

FCC TEST REPORT (Part 15, Subpart C)

Applicant:	Fibocom Wireless Inc.
Address:	1101,Tower A, Building 6, Shenzhen International Innovation Valley, Dashi 1st Rd, Nanshan, Shenzhen , China

Manufacturer or	Fibocom Wireless Inc.
Supplier:	Fibocom Wireless Inc.
Address:	1101,Tower A, Building 6, Shenzhen International Innovation Valley, Dashi 1st Rd,
Address.	Nanshan, Shenzhen , China
Product:	LTE Module
Brand Name:	Fibocom
Model Name:	SC206-NA
FCC ID:	ZMOSC206NA
Date of tests:	Apr. 11, 2025 - May. 14, 2025

The tests have been carried out according to the requirements of the following standard:

M ANSI C63.10-2020

CONCLUSION: The submitted sample was found to COMPLY with the test requirement

	Prepared by Hanwen Xu	Approved by Peibo Sun	
Engineer / Mobile Department		Manager / Mobile Department	
	Lu Hannen	Simpleibo	
	Date: May. 14, 2025	Date: May. 14, 2025	

This report is governed by, and incorporates by reference, the Conditions of Testing as possed at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/ and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the lests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

TABLE OF CONTENTS

REL	EASE CONTROL RECORD	
1.	SUMMARY OF TEST RESULTS	5
1.1		
2	GENERAL INFORMATION	
2.2		7
2.3		
2.5	2.2.1 CONFIGURATION OF SYSTEM UNDER TEST	
	2.2.2 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	
0.4		
2.4		10
2.5		
2.6		
3	TEST TYPES AND RESULTS	15
3.1	CONDUCTED EMISSION MEASUREMENT	
	3.1.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT	
	3.1.2 TEST INSTRUMENTS	16
	3.1.3 TEST PROCEDURES	
	3.1.4 DEVIATION FROM TEST STANDARD	17
	3.1.5 TEST SETUP	18
	3.1.6 EUT OPERATING CONDITIONS	18
	3.1.7 TEST RESULTS	
3.2	RADIATED EMISSION MEASUREMENT	
·-	3.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT	21
	3.2.2 TEST INSTRUMENTS	
	3.2.3 TEST PROCEDURES	
	3.2.4 DEVIATION FROM TEST STANDARD	
	3.2.5 TEST SETUP	
	3.2.6 EUT OPERATING CONDITIONS	
	3.2.7 TEST RESULTS	
2 2	6 DB BANDWIDTH MEASUREMENT	
5.5	3.3.1 LIMITS OF 6DB BANDWIDTH MEASUREMENT	
	3.3.2 TEST INSTRUMENTS	
	3.3.3 TEST PROCEDURE	
	3.3.5 TEST SETUP	02
	3.3.7 TEST RESULTS	
3.4	CONDUCTED OUTPUT POWER	
	3.4.1 LIMITS OF CONDUCTED OUTPUT POWER MEASUREMENT	
	3.4.2 TEST SETUP	
	3.4.3 TEST INSTRUMENTS	
	3.4.4 TEST PROCEDURES	
	3.4.5 DEVIATION FROM TEST STANDARD	
	3.4.6 EUT OPERATING CONDITIONS	
	3.4.7 TEST RESULTS	84
	3.4.7.1 MAXIMUM PEAK OUTPUT POWER	84
	3.4.7.2 AVERAGE OUTPUT POWER (FOR REFERENCE)	
3.5	POWER SPECTRAL DENSITY MEASUREMENT	86
	3.5.1 LIMITS OF POWER SPECTRAL DENSITY MEASUREMENT	
	3.5.2 TEST SETUP	
	3.5.3 TEST INSTRUMENTS	
	3.5.4 TEST PROCEDURE	
	3.5.5 DEVIATION FROM TEST STANDARD	86
	3.5.6 EUT OPERATING CONDITION	86
	3.5.7 TEST RESULTS	
3.6	OUT OF BAND EMISSION MEASUREMENT	88
	3.6.1 LIMITS OF OUT OF BAND EMISSION MEASUREMENT	88
	3.6.2 TEST SETUP	
		-

VER	ITAS		
	3.6.3	TEST INSTRUMENTS	88
	3.6.4	TEST PROCEDURE	88
	3.6.5	DEVIATION FROM TEST STANDARD	89
	3.6.6	EUT OPERATING CONDITION	89
	3.6.7	TEST RESULTS	89
3.7	ANTI	ENNA REQUIREMENTS	90
	3.7.1	STANDARD APPLICABLE	90
	3.7.2	ANTENNA CONNECTED CONSTRUCTION	90
	3.7.3	ANTENNA GAIN	90
4	PHOT	OGRAPHS OF THE TEST CONFIGURATION	91
5	MODII	FICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE	EUT BY THE LAB
	92		
6	APPE	NDIX A:WIFI	93
7	APPE	NDIX A/B:BLE	147

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
PSZ-QSZ2504020109RF09	Original release	May. 14, 2025

1. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC PART 15, SUBPART C (SECTION 15.247)			
STANDARD SECTION	TEST TYPE AND LIMIT	RESULT	TEST LAB*
15.207	AC Power Conducted Emission	Compliance	Α
15.205 15.209	Radiated Emissions	Compliance	Α
15.247(d)	Out of band Emission Measurement	Compliance	Α
15.247(a)(2)	6dB bandwidth	Compliance	Α
15.247(b)	Conducted Output power	Compliance	Α
15.247(e)	Power Spectral Density	Compliance	Α
15.203	Antenna Requirement	Compliance	А

Note: Except RSE and AC Power Conducted Emission, other data please refer to Appendix A/B.

*Test Lab Information Reference

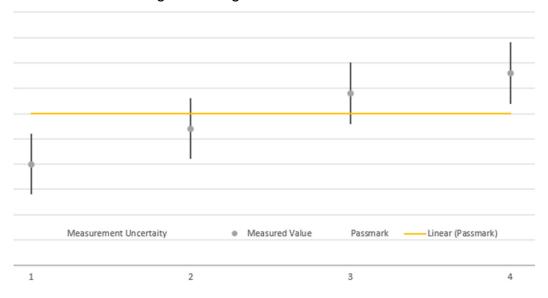
Lab A:

Huarui 7Layers High Technology (Suzhou) Co., Ltd.

Lab Address:

Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province, China Accredited Test Lab Cert 6613.01

The FCC Site Registration No. is 434559; The Designation No. is CN1325.



1.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	UNCERTAINTY
AC Power Conducted emissions	±2.70dB
Radiated emissions (9KHz~30MHz)	±2.68dB
Radiated emissions (30MHz~1GHz)	±4.98dB
Radiated emissions (1GHz ~6GHz)	±4.70dB
Radiated emissions (6GHz ~18GHz)	±4.60dB
Radiated emissions (18GHz ~40GHz)	±4.12dB
Conducted emissions	±4.01dB
Occupied Channel Bandwidth	±43.58KHz
Conducted Output power	±2.06dB
Power Spectral Density	±0.85 dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

The verdicts in this test report are given according the above diagram:

Case	Measured Value	Uncertainty Range	Verdict
1	below pass mark	below pass mark	Passed
2	below pass mark	within pass mark	Passed
3	above pass mark	within pass mark	Failed
4	above pass mark	above pass mark	Failed

That means, the laboratory applies, as decision rule (see ISO/IEC 17025:2017), the so-called shared risk principle.

2 GENERAL INFORMATION

2.2 GENERAL DESCRIPTION OF EUT

Z.ZGENERAL DESCRIP	11011 01 11	<u>/ </u>	
PRODUCT*	LTE Module		
BRAND NAME*	Fibocom		
MODEL NAME*	SC206-NA		
NOMINAL VOLTAGE*	3.8Vdc		
MODULATION *	BLE	GFSK	
WODULATION	2.4G WIFI	DSSS,OFDM	
	BT_LE: 1 Mb	ps	
	802.11b: 11/5	5.5/2.0/1.0 Mbps	
TRANSMISSION RATE*	802.11g: 54/4	8/36/24/18/9/6 Mbps	
	802.11n(HT2	0)): up to 144.4 Mbps	
	802.11n(HT4	0): up to 300 Mbps	
OPERATING	2402-2480MHz for BT-LE		
FREQUENCY	2412-2462MHz for 11b/g/n(HT20/40)		
MAX. OUTPUT POWER	BT-LE: 11.61mW (Maximum)		
	WLAN: 119.67mW (Maximum)		
ANTENNA GAIN*	BLE	3.36dBi	
ANTENNA GAIN	2.4G WIFI	3.36dBi	
ANTENNA TYPE*	BLE	Dipole Antenna	
ANTENNA TIPE	2.4G WIFI	Dipole Antenna	
HW VERSION*	V1.0		
SW VERSION*	SC206-U6.400.002		
I/O PORTS*	Refer to user's manual		
CABLE SUPPLIED*	N/A		
NOTE:			

NOTE:

- *Since the above data and/or information is provided by the client relevant results or conclusions of this report are only made for these data and/or information, Test Lab is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion.
- 2. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

Huarui 7layers High Technology (Suzhou) Co., Ltd.

Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province, China Tel: +86 (0557) 368 1008

The EUT incorporates a SISO function. Physically, the EUT provides one completed transmitter and one receiver.

MODULATION MODE	TX/RX FUNCTION
802.11b	1TX/1RX
802.11g	1TX/1RX
802.11n(HT20)	1TX/1RX
802.11n(HT40)	1TX/1RX
BT_LE(1MHz)	1TX/1RX

- 4. For the test results, the EUT had been tested with all conditions. But only the worst case was shown in test report.
- 5. Antenna gain and EUT conducted cable loss are provided by the customer, and the laboratory will record the results based on these items that involve these two parameters.

2.3 DESCRIPTION OF TEST MODES

11 Channels are provided for 802.11b, 802.11g and 802.11n20 (HT20):

802.11b/802.11g/802.11n20 (HT20)					
CHANNEL FREQUENCY CHANNEL FREQUENCY					
1	2412 MHz	7	2442 MHz		
2	2417 MHz	8	2447 MHz		
3	2422 MHz	9	2452 MHz		
4	2427 MHz	10	2457 MHz		
5	2432 MHz	11	2462 MHz		
6	2437 MHz				

802.11n40 (HT40)						
CHANNEL	FREQUENCY	CHANNEL	FREQUENCY			
3	2422 MHz	7	2442 MHz			
4	2427 MHz	8	2447 MHz			
5	2432 MHz	9	2452 MHz			
6	2437 MHz					

	BT-LE						
CHANNEL	FREQ. (MHZ)	CHANNEL	FREQ. (MHZ)	CHANNEL	FREQ. (MHZ)	CHANNEL	FREQ. (MHZ)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

2.2.1 CONFIGURATION OF SYSTEM UNDER TEST

Please see section 4 photographs of the test configuration for reference.

2.2.2 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports.

The worst case was found when positioned on Y axis for radiated emission. Following test modes were selected for the final test, and the final worst case is marked in boldface and recorded in the report:

EUT CONFIGURE		APPLIC	ABLE TO		MODE
MODE	RE<1G	RE≥1G	PLC	APCM	MODE
-	V	V	√	√	

Where

RE<1G: Radiated Emission below 1GHz

RE≥1G: Radiated Emission above 1GHz

PLC: Power Line Conducted Emission

APCM: Antenna Port Conducted Measurement

NOTE: No need to concern of Conducted Emission due to the EUT is powered by battery.

RADIATED EMISSION TEST (BELOW 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

The following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION	DATA RATE (Mbps)
802.11b	1 to 11	6	DSSS	1.0
BT-LE	0 to 39	19	GFSK	1

RADIATED EMISSION TEST (ABOVE 1GHz):

- ☑ Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
 - ☐ The following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION	DATA RATE (Mbps)
802.11b	1 to 11	1, 6, 11	DSSS	1.0
802.11g	1 to 11	1, 6, 11	OFDM	6.0
802.11n20(HT20)	1 to 11	1, 6, 11	OFDM	MCS0
802.11n(HT40)	3 to 9	3,6,9	OFDM	MCS0
BT-LE	0 to 39	0,19, 39	GFSK	1.0

POWER LINE CONDUCTED EMISSION TEST

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- ☐ The following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION	DATA RATE (Mbps)
802.11n20	1 to 11	6	OFDM	MCS0

BANDEDGE MEASUREMENT:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

The following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION	DATA RATE (Mbps)
802.11b	1 to 11	1, 6, 11	DSSS	1.0
802.11g	1 to 11	1, 6, 11	OFDM	6.0
802.11n20(HT20)	1 to 11	1, 6, 11	OFDM	MCS0
802.11n(HT40)	3 to 9	3,6,9	OFDM	MCS0
BT-LE	0 to 39	0,19, 39	GFSK	1.0

ANTENNA PORT CONDUCTED MEASUREMENT:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

☐ The following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION	DATA RATE (Mbps)
802.11b	1 to 11	1, 6, 11	DSSS	1.0
802.11g	1 to 11	1, 6, 11	OFDM	6.0
802.11n20(HT20)	1 to 11	1, 6, 11	OFDM	MCS0
802.11n(HT40)	3 to 9	3,6,9	OFDM	MCS0
BT-LE	0 to 39	0,19, 39	GFSK	1.0

	TEST CONDITION						
APPLICABLE TO	ENVIRONMENTAL CONDITIONS	TEST VOLTAGE	TESTED BY				
RE<1G	23deg. C, 70%RH	DC 3.8V By DC Source	Hanwen Xu				
RE≥1G	23deg. C, 70%RH	DC 3.8V By DC Source	Hanwen Xu				
PLC	25deg. C, 52%RH	DC 3.8V By DC Source	Hanwen Xu				
APCM	25deg. C, 60%RH	DC 3.8V By DC Source	Hanwen Xu				

2.4 DUTY CYCLE OF TEST SIGNAL

Please Refer to Appendix A/B Of this test report..

2.5 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C, Section 15.247

KDB 558074 D01 DTS Meas Guidance v05r02

ANSI C63.10-2020

Note:

- 1. All test items have been performed and recorded as per the above standards.
- The EUT is also considered as a kind of computer peripheral, because the connection to computer is necessary for typical use. It has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (Certification). The test report has been issued separately.

2.6 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	Laptop	Lenovo	Thinkpad E14	SL10W47313	N/A
2	DC Source	HYELEC	HY3010B	551016	N/A
3	Adapter	N/A	N/A	N/A	N/A

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	DC Line: Unshielded, Detachable, 1.0m;

3 TEST TYPES AND RESULTS

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

FREQUENCY OF EMISSION (MHz)	CONDUCTED LIMIT (dBµV)		
	Quasi-peak	Average	
0.15 ~ 0.5	66 to 56	56 to 46	
0.5 ~ 5	56	46	
5 ~ 30	60	50	

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

3.1.2 TEST INSTRUMENTS

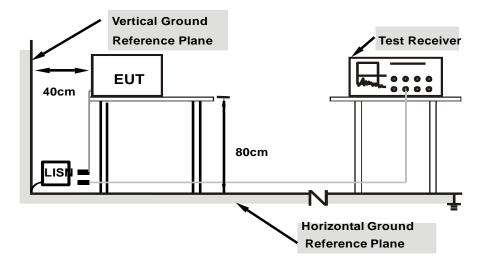
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
EMI Test Receiver	Rohde&Schwarz	ESR3	102749	Mar.28,24	Mar.27,26
ELEKTRA test	Dobdo ! Cobwerz	ELEKTRA	NIA	NI/A	NI/A
software	Rohde&Schwarz	ELEKTRA	NA	N/A	N/A
LISN network	Rohde&Schwarz	ENV216	102640	Mar.28,24	Mar.27,26
CABLE	Rohde&Schwarz	W61.01	N/A	Apr.27,24	Apr.26,25
CABLE	Rohde&Schwarz	W61.01	N/A	Apr.26,25	Apr.25,26
CABLE	Rohde&Schwarz	W601	N/A	Apr.27,24	Apr.26,25
CABLE	Rohde&Schwarz	W601	N/A	Apr.26,25	Apr.25,26

NOTE:

- 1. The test was performed in CE shielded room.
- 2. The calibration interval of the above test instruments is 12/24 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.

3.1.3 TEST PROCEDURES

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.


NOTE: All modes of operation were investigated and the worst-case emissions are reported.

3.1.4 DEVIATION FROM TEST STANDARD

No deviation.

3.1.5 TEST SETUP

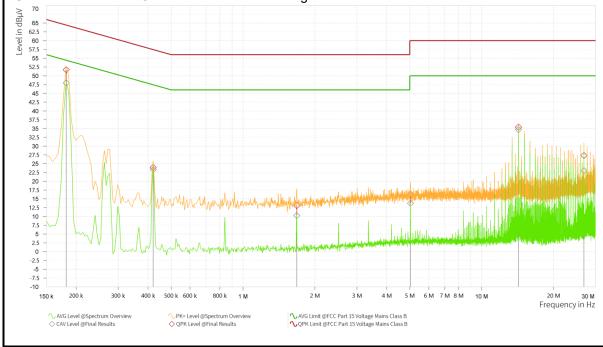
Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

For the actual test configuration, please refer to the attached file (Test Setup Photo).

3.1.6 EUT OPERATING CONDITIONS

- a. Turned on the power and connected of all equipment.
- b. EUT was operated according to the type used was description in manufacturer's specifications or the User's Manual.


3.1.7 TEST RESULTS

	CONDUCTED W	ORST-CASE DATA	
Frequency Range	150KHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9 kHz
Input Power	120Vac, 60Hz	Environmental Conditions	26deg. C, 51%RH
Tested By	Hanwen Xu		

Rg	Frequency [MHz]	QPK Level [dBµV]	QPK Limit [dBµV]	QPK Margin [dB]	CAV Level [dBµV]	CAV: AVG Limit [dBµV]	CAV Margin [dB]	Correction [dB]	Line	Meas. BW [kHz]
1	0.182	51.72	64.42	12.70	47.95	54.42	6.47	12.21	L1	9.000
1	0.420	23.94	57.45	33.51	23.32	47.45	24.13	11.76	L1	9.000
1	1.680	13.10	56.00	42.90	10.24	46.00	35.76	11.75	L1	9.000
1	5.033	16.29	60.00	43.71	13.78	50.00	36.22	11.79	L1	9.000
1	14.262	35.40	60.00	24.60	34.71	50.00	15.29	11.84	L1	9.000
1	26.840	27.33	60.00	32.67	23.02	50.00	26.98	11.90	L1	9.000

REMARKS:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Limit value -Emission level
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.

Frequency Range	150KHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9 kHz
Input Power	120Vac, 60Hz	Environmental Conditions	26deg. C, 51%RH
Tested By	Hanwen Xu		

Rg	Frequency [MHz]	QPK Level [dBµV]	QPK Limit [dBµV]	QPK Margin [dB]	CAV Level [dBµV]	CAV: AVG Limit [dBµV]	CAV Margin [dB]	Correction [dB]	Line	Meas. BW [kHz]
1	0.182	51.85	64.42	12.57	47.87	54.42	6.55	12.23	N	9.000
1	0.420	24.77	57.45	32.68	24.14	47.45	23.31	12.81	N	9.000
1	1.379	7.44	56.00	48.56	1.70	46.00	44.30	12.74	N	9.000
1	5.874	17.99	60.00	42.01	15.70	50.00	34.30	12.77	N	9.000
1	14.262	36.20	60.00	23.80	35.52	50.00	14.48	12.82	N	9.000
1	26.844	31.08	60.00	28.92	29.94	50.00	20.06	12.88	N	9.000

REMARKS:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Limit value Emission level
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

FREQUENCIES (MHz)	FIELD STRENGTH (microvolts/meter)	MEASUREMENT DISTANCE (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

3.2.2 TEST INSTRUMENTS

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
Pre-Amplifier	R&S	SCU18F1	100815	Aug.30,23	Aug.29,25
Pre-Amplifier	R&S	SCU08F1	101028	Jan.22,24	Jan.21,26
Signal Generator	R&S	SMB100A	182185	Mar.29,24	Mar.28,26
3m Fully-anechoic Chamber	TDK	9m*6m*6m	HRSW-SZ-EMC- 01Chamber	Nov.25,22	Nov.24,25
3m Semi-anechoic Chamber	TDK	9m*6m*6m	HRSW-SZ-EMC- 02Chamber	Nov.25,22	Nov.24,25
EMI TEST Receiver	R&S	ESW44	101973	Mar.28,24	Mar.27,26
Bilog Antenna	SCHWARZBECK	VULB 9163	1264	Dec.26,23	Dec.25,25
Horn Antenna	ETS-LINDGREN	3117	227836	Aug.22,23	Aug.21,25
Horn Antenna (18GHz-40GHz)	Steatite Q-par Antennas	QMS 00880	23486	Jul.15,24	Jul.14,26
Horn Antenna	Steatite Q-par Antennas	QMS 00208	23485	Aug.22,23	Aug.21,25
Loop Antenna	SCHWARZ	HFH2-Z2/Z2E	100976	Feb.22,25	Feb.21,27
WIDEBANDRADIO COMMUNICATION TESTER	R&S	CMW500	169399	Jun.19,24	Jun.18,26
Test Software	ELEKTRA	ELEKTRA4.32	N/A	N/A	N/A
Open Switch and Control Unit	R&S	OSP220	101964	N/A	N/A
DC Source	HYELEC	HY3010B	551016	Aug.31,23	Aug.30,25
Hygrothermograph	DELI	20210528	SZ014	Sep.06,23	Sep.05,25
6DB attenuator	Tonscend Technology Co., Ltd	N/A	23062787	N/A	N/A
PC	LENOVO	E14	HRSW0024	N/A	N/A
TMC-	D.0.0	HF290-NMNM-	21/0	N1/A	N1/A
AMI18843A(CABLE)	R&S	7.00M	N/A	N/A	N/A
TMC-	Dec	HF290-NMNM-	N1/A	NI/A	N1/A
AMI18843A(CABLE)	R&S	4.00M	N/A	N/A	N/A
CABLE	R&S	W13.02	N/A	Apr.27,24	Apr.26,25
CABLE	R&S	W13.02	N/A	Apr.26,25	Apr.25,26
CABLE	R&S	W12.14	N/A	Apr.27,24	Apr.25,25
CABLE	R&S	W12.14	N/A	Apr.26,25	Apr.25,26

NOTE:

- 1. The calibration interval of the above test instruments is 12/ 24 / 36 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.
- 2. The test was performed in 3m Chamber.
- 3. The FCC Site Registration No. is 434559; The Designation No. is CN1325.

Huarui 7layers High Technology (Suzhou) Co., Ltd.

Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province, China

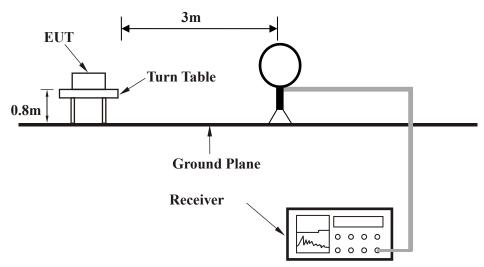
Tel: +86 (0557) 368 1008

3.2.3 TEST PROCEDURES

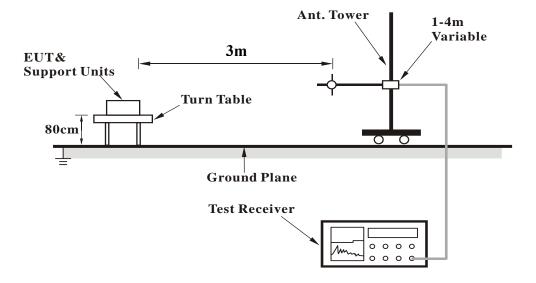
- a. The EUT was placed on the top of a rotating table 0.8 meters (for below 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, For battery operated equipment, the equipment tests shall be perform using fresh batteries. The turntable was rotated to maximize the emission level.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for RMS Average (Duty cycle < 98%) for Average detection (AV) at frequency above 1GHz, then the measurement results was added to a correction factor (10 log(1/duty cycle)).
- 4. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 5. All modes of operation were investigated and the worst-case emissions are reported.

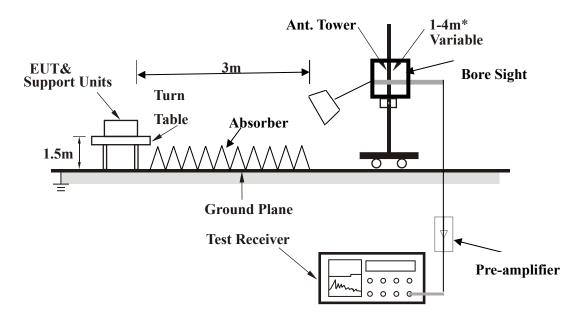

3.2.4 DEVIATION FROM TEST STANDARD

No deviation



3.2.5 TEST SETUP

<Frequency Range 9KHz~30MHz >



< Frequency Range 30MHz~1GHz >

<Frequency Range above 1GHz>

Note: Above 1G is a directional antenna

Depends on the EUT height and the antenna 3dB beamwidth both, refer to section 7.3 of CISPR 16-2-3.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

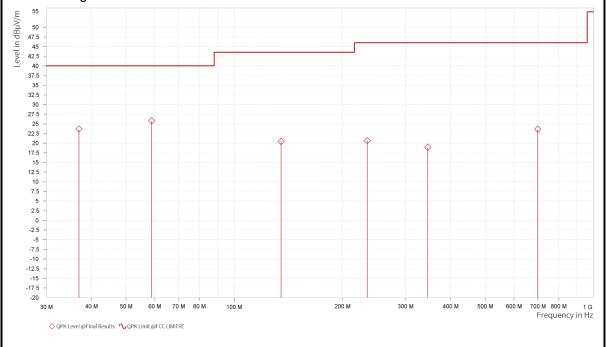
3.2.6 EUT OPERATING CONDITIONS

- a. Set the EUT under full load condition and placed them on a testing table.
- b. Set the transmitter part of EUT under transmission condition continuously at specific channel frequency.
- c. The necessary accessories enable the EUT in full functions.

3.2.7 TEST RESULTS

BELOW 1GHz WORST-CASE DATA

NOTE: The 9K~30MHz amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required in the report.

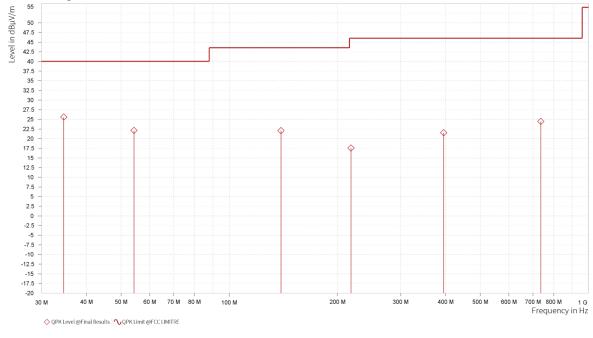

	802.	11B	
CHANNEL	TX Channel 6	DETECTOR	Quasi Paak (QD)
FREQUENCY RANGE	30MHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M

Rg	Frequency [MHz]	QPK Level [dBµV/m]	QPK Limit [dBµV/m]	QPK Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	Meas. BW [kHz]
1	36.936	23.66	40.00	16.34	-10.73	Н	0.9	2.00	120.000
1	58.858	25.75	40.00	14.25	-9.82	Н	355.7	2.00	120.000
1	135.051	20.43	43.50	23.07	-14.20	Н	41.5	2.00	120.000
1	234.525	20.66	46.00	25.34	-8.43	Н	203	2.00	120.000
1	345.590	18.92	46.00	27.08	-4.33	Н	5.5	1.00	120.000
1	699.058	23.61	46.00	22.39	-0.72	Н	5.5	1.00	120.000

REMARKS:

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.


CHANNEL	TX Channel 6	DETECTOR FUNCTION	Ouesi Peek (OP)
FREQUENCY RANGE	30MHz ~ 1GHz		Quasi-Peak (QP)

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M

Rg	Frequency [MHz]	QPK Level [dBµV/m]	QPK Limit [dBµV/m]	QPK Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	Meas. BW [kHz]
1	34.608	25.57	40.00	14.43	-13.53	V	328	1.00	120.000
1	54.250	22.11	40.00	17.89	-10.65	V	355.1	2.00	120.000
1	139.222	22.07	43.50	21.43	-13.84	V	328	1.00	120.000
1	218.083	17.55	46.00	28.45	-10.25	V	35.5	2.00	120.000
1	395.060	21.53	46.00	24.47	-3.24	V	359	1.00	120.000
1	736.839	24.47	46.00	21.53	-0.24	V	1	2.00	120.000

REMARKS:

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.

ABOVE 1GHz WORST-CASE DATA

Note:

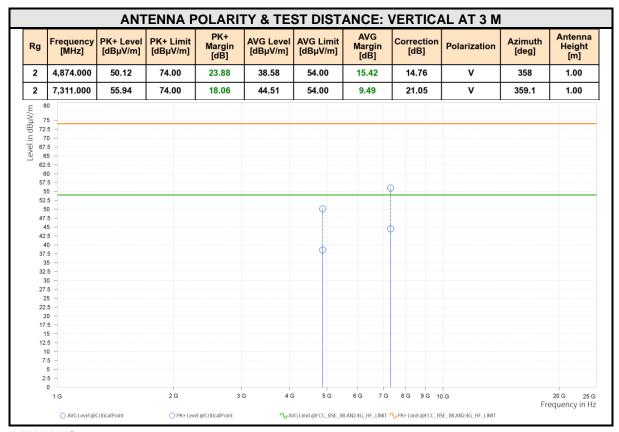
- 1. For radiated emissions testing, the full testing range of different modes have been scanned, only the worst case harmonic data is reported in the sheet.
- 2. All other emissions were greater than 20dB below the limit was not recorded

					802.1	11b			
ANI	NEL		TX (Channel 1		DETECTO	R	Peak (PK)
EQL	JENCY RAI	NGE	1GF	lz ~ 25GHz		FUNCTION	N	Average (AV)
	Al	NTENI	NA P	OLARITY 8	TEST DI	STANCE: H	ORIZONTAL	AT 3 M	
Rg	Frequency [MHz]	PK+ L [dBµ\		PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	2,370.000	46.3	31	74.00	27.69	6.48	Н	355	2.00
1	2,390.000	44.8	33	74.00	29.17	6.52	Н	0.9	2.00
1	2,413.500	90.3	36			6.55	Н	4.9	1.00
125 120 120 117.5 115 117.5 117.5 117.5 110.5 11						- P			P
32.5				G 2.340 G 2.345 G 2.35					

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	
1	2,387.500	31.14	54.00	22.86	6.51	Н	4.2		
1	2,390.000	31.16	54.00	22.84	6.52	Н	4.2	1.00	
1	2,413.000	86.11			6.55	Н	4.2	1.00	
125 125 125 125 125 125 125 125 125 125						P			

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	
1	2,382.000	46.31	74.00			V	356.3		
1	2,390.000	44.90	74.00	29.10	6.52	V	4.8	1.00	
1	2,413.500	81.64			6.55	V	79.8	2.00	
1250 1250						2380 G 2385 G 2390 G 23		2410 6 2422	

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dΒμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	
1	2,385.000	31.30	54.00	22.70	6.51	V	4.2	1.00	
1	2,390.000	30.98	54.00	23.02	6.52	V	1	1.00	
1	2,413.000	75.34			6.55	V	76.2	2.00	
125 125 125 125 125 125 125 125 125 125								- 19-1	


REMARKS:

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 2412MHz: Fundamental frequency.

HANNEL T			TX C	TX Channel 6				DETECTOR				Peak (PK)		
REQUENCY RANGE				: 1GH	1GHz ~ 25GHz			FUNCTION				Avei	Average (AV)	
			ANTE	NNA PO	DLARITY	/ & TES	T DIS	IAT	NCE: H	ORIZ	ONTAL	. AT 3	M	
Rg	F	requency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	AVG Level [dBµV/m]	AVG L [dBµ\		AVG Margin [dB]	Corre [dl		arization	Azimuth [deg]	Antenna Height [m]
2	4	4,874.000	49.86	74.00	24.14	38.58	54.0	00	15.42	14.	76	н	2.2	2.00
2	7	7,311.000	55.98	74.00	18.02	44.49	54.0	00	9.51	21.	05	н	2.2	2.00
	80	-			1	<u> </u>	<u> </u>			1				<u> </u>
Level in dBµV/m	75 -													
剪:	72.5													
.⊑	70 -	-												
е Б	37.5	_												
[e	65 -	-												
_ 6	32.5	-												
	60 -													
	57.5	-								Ω .				
	55 - 52.5 -									<u> </u>				
,	50 -							_						
	17.5							Υ						
	45 -									Å				
4	12.5	-								Ψ				
	40 -	_						Ļ						
3	37.5	-)						
	35 -							-						
3	32.5							-						
	30 -													
•	27.5 · 25 ·													
	22.5													
	20 -													
	17.5	-												
	15 -	+						·		+				
	12.5													
	10 -	<u> </u>												
	7.5													
	5 -									1				
	2.5													

REMARKS:

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 2437MHz: Fundamental frequency.

HA	IANNEL			TX (Channel 11		DETECTO	R	Peak (PK)
REQUENCY RANGE			1GF	lz ~ 25GHz		FUNCTION	N	Average (AV)		
		Al	NTENI	NA P	OLARITY 8	TEST DIS	STANCE: H	ORIZONTAL	AT 3 M	
R	g	Frequency [MHz]	PK+ L [dBµ\		PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	2	2,463.000	89.′	12		27.53	6.81 6.80	H H	287.4 141.5	1.00 1.00
2	2	2,483.500	46.4	47	74.00					
2	2	2,487.500	46.3	30	74.00	27.70	6.80	Н	214.5	1.00
	105 - 102.5 -							Φ Φ		
	22.5 20 2.4	152 G 2.	458 G	2.462 G	2.466 G 2.	470 G 2.474 G	2.478 G	2.482 G 2.486 G	2.490 G 2.49	4 G 2.5 c Frequency in H

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	2,462.500	85.89			6.81	Н	281.6	1.00
2	2,483.500	31.33	54.00	22.67	6.80	Н	281.6	1.00
2	2,486.000	31.62	54.00	22.38	6.80	Н	355.1	2.00
1250 1200 117.5 111.5 111.5 107.5 100.5 10		458 G 2.462 G	2.466 G 2	470 G 2.474 G	3 2478 G	2482 G 2486 G	2490 G 245	46 2.

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	2,460.500	85.07			6.80	V	355	2.00
2	2,483.500	45.58	74.00	28.42	6.80	V	218.5	2.00
2	2,489.000	46.49	74.00	27.51	6.80	٧	352.6	1.00
125 120 120 120 120 120 120 120 120 120 120	452 G 2.	458 G 2.462 G	2.466 G 2	2470G 2474G	3 2478 G	2.482 G 2.486 G	2490 G 249	4G 2.5

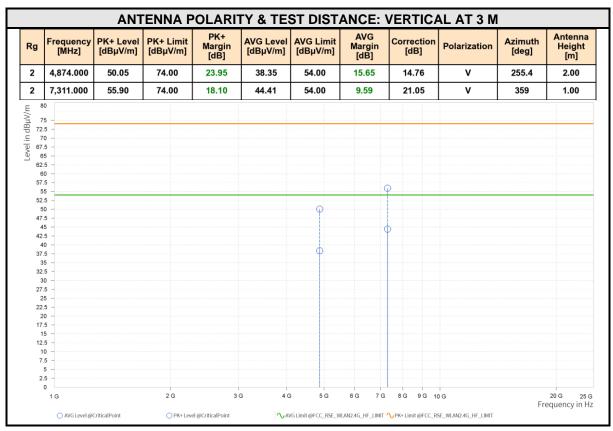
Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	2,461.000	80.93			6.81	V	355.8	2.00
2	2,483.500	31.36	54.00	22.64	6.80	V	1	2.00
2	2,487.500	31.60	54.00	22.40	6.80	V	1	1.00
125 125 125 125 125 125 125 125 125 125						P P		

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 2462MHz: Fundamental frequency.

					802.	l1g			
IANN	NEL		TX (Channel 1		DETECTO	R	Peak (PK	()
EQL	JENCY RA	NGE	1GF	lz ∼ 25GHz		FUNCTIO	N	Average ((AV)
	A	NTENI	NA P	OLARITY 8	k TEST DI	STANCE: H	ORIZONTAL	AT 3 M	
Rg	Frequency [MHz]	PK+ L [dBµ\		PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	2,389.500	46.0	00	74.00	28.00	6.51	Н	359	1.00
1	2,390.000	45.0	66	74.00	28.34	6.52	Н	355	2.00
1	2,413.500	91.4	46			6.55	Н	355	2.00
110 107.5 107.5 107.5 107.5 107.5 107.5 102.5 95.5 95.5 95.5 95.5 107.5 10									
27.5 25	_								

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	2,388.500	31.47	54.00	22.53	6.51	Н	355.1	2.00
1	2,390.000	31.88	54.00	22.12	6.52	Н	355.1	2.00
1	2,419.500	79.04			6.57	Н	222.8	1.00
125 125 125 125 125 125 125 125 125 125						- P		Α

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	2,348.500	45.79	74.00	28.21	6.46	V	295.7	1.00
1	2,390.000	45.39	74.00	28.61	6.52	V	0.9	2.00
1	2,415.500	86.88			6.55	V	0.9	2.00
= 125 / 120			9		2365 G 2370 G 2375 G			9


Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	2,385.000	30.93	54.00	23.07	6.51	V	1	1.00
1	2,390.000	31.22	54.00	22.78	6.52	٧	359	2.00
1	2,413.500	74.22			6.55	V	359	2.00
E 1/25 120 120 120 120 120 120 120 120 120 120								Ф

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 2412MHz: Fundamental frequency.

HAN	NEL		TX C	hannel 6	3		DET	ЕСТО	R		Peal	k (PK)		
REC	UENCY	RANGE	1GHz	1GHz ~ 25GHz			FUNCTION			Average (AV)				
		ANTE	NNA PC	LARIT	Y & TEST	Γ DIS	TAN	ICE: H	ORIZON	ITAL	AT 3	M		
Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	AVG Level [dBµV/m]	AVG L [dBµ\		AVG Margin [dB]	Correction [dB]	Polar	ization	Azimuth [deg]	Antenna Height [m]	
2	4,874.000	49.56	74.00	24.44	38.56	54.0	00	15.44	14.76		Н	1	2.00	
2	7,311.000	54.98	74.00	19.02	44.45	54.0	00	9.55	21.05		Н	359.1	1.00	
E/NTIBP UI Java J 60: 10: 10: 10: 10: 10: 10: 10: 10: 10: 1	5													
	0				i i		1							

- Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value- Emission level.
- 2. 2437MHz: Fundamental frequency.

HAN	NEL		TX (Channel 11		DETECTO	R	Peak (PK)	
REQI	JENCY RAI	NGE	1GF	lz ~ 25GHz		FUNCTION	N	Average (AV)		
	Al	NTENI	NA P	OLARITY 8	R TEST DIS	STANCE: H	ORIZONTAL	AT 3 M		
Rg	Frequency [MHz]	PK+ L [dBµ\		PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	
2	2,465.000	89.2	27			6.82	Н	4.9	1.00	
2	2,483.500	46.2	25	74.00	27.75	6.80	Н	0.9	2.00	
2	2,487.000	46.3	31	74.00	27.69	6.80	Н	291.4	2.00	
■/\ntd>\text{125} \\ \text{125} \\ \text{127} \\ \text{227} \\ 22		458 G	2.462 G	2.466 G 2	470 G 2474 G	2478 G	2482 G 2.486 G	2.490 G 2.45	4G 25G	

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	2,460.500	75.39			6.80	Н	4.9	1.00
2	2,483.500	31.52	54.00	22.48	6.80	Н	295.7	1.00
2	2,486.500	31.73	54.00	22.27	6.80	Н	295.7	1.00
125 125 120 120 120 120 120 120 120 120 120 120	452 G 2	458 G 2.462 G	2,466 G 2	470 G 2,474 G	2478 G	2482 G 2486 G	2490 G 249	4G 25!

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	2,465.000	87.73			6.82	V	359	2.00
2	2,483.500	45.96	74.00	28.04	6.80	V	142	2.00
2	2,492.000	48.88	74.00	25.12	6.80	٧	217.4	2.00
125 125 117.			Φ.			Φ-		

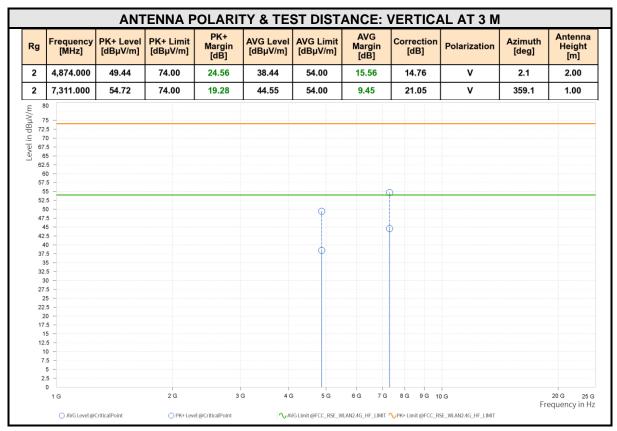
Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	2,460.500	75.03			6.80	V	355.8	2.00
2	2,483.500	31.44	54.00	22.56	6.80	V	0.9	2.00
2	2,486.500	31.69	54.00	22.31	6.80	٧	355.8	2.00
= 125 2 125						Φ Φ		

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 2462MHz: Fundamental frequency.

						802.11n (2	20MHz)			
Н	ANN	NEL		TX (Channel 1		DETECTO	R	Peak (PK	·)
R	EQL	JENCY RAI	NGE	1GF	lz ∼ 25GHz		FUNCTIO	N	Average (AV)	
		Al	NTENI	NA P	OLARITY 8	R TEST DIS	STANCE: H	ORIZONTAL	AT 3 M	
	Rg	Frequency [MHz]	PK+ L [dBµ\		PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
	1	2,357.500	45.8	33	74.00	28.17	6.47	Н	132.4	2.00
	1	2,390.000	45.4	14	74.00	28.56	6.52	Н	239.5	1.00
	1	2,413.000	90.4	44			6.55	Н	355	2.00
Level	102.5 100 97.5 95.5 92.5 90 87.5 85 82.5 75 75 75 76 65 62.5 60 60 60 47.5 52.5 40 42.5 42.5 42.5 42.5 42.5 42.5 42.5 42.5									P
	22.5 20 2.	31 G 2.315 G 2.320 G OPK+ Level @CriticalPoir			G 2.340 G 2.345 G 2.35		2.365 G 2.370 G 2.375 G	2.380 G 2.385 G 2.390 G 2.3	995 G 2.400 G 2.405 G	2.410 G 2.422 G Frequency in H

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	2,388.000	31.54	54.00	22.46	6.51	Н	234.8	1.00
1	2,390.000	32.33	54.00	21.67	6.52	Н	234.8	1.00
1	2,413.500	78.59			6.55	Н	234.8	1.00
125.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 1						99		

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m] 74.00 74.00	PK+ Margin [dB] 27.58 29.29	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m] 2.00 1.00	
1	2,376.500	46.42			6.49	V	359		
1	2,390.000	44.71			6.52	V	357.7		
1	2,414.000	84.77			6.55	V	359		
125.5 125.1 17.5 17.5 17.5 17.5 17.5 17.5 17.5 1						2.380 G 2.385 G 2.390 G 2.3		2410 G 2,422	


	[MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	
1	2,389.000	31.09	54.00	22.91	6.51	V	2.7	2.00	
1	2,390.000 2,413.500	31.16 73.23	54.00	22.84	6.52	V	2.7	2.00	
1					6.55	V	359	2.00	
E 125 25 22.5		2.325 G 2.330 G 2.335						2410 G 2422	

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 2412MHz: Fundamental frequency.

HANNEL			TX C	TX Channel 6				DETECTOR				Peak (PK)		
REC	UENCY	RANGE	1GHz	1GHz ~ 25GHz			FUNCTION				Average (AV)			
ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M														
Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	AVG Level [dBµV/m]	AVG [dBµ		AVG Margin [dB]	Correction [dB]	Polar	ization	Azimuth [deg]	Antenna Height [m]	
2	4,874.000	49.28	74.00	24.72 18.79	38.37 44.46	54.00		15.63	14.76	н		256.6	2.00	
2	7,311.000	55.21	74.00			54.0	00 9.54	9.54	21.05	+	н	359	2.00	
2.	5						0							
	1 G		2 G	3	G 40	3	5 G	6G 7G	8G 9G	10.6			20 G 25	

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value- Emission level.
- 3. 2437MHz: Fundamental frequency.