thomas Biddlecombe	UKAS		
Radiated Spurious Emissions	George Williams	UKAS		
Frequency Stability	Thomas Biddlecombe	UKAS		
Adjacent Channel Power	Thomas Biddlecombe	UKAS		

Table 15

Office Address:

TÜV SÜD Octagon House Concorde Way Fareham Hampshire PO15 5RL United Kingdom

2 Test Details

2.1 Maximum Conducted Output Power

2.1.1 Specification Reference

FCC 47 CFR Part 2, Clause 2.1046 FCC 47 CFR Part 90, Clause 90.205 ISED RSS-119, Clause 5.4 ISED RSS-GEN, Clause 6.12

2.1.2 Equipment Under Test and Modification State

SCG2228, S/N: 1PR002401GPT84J - Modification State 0

2.1.3 Date of Test

15-February-2024

2.1.4 Test Method

The test was applied in accordance with the test method requirements of FCC 47 CFR Part 90, Industry Canada RSS-119, and ISED RSS-GEN with reference to ANSI C63.26, clause 5.2.4.3.

The EUT was configured to transmit on maximum power on the bottom, middle and top channels in burst mode. The EUT was connected to a spectrum analyser via a cable and 20 dB of attenuation. The path loss was measured using a network analyser and entered as a reference level offset in the spectrum analyser. The RBW of the spectrum analyser was set to 30 kHz and the video bandwidth to 91 kHz with the trace set to average using an RMS detector and the result was recorded.

2.1.5 Environmental Conditions

Ambient Temperature	21.2 °C
Relative Humidity	52.5 %

2.1.6 Test Results

Tetra - 806 MHz to 825 MHz

Parameter	806.0125 MHz	815 MHz	823.9875 MHz
Conducted Output Power (dBm)	39.075	39.037	39.067
Manufacturer Declared Power (dBm)	40.0	40.0	40.0
Δ from manufacturer Power (dB)	0.925	0.963	0.933
Antenna Gain (dBi)	5.0	5.0	5.0
ERP (dBm)	44.075	44.037	44.067

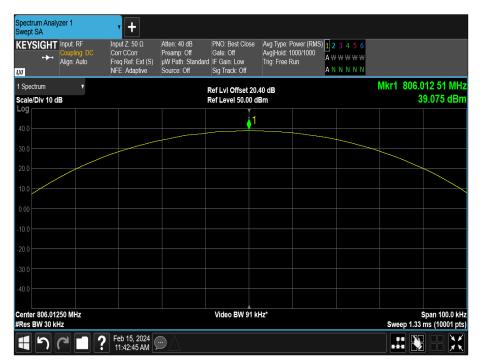


Figure 1 - 806.0125 MHz

Figure 2 - 815 MHz

Figure 3 - 823.9875 MHz

Tetra - 851 MHz to 870 MHz

Parameter	851.0125 MHz	860 MHz	868.9875 MHz
Conducted Output Power (dBm)	39.030	39.016	39.144
Manufacturer Declared Power (dBm)	40.0	40.0	40.0
Δ from manufacturer Power (dB)	0.970	0.984	0.856
Antenna Gain (dBi)	5	5	5
ERP (dBm)	44.030	44.016	44.144

Figure 4 - 851.0125 MHz

Figure 5 - 860 MHz

Figure 6 - 868.9875 MHz

FCC 47 CFR Part 90, Limit Clause 90.205

Frequency (MHz)	Limit	
< 25	1000 W	
25 to 50	300 W	
72 to 76	300 W	
150 to 174	Refer to 90.205 (d) of the specification	
217 to 220	Refer to 90.259 of the specification	
220 to 222	Refer to 90.729 of the specification	
421 to 430	Refer to 90.279 of the specification	
450 to 470	Refer to 90.205 (h) of the specification	
470 to 512	Refer to 90.307 and 90.309 of the specification	
758 to 775 and 788 to 805	Refer to 90.541 and 90.542 of the specification	
806 to 824, 851 to 869, 869 to 901 and 935 to 940	Refer to 90.635 of the specification	
902 to 927.25	LMS systems operating pursuant to subpart M of the specification : 30 W	
927.25 to 928	LMS equipment: 300 W	
929 to 930	Refer to 90.494 of the specification	
1427 to 1429.5 and 1429.5 to 1432	Refer to 90.259 of the specification	
2450 to 2483.5	5 W	
4940 to 4990	Refer to 90.1215 of the specification	
5850 to 5925	Refer to subpart M of the specification	
All other frequency bands	On a case by case basis	

Table 18 - FCC Limits for Maximum ERP

Industry Canada RSS-119, Limit Clause 5.4

The output power shall be within $\pm 1 \text{ dB}$ of the manufacturer's rated power listed in the equipment specifications.

Frequency (MHz)	Transmitter Output Power (W)		
	Base/Fixed Equipment	Mobile Equipment	
27.41 to 28 and 29.7 to 50	300	30	
72 to 76	No Limit	1	
138 to 174	111100	60	
217 to 217 and 219 to 220	See SRSP-512 for ERP limit	30*	
220 to 222	110	50	
406.1 to 430 and 450 to 470	See SRSP-511 for ERP limit	60	
768 to 776 and 798 to 806	110	30 3 W ERP for portable equipment	
806 to 821, 851 to 866, 821 to 824 and 866 to 869	110	30	
896 to 901 and 935 to 940	110	60	
929 to 930 and 931 to 932	110	30	
928 to 929, 952 to 953, 932 to 932.5 and 941 to 941.5	110	30	
932.5 to 935 ad 941.5 to 944	110	30	
*Equipment is generally authorised for effective radiated po	ower (ERP) of less than 5 W.		

Table 19 - Industry Canada Limits for Transmitter Output Power

2.1.7 Test Location and Test Equipment Used

This test was carried out in RF Laboratory 1.

Instrument	Manufacturer	Туре No	TE No	Calibration Period (months)	Calibration Expires
Multimeter	Fluke	79 Series III	611	12	15-Dec-2024
Hygrometer	Rotronic	I-1000	3220	12	28-Nov-2024
Network Analyser	Rohde & Schwarz	ZVA 40	3548	12	06-Mar-2024
Calibration Unit	Rohde & Schwarz	ZV-Z54	4368	12	06-Mar-2024
Signal Analyzer	Keysight Technologies	PXA N9030B	5432	12	08-Jun-2024
Attenuator 5W 20dB DC- 18GHz	Aaren	AT40A-4041-D18- 20	5500	12	21-May-2024
Modular Power System Mainframe	Keysight Technologies	N6701C	5835	-	TU
DC Power Module 60V 20A 300W	Keysight Technologies	N6754A	5836	-	O/P Mon
1m K-Type Cable	Junkosha	MWX221/B	5908	12	21-May-2024
Frequency Standard	Orolia	SecureSync 2402- 053	6339	6	12-Mar-2024

Table 20

TU - Traceability Unscheduled

O/P Mon – Output Monitored using calibrated equipment

2.2 Types of Emissions

2.2.1 Specification Reference

FCC 47 CFR Part 2, Clause 2.1047 FCC 47 CFR Part 90, Clause 90.207 ISED RSS-119, Clause 5.2

2.2.2 Equipment Under Test and Modification State

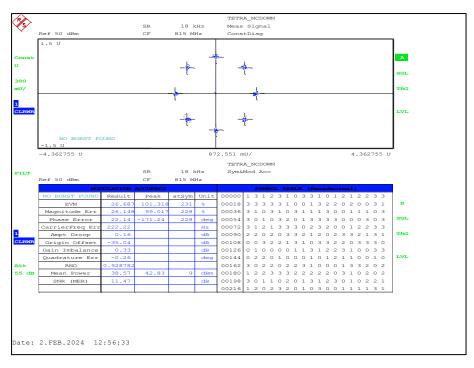
SCG2228, S/N: 1PR002401GPT84J - Modification State 0

2.2.3 Date of Test

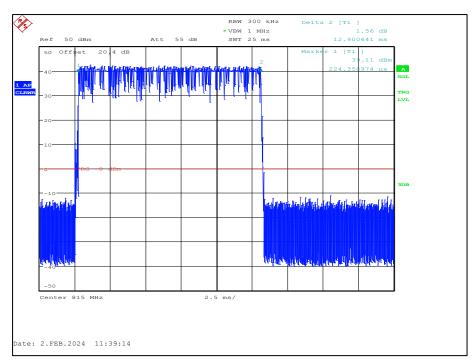
02-February-2024

2.2.4 Test Method

This test was performed on middle frequency using a modulated carrier output from the EUT and measured on a spectrum analyser. The path loss was measured using a network analyser and entered as a reference level offset in the spectrum analyser. The spectrum analyser was set to the transmit frequency. The burst measurements were made in zero span mode and the frequency spectrum with a span sufficient to show the transmitters response.


2.2.5 Environmental Conditions

Ambient Temperature	22.7 °C
Relative Humidity	40.3 %



2.2.6 Test Results

Tetra - 806 MHz to 825 MHz

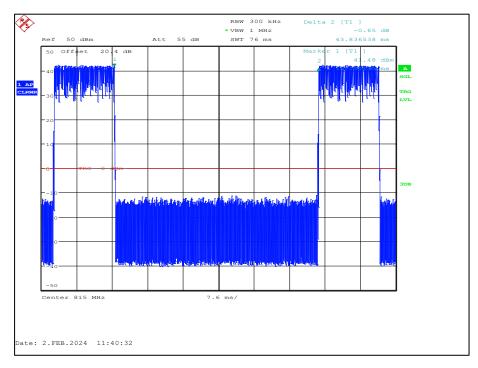
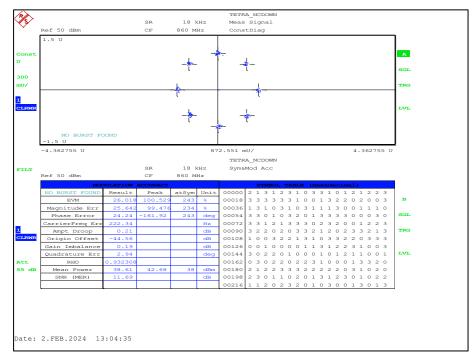
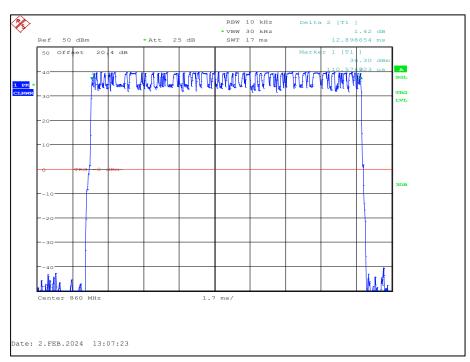


Figure 7-Modulation Accuracy

Figure 8-Burst Length




Figure 9-Burst Duty Cycle

Tetra - 851 MHz to 870 MHz

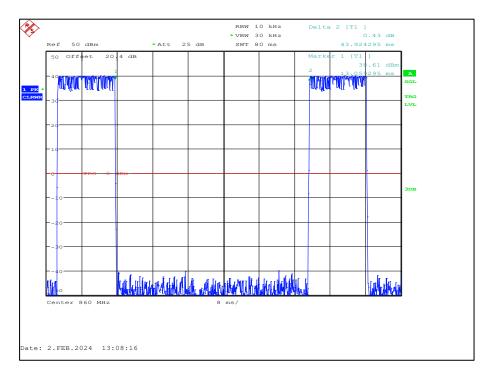


Figure 10-Modulation Accuracy

Figure 11-Burst Length

Figure 12-Burst Duty Cycle

FCC 47 CFR Part 90, Limit Clause 90.207

As per FCC Part 90.207 (b) through (n).

FCC 47 CFR Part 2, Limit Clause 2.1047

Voice modulated communication equipment. A curve or equivalent data showing the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz shall be submitted. For equipment required to have an audio low-pass filter, a curve showing the frequency response of the filter, or of all circuitry installed between the modulation limiter and the modulated stage shall be submitted.

Equipment which employs modulation limiting. A curve or family of curves showing the percentage of modulation versus the modulation input voltage shall be supplied. The information submitted shall be sufficient to show modulation limiting capability throughout the range of modulating frequencies and input modulating signal levels employed.

Industry Canada RSS-119, Limit Clause 5.3

Equipment that operates in the bands 768-776 MHz and 798-806 MHz shall use digital modulation. Mobile and portable transmitters that operate in these bands may have analogue modulation capability only as a secondary mode in addition to their primary digital mode. However, mobile and portable transmitters that operate only on the low-power channels as defined in SRSP-511 may employ any type of modulation.

2.2.7 Test Location and Test Equipment Used

This test was carried out in RF Laboratory 1.

Instrument	Manufacturer	Туре No	TE No	Calibration Period (months)	Calibration Expires
Multimeter	Fluke	79 Series III	611	12	15-Dec-2024
Hygrometer	Rotronic	I-1000	3220	12	28-Nov-2024
Signal Analyser	Rohde & Schwarz	FSQ 26	3545	12	09-May-2024
Frequency Standard	Spectracom	SecureSync 1200- 0408-0601	4393	6	08-Feb-2024
Attenuator 5W 20dB DC- 18GHz	Aaren	AT40A-4041-D18- 20	5497	12	18-Apr-2024
Cable (SMA to SMA 1m)	Junkosha	MWX221- 01000AMSAMS/A	5514	12	21-May-2024
Modular Power System Mainframe	Keysight Technologies	N6701C	5835	-	TU
DC Power Module 60V 20A 300W	Keysight Technologies	N6754A	5836	-	O/P Mon

Table 21

TU - Traceability Unscheduled

O/P Mon - Output Monitored using calibrated equipment

2.3 Bandwidth Limitations

2.3.1 Specification Reference

FCC 47 CFR Part 2, Clause 2.1049 FCC 47 CFR Part 90, Clause 90.209 ISED RSS-119, Clause 5.5 ISED RSS-GEN, Clause 6.7

2.3.2 Equipment Under Test and Modification State

SCG2228, S/N: 1PR002401GPT84J - Modification State 0

2.3.3 Date of Test

30-January-2024

2.3.4 Test Method

The test was applied in accordance with the test method requirements of FCC 47 CFR Part 90, Industry Canada RSS-119, and ISED RSS-GEN with reference to ANSI C63.26, Clause 5.4.

The EUT was configured to transmit on maximum power on the bottom, middle and top channels in burst mode. The EUT was connected to a spectrum analyser via a cable and 20 dB of attenuation. The path loss was measured using a network analyser and entered as a reference level offset in the spectrum analyser. The RBW of the spectrum analyser was set to 100 Hz and the video bandwidth to 300 Hz with the trace set to max hold using a peak detector and the result was recorded.

2.3.5 Environmental Conditions

Ambient Temperature20.5 °CRelative Humidity36.7 %

2.3.6 Test Results

Tetra - 806 MHz to 825 MHz

806.0125 MHz	815 MHz	823.9875 MHz
21.092	21.085	21.085



Figure 13 - 806.0125 MHz

Figure 14-815 MHz

Figure 15- 823.9875 MHz

Tetra - 851 MHz to 870 MHz

851.0125 MHz	860 MHz	868.9875 MHz
21.086	21.088	21.073

Figure 16 - 851.0125 MHz

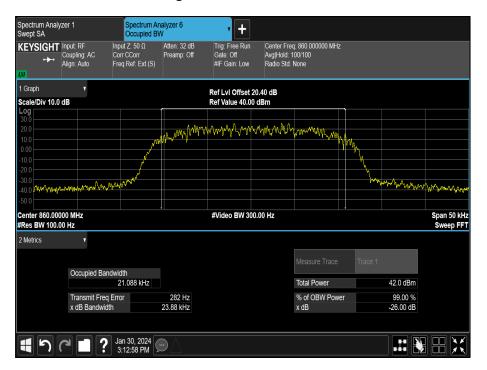


Figure 17-860 MHz

Figure 18- 868.9875 MHz

FCC 47 CFR Part 90, Limit Clause 90.209

< 0.022 MHz

Industry Canada RSS-119, Limit Clause 5.5

The maximum permissible occupied bandwidth shall not exceed the authorized bandwidth specified in table 3 of the test specification for the equipment's frequency band as specified below.

0.022 MHz

2.3.7 Test Location and Test Equipment Used

This test was carried out in RF Laboratory 1.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Expires
Multimeter	Fluke	79 Series III	611	12	15-Dec-2024
Hygrometer	Rotronic	I-1000	3220	12	28-Nov-2024
Frequency Standard	Spectracom	SecureSync 1200- 0408-0601	4393	6	08-Feb-2024
Attenuator 5W 20dB DC- 18GHz	Aaren	AT40A-4041-D18- 20	5497	12	18-Apr-2024
Cable (K-Type to K-Type, 1 m)	Junkosha	MWX241- 01000KMSKMS/A	5511	12	21-May-2024
MXA Signal Analyser	Keysight Technologies	N9020B	5528	24	18-Sep-2025
Modular Power System Mainframe	Keysight Technologies	N6701C	5835	-	TU
DC Power Module 60V 20A 300W	Keysight Technologies	N6754A	5836	-	O/P Mon

Table 24

TU - Traceability Unscheduled

O/P Mon - Output Monitored using calibrated equipment

2.4 Spurious Emissions at Antenna Terminals

2.4.1 Specification Reference

FCC 47 CFR Part 2, Clause 2.1051 FCC 47 CFR Part 90, Clause 90.210 ISED RSS-119, Clause 5.8 ISED RSS-GEN, Clause 6.13

2.4.2 Equipment Under Test and Modification State

SCG2228, S/N: 1PR002401GPT84J - Modification State 0

2.4.3 Date of Test

15-February-2024

2.4.4 Test Method

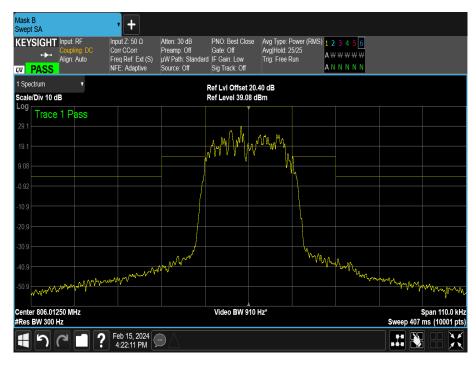
For emissions where the frequency is removed less than 250 % of the authorised bandwidth measurements were performed conducted as follows:

The EUT was connected to a spectrum analyser via a cable and attenuator. The path loss between the EUT and analyser was calibrated using a network analyser and entered into the spectrum analyser as a reference level offset. The reference level for the mask was established using the results from the Maximum Conducted Output Power test. The RBW was set to at least 1 % of the emission bandwidth, with a VBW of 3 times RBW. The masks as per FCC 47 CFR Part 90.210 (b) and RSS-119 5.8.10 were applied.

For emissions where the frequency is removed more than 250 % of the authorized bandwidth measurements were performed as follows:

A network analyser was used to measure the path loss and the worst case was entered as a reference level offset in to the spectrum analyser. The EUT was connected to a spectrum analyser via an attenuator and cable. The spectrum analyser was configured with an RBW of 1 kHz below 150 kHz, 10 kHz between 150 kHz and 30 MHz, 100 kHz between 30 MHz and 1 GHz and 1 MHz for frequencies greater than 1 GHz with the trace set to max hold using a peak detector.

The Emissions were tested against RSS-119 Clause 5.8.10, as opposed to FCC Part 90.210(b), since the limit in RSS-119 is -17dBm, compliance with the limits provided also prove compliance with FCC Part 90.210(b).


2.4.5 Environmental Conditions

Ambient Temperature	21.2 °C
Relative Humidity	52.5 %

2.4.6 Test Results

Tetra - 806 MHz to 825 MHz

Figure 19 -806.0125 MHz, FCC Part 90 Transmitter Mask B

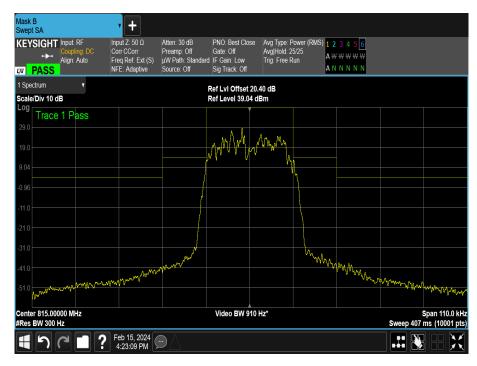
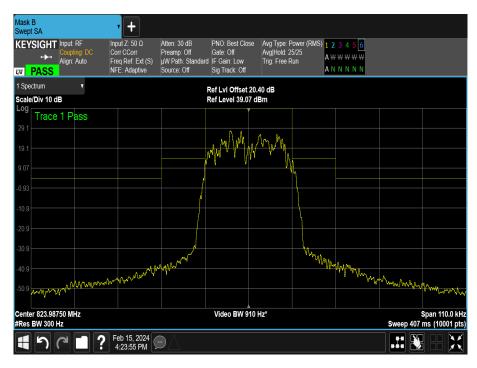



Figure 20 -815 MHz, FCC Part 90 Transmitter Mask B

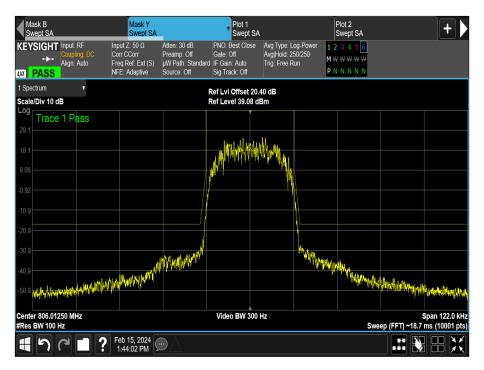
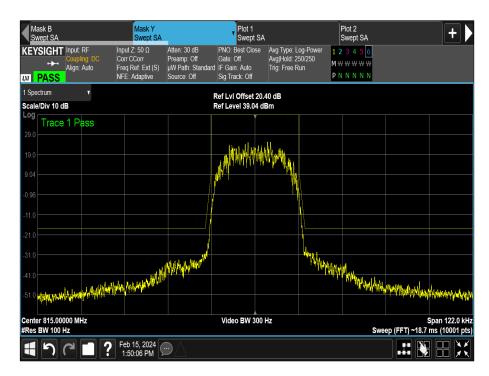
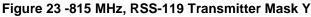




Figure 22 -806.0125 MHz, RSS-119 Transmitter Mask Y

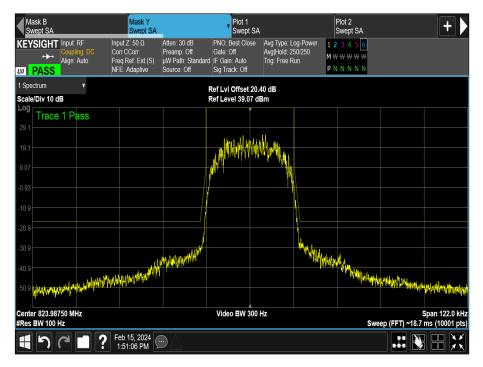


Figure 24 -823.9875 MHz, RSS-119 Transmitter Mask Y

Figure 25 -806.0125 MHz,9 kHz to 150 kHz

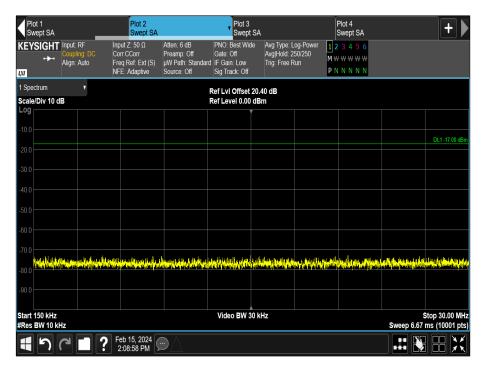


Figure 26 - 815 MHz, 9 kHz to 150 kHz

Figure 27 - 823.9875 MHz - 9 kHz to 150 kHz

Figure 28 -806.0125 MHz,150 kHz to 30 MHz

Plot 1 Swept SA	_	Plot 2 Swept SA		Plot 3 Swept	SA		Plot 4 Swept SA		+
KEYSIGHT ↔	Input: RF Coupling: DC Align: Auto	Input Z: 50 Ω Corr CCorr Freq Ref: Ext (S) NFE: Adaptive	Atten: 6 dB Preamp: Off μW Path: Standar Source: Off	PNO: Best Wid Gate: Off d IF Gain: Low Sig Track: Off	e Avg Type: L Avg Hold: 2: Trig: Free R	50/250	1 2 3 4 5 6 M \vee \vee \vee \vee \vee \vee \vee \ve		
1 Spectrum Scale/Div 10 d	v B			Ref Lvi Offset Ref Level 0.00					
-10.0									
-20.0									DL1 -17.00 dBm
-30.0									
-40.0									
-60.0									
-70.0	History and Americanian	ور با بار به المناون المرابع الله		التروار المقاربة فراته المراجع	d dilas intertedi di colta di		ethice (designation and as being)	وعاورها أذفا المراقا بال	U.S. Marin In Ant
-80.0			a kanalanya ya kanalanya ya kanala	an an an the second	a kanala kanala kanala	n de la conserva de	ande tij elitet (st. stad		
Start 150 kHz				Video BW 3	0 kHz				Stop 30.00 MHz
#Res BW 10 kl	lz								ms (10001 pts)
1 5	22?	Feb 15, 2024 2:15:06 PM	$\Box \triangle$						

Figure 29 - 815 MHz, 150 kHz to 30 MHz

Plot 1 Swept SA		Plot 2 Swept SA		Plot 3 Swept	SA		Plot 4 Swept SA		+
KEYSIGHT ↔→	Input: RF Coupling: DC Align: Auto	Input Z: 50 Ω Corr CCorr Freq Ref: Ext (S) NFE: Adaptive	Atten: 6 dB Preamp: Off μW Path: Standard Source: Off	PNO: Best Wide Gate: Off IF Gain: Low Sig Track: Off	e Avg Type: L Avg Hold: 25 Trig: Free R	50/250	1 2 3 4 5 6 M \ \ \ \ \ \ \ \ \ \ \ \ \ \ P N N N N N N		
1 Spectrum Scale/Div 10 d	T B			Ref Lvl Offset 2 Ref Level 0.00					
Log				Ţ					
-20.0									DL1 -17.00 dBm
-30.0									
-40.0									
-50.0									
-60.0									
-70.0 -80.0	har hall an har manager o	alu dhainil ynin dhald	ndini mi Alquinhimu	al fulling and the	hailin atalahada		hini Magnallan	inatalitikityil	in Multility protocols
-90.0									
Start 150 kHz #Res BW 10 kH	Hz			Video BW 3	0 kHz				Stop 30.00 MHz ms (10001 pts)
1 5	? 🗋 ?	Feb 15, 2024 2:28:41 PM							

Figure 30 - 823.9875 MHz - 150 kHz to 30 MHz

Plot 1 Swept SA	_	Plot 2 Swept SA		Plot 3 Swept	SA		Plot 4 Swept SA		+
KEYSIGHT ↔	Input: RF Coupling: DC Align: Auto	Input Z: 50 Ω Corr CCorr Freq Ref: Ext (S) NFE: Adaptive	Atten: 40 dB Preamp: Off μW Path: Standard Source: Off	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	Avg Type: Li Avg Hold: 2 Trig: Free R	50/250	1 2 3 4 5 6 M W W W W W P N N N N N		
1 Spectrum Scale/Div 10 c	T B			Ref LvI Offset 2 Ref Level 50.00)6.000 MHz 41.91 dBm
40.0								↓ 1	
30.0									
20.0									
10.0									
-10.0									DL1 -17.00 dBm
-20.0									DL1-17.00 dBm
-30.0	dudanjinin Hanastirah	a den historia a filitaria di a deg	n an	en de la de la condition d				lan diamanta	lahahida tahunga
Start 0.0300 G				Video BW 30					top 1.0000 GHz
#Res BW 100									ms (10001 pts)
1 5		Peb 15, 2024 2:10:21 PM							EE 🔀

Figure 31 -806.0125 MHz,30 MHz to 1 GHz

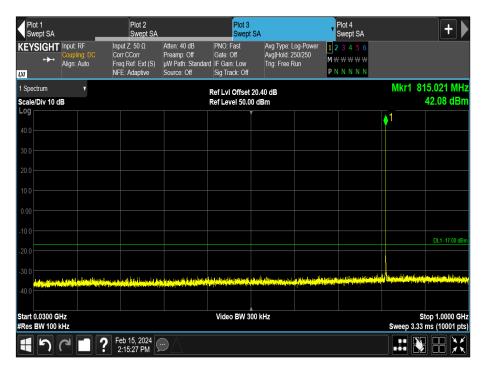


Figure 32 - 815 MHz, 30 MHz to 1 GHz

Plot 1 Swept SA	_	Plot 2 Swept SA		Plot 3 Swept	SA		Plot 4 Swept SA		+
KEYSIGHT ↔	Input: RF Coupling: DC Align: Auto	Input Z: 50 Ω Corr CCorr Freq Ref: Ext (S) NFE: Adaptive	Atten: 40 dB Preamp: Off µW Path: Standard Source: Off	PNO: Fast Gate: Off I IF Gain: Low Sig Track: Off	Avg Type: L Avg Hold: 2 Trig: Free R	50/250	1 2 3 4 5 6 M₩₩₩₩₩ P N N N N N		
1 Spectrum Scale/Div 10 d	T B			Ref Lvi Offset Ref Level 50.0				Mkr1	823.945 MHz 42.15 dBm
40.0								∮ 1	
30.0									
10.0									
-10.0									
-20.0									DL1 -17.00 dBm
-30.0 -40.0	ladiise ya an galadii an ya she	den ser an the definition of the state of the second second second second second second second second second s	ing a calify and the second distance of the	e naturi di se a stati in	de literi e ditte in ele	an ta stade ta stade	in the set of states in the second	li ar li ar	an an in a sin an
Start 0.0300 GI				Video BW 3	00 kHz			S ::::=====	Stop 1.0000 GHz
#Res BW 100 #		Feb 15, 2024 2:29:00 PM	ÐA						3.33 ms (10001 pts)



Figure 34 -806.0125 MHz,1 GHz to 9 GHz

Plot 1 Swept SA	_	Plot 2 Swept SA		Plot 3 Swept			Plot 4 Swept SA		· +)
KEYSIGHT ↔	Input: RF Coupling: DC Align: Auto	Input Z: 50 Ω Corr CCorr Freq Ref: Ext (S) NFE: Adaptive	Atten: 26 dB Preamp: Off μW Path: Standard Source: Off	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	Avg Type: L Avg Hold: 1 Trig: Free F	00/100	1 2 3 4 5 6 M W W W W W P N N N N N		
1 Spectrum Scale/Div 10 d	T B			Ref LvI Offset Ref Level 35.0					.444 8 GHz 22.07 dBm
25.0									
5.00									
-15.0		•1 							DL1-17.00 dDm
-35.0 -45.0				ling to step the party of the	اللوية والمراد المريبة	i de state de la composition de la comp	debagi dina ya debila	addee (hy antaiheine ed dhy	atterity dealers and th
-55.0	7			Video BW 3	0 MH7				Stop 9.000 GHz
#Res BW 1.0 M					.0 Minz				ms (10001 pts)
	┍┙ 🗋 ?	Feb 15, 2024 2:16:09 PM						_ 👪 🖹	

Figure 35 - 815 MHz, 1 GHz to 9 GHz

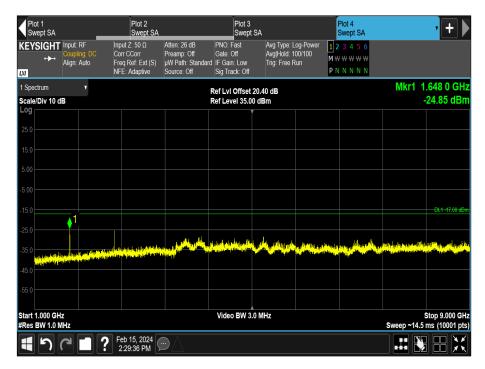


Figure 36 - 823.9875 MHz - 1 GHz to 9 GHz

Tetra - 851 MHz to 870 MHz

Figure 37 -851.0125 MHz, FCC Part 90 Transmitter Mask B

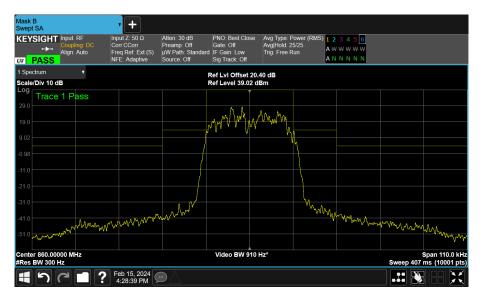


Figure 38 -860 MHz, FCC Part 90 Transmitter Mask B

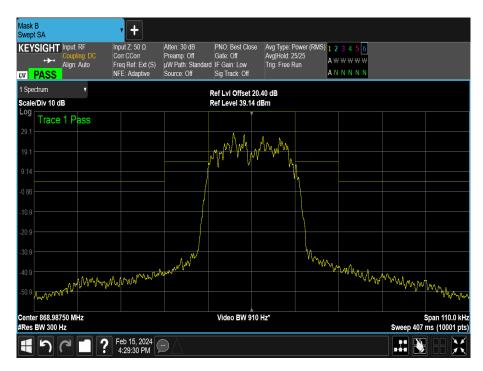


Figure 39 -868.9875 MHz, FCC Part 90 Transmitter Mask B

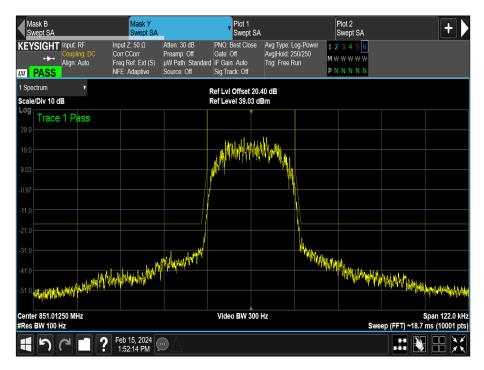


Figure 40 -851.0125 MHz, RSS-119 Transmitter Mask Y

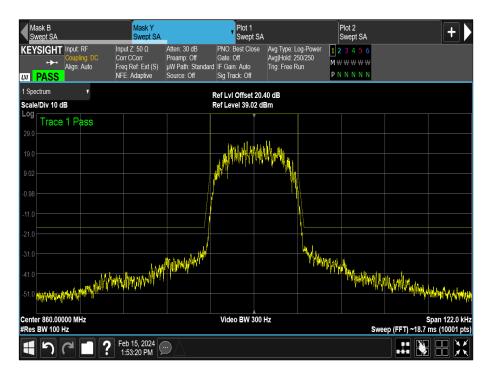


Figure 41 -860 MHz, RSS-119 Transmitter Mask Y

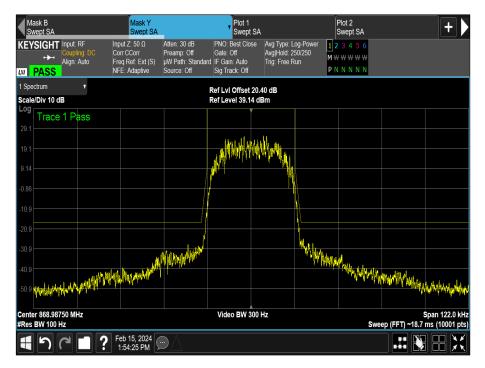


Figure 42 -868.9875 MHz, RSS-119 Transmitter Mask Y

Figure 43 -851.0125 MHz,9 kHz to 150 kHz

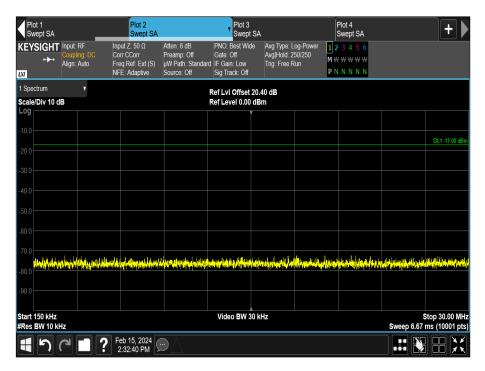


Figure 44 - 860 MHz, 9 kHz to 150 kHz

Figure 45 - 868.9875 MHz - 9 kHz to 150 kHz

Figure 46 -851.0125 MHz,150 kHz to 30 MHz

Plot 1 Swept SA	_	Plot 2 Swept SA		Plot 3 Swept	SA		Plot 4 Swept SA		+
KEYSIGHT ↔	Input: RF Coupling: DC Align: Auto		Atten: 20 dB Preamp: Off μW Path: Standar Source: Off	PNO: Best Wid Gate: Off d IF Gain: Low Sig Track: Off	e Avg Type: L Avg Hold: 2 Trig: Free F	50/250	1 2 3 4 5 6 M W \text{	₩₩₩	
1 Spectrum Scale/Div 10 d	T IB			Ref Lvi Offset 2 Ref Level 30.00					
20.0									
-10.0									
									DL1 -17.00 dB
	ing a shirt and a shirt	s forská bilozátik a spíralátak vye	l enterthere also bligg			hi ka	n han stad a		
Start 150 kHz #Res BW 10 k	Hz			Video BW 3	0 kHz				Stop 30.00 MH ms (10001 pt:
4)	? 🗖	Feb 15, 2024 2:35:11 PM	ÐA						

Figure 47 - 860 MHz, 150 kHz to 30 MHz

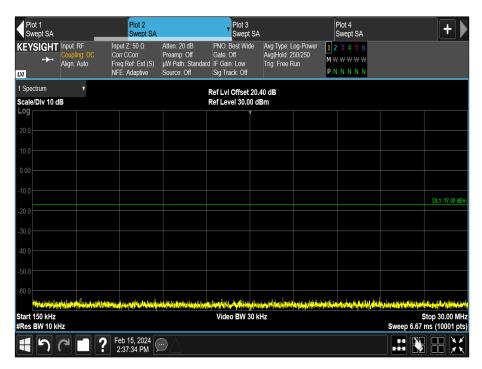


Figure 48 - 868.9875 MHz - 150 kHz to 30 MHz

Plot 1 Swept SA	_	Plot 2 Swept SA		Plot 3 Swept	SA		Plot 4 Swept SA			+
KEYSIGHT	Input: RF Coupling: DC Align: Auto	Input Z: 50 Ω Corr CCorr Freq Ref: Ext (S) NFE: Adaptive	Atten: 40 dB Preamp: Off μW Path: Standar Source: Off	PNO: Fast Gate: Off d IF Gain: Low Sig Track: Off	Avg Type: L Avg Hold: 25 Trig: Free R	50/250	1 2 3 4 5 6 M₩₩₩₩₩₩ P N N N N N			
1 Spectrum Scale/Div 10 c	۲ B			Ref LvI Offset 2 Ref Level 50.00				Mł		51.008 MH 41.93 dBn
40.0				ľ					1	
30.0										
20.0										
0.00										
										DL1 -17.00 dB
-30.0	haling die betreenderen	aliteri ani ta mangali i ta	ik men kilen i derben silder som	fatsiasia afilia idalar	utit klaterovi k	a lin la bhaar	lah pada kati pertekan kati		ing the day	and the shelf of the second
-40.0 Start 0.0300 G				Video BW 30						top 1.0000 GH
#Res BW 100								Swe		ms (10001 pts
1)		Feb 15, 2024 2:32:58 PM							: N	

Figure 49 -851.0125 MHz,30 MHz to 1 GHz

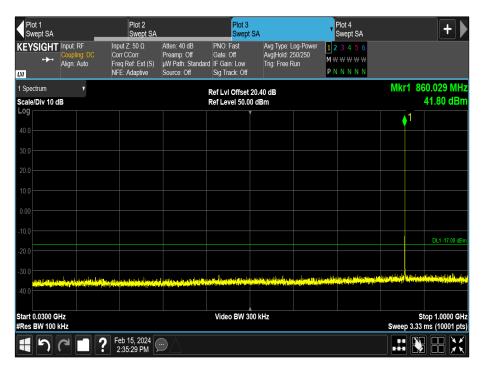


Figure 50 - 860 MHz, 30 MHz to 1 GHz

Plot 1 Swept SA	_	Plot 2 Swept SA		Plot 3 Swept	SA		Plot 4 Swept SA		+
KEYSIGHT ↔	Input: RF Coupling: DC Align: Auto	Input Z: 50 Ω Corr CCorr Freq Ref: Ext (S) NFE: Adaptive	Atten: 40 dB Preamp: Off µW Path: Standard Source: Off	PNO: Fast Gate: Off d IF Gain: Low Sig Track: Off	Avg Type: Lo Avg Hold: 25 Trig: Free Ru	0/250	1 2 3 4 5 6 M ₩ ₩ ₩ ₩ ₩ P N N N N N		
1 Spectrum Scale/Div 10 d	T B			Ref LvI Offset 2 Ref Level 50.00				Mkr1	868.953 MHz 42.02 dBm
40.0								∮ 1	
30.0									
20.0									
0.00									
-10.0									DL1 -17.00 dBn
-20.0					la statu en se a la		an an a statement and a	the states of the	hantistadal, e. A. abit, b. a.
-40.0	edering af der stelleren. Regeleren in der stelleren in der stelleren Regeleren in der stelleren i	alden staten stefner of her information og i neder træner og se gjør sjørt stefne sterner		i na ina ina mangka na ina ina ina ina ina ina ina ina ina	ng ang ng ing ing ang ing ang ing ing ing ing ing ing ing ing ing i				A Selection and a second s
Start 0.0300 G #Res BW 100 I				Video BW 30	10 kHz			Sweep 3.3	Stop 1.0000 GH: 33 ms (10001 pts
		Peb 15, 2024 2:38:17 PM							

Figure 52 -851.0125 MHz,1 GHz to 9 GHz

Plot 1 Swept SA		Plot 2 Swept SA		Plot 3 Swep			Plot 4 Swept SA		· +)
KEYSIGHT ↔	Input: RF Coupling: DC Align: Auto	Input Z: 50 Ω Corr CCorr Freq Ref: Ext (S) NFE: Adaptive	Atten: 26 dB Preamp: Off μW Path: Standard Source: Off	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	Avg Type: L Avg Hold: 1 Trig: Free F	00/100	1 2 3 4 5 6 M W W W W W P N N N N N		
1 Spectrum Scale/Div 10 d	r B			Ref LvI Offset Ref Level 35.0					.720 0 GHz 24.23 dBm
25.0									
5.00									
-15.0	1		د بالد ۱۱.						DL1-17:00 dBm
-45.0	a alda ang pada ang p	n la si dana sa kura da la da ka ku			hadha dhadh	in felten i sed	hitesi kenyetinga biling	a itida ya na ka disina a ilida I	
-55.0 Start 1.000 GH #Res BW 1.0 N				Video BW 3	.0 MHz				Stop 9.000 GHz ms (10001 pts)
	₽∎?	Feb 15, 2024 2:36:35 PM							

Figure 53 - 860 MHz, 1 GHz to 9 GHz

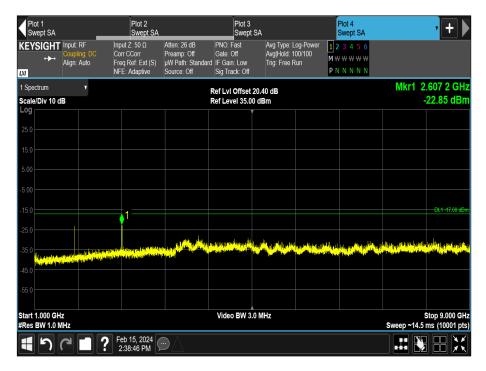


Figure 54 - 868.9875 MHz - 1 GHz to 9 GHz

FCC 47 CFR Part 90, Limit Clause 90.210

The EUT shall comply with emission mask B as per FCC 47 CFR Part 90, clause 90.210.

Industry Canada RSS-119, Limit Clause 5.8

The EUT shall comply with emission mask Y as per Industry Canada RSS-119, clause 5.8.10

2.4.7 Test Location and Test Equipment Used

This test was carried out in RF Laboratory 1.

Instrument	Manufacturer	Туре No	TE No	Calibration Period (months)	Calibration Expires
Multimeter	Fluke	79 Series III	611	12	15-Dec-2024
Hygrometer	Rotronic	I-1000	3220	12	28-Nov-2024
Network Analyser	Rohde & Schwarz	ZVA 40	3548	12	06-Mar-2024
Calibration Unit	Rohde & Schwarz	ZV-Z54	4368	12	06-Mar-2024
Signal Analyzer	Keysight Technologies	PXA N9030B	5432	12	08-Jun-2024
Attenuator 5W 20dB DC- 18GHz	Aaren	AT40A-4041-D18- 20	5500	12	21-May-2024
Modular Power System Mainframe	Keysight Technologies	N6701C	5835	-	TU
DC Power Module 60V 20A 300W	Keysight Technologies	N6754A	5836	-	O/P Mon
1m K-Type Cable	Junkosha	MWX221/B	5908	12	21-May-2024
Frequency Standard	Orolia	SecureSync 2402- 053	6339	6	12-Mar-2024

Table 25

TU - Traceability Unscheduled

O/P Mon – Output Monitored using calibrated equipment

2.5 Radiated Spurious Emissions

2.5.1 Specification Reference

FCC 47 CFR Part 2, Clause 2.1053 FCC 47 CFR Part 90, Clause 90.210 ISED RSS-119, Clause 5.8 ISED RSS-GEN, Clause 6.13

2.5.2 Equipment Under Test and Modification State

SCG2228, S/N: 1PR002401GPT84J - Modification State 0

2.5.3 Date of Test

08-February-2024

2.5.4 Test Method

A preliminary profile of the Radiated Spurious Emissions was obtained up to the 10th harmonic by operating the EUT on a remotely controlled turntable within a semi-anechoic chamber. Measurements of emissions from the EUT were obtained with the Measurement Antenna in both Horizontal and Vertical Polarisations. The profiling produced a list of the worst-case emissions together with the EUT azimuth and antenna polarisation.

Testing was performed in accordance with ANSI C63.26, Clause 5.5.

Prescans and final measurements were performed using the direct field strength method.

Field strength measurements were performed and then converted to Equivalent Power Measurements in accordance with ANSI C63.26, Clause 5.2.7 equation c)

Example calculation:

E (dBuV/m) + 20log(d) - 104.8 = EIRP (dBm) where (d) is the measurement distance. 82.2 (dBuV/m) + 20log(3) - 104.8 = EIRP (dBm)

-13.0 = EIRP (dBm)

The Emissions were tested against RSS-119 Clause 5.8.10, as opposed to FCC Part 90.210(b), since the limit in RSS-119 is -17dBm, compliance with the limits provided also prove compliance with FCC Part 90.210(b).

2.5.5 Example Test Setup Diagram

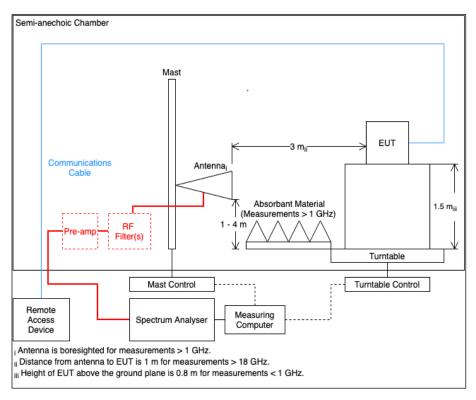


Figure 55

2.5.6 Environmental Conditions

Ambient Temperature	21.5 °C
Relative Humidity	45.0 %

2.5.7 Test Results

Tetra - 806 MHz to 825 MHz

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
*								

Table 26 - 806.0125 MHz

*No emissions were detected within 10 dB of the limit.

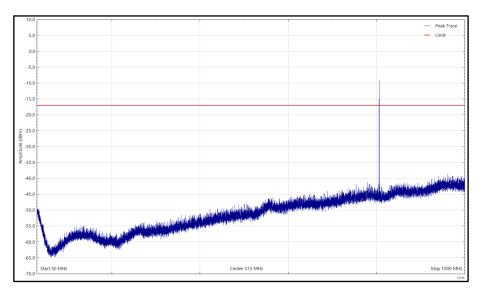


Figure 56 - 806.0125 MHz - 30 MHz to 1 GHz, Horizontal Polarisation

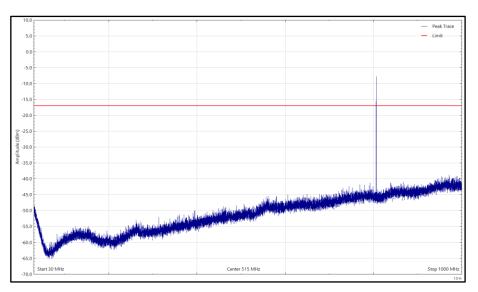


Figure 57 - 806.0125 MHz - 30 MHz to 1 GHz, Vertical Polarisation

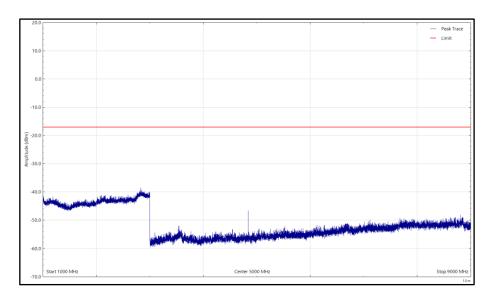
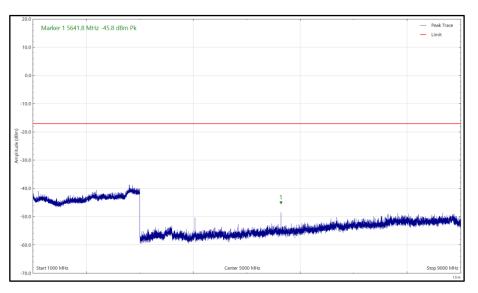
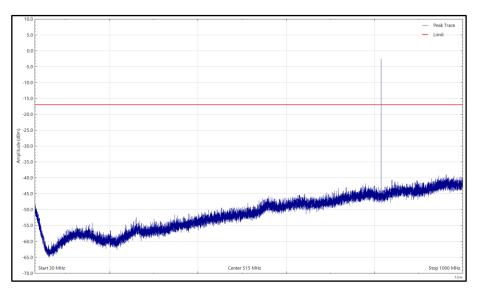


Figure 58 - 806.0125 MHz - 1 GHz to 9 GHz, Horizontal Polarisation




Figure 59 - 806.0125 MHz - 1 GHz to 9 GHz, Vertical Polarisation

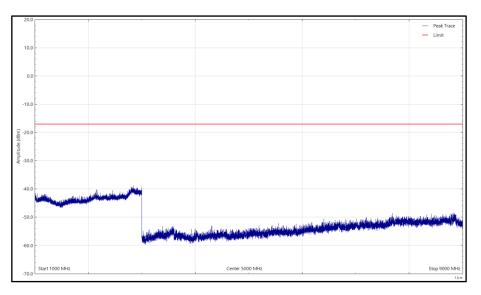

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
*								

Table 27 - 815 MHz

*No emissions were detected within 10 dB of the limit.

Figure 60 - 815 MHz, 30 MHz to 1 GHz, Horizontal (Peak)

Figure 61 - 815 MHz, 1 GHz to 9 GHz, Horizontal (Peak)

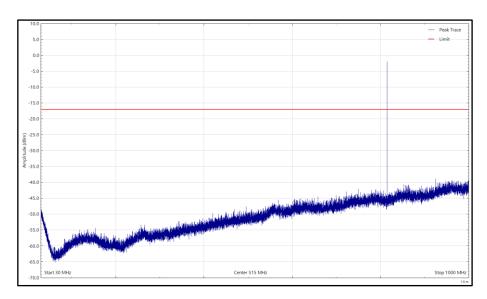


Figure 62 - 815 MHz, 30 MHz to 1 GHz, Vertical (Peak)

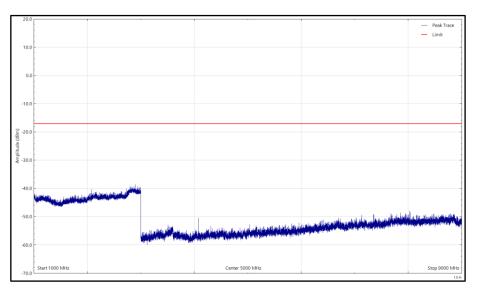


Figure 63 - 815 MHz, 1 GHz to 9 GHz, Vertical (Peak)

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
*								

Table 28 - 823.9875 MHz

*No emissions were detected within 10 dB of the limit.

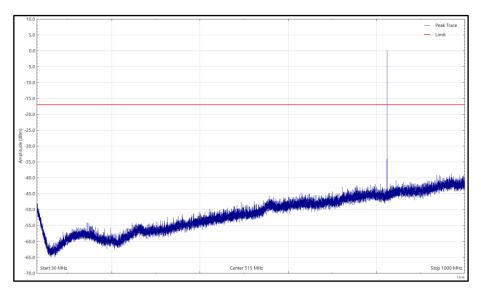


Figure 64 - 823.9875 MHz - 30 MHz to 1 GHz, Horizontal Polarisation

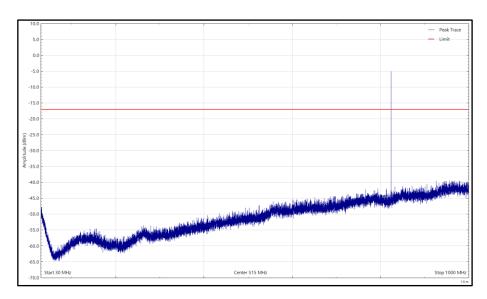


Figure 65 - 823.9875 MHz - 30 MHz to 1 GHz, Vertical Polarisation

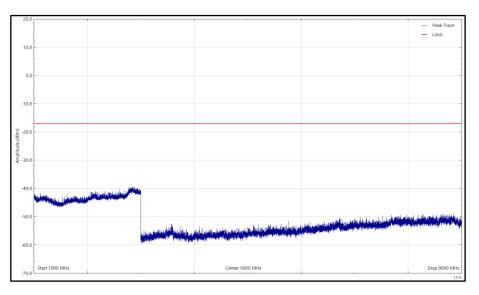


Figure 66 - 823.9875 MHz - 1 GHz to 9 GHz, Horizontal Polarisation

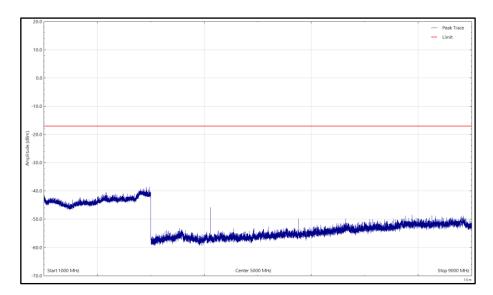
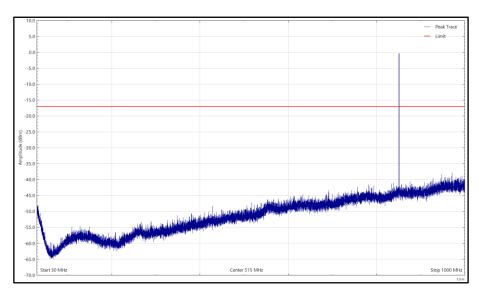
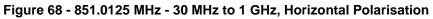


Figure 67 - 823.9875 MHz - 1 GHz to 9 GHz, Vertical Polarisation




Tetra - 851 MHz to 870 MHz

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation

Table 29 - 851.0125 MHz

*No emissions were detected within 10 dB of the limit.

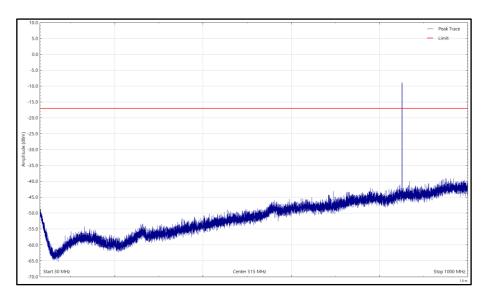


Figure 69 - 851.0125 MHz - 30 MHz to 1 GHz, Vertical Polarisation

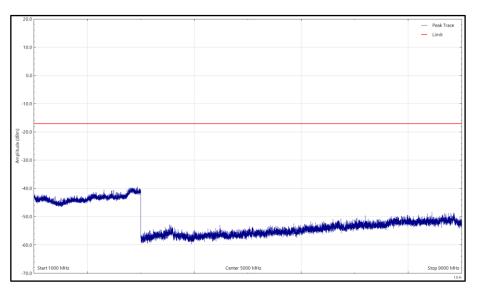
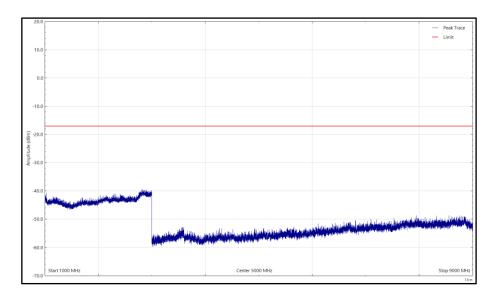
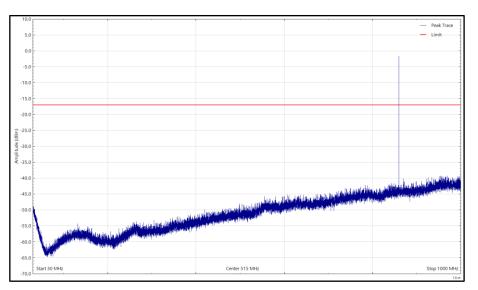


Figure 70 - 851.0125 MHz - 1 GHz to 9 GHz, Horizontal Polarisation




Figure 71 - 851.0125 MHz - 1 GHz to 9 GHz, Vertical Polarisation

Frequency (MHz)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 30 - 860 MHz

*No emissions found within 10 dB of the limit.

Figure 72 - 860 MHz, 30 MHz to 1 GHz, Horizontal (Peak)

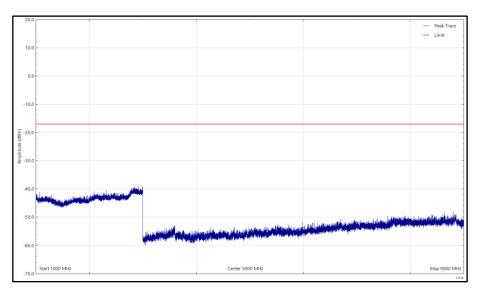


Figure 73 - 860 MHz, 1 GHz to 9 GHz, Horizontal (Peak)

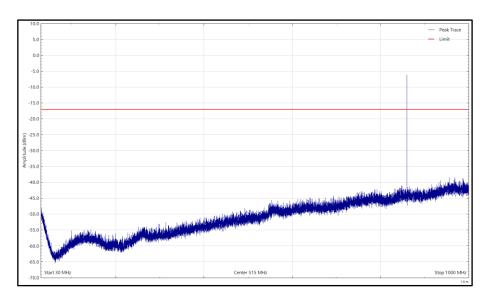


Figure 74 - 860 MHz, 30 MHz to 1 GHz, Vertical (Peak)

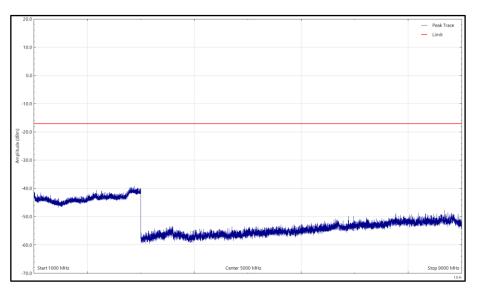


Figure 75 - 860 MHz, 1 GHz to 9 GHz, Vertical (Peak)

Frequency (MHz)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 31 - 868.9875 MHz

*No emissions were detected within 10 dB of the limit.

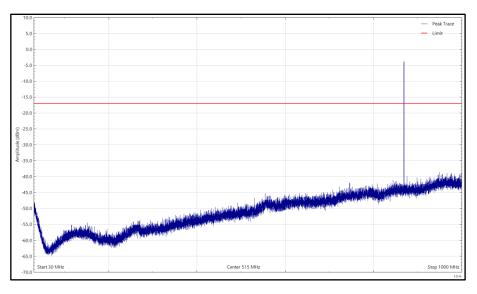


Figure 76 - 868.9875 MHz - 30 MHz to 1 GHz, Horizontal Polarisation

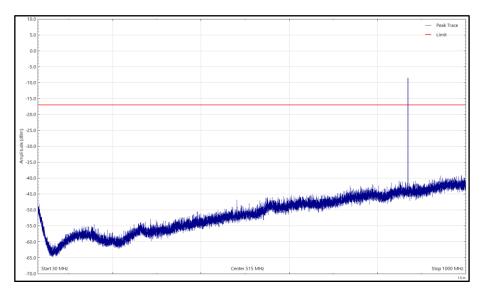


Figure 77 - 868.9875 MHz - 30 MHz to 1 GHz, Vertical Polarisation

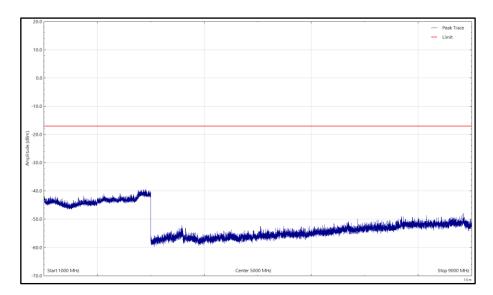


Figure 78 - 868.9875 MHz - 1 GHz to 9 GHz, Horizontal Polarisation

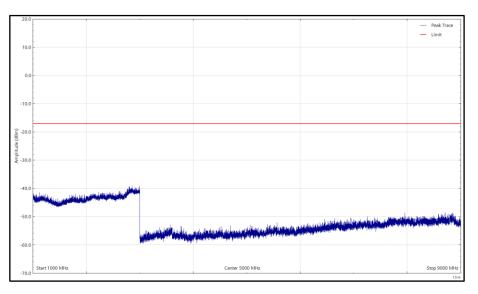


Figure 79 - 868.9875 MHz - 1 GHz to 9 GHz, Vertical Polarisation

FCC 47 CFR Part 90, Limit Clause 90.210

The EUT shall comply with emission mask B as per FCC 47 CFR Part 90, clause 90.210.

Industry Canada RSS-119, Limit Clause 5.8

The EUT shall comply with emission mask Y as per Industry Canada RSS-119. clause 5.8.

2.5.8 Test Location and Test Equipment Used

This test was carried out in EMC Chamber 12.

Instrument	Manufacturer	Туре No	TE No	Calibration Period (months)	Calibration Expires
Power Supply Unit	Hewlett Packard	6267B	21	-	TU
Termination (50ohm)	Меса	405-1	550	12	23-Nov-2024
Test Receiver	Rohde & Schwarz	ESU40	3506	12	30-Mar-2024
Antenna (DRG 1- 10.5GHz)	Schwarzbeck	BBHA9120B	4848	12	09-Jul-2024
Emissions Software	TUV SUD	EmX V3.1.12	5125	-	Software
1 Meter Cable	Teledyne	PR90-088-1MTR	5194	12	10-Aug-2024
Pre-Amplifier (1 GHz to 18 GHz)	Schwarzbeck	BBV 9718 C	5350	12	01-Dec-2024
Cable (K Type 2m)	Junkosha	MWX241- 02000KMS	5421	12	08-Mar-2024
Thermo-Hygro-Barometer	PCE Instruments	PCE-THB-40	5471	12	28-Apr-2024
Turntable & Mast Controller	Maturo Gmbh	NCD/498/2799.01	5612	-	TU
Tilt Antenna Mast	Maturo Gmbh	TAM 4.0-P	5613	-	TU
Turntable	Maturo Gmbh	Turntable 1.5 SI-2t	5614	-	ти
Antenna (Bi-Log, 30 MHz to 1 GHz)	Teseq	CBL6111D	5615	24	15-Mar-2025
3m Semi-Anechoic Chamber	MVG	EMC Chamber 12	5621	36	07-Aug-2026
Cable (N to N 8m)	Junkosha	MWX221- 08000NMSNMS/B	6330	12	16-Feb-2024
Termination, N-Type(M) 10W, DC-3GHz	Aaren	AT40T-10E03	6565	12	18-Jun-2024

Table 32

TU - Traceability Unscheduled

2.6 Frequency Stability

2.6.1 Specification Reference

FCC 47 CFR Part 2, Clause 2.1055 FCC 47 CFR Part 90, Clause 90.213 ISED RSS-119, Clause 5.3 ISED RSS-GEN, Clause 6.11

2.6.2 Equipment Under Test and Modification State

SCG2228, S/N: 1PR002401GPT84J - Modification State 0

2.6.3 Date of Test

01-February-2024

2.6.4 Test Method

This test was performed in accordance with ANSI C63.26, Clause 5.6. and the requirements of FCC 47 CFR Part 2, Clause 2.1055 (a)(2), (d)(1).

The EUT was set to transmit with an unmodulated carrier on bottom, middle and top channels. The EUT was connected to a spectrum analyser using an external 10 MHz frequency reference. The difference between the frequency of the fundamental and the frequency of the assigned channel in accordance with the manufacturer's documentation was recorded. In accordance with FCC 47 CFR, Clause 2.1055, the temperature was varied from -30 °C to +50 °C in 10 ° steps at nominal voltage and at ambient temperature for both minimum and maximum voltage extremes.

2.6.5 Environmental Conditions

Ambient Temperature	22.9 °C
Relative Humidity	38.5 %

2.6.6 Test Results

Tetra - 806 MHz to 825 MHz

Voltage	Frequency Error (ppm)								
	806.0125 MHz	823.9875 MHz							
10.8	0.156	0.179	0.174						
15.6	0.183	0.177	0.173						

Table 33 - Frequency Stability Under Voltage Variations

Temperature		Frequency Error (ppm)							
	806.0125 MHz	815 MHz	823.9875 MHz						
+50.0 °C	0.406	0.408	0.407						
+40.0 °C	0.345	0.356	0.359						
+30.0 °C	0.249	0.265	0.271						
+20.0 °C	0.166	0.177	0.172						
+10.0 °C	0.227	0.223	0.238						
0 °C	0.150	0.179	0.187						
-10.0 °C	0.123	0.144	0.154						
-20.0 °C	0.061	0.084	0.096						
-30.0 °C	0.295	0.293	0.283						

Table 34 - Frequency Stability Under Temperature Variations

Tetra - 851 MHz to 870 MHz

Voltage	Frequency Error (ppm)								
	851.0125 MHz	860 MHz	868.9875 MHz						
10.8	0.172	0.172	0.176						
15.6	0.171	0.173	0.176						

Table 35 - Frequency Stability Under Voltage Variations

Temperature		Frequency Error (ppm)	
	851.0125 MHz	860 MHz	868.9875 MHz
+50.0 °C	0.408	0.407	0.408
+40.0 °C	0.359	0.362	0.366
+30.0 °C	0.264	0.268	0.270
+20.0 °C	0.171	0.171	0.172
+10.0 °C	0.241	0.246	0.248
0°C	0.184	0.183	0.179
-10.0 °C	0.159	0.163	0.167
-20.0 °C	0.102	0.107	0.144
-30.0 °C	0.271	0.263	0.257

Table 36 - Frequency Stability Under Temperature Variations

FCC 47 CFR Part 90, Limit Clause 90.213

1.5 ppm

Industry Canada RSS-199, Limit Clause 5.3

2.5 ppm

2.6.7 Test Location and Test Equipment Used

This test was carried out in RF Laboratory 2.

Instrument	Manufacturer	Туре No	TE No	Calibration Period (months)	Calibration Expires
Multimeter	Fluke	79 Series III	611	12	15-Dec-2024
Frequency Standard	Spectracom	SecureSync 1200- 0408-0601			08-Feb-2024
Attenuator 5W 20dB DC- 18GHz	Aaren	AT40A-4041-D18- 20	5497	12	18-Apr-2024
Cable (K-Type to K-Type, 1 m)	Junkosha	MWX241- 01000KMSKMS/A	5511	12	21-May-2024
MXA Signal Analyser	Keysight Technologies	N9020B	5528	24	18-Sep-2025
Thermo-Hygro-Barometer	PCE Instruments	PCE-THB 40	5605	12	07-Nov-2024
Modular Power System Mainframe	Keysight Technologies	N6701C	5835	-	TU
DC Power Module 60V 20A 300W	Keysight Technologies	N6754A	5836	-	O/P Mon
Climatic Chamber	atic Chamber Weiss Technik		5894	12	07-Jul-2024

Table 37

TU - Traceability Unscheduled

O/P Mon - Output Monitored using calibrated equipment

2.7 Adjacent Channel Power

2.7.1 Specification Reference

FCC 47 CFR Part 90, Clause 90.221 ISED RSS-119, Clause 5.8.9.1

2.7.2 Equipment Under Test and Modification State

SCG2228, S/N: 1PR002401GPT84J - Modification State 0

2.7.3 Date of Test

01-February-2024

2.7.4 Test Method

This test was performed conducted on the modulated carrier output from the EUT, measured using a spectrum analyser. The spectrum analyser was set to the transmit frequency, span to 0.2 MHz to measure the 3 x 25 kHz adjacent channels below and above the carrier.

A measurement integration bandwidth of 18 kHz was set, and the measurement used the Adjacent Channel Power function of the spectrum analyser.

2.7.5 Environmental Conditions

Ambient Temperature22.3 °CRelative Humidity30.4 %

2.7.6 Test Results

Tetra - 806 MHz to 825 MHz

Offset (kHz)		Adjacent Channel Power (dB)	
	806.0125 MHz	815 MHz	823.9875 MHz
-25	-62.9	-62.9	-62.4
+25	-61.0	-60.7	-60.6
-50	-73.0	-72.5	-72.3
+50	-72.8	-72.5	-72.4
-75	-77.6	-77.1	-77.2
+75	-77.5	-77.2	-77.4

Table 38

Figure 80 - 806.0125 MHz

Spectrum Anal ACP	lyzer 1	•	+											
KEYSIGHT	Input: RF Coupling: D Align: Auto	Freq R	Corr Pi tef: Ext (S) μ	tten: 30 dB reamp: Off W Path: Star NO: Best Clo	Gate: ndard IF Ga		Avg H Radio	r Freq: 815: old: 50/50 Std: None Correction:	.000000 MH : Off	z				
1 Graph	۷				Ref Lv	I Offset 20	40 dB							
Scale/Div 10.0	0 dB					lue 40.00 c								
30.0 20.0 10.0 0.00 -10.0	-77.1	dBc	-72.5 dBc	-62.9	dBc	₩116,41	Ψ. h	-60.7	dBc	-72.5 dE		-7	7.2 dBc	
-20.0 -30.0 -40.0 -50.0				- survey and				Maral Andrewski (M. John					
Center 815.00 #Res BW 100					Video	BW 10.00	0 Hz					5		pan 200 kHz T (1001 pts)
2 Metrics	v.												1000	1 (1001 pto)
Total Car Pw	r 4	1.780 dBm/18	.00 kHz						Mea	asure Trace				Trace 1
Total PSD									Trac	се Туре			Max H	old (Active)
					Low				Upp					
		0 <i>4</i> E			CP	Refere			CP	Refere				
	А	Offs Freq 25.00 kHz	Integ BW 18.00 kHz	dBc -62.90	dBm -21.12	dBm 41.78	Car #	dBc -60.66	dBm -18.88	dBm 41.78	Car #	-3 dB		
	B	50.00 kHz	18.00 kHz		-30.72	41.78	1	-72.48	-30.70	41.78		-3 dB		
	C	75.00 kHz	18.00 kHz		-35.32	41.78	1		-35.45	41.78	1	-3 dB		
		Feb (01, 2024	<u> </u>										

Figure 81 - 815 MHz

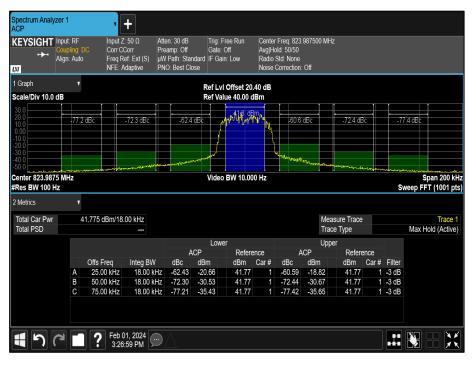


Figure 82 - 823.9875 MHz

Tetra - 851 MHz to 870 MHz

Offset (kHz)	Adjacent Channel Power (dB)				
	851.0125 MHz	860 MHz	868.9875 MHz		
-25	-61.8	-61.2	-61.9		
+25	-60.2	-59.9	-59.5		
-50	-70.3	-69.9	-70.4		
+50	-70.4	-70.4	-70.5		
-75	-77.2	-77.0	-76.9		
+75	-77.1	-77.0	-77.0		

Table 39

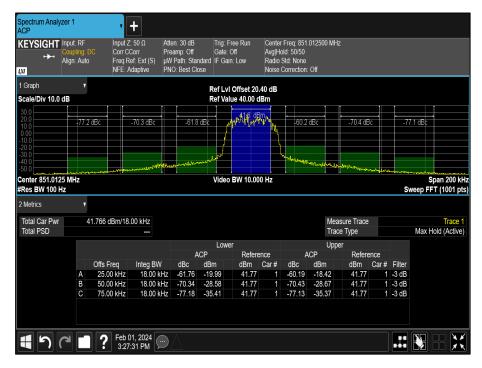


Figure 83 - 851.0125 MHz

Spectrum Analyz ACP	zer 1	,	+											
	Input: RF Coupling: D(Align: Auto	Freq R	Corr Pr ef: Ext (S) µ\	tten: 30 dB reamp: Off <i>N</i> Path: Stan NO: Best Clo	Gate: dard IF Gai		Avg H Radio	r Freq: 860. old: 50/50 Std: None Correction:	000000 MH: Off	Z				
1 Graph	v				Ref Lv	Offset 20.	40 dB							
Scale/Div 10.0	dB				Ref Va	ue 40.00 d	Bm			-				
30.0 20.0 10.0 0.00 -10.0		iBc	-69.9 dBc	-61.2	dBc	MARAP	ų. η	-59.9	dBc	-70.4 dE	30	-71	7.0 dBc	
-10.0 -20.0 -30.0 -40.0 -50.0			mouth	auternations	walk			Monthe markets	many	attheman				
Center 860.000 #Res BW 100 H					Video	BW 10.00	0 Hz					SI		oan 200 kHz T (1001 pts]
2 Metrics	_													
	V													
Total Car Pwr		.841 dBm/18	.00 kHz						Меа	sure Trace				Trace 1
Total Car Pwr Total PSD		.841 dBm/18	.00 kHz 							isure Trace ce Type			Max He	Trace 1 old (Active)
		.841 dBm/18	.00 kHz 		Lowe				Trac Upp	æ Type er			Max Ho	
	41				CP	Refere			Trac Upp CP	ce Type er Refere	ence		Max Ho	
	41	Offs Freq	Integ BW	dBc	CP dBm	Refere dBm	Car #	dBc	Trac Upp CP dBm	er er Refere dBm	ence Car #		Max Ho	
	41 A	Offs Freq 25.00 kHz	Integ BW 18.00 kHz	dBc -61.21	CP dBm -19.37	Refere dBm 41.84	Car # 1	dBc -59.93	Trac Upp CP dBm -18.09	er Per Refere dBm 41.84	ence Car# 1	-3 dB	Max Ho	
	41	Offs Freq	Integ BW	dBc -61.21 -69.94	CP dBm	Refere dBm	Car #	dBc -59.93 -70.36	Trac Upp CP dBm	er er Refere dBm	ence Car # 1		Max Ho	
	41 A B	Offs Freq 25.00 kHz 50.00 kHz	 Integ BW 18.00 kHz 18.00 kHz	dBc -61.21 -69.94	CP dBm -19.37 -28.10	Refere dBm 41.84 41.84	Car # 1 1	dBc -59.93 -70.36	Trac Upp CP dBm -18.09 -28.52	ce Type er Refere dBm 41.84 41.84	ence Car # 1	-3 dB -3 dB	Max He	

Figure 84 - 860 MHz

Figure 85 - 868.9875 MHz

FCC Part 90, Limit Clause 90.221(c)

Frequency Offset	Maximum ACP (dBc) for devices \leq 15W	Maximum ACP (dBc) for devices > 15W
25 kHz	-55	-55
50 kHz	-65	-65
75 kHz	-65	-70

Table 40

NOTE: In any case, no requirement in excess of -36 dBm shall apply.

2.7.7 Test Location and Test Equipment Used

This test was carried out in RF Laboratory 1.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Expires
Multimeter	Fluke	79 Series III	611	12	15-Dec-2024
Hygrometer	Rotronic	I-1000	3220	12	28-Nov-2024
Frequency Standard	Spectracom	SecureSync 1200- 0408-0601	4393	6	08-Feb-2024
Signal Analyzer	Keysight Technologies	PXA N9030B	5432	12	08-Jun-2024
Attenuator 5W 20dB DC- 18GHz	Aaren	AT40A-4041-D18- 20	5497	12	18-Apr-2024
Cable (K-Type to K-Type, 1 m)	Junkosha	MWX241- 01000KMSKMS/A	5511	12	21-May-2024
Modular Power System Mainframe	Keysight Technologies	N6701C	5835	-	TU
DC Power Module 60V 20A 300W	Keysight Technologies	N6754A	5836	-	O/P Mon

Table 41

TU - Traceability Unscheduled

O/P Mon – Output Monitored using calibrated equipment

3 Measurement Uncertainty

For a 95% confidence level, the measurement uncertainties for defined systems are:

Test Name	Measurement Uncertainty				
Maximum Conducted Output Power	± 3.2 dB				
Types of Emissions	-				
Bandwidth Limitations	± 58.05 Hz				
Spurious Emissions at Antenna Terminals	± 3.45 dB				
Radiated Spurious Emissions	30 MHz to 1 GHz: ± 5.2 dB 1 GHz to 18 GHz: ± 6.3 dB				
Frequency Stability	± 11 Hz				
Adjacent Channel Power	± 3.0 dB				

Table 42

Measurement Uncertainty Decision Rule - Accuracy Method

Determination of conformity with the specification limits is based on the decision rule according to IEC Guide 115:2021, Clause 4.4.3 (Procedure 2). The measurement results are directly compared with the test limit to determine conformance with the requirements of the standard.

Risk: The uncertainty of measurement about the measured result is negligible with regard to the final pass/fail decision. The measurement result can be directly compared with the test limit to determine conformance with the requirement (compare IEC Guide 115). The level of risk to falsely accept and falsely reject items is further described in ILAC-G8.