	TEST REPOR	Τ			
FCC ID :	2A85Y-K67	2A85Y-K67			
Test Report No::	TCT231020E002				
Date of issue:	Nov. 08, 2023 🌑				
Testing laboratory::	SHENZHEN TONGCE TESTING	G LAB			
Testing location/ address:	2101 & 2201, Zhenchang Factory Subdistrict, Bao'an District, Shen People's Republic of China	y Renshan Industrial Zone, Fuhai zhen, Guangdong, 518103,			
Applicant's name::	DONGGUAN ESWN TECHNOLO	OGY CO., LTD			
Address:	Room106, No.15 chukeng Indust Dongguan City, Guangdong Prov				
Manufacturer's name :	DONGGUAN ESWN TECHNOLO	DGY CO., LTD			
Address:	Room106, No.15 chukeng Industrial Road, Dongkeng Town, Dongguan City, Guangdong Province, China				
Standard(s):	FCC CFR Title 47 Part 15 Subpart C Section 15.249 ANSI C63.10:2013				
Product Name::	Mechanical Keyboard				
Trade Mark:	N/A				
Model/Type reference :	MK PRO 67K, K67 Tri-Mode, K6	7 Dual mode, K67, KB67			
Rating(s):	Rechargeable Li-ion Battery DC	3.7V 📀			
Date of receipt of test item	Oct. 20, 2023				
Date (s) of performance of test:	Oct. 20, 2023 - Nov. 08, 2023				
Tested by (+signature) :	Onnado YE	Onnado REGONGCETA			
Check by (+signature) :	Beryl ZHAO	Boy 20 TCT			
Approved by (+signature):	Tomsin	Tomsin 33 35			

General disclaimer:

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Table of Contents

1.	General Product Information			
	1.1. EUT description	<u> </u>		3
	1.2. Model(s) list			3
	1.3. Operation Frequency			4
2.	Test Result Summary			
3.	General Information			6
	3.1. Test Environment and Mode	<u>(G)</u>		6
	3.2. Description of Support Units			6
4.	Facilities and Accreditations			7
	4.1. Facilities		<u>(6)</u>	7
	4.2. Location			7
	4.3. Measurement Uncertainty			7
5.	Test Results and Measurement Data	<u> </u>		8
	5.1. Antenna Requirement			8
	5.2. Conducted Emission			9
	5.3. Radiated Emission Measurement		\sim	13
	5.4. 20dB Occupied Bandwidth			25
Ap	pendix A: Photographs of Test Setup			
Ap	pendix B: Photographs of EUT			

TCT通测检测 1.General Product Information

Report No.: TCT231020E002

1.1.EUT description

Product Name:	Mechanical Keyboard		
Model/Type reference:	MK PRO 67K		
Sample Number:	TCT231020E001 -0101		
Operation Frequency:	2402MHz~2480MHz		
Number of Channel:	79		
Modulation Technology:	GFSK		
Antenna Type:	PCB Antenna		
Antenna Gain:	2.08dBi		
Rating(s):	Rechargeable Li-ion Battery DC 3	.7V	

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2.Model(s) list

No.	Model No.	Tested with			
1	MK PRO 67K	(
Other models	K67 Tri-Mode, K67 Dual mode, K67, KB67				
Note: MK PRO 67K is tested model, other models are derivative models. The models are identical in circuit and PCB layout, only different on the model names. So the test data of MK PRO 67K can represent the remaining models.					

Page 3 of 28

1.3. Operation Frequency

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
G) 1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
6)8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2441MHz
The Highest channel	2480MHz

TCT通测检测 2.Test Result Summary

Requirement	CFR 47 Section	Result
Antenna Requirement	§15.203	PASS
AC Power Line Conducted Emission	§15.207	PASS
Field Strength of Fundamental	§15.249 (a)	PASS
Spurious Emissions	§15.249 (a) (d)/ §15.209	PASS
Band Edge	§15.249 (d)/ §15.205	PASS
20dB Occupied Bandwidth	§15.215 (c)	PASS

Note:

- 1. Pass: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

Page 5 of 28 Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

3.General Information

3.1.Test Environment and Mode

Operating Environment:						
Condition	Conducted Emission	Radiated Emission				
Temperature:	23.5 °C	24.4 °C				
Humidity:	52 % RH	51 % RH				
Atmospheric Pressure:	1010 mbar	1010 mbar				
Test Software:	Test Software:					
Software Information:	Na					
Power Level:	Default					
Test Mode:	· · · · · · · · · · · · · · · · · · ·					
Engineering mode: Keep the EUT in continuous transmitting by select						

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case(Z axis) are shown in Test Results of the following pages.

3.2.Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Adapter	EP-TA200	R37M4PR7QD4SE3		SAMSUNG

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4. Facilities and Accreditations

4.1.Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

- IC Registration No.: 10668A-1
 - SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2.Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

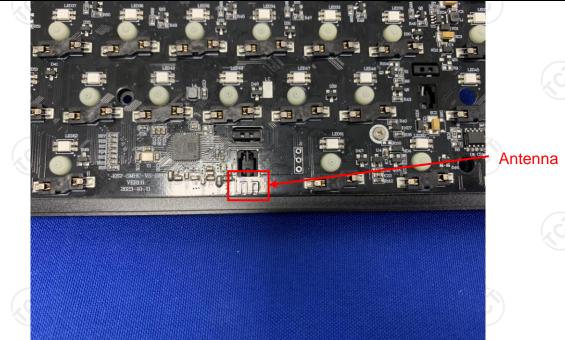
No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

Page 8 of 28

5.Test Results and Measurement Data

5.1. Antenna Requirement

Standard requirement: FCC Pa


FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The EUT antenna is PCB antenna which permanently attached, and the best case gain of the antenna is 2.08dBi.

5.2.Conducted Emission

5.2.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.207				
Test Method:	ANSI C63.10:2013				
Frequency Range:	150 kHz to 30 MHz				
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto				
	Frequency range	Limit (dBuV)		
	(MHz)	Quasi-peak	Average 🔨		
Limits:	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	Referenc	e Plane			
Test Setup: Test Mode:	E.U.T AC powe Test table/Insulation plane Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Ni Test table height=0.8m Charging + Transmittir	EMI Receiver	r _ AC power		
		5	atad ta tha main		
Test Procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 				
		ЛЕСОПООСІВСЕ ПІВИ	1501611611		

5.2.2. Test Instruments

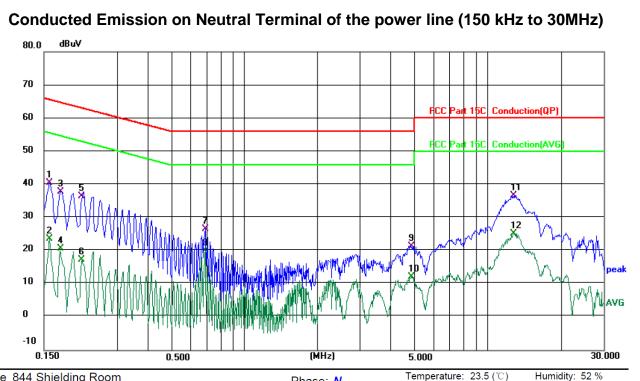
Conducted Emission Shielding Room Test Site (843)						
	Equipment	Manufacturer	Model	Serial Number	Calibration Due	
0	EMI Test Receiver	R&S	ESCI3	100898	Jun. 29, 2024	
	Line Impedance Stabilisation Newtork(LISN)	Schwarzbeck	NSLK 8126	8126453	Feb. 20, 2024	
	Line-5	ТСТ	CE-05	/	Jul. 03, 2024	
	EMI Test Software	Shurple Technology	EZ-EMC	1	1	

Page 10 of 28

5.2.3. Test data

Please refer to following diagram for individual Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz) dBu¥ 80.0 70 Conduction(QP) 60 Conduction(AVG HCC 150 50 40 30 Ş 20 10 10 AVG 0 -10 0.150 0.500 (MHz) 5.000 30.000 Site 844 Shielding Room Temperature: 23.5 (℃) Humidity: 52 % Phase: L1 Limit: FCC Part 15C Conduction(QP) Power: DC 5V(Adapter Input AC 120V/60Hz) Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment

	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1580	31.52	10.12	41.64	65.57	-23.93	QP	
2	0.1580	15.00	10.12	25.12	55.57	-30.45	AVG	
3	0.1980	29.41	10.15	39.56	63.69	-24.13	QP	
4	0.1980	12.31	10.15	22.46	53.69	-31.23	AVG	
5	0.2379	27.46	9.95	37.41	62.17	-24.76	QP	
6	0.2379	11.53	9.95	21.48	52.17	-30.69	AVG	
7	0.6900	21.97	9.27	31.24	56.00	-24.76	QP	
8 *	0.6900	15.74	9.27	25.01	46.00	-20.99	AVG	
9	4.7339	13.94	10.10	24.04	56.00	-31.96	QP	
10	4.7339	5.92	10.10	16.02	46.00	-29.98	AVG	
11	12.8379	26.67	10.16	36.83	60.00	-23.17	QP	
12	12.8379	16.46	10.16	26.62	50.00	-23.38	AVG	


Note:

Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$ Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz

Page 11 of 28

Report No.: TCT231020E002

Site 844 Shielding Room

Limit: FCC Part 15C Conduction(QP)

Phase: N Power: DC 5V(Adapter Input AC 120V/60Hz)

No. N	٨k.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	(0.1580	30.51	10.10	40.61	65. <mark>57</mark>	-24.96	QP	
2	(0.1580	13.57	10.10	23.67	55.57	-31.90	AVG	
3	(0.1739	27.81	10.11	37.92	64.77	-26.85	QP	
4	(0.1739	10.64	10.11	20.75	54.77	-34.02	AVG	
5	(0.2139	26.56	9.95	36.51	63.05	-26.54	QP	
6	(0.2139	7.31	9.95	17.26	53.05	-35.79	AVG	
7	(0.6900	17.18	9.28	26.46	56.00	-29.54	QP	
8	(0.6900	10.69	9.28	19.97	46.00	-26.03	AVG	
9	4	4.8780	11.30	10.12	21.42	56.00	-34.58	QP	
10	4	4.8780	2.08	10.12	12.20	46.00	-33.80	AVG	
11 *	12	2.8420	26.49	10.23	36.72	60.00	-23.28	QP	
12	12	2.8420	15.09	10.23	25.32	50.00	-24.68	AVG	

Note:

Freq. = Emission frequency in MHz Reading level $(dB\mu V) = Receiver reading$

Corr. Factor (dB) = LISN factor + Cable loss

Measurement $(dB\mu V) = Reading \, level \, (dB\mu V) + Corr. Factor (dB)$

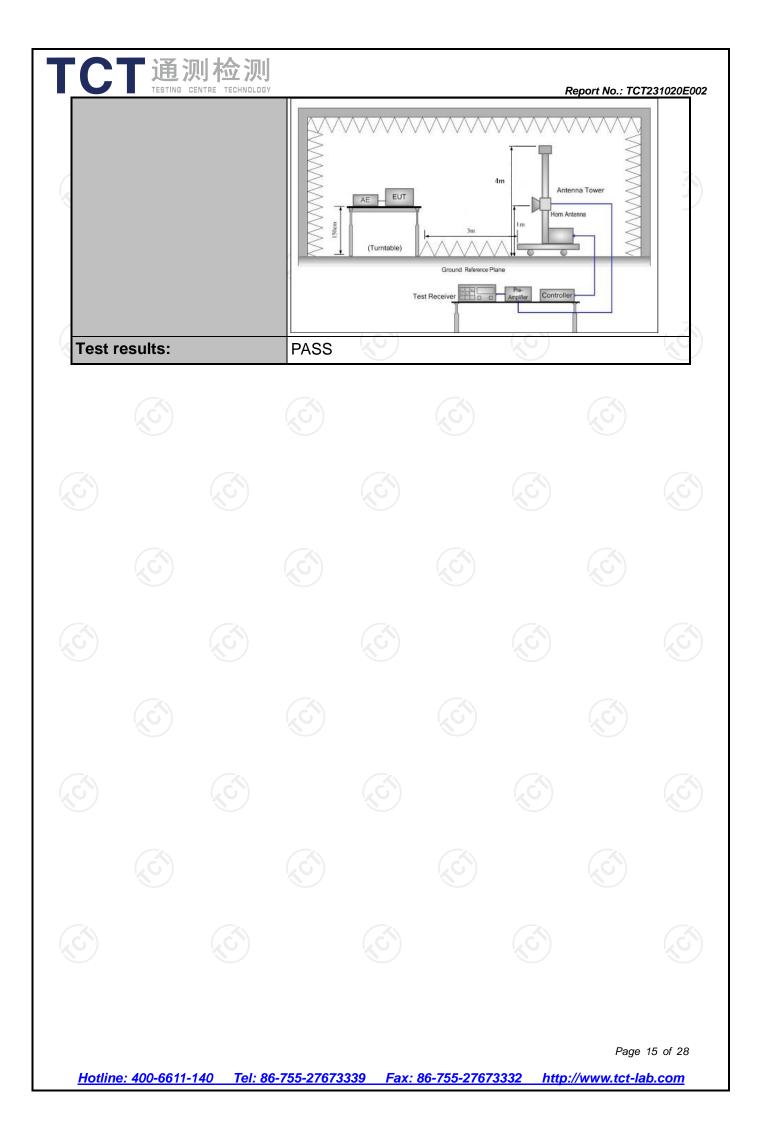
Limit $(dB\mu V) = Limit$ stated in standard

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Page 12 of 28


Report No.: TCT231020E002

5.3.Radiated Emission Measurement

5.3.1. Test Specification

Test Requirement:	FCC Part15	5 C Section	n 15.209				
Test Method:	ANSI C63.1	0:2013					
Frequency Range:	9 kHz to 25	GHz					
Measurement Distance:	3 m	X	\mathbf{S}				
Antenna Polarization:	Horizontal &	& Vertical					
	Frequency	Detector	RBW	VBW	Remark		
	9kHz- 150kHz	Quasi-peak			Quasi-peak Value		
Receiver Setup:	150kHz- 30MHz	Quasi-peak	9kHz	30kHz	Quasi-peak Value		
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak Value		
	Above 1GHz	Peak	1MHz	3MHz	Peak Value		
		Peak	1MHz	10Hz	Average Value		
Limit(Field strength of the	Freque	ency	Limit (dBu	V/m @3m)	Remark		
fundamental signal):	2400MHz-24	183 5MHz	94.	00	Average Value		
runuamentai signaij.	2400101112-2-	+03.31VII 12	114	.00	Peak Value		
	Freque	ency	Limit (dBu	V/m @3m)	Remark		
	0.009-0	0.490	2400/F(KHz)		Quasi-peak Value		
	0.490-1	.705	24000/F(KHz)		Quasi-peak Value		
	1.705	-30	3	0	Quasi-peak Value		
Limit(Spurious Emissions):	30MHz-8	88MHz	40	.0	Quasi-peak Value		
	88MHz-2	16MHz	43	.5	Quasi-peak Value		
	216MHz-9		46		Quasi-peak Value		
	960MHz	-1GHz	54		Quasi-peak Value		
	Above ²	1GHz	54 74		Average Value Peak Value		
Limit (band edge) :	Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209 whichever is the lesser attenuation.						
Test Procedure:	 whichever is the lesser attenuation. 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber in below 1GHz, 1.5m above the ground in above 1GHz. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make 						

Test setup: to its worst case and then the antenna was tuned the heights from 1 meter to 4 meters and the rotatabilitable was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximur Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would b reported. Otherwise the emissions that did not hav 10dB margin would be re-tested one by one usin peak, quasi-peak or average method as specified an then reported in a data sheet. For radiated emissions below 30MHz Test setup: Test setup: Above 1GHz	CT 通测检测 TESTING CENTRE TECHNOLOGY	Report No.: TCT231020
Test setup: Test		 The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and
Test setup: Above 1GHz Above 1GHz The diagram below shows the test setup that is utilized to the tenth harmonic of the highest fundamental		
Test setup: Function		Computer Pre - Amplifier EUT 0.8m Turn table Ground Plane
(The diagram below shows the test setup that is utilized to make the measurements for emission from 1GHz to the tenth harmonic of the highest fundamental	Test setup:	EUT Tum Table A Table A A A A A A A A A A A A A
to make the measurements for emission from 1GHz to the tenth harmonic of the highest fundamental		Above 1GHz
		the tenth harmonic of the highest fundamental

5.3.2. Test Instruments

TCT通测检测 TESTING CENTRE TECHNOLOGY

	Radiated En	nission Test Site	e (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESIB7	100197	Jun. 29, 2024
Spectrum Analyzer	R&S	FSQ40	200061	Jun. 29, 2024
Pre-amplifier	SKET	LNPA_0118G- 45	SK2021012 102	Feb. 20, 2024
Pre-amplifier	SKET	LNPA_1840G- 50	SK2021092 03500	Feb. 20, 2024
Pre-amplifier	HP	8447D	2727A05017	Jun. 27, 2024
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jul. 02, 2024
Broadband Antenna	Schwarzbeck	VULB9163	340	Jul. 01, 2024
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jul. 01, 2024
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Feb. 24, 2024
Antenna Mast	Keleto	RE-AM		61
Coaxial cable	SKET	RC-18G-N-M	1	Feb. 24, 2024
Coaxial cable	SKET	RC_40G-K-M	1	Feb. 24, 2024
EMI Test Software	Shurple Technology	EZ-EMC		1

Page 16 of 28

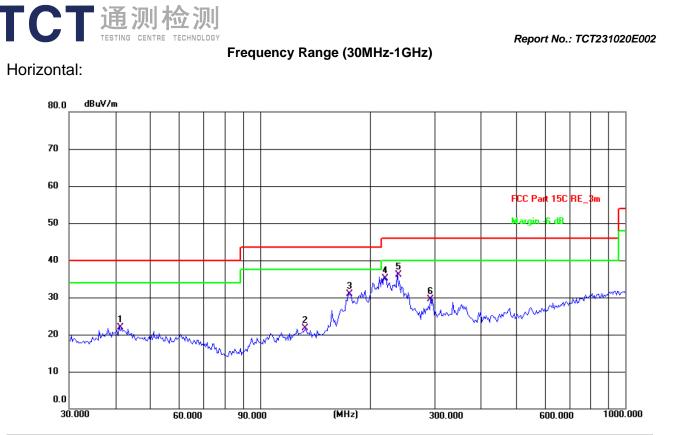
5.3.3. Test Data

Field Strength of Fundamental

Frequency (MHz)	Emission PK (dBuV/m)	Horizontal /Vertical	Limits PK (dBuV/m)	Margin (dB)
2402	76.64	Н	114	-37.36
2402	74.53	V	114	-39.47
2441	76.66	н	114	-37.34
2441	73.46	V	114	-40.54
2480	78.21	H	114	-35.79
2480	77.89	\sim V	114	-36.11

Frequency (MHz)	Emission AV (dBuV/m)	Horizontal /Vertical	Limits AV (dBuV/m)	Margin (dB)
2402	61.32	Н	94	-32.68
2402	60.45	V	94	-33.55
2441	61.29	Н	94	-32.71
2441	60.37	V	94	-33.63
2480	61.72	H (c	94	-32.28
2480	61.53	V	94	-32.47

Spurious Emissions


Frequency Range (9 kHz-30MHz)

Frequency (MHz)	Level@	∮3m (dBμ	IV/m)	Limit@3m (dBµV/m)		
				-		
· · · · · · · · · · · · · · · · · · ·						
		-		-		

Note: 1. Emission Level=Reading+ Cable loss-Antenna factor-Amp factor.

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement.

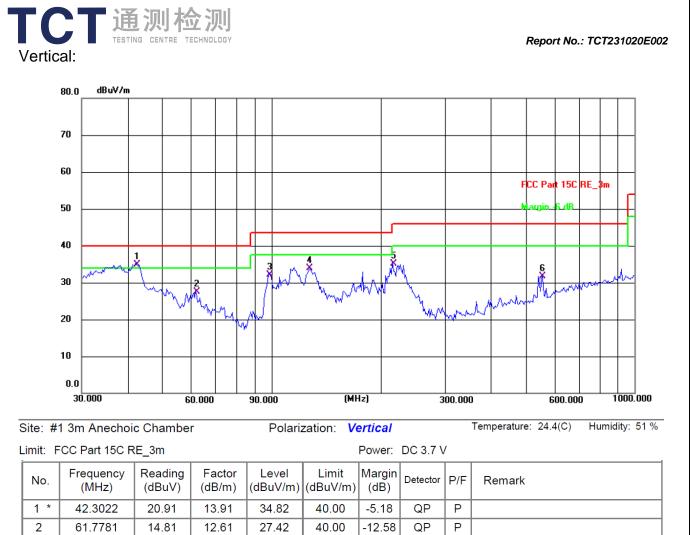
3. For fundamental frequency, RBW >20dB BW , VBW>=RBW, PK detector is for PK value, RMS detector is for AV value.

Site: #1 3m Anechoic Chamber Polarization: *Horizontal* Temperature: 24.4(C) Humidity: 51 %

Limit: FCC Part 15C RE_3m

Power: DC 3.7 V

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	41.1320	7.89	14.10	21.99	40.00	-18.01	QP	Ρ	
2	132.6850	8.32	13.33	21.65	43.50	-21.85	QP	Ρ	
3	174.4241	18.00	12.88	30.88	43.50	-12.62	QP	Р	
4	218.3085	23.90	11.22	35.12	46.00	-10.88	QP	Ρ	
5 *	237.4760	24.04	12.16	36.20	46.00	-9.80	QP	Ρ	
6	293.0842	15.84	13.76	29.60	46.00	-16.40	QP	Ρ	



Page 18 of 28

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

3 98.1419 21.70 10.36 32.06 43.50 -11.44 QP Ρ 4 127.2176 20.81 13.04 33.85 43.50 -9.65 QP Ρ 5 215.2678 23.92 11.09 35.01 43.50 -8.49 QP Ρ 554.8254 12.22 19.46 31.68 46.00 -14.32 QP Ρ 6

Note: Measurements were conducted in all channels (high, middle, low), and the worst case (Highest channel) was submitted only.

Page 19 of 28

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

		通初 TESTING CE	り检河	UJ Ogy	Above	1GHz			Report No.: 1	CT231020E
					Low channe		Z			
	Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)			Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
/	4804	Н	49.69		-3.94	45.75		74	54	-8.25
<	7206	Н	44.43		0.52	44.95		74	54	-9.05
	<u> </u>		<u> </u>			/ <u></u>				
	4804	V	50.50		-3.94	46.56		74	54	-7.44
	7206	V	45.18		0.52	45.70		74	54	-8.30
					/					

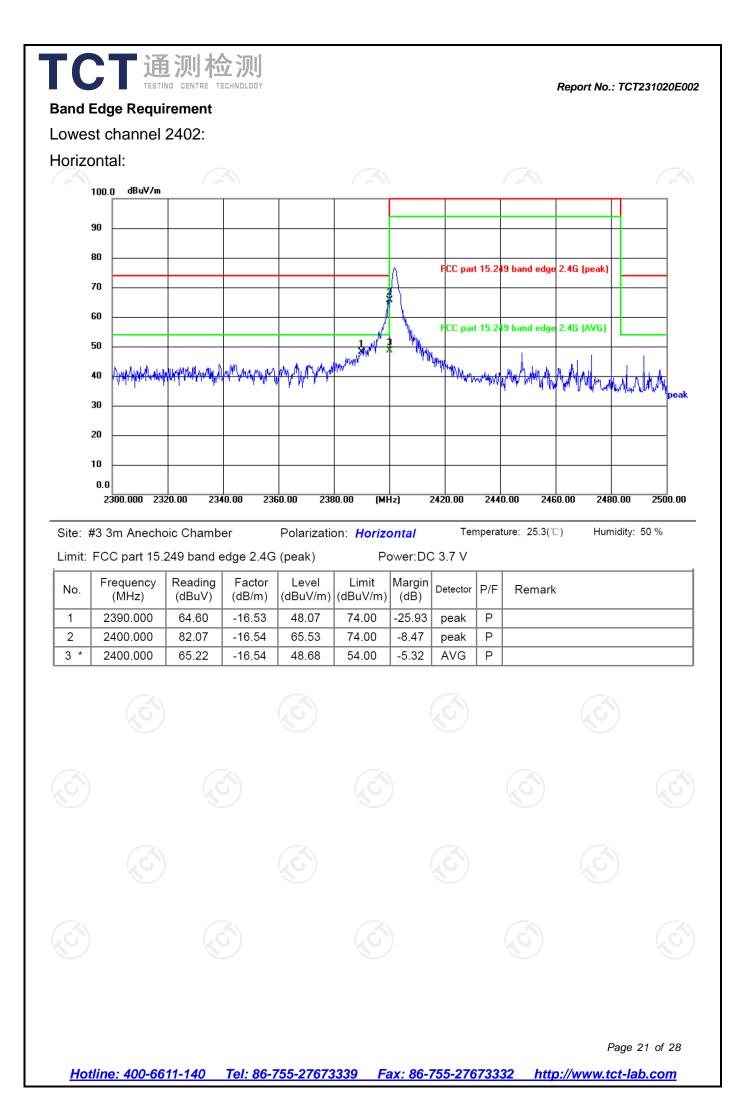
	Middle channel: 2441MHz											
	Frequency	Ant Pol	Peak	AV	Correction	Emissic	on Level	Peak limit	A\/ limit	Margin		
	(MHz)	H/V	reading	reading	Factor	Peak	AV	(dBu)/m	(dBµV/m)			
	(101112)	I I/ V	(dBµV)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(uph v/m)	(ubµ v/m)	(UD)		
	4882	Н	49.14		-3.98	45.16		74	54	-8.84		
	7323	Н	44.53		0.57	45.10		74	54	-8.90		
		4				/						
	4882	V	49.69		-3.98	45.71		74	54	-8.29		
	7323	V	43.00		0.57	43.57		74	54	-10.43		
										(
(((

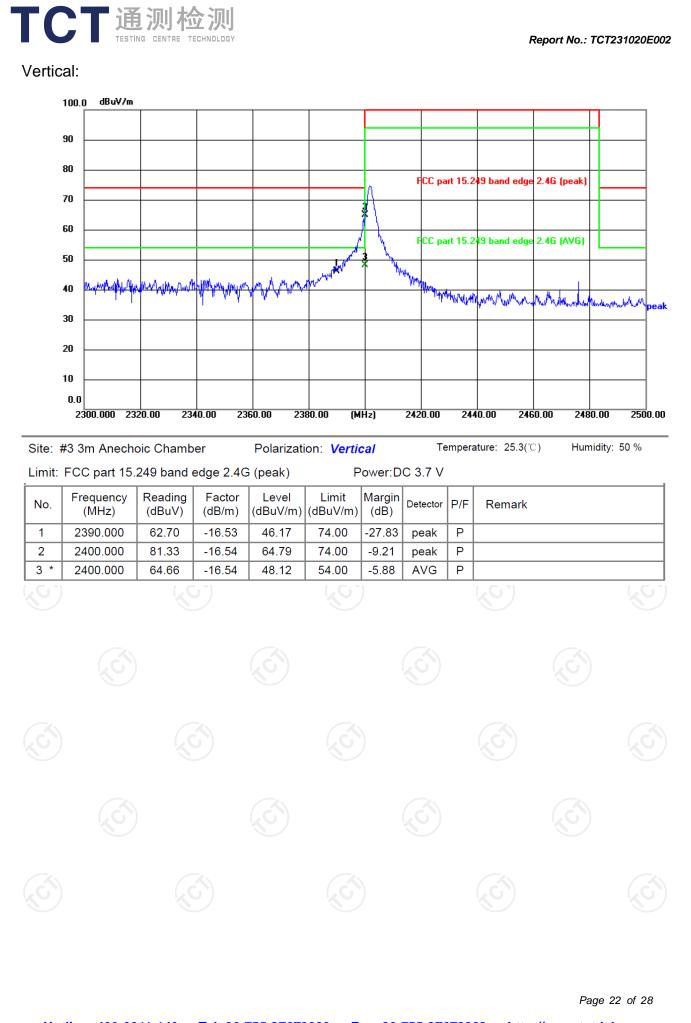
1 A 1 A												
	High channel: 2480MHz											
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak	on Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)			
4960	Н	48.25		-3.98	44.27		74	54	-9.73			
7440	H	43.11		0.57	43.68	<u> </u>	74	54	-10.32			
4960	V	51.72		-3.98	47.74		74	54	-6.26			
7440	V	44.98		0.57	45.55		74	54	-8.45			
				0	J				V			

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

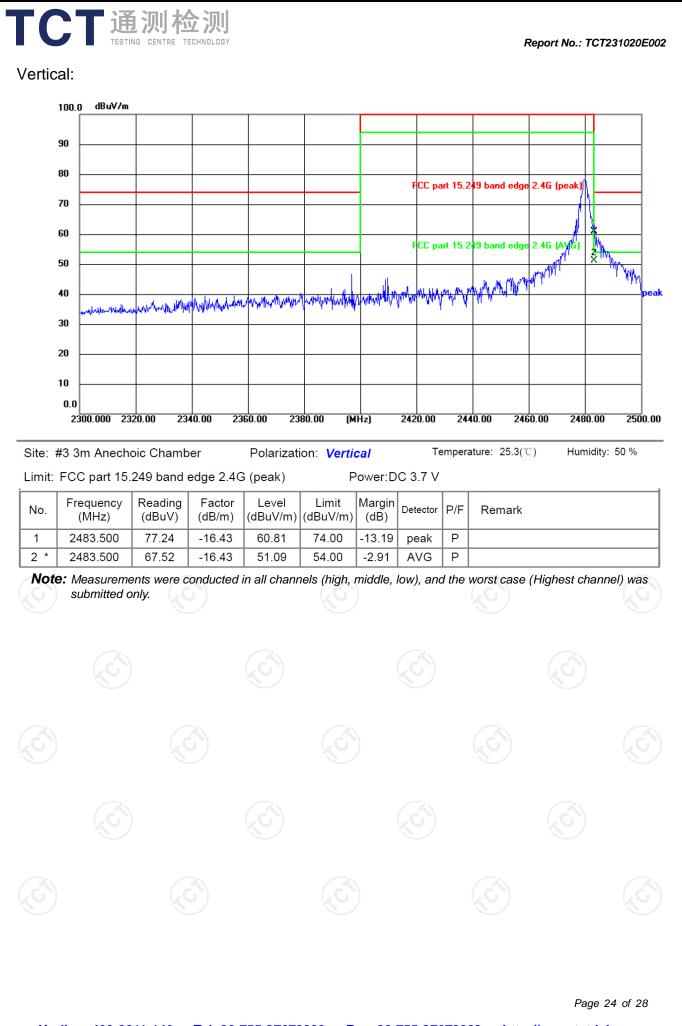
2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)


3. The emission levels of other frequencies are very lower than the limit and not show in test report.


4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6. All the restriction bands are compliance with the limit of 15.209.


Page 20 of 28

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

TC			2 测J							Report No.:	TCT231020E002
	est channel									-	
Horiz	ontal:										
	100.0 dBuV/m		1		1						11
	90										
	80										
	70					-	FCC pa	rt 15.2	49 band edge	e 2.4G (peak)	
	60										<u>}</u>
	50						FCC pa			2.4G (AYG)	× h
	40			a durant dar			and the my	M. JA	MAN	Withing	l' Mpeak
	30	ntinemalitication	Walthandluter	hered in the second states of	Altern redention MA	han and the state	unioshi ushi b	w. I	A. 11.		
	20										
	10										
	0.0										
	2300.000 23	20.00 234	40.00 23	360.00 23	80.00 (M	Hz)	2420.00	244	0.00 24	60.00 248	0.00 2500.00
	#3 3m Anech				on: Horiz			mpera	ture: 25.3(°	C) Hum	nidity: 50 %
Ĺ	FCC part 15. Frequency	Reading	Factor	j (peak)	P Limit	ower:D Margin					
No.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector		Remark		
1 2 *	2483.500 2483.500	76.99 67.67	-16.43 -16.43	60.56 51.24	74.00 54.00	-13.44 -2.76	peak AVG	P P			
)	K	5)	1	10)			<u>(</u> ()		<u>k</u> 0)

5.4.20dB Occupied Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.215(c)
Test Method:	ANSI C63.10: 2013
Limit:	N/A
	 According to the follow Test-setup, keep the relative position between the artificial antenna and the EUT. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel; RBW≥1% of the 20 dB bandwidth; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
Test setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test results:	PASS

5.4.2. Test Instruments

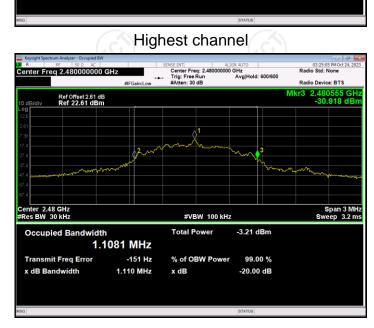
uipment					
-	Manufacturer	Model	Serial Number	Calibration Due Jun. 27, 2024	
um Analyzer	R&S	FSU	200054		
X				C	
	ım Analyzer	Im Analyzer R&S	Im Analyzer R&S FSU	Im Analyzer R&S FSU 200054	

5.4.3. Test data

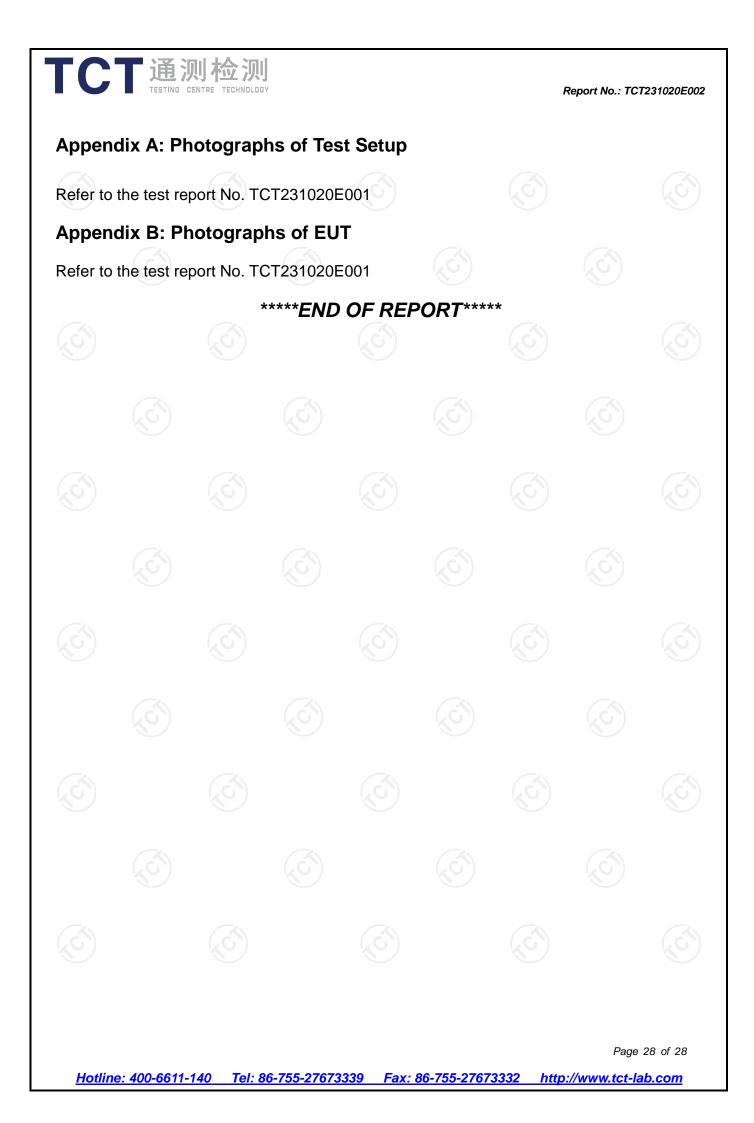
Report No.: TCT231020E002

Test Channel	20dB Occupy Bandwidth (kHz)	Limit	Conclusion	
Lowest	1099		PASS	
Middle	1110		PASS	
Highest	1110		PASS	
Test plots as follows:	(\mathcal{S})			

Page 2	26 of	28
--------	-------	----


Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Lowest channel


Middle channel

Report No.: TCT231020E002

