

CFR 47 FCC PART 15 SUBPART C(DSS)

TEST REPORT

For

Mini Label Printer

MODEL NUMBER: L15, L15H, L15S, L15Pro, MPL15, MPL15H

REPORT NUMBER: E04A24110704F00401

ISSUE DATE: December 20, 2024

FCC ID: 2A74AL15

Prepared for

Xiamen Lujiang Technology Co., Ltd.

Room 601-2,No.63-1,Wanghai Road, Software Park Phase II,Torch Hi-Tech Zone, Xiamen, China

Prepared by

Guangdong Global Testing Technology Co., Ltd.

Room 101-105, 203-210, Building 1, No.2, Keji 8 Road, Songshan Lake Park, Dongguan city, Guangdong, People's Republic of China, 523808

This report is based on a single evaluation of the submitted sample(s) of the above mentioned product, it does not imply an assessment of the production of the products. This report shall not be reproduced, except in full, without the written approval of Guangdong Global Testing Technology Co., Ltd.

REPORT NO.: E04A24110704F00401 Page 2 of 73

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	December 20, 2024	Initial Issue	

Summary of Test Results

Test Item	Clause	Limit/Requirement	Result
Antenna Requirement	N/A	FCC Part 15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	ANSI C63.10-2013 Clause 6.2	FCC Part 15.207	Pass
Conducted Output Power	ANSI C63.10-2013 Clause 7.8.5	FCC Part 15.247 (b)(1)	Pass
20 dB Bandwidth and 99% Occupied Bandwidth	ANSI C63.10-2013 Clause 6.9.2	FCC Part 15.247 (a)(1)	Pass
Carrier Hopping Channel Separation	ANSI C63.10-2013 Clause 7.8.2	FCC Part 15.247 (a)(1)	Pass
Number of Hopping	ANSI C63.10-2013 Clause 7.8.3	FCC Part 15.247 (b)(1)	Pass
Time of Occupancy (Dwell Time)	ANSI C63.10-2013 Clause 7.8.4	FCC Part 15.247 (a)(1)	Pass
Conducted Bandedge and Spurious Emission	ANSI C63.10-2013 Clause 6.10.4 & Clause 7.8.8	FCC Part 15.247(d)	Pass
Radiated Band edge and Spurious Emission	ANSI C63.10-2013 Clause 6.3 & 6.5 & 6.6	FCC Part 15.205/15.209	Pass
Duty Cycle	ANSI C63.10-2013, Clause 11.6	None; for reporting purposes only.	Pass

*This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

*The measurement result for the sample received is <Pass> according to <CFR 47 FCC PART 15 SUBPART C(DSS)> when <Accuracy Method> decision rule is applied.

CONTENTS

1.	ATTESTATION OF TEST RESULTS	5
2.	TEST METHODOLOGY	6
3.	FACILITIES AND ACCREDITATION	6
4.	CALIBRATION AND UNCERTAINTY	7
4	4.1. MEASURING INSTRUMENT CALIBRATION	7
4	4.2. MEASUREMENT UNCERTAINTY	7
5.	EQUIPMENT UNDER TEST	8
5	5.1. DESCRIPTION OF EUT	8
5	5.2. CHANNEL LIST	8
5	5.3. Maximum Peak Output Power	9
5	5.4. TEST CHANNEL CONFIGURATION	9
5	5.5. THE WORSE CASE POWER SETTING PARAMETER	9
5	5.6. DESCRIPTION OF AVAILABLE ANTENNAS	
5	5.7. SUPPORT UNITS FOR SYSTEM TEST	
5	5.8. SETUP DIAGRAM	
~		
6.	MEASURING EQUIPMENT AND SOFTWARE USED	12
ю. 7.	MEASURING EQUIPMENT AND SOFTWARE USED	
7.		14
7 .	ANTENNA PORT TEST RESULTS	14 14
7 . 7 7	ANTENNA PORT TEST RESULTS 7.1. Conducted Output Power	14 14 15
7 . 7 7 7 7	ANTENNA PORT TEST RESULTS7.1.Conducted Output Power7.2.20 dB Bandwidth and 99% Occupied Bandwidth	14 14 15 16
7 . 7 7 7 7 7	ANTENNA PORT TEST RESULTS7.1.Conducted Output Power7.2.20 dB Bandwidth and 99% Occupied Bandwidth7.3.Carrier Hopping Channel Separation	14 14 15 16 18
7 . 7 7 7 7 7 7	ANTENNA PORT TEST RESULTS7.1.Conducted Output Power7.2.20 dB Bandwidth and 99% Occupied Bandwidth7.3.Carrier Hopping Channel Separation7.4.Number of Hopping Frequency	14
7 . 7 7 7 7 7 7 7	ANTENNA PORT TEST RESULTS7.1.Conducted Output Power	14 14 15 16 18 19 21
7 . 7 7 7 7 7 7 7	ANTENNA PORT TEST RESULTS7.1.Conducted Output Power	14
7. 7 7 7 7 7 7 7 7 7 8.	ANTENNA PORT TEST RESULTS7.1.Conducted Output Power	
7. 7 7 7 7 7 7 7 7 7 8.	ANTENNA PORT TEST RESULTS 7.1. Conducted Output Power	14 14 15 16 18 19 21 23 24 30
7. 7 7 7 7 7 7 7 7 8. 8	ANTENNA PORT TEST RESULTS 7.1. Conducted Output Power	14

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name:	Xiamen Lujiang Technology Co., Ltd.
Address:	Room 601-2,No.63-1,Wanghai Road, Software Park Phase II,Torch Hi-Tech Zone, Xiamen, China

Manufacturer Information

Company Name:	Xiamen Lujiang Technology Co., Ltd.
Address:	Room 601-2, No.63-1, Wanghai Road, Software Park Phase
	II,Torch Hi-Tech Zone, Xiamen, China

EUT Information

Product Description:	Mini Label Printer
Model:	L15
Series Model:	L15H, L15S, L15Pro, MPL15, MPL15H
Brand:	/
Sample Received Date:	December 9, 2024
Sample Status:	Normal
Sample ID:	A24110704 001
Date of Tested:	December 9, 2024 to December 20, 2024

APPLICABLE STANDARDS

STANDARD	TEST RESULTS
CFR 47 FCC PART 15 SUBPART C(DSS)	Pass

Prepared By:

lin .

Win Huang

Project Engineer Approved By: Shawn Wen Laboratory Manager Approved By: Shawn Wen Laboratory Manager Checked By:

lan the

Alan He Laboratory Leader

2. TEST METHODOLOGY

All tests were performed in accordance with the standard CFR 47 FCC PART 15 SUBPART C(DSS)

3. FACILITIES AND ACCREDITATION

Guangdong Global Testing Technology Co., Ltd. has been assessed and proved to be in compliance with A2LA.FCC (FCC Designation No.: CN1343) Guangdong Global Testing Technology Co., Ltd. has been recognized to perform compliance testing on equipment subject to Supplier's Declaration of Conformity (SDoC) and
FCC (FCC Designation No.: CN1343) Guangdong Global Testing Technology Co., Ltd. has been recognized to perform compliance testing on equipment
Guangdong Global Testing Technology Co., Ltd. has been recognized to perform compliance testing on equipment
has been recognized to perform compliance testing on equipment
• • • • • • •
Accreditation Certificate subject to Supplier's Declaration of Conformity (SDoC) and
Certification rules
ISED (Company No.: 30714)
Guangdong Global Testing Technology Co., Ltd.
has been registered and fully described in a report filed with ISED.
The Company Number is 30714 and the test lab Conformity
Assessment Body Identifier (CABID) is CN0148.

Note: All tests measurement facilities use to collect the measurement data are located at Room 101-105, 203-210, Building 1, No.2, Keji 8 Road, Songshan Lake Park, Dongguan city, Guangdong, People's Republic of China, 523808

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Items	k	Uncertainty
DTS Bandwidth	1.96	±9.2 PPM
20dB Emission Bandwidth		±9.2 PPM
Carrier Frequency Separation	1.96	±9.2 PPM
Time of Occupancy	1.96	±0.57%
Conducted Output Power	1.96	±1.5 dB
Power Spectral Density Level	1.96	±1.9 dB
Conducted Spurious Emission	1.96	9 kHz-30 MHz: ± 0.95 dB 30 MHz-1 GHz: ± 1.5 dB 1GHz-12.75GHz: ± 1.8 dB 12.75 GHz-26.5 GHz: ± 2.1dB
Note: This uncertainty represents an expanded uncertainty expressed at approximately the		
95% confidence level using a coverage factor of k=1.96.		

Test Item	Measurement Frequency Range	К	U(dB)
Conducted emissions from the AC mains power ports (AMN)	150 kHz ~ 30 MHz	2	3.37
Radiated emissions	9 kHz ~ 30 MHz	2	4.16
Radiated emissions	30 MHz ~ 1 GHz	2	3.79
Radiated emissions	1 GHz ~ 18 GHz	2	5.62
Radiated emissions	18 GHz ~ 40 GHz	2	5.54
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.			

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name		Mini Label Printer
Model		L15
Series Model		L15H, L15S, L15Pro, MPL15, MPL15H
Model Difference		Note: Only the model and the color of the appearance are different.
Hardware Version	n	V5.2
Software Version		V5.2
Ratings		DC 5V - 1A
	DC	5V
Power Supply	Battery	DC 3.7V 1200mAh, 4.44Wh

Frequency Band:	2400 MHz to 2483.5 MHz
Frequency Range:	2402 MHz to 2480 MHz
Bluetooth Version:	Bluetooth V5.2
Bluetooth Mode:	Bluetooth BR
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)
Type of Modulation:	GFSK
Number of Channels:	79
Channel Separation:	1 MHz
Maximum Peak Output Power:	-1.20 dBm
Antenna Type:	PCB Antenna
Antenna Gain:	-7.86 dBi
Normal Test Voltage:	5 Vdc
EUT Test software:	fcc_test_tool
Note:	The Antenna Gain was provided by customer, and this information may affect the validity of the results, customer should be responsible for this.

5.2. CHANNEL LIST

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	20	2422	40	2442	60	2462
01	2403	21	2423	41	2443	61	2463
02	2404	22	2424	42	2444	62	2464
03	2405	23	2425	43	2445	63	2465
04	2406	24	2426	44	2446	64	2466
05	2407	25	2427	45	2447	65	2467
06	2408	26	2428	46	2448	66	2468
07	2409	27	2429	47	2449	67	2469
08	2410	28	2430	48	2450	68	2470

TRF No.: 04-E001-0B

09	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461	/	/

5.3. MAXIMUM PEAK OUTPUT POWER

Test Mode	Frequency (MHz)	Channel Number	Maximum Peak Output Power (dBm)	Maximum EIRP (dBm)
GFSK	2402 ~ 2480	0-78[79]	-1.20	/

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency
GFSK	CH 0(Low Channel), CH 39(MID Channel), CH 78(High Channel)	2402 MHz, 2441 MHz, 2480 MHz

Note: The hop is hopping mode.

PACKET TYPE CONFIGURATION

Test Mode	Packet Type	Setting (Packet Length)
	DH1	27
GFSK	DH3	183
	DH5	339

5.5. THE WORSE CASE POWER SETTING PARAMETER

WORST-CASE CONFIGURATIONS

Bluetooth Mode	Modulation Technology	Modulation Type	Data Rate (Mbps)
BR	FHSS	GFSK	1Mbit/s

Note: Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates.

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band					
Test Se	oftware	fcc_test_tool			
Modulation Type	Transmit Antenna	t Antenna Test Software setting va		alue	
	Number	CH 00	CH 39	CH 78	
GFSK	1	default	default	default	

TRF No.: 04-E001-0B

Global Testing, Great Quality.

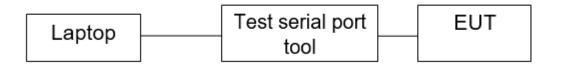
5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna	Frequency (MHz)	Antenna Type	MAX Antenna Gain (dBi)
1	2402-2480	PCB	-7.86

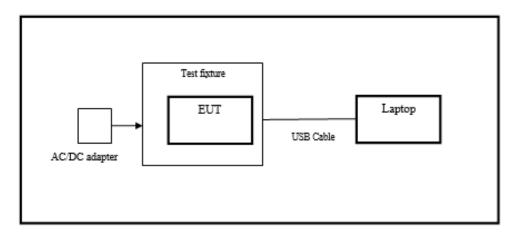
Test Mode	Transmit and Receive Mode	Description
GFSK	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.
Note:		

5.7. SUPPORT UNITS FOR SYSTEM TEST

The following support units or accessories were used to form a representative test configuration during the tests.


Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
E-1	Laptop	Lenovo	Thinkpad T14	PF-3EAKYR	GTG Support
E-2	Adapter	Xiaomi	MDY-11-EX	N/A	GTG Support
E-3	Serial Port Tool	N/A	N/A	N/A	GTG Support

The following cables were used to form a representative test configuration during the tests.


Item	Type of cable	Shielded Type	Ferrite Core	Length
C-1	USB cable	Unshielded	without ferrite	1.0 m
C-2	Dupont cable	Unshielded	without ferrite	0.6 m

5.8. SETUP DIAGRAM

Radiated emissions:

AC Power Line Conducted Emission:

6. MEASURING EQUIPMENT	AND SOFTWARE USED
------------------------	-------------------

Test Equipment of Conducted RF					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
Spectrum Analyzer	Rohde & Schwarz	FSV40	102257	2024/09/14	2025/09/13
Spectrum Analyzer	KEYSIGHT	N9020A	MY51285127	2024/09/14	2025/09/13
EXG Analog Signal Generator	KEYSIGHT	N5173B	MY61253075	2024/09/14	2025/09/13
Vector Signal Generator	Rohde & Schwarz	SMM100A	101899	2024/09/14	2025/09/13
RF Control box	MWRF-test	MW100-RFCB	MW220926GTG	2024/09/14	2025/09/13
Wideband Radio Communication Tester	Rohde & Schwarz	CMW270	102792	2024/09/14	2025/09/13
Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	103235	2024/09/14	2025/09/13
temperature humidity chamber	Espec	SH-241	SH-241-2014	2024/09/14	2025/09/13
RF Test Software	MWRF-test	MTS8310E (Ver. V2/0)	N/A	N/A	N/A

	Test Equipment of Radiated emissions below 1GHz				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
3m Semi-anechoic Chamber	ETS	9m*6m*6m	Q2146	2022/08/30	2025/08/29
EMI Test Receiver	Rohde & Schwarz	ESCI3	101409	2024/09/14	2025/09/13
Spectrum Analyzer	KEYSIGHT	N9020A	MY51283932	2024/09/14	2025/09/13
Pre-Amplifier	HzEMC	HPA-9K0130	HYPA21001	2024/09/14	2025/09/13
Biconilog Antenna	Schwarzbeck	VULB 9168	01315	2022/10/10	2025/10/09
Biconilog Antenna	ETS	3142E	00243646	2022/03/23	2025/03/22
Loop Antenna	ETS	6502	243668	2022/03/30	2025/03/29
Test Software	Farad	EZ-EMC (Ver.FA-03A2 RE)	N/A	N/A	N/A

	Test Equipment of Radiated emissions above 1GHz				
Equipment Manufacturer Model No. Serial No. Last Cal. Due Da					
3m Semi-anechoic Chamber	ETS	9m*6m*6m	Q2149	2022/08/30	2025/08/29
Spectrum Analyzer	Rohde & Schwarz	FSV40	101413	2024/09/14	2025/09/13
Spectrum Analyzer	KEYSIGHT	N9020A	MY51283932	2024/09/14	2025/09/13
Pre-Amplifier	A-INFO	HPA-1G1850	HYPA21003	2024/09/14	2025/09/13
Horn antenna	A-INFO	3117	246069	2022/03/11	2025/03/10
Pre-Amplifier	ZKJC	HPA-184057	HYPA21004	2024/09/14	2025/09/13

TRF No.: 04-E001-0B

Global Testing , Great Quality.

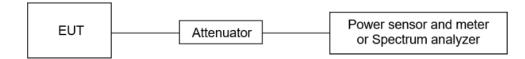
Horn antenna	ZKJC	3116C	246265	2022/03/29	2025/03/28
Test Software	Farad	EZ-EMC (Ver.FA-03A2 RE+)	N/A	N/A	N/A

	Test Equipment of Conducted emissions				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
Shielded Room	CHENG YU	8m*5m*4m	N/A	2022/10/29	2025/10/28
EMI Test Receiver	Rohde & Schwarz	ESR3	102647	2024/09/14	2025/09/13
LISN/AMN	Rohde & Schwarz	ENV216	102843	2024/09/14	2025/09/13
NNLK 8129 RC	Schwarzbeck	NNLK 8129 RC	5046	2024/09/14	2025/09/13
Test Software	Farad	EZ-EMC (Ver. EMC-con-3A1 1+)	N/A	N/A	N/A

7. ANTENNA PORT TEST RESULTS

7.1. CONDUCTED OUTPUT POWER

<u>LIMITS</u>


CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 3				
Section Test Item Limit Frequency Range (MHz)				
CFR 47 FCC 15.247(b)(3) ISED RSS-247 5.4 (d)	Peak Conduct Output Power	1 watt or 30 dBm	2400-2483.5	

TEST PROCEDURE

Connect the EUT to a low loss RF cable from the antenna port to the power sensor (video bandwidth is greater than the occupied bandwidth).

Measure peak emission level, the indicated level is the peak output power, after any corrections for external attenuators and cables.

TEST SETUP

TEST ENVIRONMENT

Temperature	23.4°C	Relative Humidity	56%
Atmosphere Pressure	101kPa		

TEST RESULTS

7.2. 20 DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH

<u>LIMITS</u>

CFR 47FCC Part15 (15.247) Subpart C			
Section Test Item Limit Frequency Range (MHz)			
CFR 47 FCC 15.247 (a) (1)	20 dB Bandwidth	None; for reporting purposes only.	2400-2483.5

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 6.9.2.

Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
BBW	For 20 dB Bandwidth: 1 % to 5 % of the 20 dB bandwidth For 99 % Occupied Bandwidth: 1 % to 5 % of the occupied bandwidth
	For 20 dB Bandwidth: approximately 3×RBW For 99 % Occupied Bandwidth: ≥ 3×RBW
Span	Approximately 2 to 3 times the 20dB bandwidth
Trace	Max hold
Sweep	Auto couple

a) Use the occupied bandwidth function of the instrument, allow the trace to stabilize and report the measured 99 % occupied bandwidth and 20 dB Bandwidth.

TEST SETUP

TEST ENVIRONMENT

Temperature	23.4°C	Relative Humidity	56%
Atmosphere Pressure	101kPa		

TEST RESULTS

7.3. CARRIER HOPPING CHANNEL SEPARATION

LIMITS

CFR 47 FCC Part15 (15.247),			
Section	Test Item	Limit	Frequency Range (MHz)
CFR 47 FCC 15.247 (a) (1)	Carrier Frequency Separation	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel.	2400-2483.5

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 7.8.2.

Connect the EUT to the spectrum analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test
Span	wide enough to capture the peaks of two adjacent channels
Detector	Peak
	Start with the RBW set to approximately 30 % of the channel spacing; adjust as necessary to best identify the center of each individual channel.
VBW	≥RBW
Trace	Max hold
Sweep time	Auto couple

Allow the trace to stabilize and use the marker-delta function to determine the separation between the peaks of the adjacent channels.

Compliance of an EUT with the appropriate regulatory limit shall be determined.

TEST SETUP

TEST ENVIRONMENT

Temperature	23.4°C	Relative Humidity	56%
Atmosphere Pressure	101kPa		

TRF No.: 04-E001-0B

Global Testing, Great Quality.

TEST RESULTS

7.4. NUMBER OF HOPPING FREQUENCY

<u>LIMITS</u>

CFR 47 FCC Part15 (15.247), Subpart C			
Section	Test Item	Limit	
CFR 47 15.247 (a) (1) III Number of Hopping Frequency at least 15 hopping channels			

TEST PROCEDURE


Refer to ANSI C63.10-2013 clause 7.8.3.

Connect the EUT to the spectrum Analyzer and use the following settings:

Detector	Peak
RBW	To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
VBW	≥RBW
	The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
Trace	Max hold
Sweep time	Auto couple

Set EUT to transmit maximum output power and switch on frequency hopping function. then set enough count time (larger than 5000 times) to get all the hopping frequency channel displayed on the screen of spectrum analyzer, count the quantity of peaks to get the number of hopping channels.

TEST SETUP

TEST ENVIRONMENT

Temperature	23.4°C	Relative Humidity	56%
Atmosphere Pressure	101kPa		

TEST RESULTS

7.5. TIME OF OCCUPANCY (DWELL TIME)

<u>LIMITS</u>

CFR 47 FCC Part15 (15.247), Subpart C			
Section Test Item Limit			
CFR 47 15.247 (a) (1) III Time of Occupancy (Dwell Time)		The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed.	

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 7.8.4.

Connect the EUT to the spectrum Analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	1 MHz
VBW	≥RBW
Span	Zero span, centered on a hopping channel
Trace	Max hold
Sweep time	As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel

Use the marker-delta function to determine the transmit time per hop (Burst Width). If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time.

For FHSS Mode (79 Channel):

DH1/3DH1 Dwell Time: Burst Width * (1600/2) * 31.6 / (channel number) DH3/3DH3 Dwell Time: Burst Width * (1600/4) * 31.6 / (channel number) DH5/3DH5 Dwell Time: Burst Width * (1600/6) * 31.6 / (channel number)

For AFHSS Mode (20 Channel): DH1/3DH1 Dwell Time: Burst Width * (1600/2) * 8 / (channel number) DH3/3DH3 Dwell Time: Burst Width * (1600/4) * 8 / (channel number) DH5/3DH5 Dwell Time: Burst Width * (1600/6) * 8 / (channel number)

TEST SETUP

TEST ENVIRONMENT

Temperature	23.4°C	Relative Humidity	56%
Atmosphere Pressure	101kPa		

TEST RESULTS

7.6. CONDUCTED BANDEDGE AND SPURIOUS EMISSION

<u>LIMITS</u>

CFR 47 FCC Part15 (15.247), Subpart C			
Section Test Item Limit			
CFR 47 FCC §15.247 (d)	Conducted Spurious Emission	at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power	

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 7.8.6 and 7.8.8.

Connect the EUT to the spectrum analyser and use the following settings for reference level measurement:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level.

Change the settings for emission level measurement:

	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum

TEST SETUP

TEST ENVIRONMENT

Temperature	23.4°C	Relative Humidity	56%
Atmosphere Pressure	101kPa		

TEST RESULTS

7.7. DUTY CYCLE

<u>LIMITS</u>

None; for reporting purposes only.

TEST PROCEDURE

Refer to ANSI C63.10-2013 Zero – Span Spectrum Analyzer method.

TEST SETUP

TEST ENVIRONMENT

Temperature	23.4°C	Relative Humidity	56%
Atmosphere Pressure	101kPa		

TEST RESULTS

8. RADIATED TEST RESULTS

<u>LIMITS</u>

Please refer to CFR 47 FCC §15.205 and §15.209.

Radiation Disturbance Test Limit for FCC (Class B) (9 kHz-1 GHz)

Emissions radiated outside of the specified frequency bands above 30 MHz					
Frequency Range	Field Strength Limit	Field Strength Limit			
(MHz)	(uV/m) at 3 m	(dBuV/m) at 3 m			
(Quasi-	Peak		
30 - 88	100	40			
88 - 216	150	43.5			
216 - 960	200	46			
Above 960	500	54			
Above 1000	500	Peak	Average		
	300	74	54		

FCC Emissions radiated outside of the specified frequency bands below 30 MHz						
Frequency (MHz) Field strength (microvolts/meter) Measurement distance (meters)						
0.009-0.490	2400/F(kHz)	300				
0.490-1.705 24000/F(kHz)		30				
1.705-30.0	30	30				

FCC Restricted bands of operation refer to FCC §15.205 (a):

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7- <mark>1</mark> 56.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c

TEST PROCEDURE

Below 30 MHz

RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.

2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.

5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz Radiated emission limits in these three bands are based on measurements employing an average detector.

6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.

7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.

8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X KHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

Below 1 GHz and above 30 MHz

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

The setting of the spectrum analyser

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

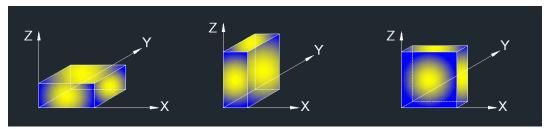
Above 1 GHz

RBW	1 MHz
VBW	PEAK: 3 MHz AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

The setting of the spectrum analyser

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.6.

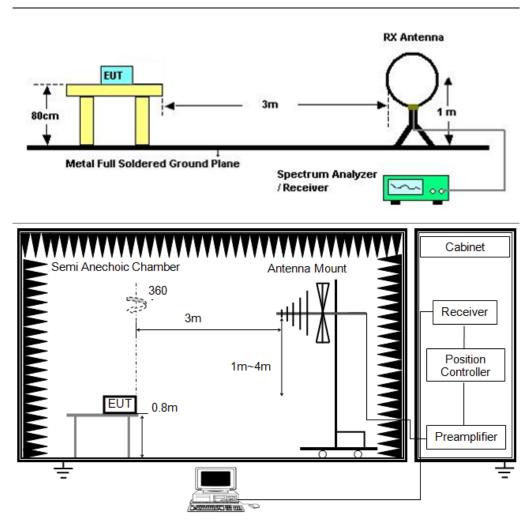
2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

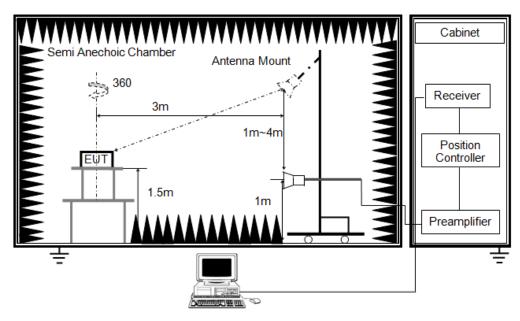

3. The EUT was placed on a turntable with 1.5 m above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.

6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.1.ON TIME AND DUTY CYCLE.


X axis, Y axis, Z axis positions:



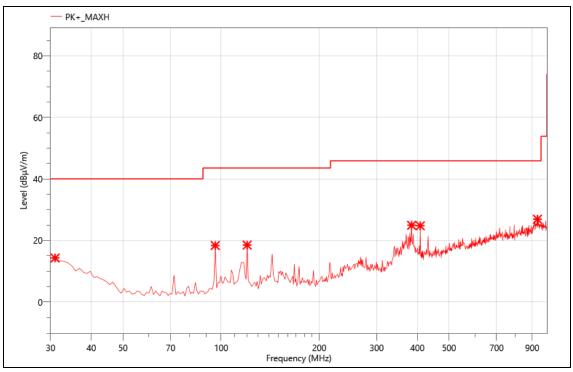
Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

Note 2: The EUT was fully exercised with external accessories during the test. In the case of multiple accessory external ports, an external accessory shall be connected to one of each type of port.

TEST SETUP

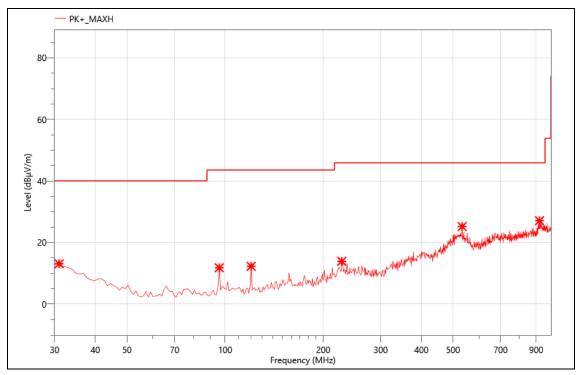
TEST ENVIRONMENT

Temperature	22.2°C	Relative Humidity	52%
Atmosphere Pressure	101kPa		


TEST RESULTS

8.1. RADIATED BAND EDGE AND SPURIOUS EMISSION

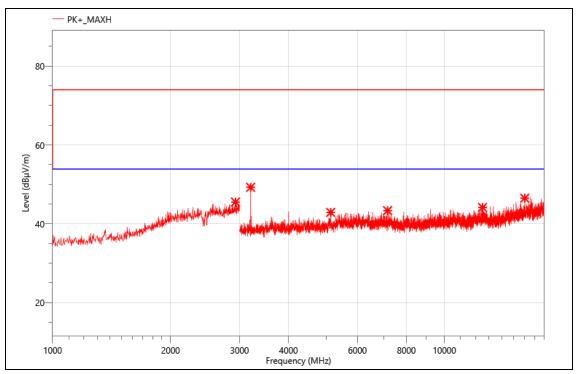
Undesirable radiated Spurious Emission below 1GHz (30MHz to 1GHz)


All modes have been tested and the worst result as bellow:

Mode:	1-DH5 2402
Power:	DC 5V
TE:	Big
Date	2024/12/10
T/A/P	22.2°C/52%/101Kpa

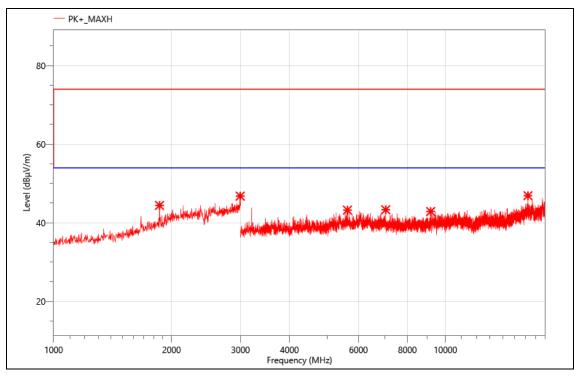
No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	30.970	29.12	-14.8	14.32	40.00	25.68	PK+	Н
2	95.960	42.86	-24.49	18.37	43.50	25.13	PK+	Н
3	120.210	43.11	-24.59	18.52	43.50	24.98	PK+	Н
4	384.050	39.63	-14.68	24.95	46.00	21.05	PK+	Н
5	408.300	38.52	-13.74	24.78	46.00	21.22	PK+	Н
6	934.040	29.96	-3.05	26.91	46.00	19.09	PK+	Н

Mode:	1-DH5 2402
Power:	DC 5V
TE:	Big
Date	2024/12/10
T/A/P	22.2°C/52%/101Kpa

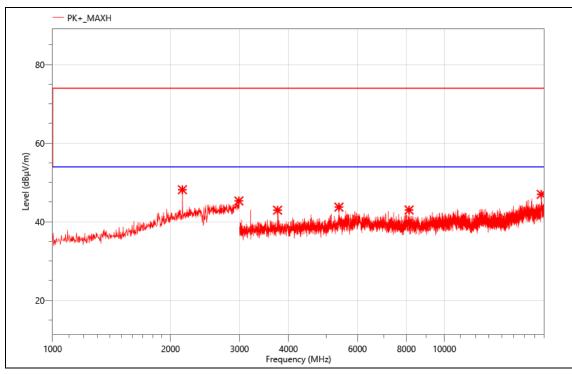


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	30.970	27.89	-14.8	13.09	40.00	26.91	PK+	V
2	95.960	36.28	-24.49	11.79	43.50	31.71	PK+	V
3	120.210	36.86	-24.59	12.27	43.50	31.23	PK+	V
4	227.880	34.28	-20.4	13.88	46.00	32.12	PK+	V
5	533.430	35.80	-10.61	25.19	46.00	20.81	PK+	V
6	921.430	30.57	-3.48	27.09	46.00	18.91	PK+	V

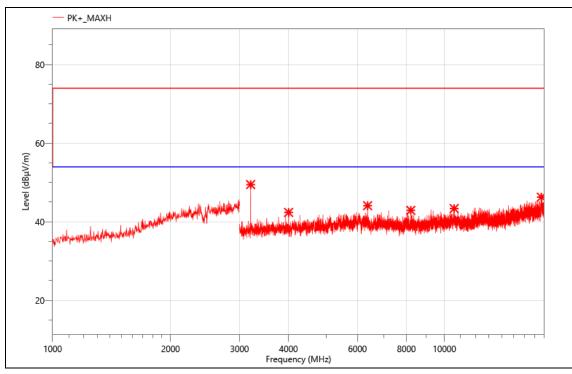
Undesirable radiated Spurious Emission Above 1GHz (1GHz to 40GHz)


Mode:	1-DH5 2402
Power:	DC 5V
TE:	Big
Date	2024/12/10
T/A/P	22.2°C/52%/101Kpa

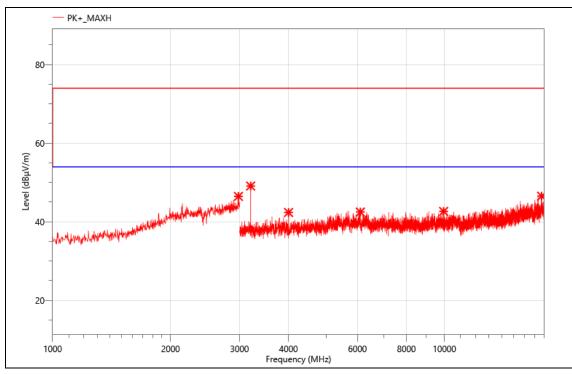
All modes have been tested and the worst result as bellow:


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2930.000	53.07	-7.54	45.53	74.00	28.47	PK+	Н
2	3202.500	64.05	-14.79	49.26	74.00	24.74	PK+	Н
3	5127.000	53.19	-10.29	42.90	74.00	31.10	PK+	Н
4	7162.500	51.30	-7.95	43.35	74.00	30.65	PK+	Н
5	12516.000	48.56	-4.41	44.15	74.00	29.85	PK+	Н
6	16035.000	48.36	-1.85	46.51	74.00	27.49	PK+	Н

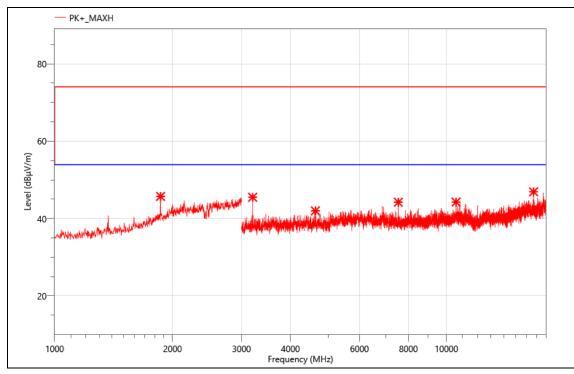
Mode:	1-DH5 2402
Power:	DC 5V
TE:	Big
Date	2024/12/10
T/A/P	22.2°C/52%/101Kpa


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	1864.000	54.80	-10.4	44.40	74.00	29.60	PK+	V
2	2994.000	53.75	-6.99	46.76	74.00	27.24	PK+	V
3	5623.500	52.44	-9.23	43.21	74.00	30.79	PK+	V
4	7042.500	51.19	-7.89	43.30	74.00	30.70	PK+	V
5	9171.000	50.19	-7.34	42.85	74.00	31.15	PK+	V
6	16245.000	47.45	-0.57	46.88	74.00	27.12	PK+	V

Mode:	1-DH5 2441
Power:	DC 5V
TE:	Big
Date	2024/12/10
T/A/P	22.2°C/52%/101Kpa


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2144.000	57.19	-9.05	48.14	74.00	25.86	PK+	V
2	2988.000	52.25	-6.97	45.28	74.00	28.72	PK+	V
3	3751.500	56.42	-13.49	42.93	74.00	31.07	PK+	V
4	5380.500	52.78	-9.06	43.72	74.00	30.28	PK+	V
5	8125.500	51.03	-8.05	42.98	74.00	31.02	PK+	V
6	17667.000	46.75	0.21	46.96	74.00	27.04	PK+	V

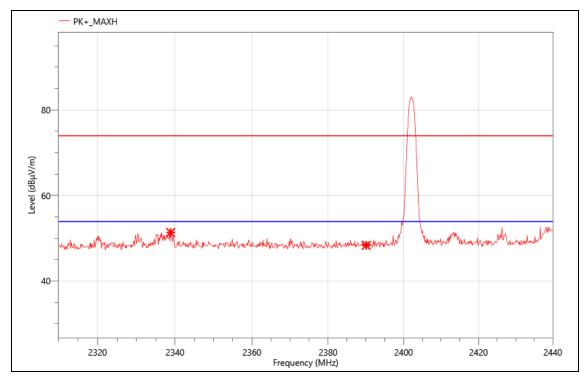
Mode:	1-DH5 2441
Power:	DC 5V
TE:	Big
Date	2024/12/10
T/A/P	22.2°C/52%/101Kpa


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	3202.500	64.24	-14.79	49.45	74.00	24.55	PK+	Н
2	4003.500	55.73	-13.37	42.36	74.00	31.64	PK+	Н
3	6367.500	51.98	-7.9	44.08	74.00	29.92	PK+	Н
4	8208.000	50.59	-7.71	42.88	74.00	31.12	PK+	Н
5	10591.500	48.63	-5.28	43.35	74.00	30.65	PK+	Н
6	17676.000	45.94	0.31	46.25	74.00	27.75	PK+	Н

Mode:	1-DH5 2480
Power:	DC 5V
TE:	Big
Date	2024/12/10
T/A/P	22.2°C/52%/101Kpa

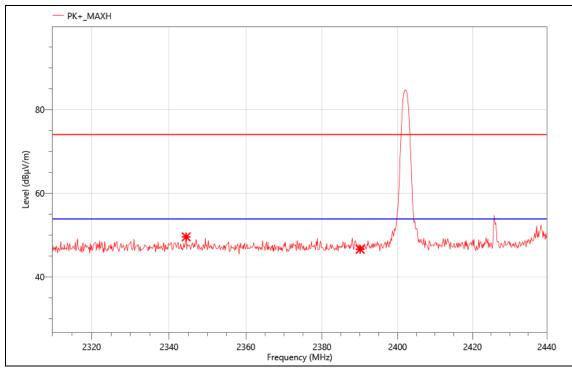
No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2980.000	53.44	-6.99	46.45	74.00	27.55	PK+	Н
2	3202.500	63.87	-14.79	49.08	74.00	24.92	PK+	Н
3	4002.000	55.71	-13.36	42.35	74.00	31.65	PK+	Н
4	6102.000	51.08	-8.62	42.46	74.00	31.54	PK+	Н
5	9954.000	48.96	-6.34	42.62	74.00	31.38	PK+	Н
6	17706.000	46.45	0.05	46.50	74.00	27.50	PK+	Н

Mode:	1-DH5 2480
Power:	DC 5V
TE:	Big
Date	2024/12/10
T/A/P	22.2°C/52%/101Kpa

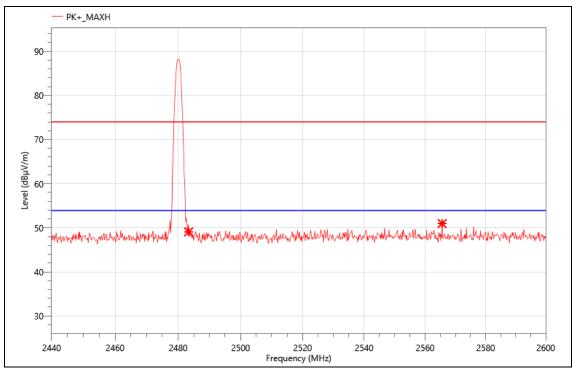

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	1864.000	56.12	-10.4	45.72	74.00	28.28	PK+	V
2	3202.500	60.29	-14.79	45.50	74.00	28.50	PK+	V
3	4630.500	53.36	-11.38	41.98	74.00	32.02	PK+	V
4	7537.500	52.26	-8.04	44.22	74.00	29.78	PK+	V
5	10584.000	49.50	-5.24	44.26	74.00	29.74	PK+	V
6	16695.000	47.40	-0.48	46.92	74.00	27.08	PK+	V

For the frequency above 18 GHz, a pre-scan was performed, and the result was 20 dB lower than the limit line, the test data was not shown in the report.

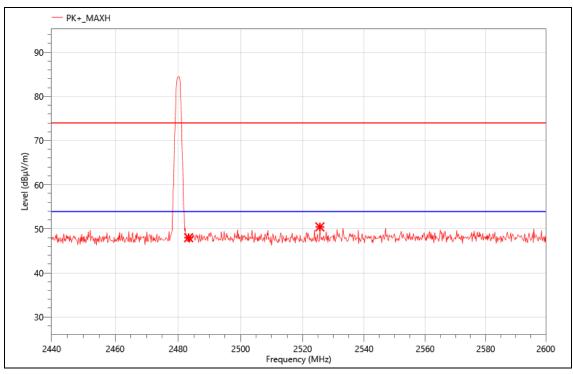
Band Edge


All modes have been tested and the worst result as bellow:

Mode:	1-DH5 2402
Power:	DC 5V
TE:	Big
Date	2024/12/10
T/A/P	22.2°C/52%/101Kpa


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2338.860	28.72	22.64	51.36	74.00	22.64	PK+	V
2	2390.080	25.63	22.72	48.35	74.00	25.65	PK+	V

Mode:	1-DH5 2402
Power:	DC 5V
TE:	Big
Date	2024/12/10
T/A/P	22.2°C/52%/101Kpa


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2344.450	26.88	22.69	49.57	74.00	24.43	PK+	Н
2	2390.080	23.88	22.72	46.60	74.00	27.40	PK+	Н

Mode:	1-DH5 2480
Power:	DC 5V
TE:	Big
Date	2024/12/10
T/A/P	22.2°C/52%/101Kpa

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2483.360	25.91	23.15	49.06	74.00	24.94	PK+	Н
2	2565.600	27.71	23.25	50.96	74.00	23.04	PK+	Н

Mode:	1-DH5 2480
Power:	DC 5V
TE:	Big
Date	2024/12/10
T/A/P	22.2°C/52%/101Kpa

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2483.360	24.83	23.15	47.98	74.00	26.02	PK+	V
2	2525.600	27.26	23.16	50.42	74.00	23.58	PK+	V

9. ANTENNA REQUIREMENT

REQUIREMENT

Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DESCRIPTION

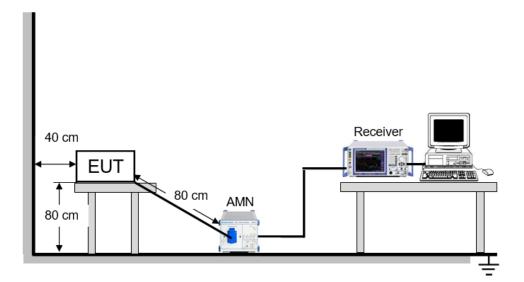
Pass

10. AC POWER LINE CONDUCTED EMISSION

LIMITS

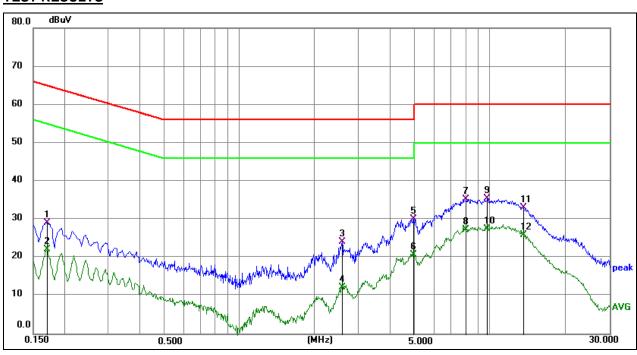
Please refer to CFR 47 FCC §15.207 (a) and ISED RSS-Gen Clause 8.8

FREQUENCY (MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00


TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 6.2.

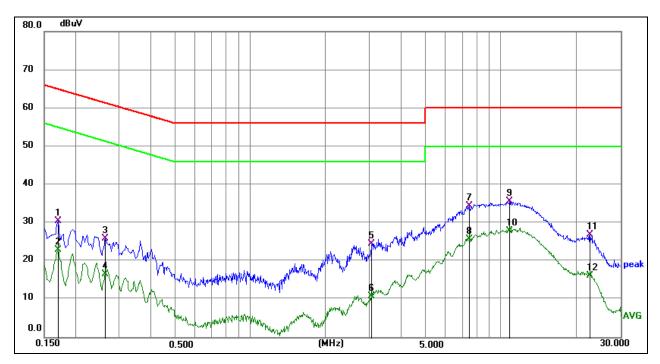
The EUT is put on a table of non-conducting material that is 80 cm high. The vertical conducting wall of shielding is located 40 cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver is used to test the emissions from the AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9 kHz.


The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.

TEST SETUP

TEST ENVIRONMENT

Temperature	23.2°C	Relative Humidity	52%
Atmosphere Pressure	101kPa		



TEST RESULTS

Phase:	L1

Mode: DH5 2402MHz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1700	19.34	9.77	29.11	64.96	-35.85	QP
2	0.1700	12.46	9.77	22.23	54.96	-32.73	AVG
3	2.5740	14.37	9.83	24.20	56.00	-31.80	QP
4	2.5740	2.30	9.83	12.13	46.00	-33.87	AVG
5	4.9580	20.21	9.87	30.08	56.00	-25.92	QP
6	4.9580	10.78	9.87	20.65	46.00	-25.35	AVG
7	8.0300	25.28	10.00	35.28	60.00	-24.72	QP
8	8.0300	17.23	10.00	27.23	50.00	-22.77	AVG
9	9.8020	25.28	10.07	35.35	60.00	-24.65	QP
10	9.8020	17.34	10.07	27.41	50.00	-22.59	AVG
11	13.5580	22.99	10.13	33.12	60.00	-26.88	QP
12	13.5580	15.77	10.13	25.90	50.00	-24.10	AVG

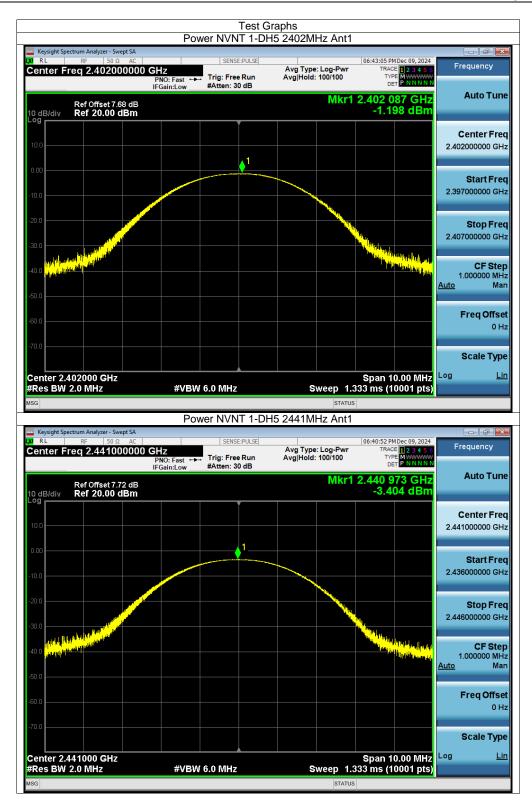
Phase: N	Mode: DH5 2402MHz

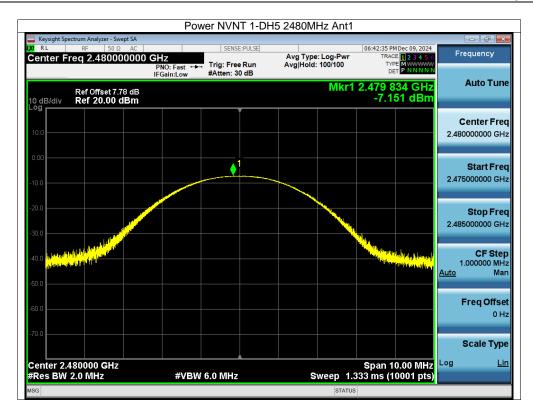
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1700	20.80	9.67	30.47	64.96	-34.49	QP
2	0.1700	13.29	9.67	22.96	54.96	-32.00	AVG
3	0.2620	16.18	9.68	25.86	61.37	-35.51	QP
4	0.2620	6.85	9.68	16.53	51.37	-34.84	AVG
5	3.0579	14.79	9.74	24.53	56.00	-31.47	QP
6	3.0579	1.12	9.74	10.86	46.00	-35.14	AVG
7	7.5180	24.51	9.98	34.49	60.00	-25.51	QP
8	7.5180	15.65	9.98	25.63	50.00	-24.37	AVG
9	10.7980	25.53	10.09	35.62	60.00	-24.38	QP
10	10.7980	17.90	10.09	27.99	50.00	-22.01	AVG
11	22.7260	16.61	10.26	26.87	60.00	-33.13	QP
12	22.7260	5.93	10.26	16.19	50.00	-33.81	AVG

Note: 1. Result = Reading + Correct Factor.

2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz).


4. Step size: 80 Hz (0.009 MHz ~ 0.15 MHz), 4 kHz (0.15 MHz ~ 30 MHz), Scan time: auto.

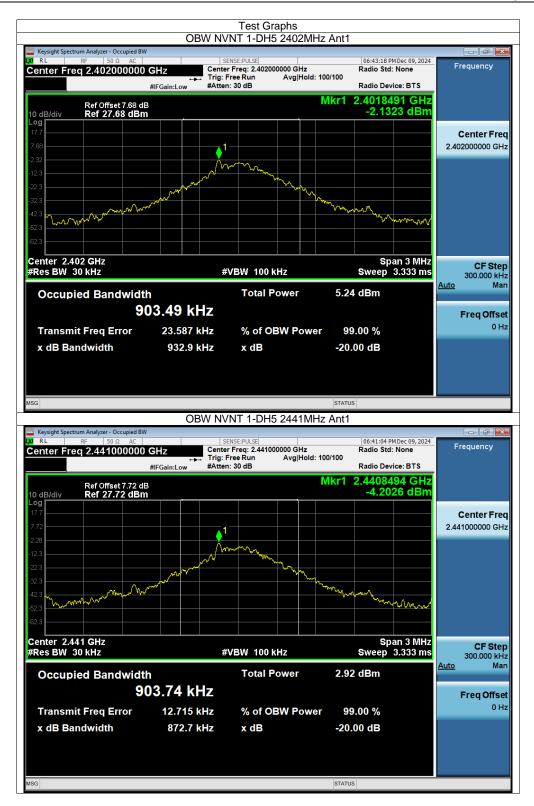

Note: All the modes have been tested, only the worst data was recorded in the report.

11. TEST DATA - Appendix A

			-p			
Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	Ant1	-1.2	21	Pass
NVNT	1-DH5	2441	Ant1	-3.4	21	Pass
NVNT	1-DH5	2480	Ant1	-7.15	21	Pass

Maximum Conducted Output Power

-20dB Bandwidth

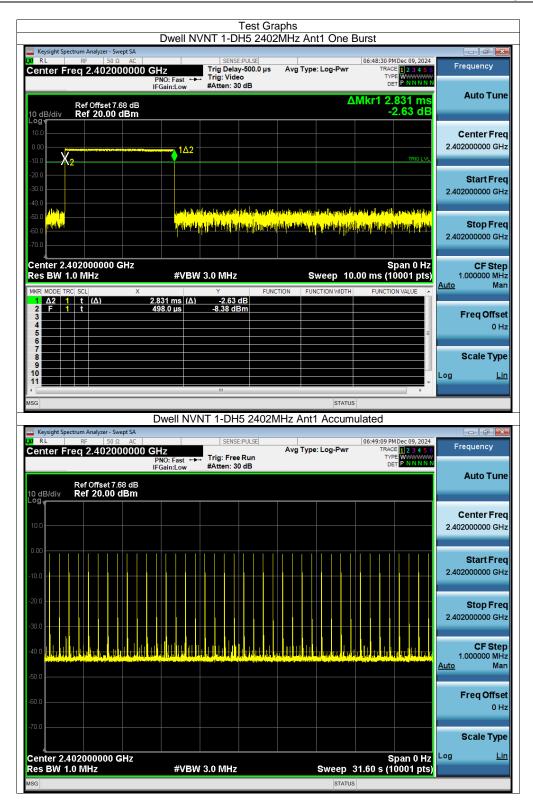

Condition	Mode	Frequency (MHz)	Antenna	-20 dB Bandwidth (MHz)	Limit -20 dB Bandwidth (MHz)	Verdict
NVNT	1-DH5	2402	Ant1	0.88	N/A	N/A
NVNT	1-DH5	2441	Ant1	0.86	N/A	N/A
NVNT	1-DH5	2480	Ant1	0.92	N/A	N/A

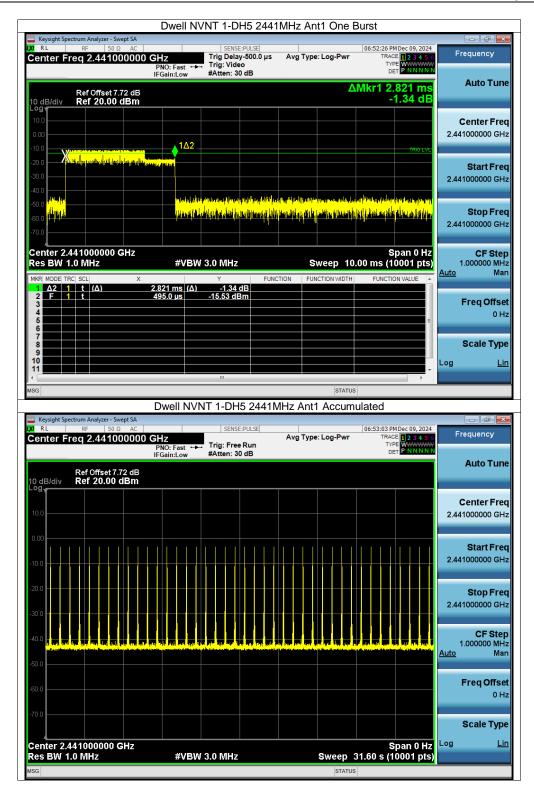
Occupied Channel Bandwidth

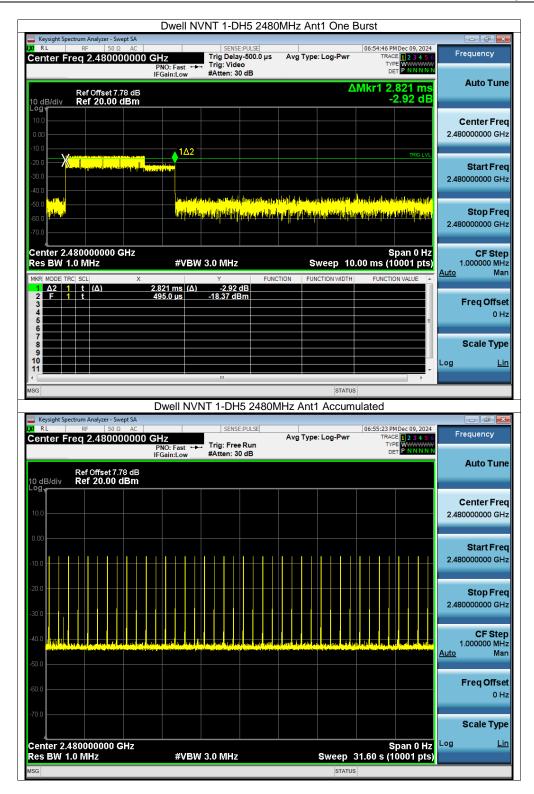
Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	1-DH5	2402	Ant1	0.903
NVNT	1-DH5	2441	Ant1	0.904
NVNT	1-DH5	2480	Ant1	0.898

Carrier Frequencies Separation

Condition	Mode	Antenna	Hopping Freq1 (MHz)	Hopping Freq2 (MHz)	HFS (MHz)	Limit (MHz)	Verdict
NVNT	1-DH5	Ant1	2401.85	2402.85	1	0.587	Pass
NVNT	1-DH5	Ant1	2440.85	2441.85	1	0.573	Pass
NVNT	1-DH5	Ant1	2478.85	2479.85	1	0.613	Pass


Number of Hopping Channel


Condition	Mode	Antenna	Hopping Number	Limit	Verdict
NVNT	1-DH5	Ant1	79	15	Pass


		Test	Graphs		
	Hoppir	ng No. NVNT	1-DH5 2402MHz A	nt1	
Keysight Spectrum Analyzer - Swept SA					
Center Freq 2.4417500		SENSE:PULSE	Avg Type: Log-Pwr	06:48:17 PM Dec 09, 2024 TRACE 1 2 3 4 5 6	Frequency
Center Freq 2.44 17 5000	PNO: Fast 😱	Trig: Free Run	Avg Hold:>100/100		
	IFGain:Low	#Atten: 30 dB			Auto Tune
Ref Offset 7.68 dB	3		Mkr1 2	.401 837 0 GHz	Auto Tune
10 dB/div Ref 20.00 dBm	<u>1</u>			-1.991 dBm	
		l i			Center Freq
				. 2	2.441750000 GHz
ΑΛΛΛΛΛΛΛΛΛΛΛΑΑΑΑΑΑΑΑΑ	NAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	000000000000000000000000000000000000000	ກກກໍາການນາຍບອບບອບບອບເຫຼົອ		2.441750000 GH2
	UNNINGUY	ĬŲŨŇĬŲĮĮĮŲIJſ		UVANNINA	
-20.0	╎┿╢┿╓┿╬╓┠╓┰╅╺╺		<u>Ҝ╠╟╈╠╠╫╠╫╅╖┠╫╠╢┽</u> ╖╙┱	<u>, ta ka ta kâhânânê</u>	Start Freq
-30.0					2.40000000 GHz
-40.0					
-50.0				<u> </u>	
-60.0					Stop Freq
					2.483500000 GHz
-70.0					
Start 2.40000 GHz				Stop 2.48350 GHz	CF Step
#Res BW 100 kHz	#VBW	300 kHz	Sweep 8	1.000 ms (1001 pts)	8.350000 MHz
MKRI MODEI TRCI SCL	x	Y	EUNCTION EUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Man
1 N 1 f (Δ) 2.40	01 837 0 GHz (Δ)	-1.991 dBm			
2 N 1 f 2.48	80 076 5 GHz	-7.884 dBm			Freq Offset
4					0 Hz
5				==	
7					
8					Scale Type
10					Log Lin
11				· · ·	
MSG			STATU	•	
mod			STATU	3	

Dwell Time

Condition	Mode	Frequency (MHz)	Antenna	Pulse Time (ms)	Total Dwell Time (ms)	Burst Count	Period Time (ms)	Limit (ms)	Verdict
NVNT	1- DH5	2402	Ant1	2.831	113.24	40	31600	400	Pass
NVNT	1- DH5	2441	Ant1	2.821	110.019	39	31600	400	Pass
NVNT	1- DH5	2480	Ant1	2.821	112.84	40	31600	400	Pass

Band	d Edge	9					
Condition	Mode	Frequency (MHz)	Antenna	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant1	No-Hopping	-41.998	-20	Pass
NVNT	1-DH5	2480	Ant1	No-Hopping	-44.386	-20	Pass

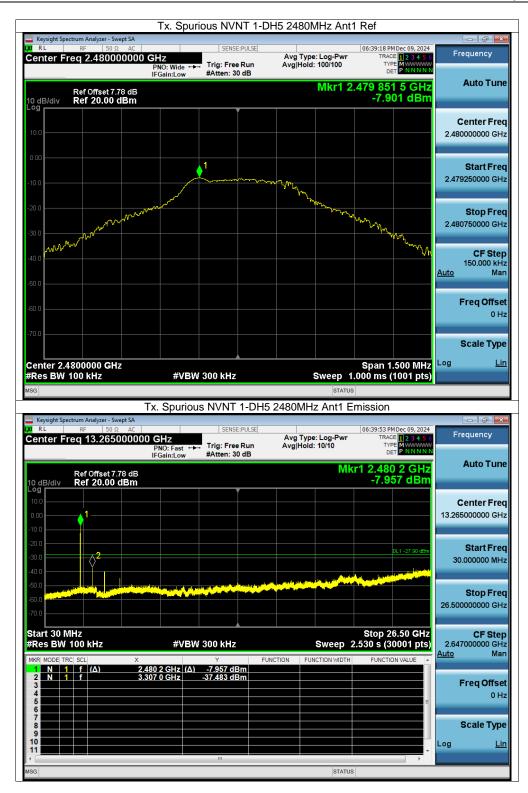
Keysight Spectrum Analyzer - Swep									- F
RL RF 50Ω enter Freq 2.480000	DOOD GHZ	Z D:Wide ↔ ain:Low	. Trig: Free #Atten: 30	Run	Avg Type Avg Hold	e: Log-Pwr : 100/100	TRAC	M Dec 09, 2024 DE 1 2 3 4 5 6 DE M WWWWW T P N N N N N	Frequency
Ref Offset 7.78 0 dB/div Ref 20.00 dl	3 dB	ant:LOW	#Atten: 30			Mkr1	2.479 8	64 GHz 74 dBm	Auto Tu
	5111		Ĭ						0 - mt - m
10.0									Center Fi 2.480000000 G
0.00									Start Fi
0.0				~					2.476000000 0
0.0			~	- \ - \ - \					Stop Fi
30.0									2.484000000
0.0		N) "		Ma				CF St 800.000 F
50.0	mann	Now M			ww	-+- Mor	Mr. A		<u>Auto</u> N
60.0							"Yb-NA'by	V~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Freq Off
70.0									
									Scale Ty
enter 2.480000 GHz							Snan 8	.000 MHz	Log
		#\/D\/	200 647			Swoon 1	000 mc	1001 ptc)	
Res BW 100 kHz		#VBW	300 kHz			Sweep 1	.000 ms (1001 pts)	
Res BW 100 kHz	and Edg		300 kHz	2480MF		STATUS	.000 ms (1001 pts)	
Res BW 100 kHz G B Keysight Spectrum Analyzer - Swep	ž		T 1-DH5			STATUS	.000 ms (bing Emi	1001 pts) ssion	
Res BW 100 kHz SG B Keysight Spectrum Analyzer - Swep RL RF 50 Ω	AC DOOO GHZ	le NVN⁻ z	T 1-DH5	:PULSE	Iz Ant1	STATUS NO-HOPP :: Log-Pwr	.000 ms (1001 pts) SSion	Frequency
Res BW 100 kHz SG B Keysight Spectrum Analyzer - Swep RL RF 50 Ω	ot SA AC 0000 GHz PN0	le NVN⁻	T 1-DH5	:PULSE	Iz Ant1	STATUS No-Hopp : Log-Pwr : 100/100	.000 ms (bing Emi 06:38:33 P TRAC TYI DI	1001 pts) SSion MDec 09, 2024 E 1 2 3 4 5 6 M X N N N N	
Res BW 100 kHz ag Keysight Spectrum Analyzer - Swep RL RF 50 Ω enter Freq 2.526000 Ref Offset 7.74	AC AC DOOO GHz PNC IFGa 3 dB	le NVN ⁻ z D: Fast ↔	T 1-DH5	:PULSE	Iz Ant1	STATUS No-Hopp : Log-Pwr : 100/100	.000 ms (bing Emi 06:38:33 P TRAC TYI DI	1001 pts) SSion	Frequency
Res BW 100 kHz sc sc R RL RF Socienter Freq 2.526000 Ref Offset 7.76 0 dB/div Ref 20.00 d	AC AC DOOO GHz PNC IFGa 3 dB	le NVN ⁻ z D: Fast ↔	T 1-DH5	:PULSE	Iz Ant1	STATUS No-Hopp : Log-Pwr : 100/100	.000 ms (bing Emi 06:38:33 P TRAC TYI DI	1001 pts) ssion MDec 09, 2024 E 1 2 3 4 5 6 MWWWWW ET P NNNN 9 9 GHz	Frequency
Res BW 100 kHz sc sc keysight Spectrum Analyzer - Swep RL RF SO center Freq 2.526000 Ref Offset 7.76 og 10.0	AC AC DOOO GHz PNC IFGa 3 dB	le NVN ⁻ z D: Fast ↔	T 1-DH5	:PULSE	Iz Ant1	STATUS No-Hopp : Log-Pwr : 100/100	.000 ms (bing Emi 06:38:33 P TRAC TYI DI	1001 pts) ssion MDec 09, 2024 E 1 2 3 4 5 6 MWWWWW ET P NNNN 9 9 GHz	Frequency Auto Tu
Res BW 100 kHz sc B sc R RL RF 50 Ω center Freq 2.526000 Ref Offset 7.76 0 dB/div Ref 20.00 d 9 1 0 10.0 1 0	AC AC DOOO GHz PNC IFGa 3 dB	le NVN ⁻ z D: Fast ↔	T 1-DH5	:PULSE	Iz Ant1	STATUS No-Hopp : Log-Pwr : 100/100	.000 ms (bing Emi 06:38:33 P TRAC TYI DI	1001 pts) ssion MDec 09, 2024 E 1 2 3 4 5 6 MWWWWW ET P NNNN 9 9 GHz	Frequency Auto Tu Center Fi
Res BW 100 kHz sc B keysight Spectrum Analyzer - Swep RL RL RF 502 center Freq 2.526000 Conter Freq 2.526000 0 dB/div Ref Offset 7.76 0 dB/div Ref 20.00 d 9 1	AC AC DOOO GHz PNC IFGa 3 dB	le NVN ⁻ z D: Fast ↔	T 1-DH5	:PULSE	Iz Ant1	STATUS No-Hopp : Log-Pwr : 100/100	.000 ms (bing Emi 06:38:33 P TRAC TYI DI	1001 pts) ssion MDec 09, 2024 E 1 2 3 4 5 6 MWWWWW ET P NNNN 9 9 GHz	Frequency Auto Tu Center Fr 2.52600000 0 Start Fr
Res BW 100 kHz 3G B 3G B Reysight Spectrum Analyzer - Swep RL RE SO Ω center Freq 2.526000 C Ref Offset 7.76 O dB/div Ref 20.00 d C 0 dB/div Ref 20.00 d 0 d 1 0 d 1	AC AC PODO PNC IFGa 3 dB Bm	e NVN 2 D: Fast → ain:Low	T 1-DH5 SENSE Trig: Free #Atten: 30	PULSE	Hz Ant1 Avg Type Avg Hold	status No-Hopp 2: Log-Pwr : 100/100 Mk	0000 ms (06:38:33 P TTRA 06:38:37 P TTRA TT TT TT TT TT TT TT TT TT TT TT TT TT	1001 pts) ssion HDEC 09,2024 EI 22 34 56 EI 23 56 EI 25 EI 2	Frequency Auto Tu Center Fr 2.52600000 0
Res BW 100 kHz 3G B Keysight Spectrum Analyzer - Swep RL RF SO Ω center Freq 2.526000 B Closenter Freq 2.526000 Closenter Freq 2.526000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AC AC PODO PNC IFGa 3 dB Bm	e NVN 2 D: Fast → ain:Low	T 1-DH5	PULSE	Hz Ant1 Avg Type Avg Hold	status No-Hopp 2: Log-Pwr : 100/100 Mk	0000 ms (06:38:33 P TTRA 06:38:37 P TTRA TT TT TT TT TT TT TT TT TT TT TT TT TT	1001 pts) ssion HDEC 09,2024 EI 22 34 56 EI 23 56 EI 25 EI 2	Frequency Auto Tu Center Fr 2.52600000 0 Start Fr 2.47600000 0 Stop Fr
Res BW 100 kHz 3G B 3G B Keysight Spectrum Analyzer - Swep RL RF 50 Ω center Freq 2.526000 C Ref Offset 7.76 0 dB/div Ref 20.00 d C 0 dB/div Ref 20.00 d 0 dB/div Ref 20.00 d 0 d0 C	AC AC PODO PNC IFGa 3 dB Bm	e NVN 2 D: Fast → ain:Low	T 1-DH5 SENSE Trig: Free #Atten: 30	PULSE	Hz Ant1 Avg Type Avg Hold	status No-Hopp 2: Log-Pwr : 100/100 Mk	0000 ms (06:38:33 P TTRA 06:38:37 P TTRA TT TT TT TT TT TT TT TT TT TT TT TT TT	1001 pts) ssion MDec 09,2024 E 2 3 4 5 6 E 1 2 3 6 E 1 2 5 E	Frequency Auto Tu Center Fi 2.526000000 C Start Fi 2.476000000 C
Res BW 100 kHz 3G B 3G B Reysight Spectrum Analyzer - Swep RL RE SO Ω center Freq 2.526000 C Ref Offset 7.76 O dB/div Ref 20.00 d C 0 dB/div Ref 20.00 d 0 d 1 0 d 1	AC AC PODO PNC IFGa 3 dB Bm	le NVN D: Fast → in:Low	T 1-DH5 SENSE Trig: Free #Atten: 30	PULSE	Iz Ant1 Avg Type Avg Hold	STATUS	0000 ms (06:38:33 P TRAY 0 10:38:33 P TRAY 17 12.473 -7.9	1001 pts) ssion MDec 09, 2024 SSION SSION MDec 09, 2024 SSION SSION SSION MDec 09, 2024 SSION SSION SSION MDec 09, 2024 SSION S	Frequency Auto Tu Center Fr 2.526000000 0 Start Fr 2.476000000 0 Stop Fr 2.576000000 0
Res BW 100 kHz 36 B B C (keysight Spectrum Analyzer - Swep RL RF 50 Ω Center Freq 2.526000 Ref Offset 7.76 0 dB/div Ref 20.00 d 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A C C C C C C C C C C C C C C C C C C C	le NVN D: Fast → in:Low #VBW	T 1-DH5	PULSE	Iz Ant1 Avg Type Avg Hold	STATUS NO-HOPP 2: Log-Pwr : 100/100 Mk	000 ms (06:38:33 P 176:38:33 P 177:47:47 -7.9 -7.9 -7.9 -7.9 -7.9 -7.9 -7.9 -7.	1001 pts) ssion MDec 09, 2024 SSION SSION MDec 09, 2024 SSION SSION SSION MDec 09, 2024 SSION SSION SSION MDec 09, 2024 SSION S	Frequency Auto Tu Center Fr 2.52600000 0 Start Fr 2.476000000 0 Stop Fr 2.576000000 0
Res BW 100 kHz 3G B Content Freq 2.526000 Ref Offset 7.76 0 dB/div Ref 20.00 d 0 d 1 0 d 1	A C C C C C C C C C C C C C C C C C C C	e NVN 2 C: Fast → in:Low #VBW GHz (Δ)	T 1-DH5	PULSE	Iz Ant1 Avg Type Avg Hold	Status	000 ms (06:38:33 P 176:38:33 P 177:47:47 -7.9 -7.9 -7.9 -7.9 -7.9 -7.9 -7.9 -7.	1001 pts) SSion MDec 09,2024 E 2 3 4 5 6 E 1 2 3 6 E	Frequency Auto Tu Center Fr 2.526000000 0 Start Fr 2.476000000 0 Stop Fr 2.576000000 0
Res BW 100 kHz ag Res BW 100 kHz B Ref offset 7.76 center Freq 2.526000 Ref offset 7.76 Ref 20.00 d 0 dB/div Ref 20.00 d 0 dB/div Ref 20.00 d 0 dB/div Ref 20.00 d 0 dB/div Ref 0 dfset 7.76 Ref 20.00 d 0 dB/div Ref 20.00 d 0 d 0 d 0 d 0 d 0 d 0 d 0 d	A 20 AC D0000 GHz Phty Phty IFGa B dB Bm C C 2,479 9 2,479 9 2,479 5	e NVN 2 C: Fast → in:Low #VBW GHz (Δ)	T 1-DH5	PULSE	Iz Ant1 Avg Type Avg Hold	Status	000 ms (06:38:33 P 176:38:33 P 177:47:47 -7.9 -7.9 -7.9 -7.9 -7.9 -7.9 -7.9 -7.	1001 pts) SSion MDec 09,2024 E 2 3 4 5 6 E 1 2 3 6 E	Frequency Auto Tu Center Fr 2.52600000 0 Start Fr 2.47600000 0 Stop Fr 2.576000000 0 CF St 10.000000 N Auto N Freq Off
Res BW 100 kHz ag B B C C C C C C C C C C C C C	A 20 AC D0000 GHz Phty Phty IFGa B dB Bm C C 2,479 9 2,479 9 2,479 5	e NVN 2 C: Fast → in:Low #VBW GHz (Δ)	T 1-DH5	PULSE	Iz Ant1 Avg Type Avg Hold	Status	000 ms (06:38:33 P 176:38:33 P 177:47:47 -7.9 -7.9 -7.9 -7.9 -7.9 -7.9 -7.9 -7.	1001 pts) SSion MDec 09,2024 E 2 3 4 5 6 E 1 2 3 6 E	Frequency Auto Tu Center Fr 2.526000000 0 Start Fr 2.476000000 0 Stop Fr 2.576000000 0 CF St 10.000000 M Auto M

Band Edge(Hopping)

Condition	Mode	Frequency (MHz)	Antenna	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant1	Hopping	-44.05	-20	Pass
NVNT	1-DH5	2480	Ant1	Hopping	-42.506	-20	Pass



REPORT NO.: E04A24110704F00401 Page 69 of 73



Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant1	-34.98	-20	Pass
NVNT	1-DH5	2441	Ant1	-33.41	-20	Pass
NVNT	1-DH5	2480	Ant1	-29.58	-20	Pass

