CFR 47 FCC PART 15 SUBPART C ISED RSS-247 ISSUE 2 ### **CERTIFICATION TEST REPORT** For #### **Bluetooth Headset** MODEL NUMBER: OTE170R(Right Earbud), OTE170L(Left Earbud) FCC ID: BCE-OTE170 IC: 2386C-OTE170 **REPORT NUMBER: 4790363727-8** ISSUE DATE: April 19, 2022 Prepared for GN Audio USA Inc. (FCC) 900 Chelmsfort St, Tower 2, Floor 8 Lowell, Massachusetts United States 01851 GN Audio A/S (ISED) Lautrupbjerg 7, 2570 Ballerup, Denmark Prepared by UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China > Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com Page 2 of 67 ## **Revision History** | Rev. | Issue Date | Revisions | Revised By | |------|------------|---------------|------------| | V0 | 04/19/2022 | Initial Issue | | **Summary of Test Results** Clause **Test Items** FCC/ISED Rules **Test Results** FCC Part 15.247 (a) (2) 6dB Bandwidth and 99% RSS-247 Clause 5.2 (a) 1 Pass Occupied Bandwidth ISED RSS-Gen Clause 6.7 FCC Part 15.247 (b) (3) 2 Peak Conducted Output Power Pass RSS-247 Clause 5.4 (d) FCC Part 15.247 (e) 3 Power Spectral Density Pass RSS-247 Clause 5.2 (b) Conducted Bandedge and FCC Part 15.247 (d) 4 Pass Spurious Emission RSS-247 Clause 5.5 FCC Part 15.247 (d) FCC Part 15.209 Radiated Bandedge and 5 FCC Part 15.205 Pass Spurious Emission **RSS-247 Clause 5.5 RSS-GEN Clause 8.9** FCC Part 15.203 6 Antenna Requirement Pass **RSS-GEN Clause 6.8** ^{1.} This test report is only published to and used by the applicant, and it is not for evidence purpose in China. ^{2.} The measurement result for the sample received is <Pass> according to < CFR 47 FCC PART 15 SUBPART C >< ISED RSS-247 > when <Accuracy Method> decision rule is applied. ## **TABLE OF CONTENTS** | 1. | AΤ٦ | ESTATION OF TEST RESULTS | 6 | |----|----------------------|---|----------| | 2. | TES | ST METHODOLOGY | 8 | | 3. | FAC | CILITIES AND ACCREDITATION | 8 | | 4. | CAI | IBRATION AND UNCERTAINTY | 9 | | | 4.1. | MEASURING INSTRUMENT CALIBRATION | 9 | | | 4.2. | MEASUREMENT UNCERTAINTY | 9 | | 5. | EQI | JIPMENT UNDER TEST | 10 | | , | 5.1. | DESCRIPTION OF EUT | 10 | | , | 5.2. | CHANNEL LIST | 10 | | , | 5.3. | MAXIMUM PEAK OUTPUT POWER | 10 | | | 5. <i>4</i> . | TEST CHANNEL CONFIGURATION | 10 | | | 5.5. | THE WORSE CASE POWER SETTING PARAMETER | 11 | | | 5.6. | DESCRIPTION OF AVAILABLE ANTENNAS | 11 | | | 5.7. | WORST-CASE CONFIGURATIONS | 11 | | , | 5.8. | DESCRIPTION OF TEST SETUP | 12 | | 6. | ME | ASURING INSTRUMENT AND SOFTWARE USED | 13 | | 7. | AN | TENNA PORT TEST RESULTS | 15 | | | 7.1. | ON TIME AND DUTY CYCLE | 15 | | | 7.2. | 6 dB DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH | 16 | | | 7.3. | CONDUCTED OUTPUT POWER | 18 | | | 7.4. | POWER SPECTRAL DENSITY | 19 | | | 7.5. | CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS | 21 | | 8. | RAI | DIATED TEST RESULTS | 23 | | • | 8.1.
8.1. | RESTRICTED BANDEDGE1. LE 1M MODE | | | (| 8.2.
8.2. | SPURIOUS EMISSIONS (1 GHz ~ 3 GHz)
1. LE 1M MODE | | | • | 8.3.
8.3. | SPURIOUS EMISSIONS (3 GHz ~ 18 GHz)
1. LE 1M MODE | 39
39 | | • | 8. <i>4.</i>
8.4. | SPURIOUS EMISSIONS (18 GHz ~ 26 GHz)
1. LE 1M MODE | | | • | 8 <i>.5.</i>
8.5. | SPURIOUS EMISSIONS (30 MHz ~ 1 GHz)
1. LE 1M MODE | | 8.6. SPURIOUS EMISSIONS BELOW 30 MHz49 LE 1M MODE49 8.6.1. ANTENNA REQUIREMENTS52 Appendix......53 10. 10.1. 10.1.1. Test Result......53 10.1.2. Test Graphs54 Appendix B: Occupied Channel Bandwidth55 10.2. 10.2.1. Test Result.......55 10.2.2. Test Graphs56 Appendix C: Maximum conducted output power57 10.3. 10.3.1. Test Result.......57 10.4. 10.4.1. 10.4.2. Test Graphs59 Appendix E: Band edge measurements60 10.5. Test Result......60 10.5.1. 10.5.2. Test Graphs61 10.6. 10.6.1. Test Result......62 10.6.2. Test Graphs63 10.7. 10.7.1. Test Result.......66 Test Graphs67 10.7.2. Page 6 of 67 ## 1. ATTESTATION OF TEST RESULTS #### **FCC** ## **Applicant Information** Company Name: GN Audio USA Inc. Address: 900 Chelmsfort St, Tower 2, Floor 8 Lowell, Massachusetts United States 01851 **ISED** **Applicant Information** Company Name: GN Audio A/S Address: Lautrupbjerg 7, 2570 Ballerup, Denmark **Manufacturer Information** Company Name: GN Audio A/S Address: Lautrupbjerg 7, 2570 Ballerup, Denmark **EUT Information** EUT Name: Bluetooth Headset Model Name: OTE170R(Right Earbud), OTE170L(Left Earbud) Brand: Jabra Sample Received Date: April 6, 2022 Sample Status: Normal Sample ID: 4850188 Date of Tested: April 6, 2022~ April 18, 2022 | APPLICABLE STANDARDS | | | | | |------------------------------|--------------|--|--|--| | STANDARD | TEST RESULTS | | | | | CFR 47 FCC PART 15 SUBPART C | PASS | | | | | ISED RSS-247 Issue 2 | PASS | | | | | ISED RSS-GEN Issue 5 | PASS | | | | Prepared By: Checked By: Shemy les kelo. Theny. Kebo Zhang Shawn Wen Project Engineer Laboratory Leader Approved By: Page 7 of 67 Page 8 of 67 ### 2. TEST METHODOLOGY The tests documented in this report were performed in accordance with KDB 558074 D01 15.247 Meas Guidance v05r02, 414788 D01 Radiated Test Site v01r01, CFR 47 FCC Part 2, CFR 47 FCC Part 15, ANSI C63.10-2013, ISED RSS-247 Issue 2 and ISED RSS-GEN Issue 5. ## 3. FACILITIES AND ACCREDITATION | | A2LA (Certificate No.: 4102.01) | |---------------|---| | | UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. | | | has been assessed and proved to be in compliance with A2LA. | | | FCC (FCC Designation No.: CN1187) | | | UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. | | | Has been recognized to perform compliance testing on equipment subject | | | to the Commission's Delcaration of Conformity (DoC) and Certification rules | | | ISED (Company No.: 21320) | | Accreditation | UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. | | Accreditation | has been registered and fully described in a report filed with ISED. | | Certificate | The Company Number is 21320 and the test lab Conformity Assessment | | | Body Identifier (CABID) is CN0046. | | | VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011) | | | UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. | | | has been assessed and proved to be in compliance with VCCI, the | | | Membership No. is 3793. | | | Facility Name: | | | Chamber D, the VCCI registration No. is G-20019 and R-20004 | | | Shielding Room B, the VCCI registration No. is C-20012 and T-20011 | Note 1: All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China Note 2: The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site. Note 3: For below 30 MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30 MHz had been correlated to measurements performed on an OFS. Page 9 of 67 ## 4. CALIBRATION AND UNCERTAINTY #### 4.1. **MEASURING INSTRUMENT CALIBRATION** The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognize national standards. #### 4.2. **MEASUREMENT UNCERTAINTY** Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus: | Test Item | Uncertainty | |--|---------------------------| | Conduction emission | 3.62 dB | | Radiated Emission (Included Fundamental Emission) (9 kHz ~ 30 MHz) | 2.2 dB | | Radiated Emission (Included Fundamental Emission) (30 MHz ~ 1 GHz) | 4.00 dB | | Radiated Emission | 5.78 dB (1 GHz ~ 18 GHz) | | (Included Fundamental Emission) (1 GHz to 26 GHz) | 5.23 dB (18 GHz ~ 26 GHz) | Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level using a coverage factor of k=2. Page 10 of 67 5. EQUIPMENT UNDER TEST ## 5.1. DESCRIPTION OF EUT | EUT Name | Bluetooth Headset | | | |---------------------|---|---------------------|--| | Model Name | OTE170R(Right Earbud), OTE170L(Left Earbud) | | | | | Operation Frequency | 2402 MHz ~ 2480 MHz | | | Product Description | Modulation Type | Data Rate | | | | GFSK | 1Mbps | | | Battery 3.7 Vdc | | | | Note: The EUT have two True Wireless Headphones, they have the same RF circuit and the performance, same technical construction including drive circuit diagram, PCB Layout, components and component layout, so only worst mode Left Bluetooth headphone test data record in this report. ## 5.2. CHANNEL LIST | Channel | Frequency
(MHz) | Channel | Frequency
(MHz) | Channel | Frequency
(MHz) | Channel | Frequency
(MHz) | |---------|--------------------|---------|--------------------|---------|--------------------|---------|--------------------| | 0 | 2402 | 11 | 2424 | 22 | 2446 | 33 | 2468 | | 1 | 2404 | 12 | 2426 | 23 | 2448 | 34 | 2470 | | 2 | 2406 | 13 | 2428 | 24 | 2450 | 35 | 2472 | | 3 | 2408 | 14 | 2430 | 25 | 2452 | 36 | 2474 | | 4 | 2410 | 15 | 2432 | 26 | 2454 | 37 | 2476 | | 5 | 2412 | 16 | 2434 | 27 | 2456 | 38 | 2478 | | 6 | 2414 | 17 | 2436 | 28 | 2458 | 39 | 2480 | | 7 | 2416 | 18 | 2438 | 29 | 2460 | / | / | | 8 | 2418 | 19 | 2440 | 30 | 2462 | / | / | | 9 | 2420 | 20 | 2442 | 31 | 2464 | / | / | | 10 | 2422 | 21 | 2444 | 32 | 2468 | / | / | ##
5.3. MAXIMUM PEAK OUTPUT POWER | Test Mode | Frequency
(MHz) | Channel Number | Maximum Peak
Output Power
(dBm) | Maximum
EIRP
(dBm) | |-----------|--------------------|----------------|---------------------------------------|--------------------------| | BLE_1M | 2402 ~ 2480 | 0-39[40] | 8.38 | 6.02 | ### 5.4. TEST CHANNEL CONFIGURATION | Test Mode Test Channel | | Frequency | |------------------------|---|---------------------------------| | BLE_1M | CH 0(Low Channel), CH 19(MID Channel),
CH 39(High Channel) | 2402 MHz, 2440 MHz, 2480
MHz | Page 11 of 67 ## 5.5. THE WORSE CASE POWER SETTING PARAMETER | The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band | | | | | | |--|-------------------|-------------------------------|---------|---------|--| | Test Software Version Bluetest3 | | | | | | | Modulation | Transmit | 1 cot Contward Southing Value | | ue | | | Type | Antenna
Number | CH 0 | CH 19 | CH 39 | | | GFSK(1Mbps) | 1 | default | default | default | | ### 5.6. DESCRIPTION OF AVAILABLE ANTENNAS Right Headphone: | Antenna | Frequency (MHz) | Antenna Type | MAX Antenna Gain (dBi) | |---------|-----------------|--------------|------------------------| | 1 | 2402-2480 | PCB | -2.36 | Left Headphone: | Antenna | Frequency (MHz) | Antenna Type | MAX Antenna Gain (dBi) | |---------|-----------------|--------------|------------------------| | 1 | 2402-2480 | PCB | -1.95 | | Test Modulation | Transmit and Receive Mode | Description | | | |---|---------------------------|--|--|--| | GFSK(1Mbps) | 1TX, 1RX | Chain 1 can be used as transmitting/receiving antenna. | | | | Note: The value of the antenna gain was declared by customer. | | | | | ## 5.7. WORST-CASE CONFIGURATIONS | Test Mode | Modulation Type | Data Rate
(Mbps) | |-----------|-----------------|---------------------| | BLE_1M | GFSK | 1Mbit/s | Note: The EUT have two True Wireless Headphones, they have the same RF circuit and the performance, same technical construction including drive circuit diagram, PCB Layout, components and component layout, so only worst mode Left Bluetooth headphone test data record in this report. REPORT NO.: 4790363727-8 Page 12 of 67 ## 5.8. DESCRIPTION OF TEST SETUP ### **SUPPORT EQUIPMENT** | Item | Equipment | Brand Name | Model Name | Remarks | |------|-----------|------------|------------|---------| | 1 | Laptop | Lenovo | E42 | / | | 2 | UART | / | / | / | ### **I/O CABLES** | Cable No | Port | Connector Type | Cable Type | Cable Length(m) | Remarks | |----------|------|----------------|------------|-----------------|---------| | 1 | USB | / | / | 1.0 | / | ### **ACCESSORY** | Item | Accessory | Brand Name | Model Name | Description | |------|-----------|------------|------------|-------------| | 1 | / | / | / | | ### **TEST SETUP** The EUT can work in an engineer mode with software through a laptop. ## **SETUP DIAGRAM FOR TESTS** 6. MEASURING INSTRUMENT AND SOFTWARE USED | R&S TS 8997 Test System | | | | | | | | | | |--|--------------------------|---------------|--------|----------|-------------|-------------------|-----------|------------|--------------| | Equipment | Equipment Manufacture | | cturer | Model | No. | Serial No. | Last C | al. | Due. Date | | Power sensor, Power M | leter | R&S | 3 | OSP1 | 20 | 100921 | Mar.23,2 | 2021 | Mar.22,2022 | | Vector Signal Genera | tor | R&S | 3 | SMBV1 | 00A | 261637 | Oct.30, 2 | 2021 | Oct.29, 2022 | | Signal Generator | | R&S | 3 | SMB10 |)0A | 178553 | Oct.30, 2 | 2021 | Oct.29, 2022 | | Signal Analyzer | | R&S | 3 | FSV4 | 10 | 101118 | Oct.30, 2 | 2021 | Oct.29, 2022 | | | | | | Softwar | е | | | | | | Description | | I | Manu | facturer | | Nam | ne | | Version | | For R&S TS 8997 Test | Syste | m Ro | hde & | & Schwa | rz | EMC | 32 | 10.60.10 | | | Tonsend RF Test System | | | | | | | | | | | Equipment | Manu | ufacturer Mod | | del No. | S | Serial No. | Last C | Cal. | Due. Date | | Wideband Radio
Communication Tester | F | R&S | CM | 1W500 | | 155523 | Oct.30, | 2021 | Oct.29, 2022 | | Wireless Connectivity Tester | F | R&S | CM | 1W270 | 120 | 1.0002N75-
102 | Sep.29, | 2021 | Sep.28, 2022 | | PXA Signal Analyzer | Ke | ysight | NS | 9030A | MY | ′55410512 | Oct.30, | 2021 | Oct.29, 2022 | | MXG Vector Signal
Generator | Ke | ysight | N5 | 5182B | MY | ′56200284 | Oct.30, | 2021 | Oct.29, 2022 | | MXG Vector Signal
Generator | Ke | ysight | N5 | 5172B | MY | ′56200301 | Oct.30, | 2021 | Oct.29, 2022 | | DC power supply | Ke | eysight E3 | | 3642A | MY | ′55159130 | Oct.30, | 2021 | Oct.29, 2022 | | Temperature & Humidity Chamber | SAN | NMOOD SG-8 | | 30-CC-2 | | 2088 | Nov.20, | 2020 | Nov.19,2022 | | Software | | | | | | | | | | | Description | Description Manufacturer | | | | | Name | | | Version | | Tonsend SRD Test System Tonsend | | | JS1 | 120-3 | 3 RF Test S | ystem | 2 | .6.77.0518 | | **Radiated Emissions** Manufacturer Model No. Serial No. Last Cal. **Due Date** Equipment MXE EMI **KESIGHT** MY56400036 Oct.30, 2021 Oct.29, 2022 N9038A Receiver Hybrid Log TDK HLP-3003C 130959 Aug.02, 2021 Aug.01, 2024 Periodic Antenna Preamplifier HP 2944A09099 8447D Oct.30, 2021 Oct.29, 2022 EMI Measurement R&S ESR₂₆ 101377 Oct.30, 2021 Oct.29, 2022 Receiver Horn Antenna TDK HRN-0118 130940 July 20, 2021 July 19, 2024 TRS-305-PA-02-0118 Preamplifier TDK Oct.30, 2021 Oct.29, 2022 00067 Horn Antenna Schwarzbeck **BBHA9170** 697 July 20, 2021 July 19, 2024 TRS-307-Oct.31, 2021 Preamplifier TDK PA-02-2 Oct.30, 2022 00003 TRS-308-Oct.31, 2021 Preamplifier TDK PA-02-3 Oct.30, 2022 00002 Loop antenna 80000 Dec.14, 2021 Schwarzbeck 1519B Dec.17,2024 PA-02-001-TRS-302-TDK Preamplifier Oct.31, 2021 Oct.30, 2022 3000 00050 ZX60-83LN-Preamplifier Mini-Circuits SUP01201941 Oct.31, 2021 Oct.30, 2022 S+ WHKX10-High Pass Filter Wi 2700-3000-23 Oct.31, 2021 Oct.30, 2022 18000-40SS WRCJV8-**Band Reject** 2350-2400-Wainwright 4 Oct.31, 2021 Oct.30, 2022 Filter 2483.5-2533.5-40SS Software Description Manufacturer Name Version Test Software for Radiated Emissions Farad **EZ-EMC** Ver. UL-3A1 Page 15 of 67 # 7. ANTENNA PORT TEST RESULTS #### 7.1. ON TIME AND DUTY CYCLE ## **LIMITS** None; for reporting purposes only. ## **PROCEDURE** Refer to ANSI C63.10-2013 clause 11.6 Zero – Span Spectrum Analyzer method. ### **TEST SETUP** ## **TEST ENVIRONMENT** | Temperature | 23.2 °C | Relative Humidity | 52.5 % | |---------------------|---------|-------------------|----------| | Atmosphere Pressure | 101 kPa | Test Voltage | DC 3.7 V | #### **RESULTS** Please refer to appendix G. Page 16 of 67 #### 7.2. 6 dB DTS BANDWIDTH AND 99 % OCCUPIED BANDWIDTH #### **LIMITS** | CFR 47FCC Part15 (15.247) Subpart C
ISED RSS-247 ISSUE 2 | | | | | | |---|----------------------------|------------------------------------|-------------|--|--| | Section Test Item Limit Frequency Range (MHz) | | | | | | | CFR 47 FCC 15.247(a)(2)
ISED RSS-247 5.2 (a) | 6 dB Bandwidth | ≥ 500 kHz | 2400-2483.5 | | | | ISED RSS-Gen Clause 6.7 | 99 % Occupied
Bandwidth | None; for reporting purposes only. | 2400-2483.5 | | | #### **TEST PROCEDURE** Refer to ANSI C63.10-2013 clause 11.8 for DTS bandwidth and clause 6.9 for Occupied Bandwidth. Connect the EUT to the spectrum analyser and use the following settings: | Center Frequency | The center frequency of the channel under test | |------------------|--| | Frequency Span | For 6 dB Bandwidth: Enough to capture all products of the modulation carrier emission For 99 % Occupied Bandwidth: Between 1.5 times and 5.0 times the OBW | | Detector | Peak | | RBW | For 6 dB Bandwidth: 100 kHz For 99 % Occupied Bandwidth: 1 % to 5 % of the occupied bandwidth | | VBW | For 6 dB Bandwidth: ≥3 × RBW
For 99 % Occupied Bandwidth: ≥3 × RBW | | Trace | Max hold | | Sweep | Auto couple | - a) Use the 99 % power bandwidth function of the instrument, allow the trace to stabilize and report the measured bandwidth. - b) Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission. #### **TEST SETUP** Page 17 of 67 ## **TEST ENVIRONMENT** | Temperature | 23.2 °C | Relative Humidity | 52.5 % | |---------------------|---------|-------------------|----------| | Atmosphere Pressure | 101 kPa | Test Voltage | DC 3.7 V | ### **RESULTS** Please refer to appendix A & B. Page 18 of 67 ### 7.3. CONDUCTED OUTPUT POWER #### **LIMITS** | CFR 47 FCC Part15 (15.247) Subpart C
ISED RSS-247 ISSUE 2 | | | | | | |--|--------------------------------|------------------|-------------|--|--| | Section Test Item Limit Frequency Range (MHz) | | | | | | | CFR 47 FCC 15.247(b)(3)
ISED RSS-247 5.4 (d) | Peak Conducted Output
Power | 1 watt or 30 dBm | 2400-2483.5 | | | ### **TEST PROCEDURE** Connect the EUT to a low loss RF cable from the antenna port to the power sensor (video bandwidth is greater than the occupied bandwidth). Measure peak emission level, the indicated level is the peak output power, after any corrections for external attenuators and cables. #### **TEST SETUP** #### **TEST ENVIRONMENT** | Temperature | 23.2 °C | Relative Humidity | 52.5 % | |---------------------|---------|-------------------|----------| | Atmosphere Pressure | 101 kPa | Test Voltage | DC 3.7 V | #### **RESULTS**
Please refer to appendix C. Page 19 of 67 ## 7.4. POWER SPECTRAL DENSITY #### **LIMITS** | CFR 47 FCC Part15 (15.247) Subpart C
ISED RSS-247 ISSUE 2 | | | | |--|---------------------------|----------------------------|--------------------------| | Section | Test Item | Limit | Frequency Range
(MHz) | | CFR 47 FCC §15.247 (e)
ISED RSS-247 5.2 (b) | Power Spectral
Density | 8 dBm in any 3 kHz
band | 2400-2483.5 | ### **TEST PROCEDURE** Refer to ANSI C63.10-2013 clause 11.10. Connect the EUT to the spectrum analyser and use the following settings: | Center Frequency | The center frequency of the channel under test | |------------------|--| | Detector | Peak | | RBW | 3 kHz ≤ RBW ≤ 100 kHz | | VBW | ≥3 × RBW | | Span | 1.5 x DTS bandwidth | | Trace | Max hold | | Sweep time | Auto couple | Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat. #### **TEST SETUP** #### **TEST ENVIRONMENT** | Temperature | 23.2 °C | Relative Humidity | 52.5 % | |---------------------|---------|-------------------|----------| | Atmosphere Pressure | 101 kPa | Test Voltage | DC 3.7 V | Page 20 of 67 ## **RESULTS** Please refer to appendix D. Page 21 of 67 #### 7.5. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS #### **LIMITS** | CFR 47 FCC Part15 (15.247) Subpart C
ISED RSS-247 ISSUE 2 | | | | |--|---|---|--| | Section Test Item Limit | | | | | CFR 47 FCC §15.247 (d)
ISED RSS-247 5.5 | Conducted
Bandedge and
Spurious Emissions | at least 20 dB below that in the 100 kHz
bandwidth within the band that contains the
highest level of the desired power | | ### **TEST PROCEDURE** Refer to ANSI C63.10-2013 clause 11.11 and 11.13. Connect the EUT to the spectrum analyser and use the following settings for reference level measurement: | Center Frequency | The center frequency of the channel under test | |------------------|--| | Detector | Peak | | RBW | 100 kHz | | VBW | ≥3 × RBW | | Span | 1.5 x DTS bandwidth | | Trace | Max hold | | Sweep time | Auto couple. | Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level. Change the settings for emission level measurement: | 1.50.30 | Set the center frequency and span to encompass frequency range to be measured | |--------------------|---| | Detector | Peak | | RBW | 100 kHz | | VBW | ≥3 × RBW | | measurement points | ≥span/RBW | | Trace | Max hold | | Sweep time | Auto couple. | Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11. ### **TEST SETUP** ### **TEST ENVIRONMENT** | Temperature | 23.2 °C | Relative Humidity | 52.5 % | |---------------------|---------|-------------------|----------| | Atmosphere Pressure | 101 kPa | Test Voltage | DC 3.7 V | ## **RESULTS** Please refer to appendix E & F. 8. RADIATED TEST RESULTS ## **LIMITS** Please refer to CFR 47 FCC §15.205 and §15.209. Please refer to ISED RSS-GEN Clause 8.9 and Clause 8.10. Radiation Disturbance Test Limit for FCC (Class B) (9 kHz-1 GHz) | Emissions radiated outside of the specified frequency bands above 30 MHz | | | | | |--|----------------------|----------------------|---------|--| | Frequency Range | Field Strength Limit | Field Strength Limit | | | | (MHz) | (uV/m) at 3 m | (dBuV/m) | at 3 m | | | (141112) | (4 7/11) 41 3 111 | Quasi-Peak | | | | 30 - 88 | 100 | 40 | | | | 88 - 216 | 150 | 43.5 | | | | 216 - 960 | 200 | 46 | | | | Above 960 | 500 | 54 | | | | Above 1000 | 500 | Peak | Average | | | Above 1000 | 300 | 74 | 54 | | | FCC Emissions radiated outside of the specified frequency bands below 30 MHz | | | | |---|--------------|-----|--| | Frequency (MHz) Field strength (microvolts/meter) Measurement distance (meters) | | | | | 0.009-0.490 | 2400/F(kHz) | 300 | | | 0.490-1.705 | 24000/F(kHz) | 30 | | | 1.705-30.0 | 30 | 30 | | ### ISED General field strength limits at frequencies below 30 MHz | Table 6 – General field strength limits at frequencies below 30 MHz | | | | |---|--|--------------------------|--| | Frequency | Magnetic field strength (H-Field) (μA/m) | Measurement distance (m) | | | 9 - 490 kHz ^{Note 1} | 6.37/F (F in kHz) | 300 | | | 490 - 1705 kHz | 63.7/F (F in kHz) | 30 | | | 1.705 - 30 MHz | 0.08 | 30 | | **Note 1:** The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector. ## ISED Restricted bands please refer to ISED RSS-GEN Clause 8.10 | MHz | MHz | GHz | |---------------------|-----------------------|---------------| | 0.090 - 0.110 | 149.9 - 150.05 | 9.0 - 9.2 | | 0.495 - 0.505 | 158.52475 - 158.52525 | 9.3 - 9.5 | | 2.1735 - 2.1905 | 156.7 - 156.9 | 10.6 - 12.7 | | 3.020 - 3.028 | 162.0125 - 167.17 | 13.25 - 13.4 | | 4.125 - 4.128 | 167.72 - 173.2 | 14.47 - 14.5 | | 4.17725 - 4.17775 | 240 – 285 | 15.35 - 16.2 | | 4.20725 - 4.20775 | 322 - 335.4 | 17.7 - 21.4 | | 5.677 - 5.683 | 399.9 - 410 | 22.01 - 23.12 | | 3.215 - 6.218 | 608 - 614 | 23.6 - 24.0 | | 3.26775 - 6.26825 | 960 - 1427 | 31.2 - 31.8 | | 3.31175 - 6.31225 | 1435 - 1626.5 | 36.43 - 36.5 | | 3.291 - 8.294 | 1645.5 - 1648.5 | Above 38.6 | | 8.362 - 8.366 | 1660 - 1710 | | | 8.37625 - 8.38675 | 1718.8 - 1722.2 | | | 8.41425 - 8.41475 | 2200 - 2300 | | | 12.29 - 12.293 | 2310 - 2390 | | | 12.51975 - 12.52025 | 2483.5 - 2500 | | | 12.57675 - 12.57725 | 2655 - 2900 | | | 13.36 - 13.41 | 3260 - 3267 | | | 16.42 - 16.423 | 3332 - 3339 | | | 16.69475 - 16.69525 | 3345.8 - 3358 | | | 16.80425 - 16.80475 | 3500 - 4400 | | | 25.5 - 25.67 | 4500 - 5150 | | | 37.5 - 38.25 | 5350 - 5480 | | | 73 - 74.6 | 7250 - 7750 | | | 74.8 - 75.2 | 8025 - 8500 | | | 108 – 138 | | | ## FCC Restricted bands of operation refer to FCC §15.205 (a): | MHz | MHz | MHz | GHz | |--------------------------|---------------------|---------------|------------------| | 0.090-0.110 | 16.42-16.423 | 399.9-410 | 4.5-5.15 | | ¹ 0.495-0.505 | 16.69475-16.69525 | 608-614 | 5.35-5.46 | | 2.1735-2.1905 | 16.80425-16.80475 | 960-1240 | 7.25-7.75 | | 4.125-4.128 | 25.5-25.67 | 1300-1427 | 8.025-8.5 | | 4.17725-4.17775 | 37.5-38.25 | 1435-1626.5 | 9.0-9.2 | | 4.20725-4.20775 | 73-74.6 | 1645.5-1646.5 | 9.3-9.5 | | 6.215-6.218 | 74.8-75.2 | 1660-1710 | 10.6-12.7 | | 6.26775-6.26825 | 108-121.94 | 1718.8-1722.2 | 13.25-13.4 | | 6.31175-6.31225 | 123-138 | 2200-2300 | 14.47-14.5 | | 8.291-8.294 | 149.9-150.05 | 2310-2390 | 15.35-16.2 | | 8.362-8.366 | 156.52475-156.52525 | 2483.5-2500 | 17.7-21.4 | | 8.37625-8.38675 | 156.7-156.9 | 2690-2900 | 22.01-23.12 | | 8.41425-8.41475 | 162.0125-167.17 | 3260-3267 | 23.6-24.0 | | 12.29-12.293 | 167.72-173.2 | 3332-3339 | 31.2-31.8 | | 12.51975-12.52025 | 240-285 | 3345.8-3358 | 36.43-36.5 | | 12.57675-12.57725 | 322-335.4 | 3600-4400 | (²) | | 13.36-13.41 | | | | Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c **TEST SETUP AND PROCEDURE** Below 30 MHz #### The setting of the spectrum analyser | RBW | 200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz) | |-------|--| | VBW | 200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz) | | Sweep | Auto | - 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4. - 2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement. - 3. The EUT was placed on a turntable with 80 cm above ground. - 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower. - 5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz Radiated emission limits in these three bands are based on measurements employing an average detector. - 6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported. - 7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788. - 8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical
to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X KHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit. Below 1 GHz and above 30 MHz The setting of the spectrum analyser | RBW | 120 kHz | |----------|----------| | VBW | 300 kHz | | Sweep | Auto | | Detector | Peak/QP | | Trace | Max hold | - 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5. - 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - 3. The EUT was placed on a turntable with 80 cm above ground. - 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower. - 5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. Above 1GHz The setting of the spectrum analyser | RBW | 1 MHz | |----------|--------------------------------| | IV/RW/ | PEAK: 3 MHz
AVG: see note 6 | | Sweep | Auto | | Detector | Peak | | Trace | Max hold | - 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.6. - 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - 3. The EUT was placed on a turntable with 1.5 m above ground. - 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower. - 5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209. - 6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.1.ON TIME AND DUTY CYCLE. X axis, Y axis, Z axis positions: Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report. Note 2: The EUT was fully exercised with external accessories during the test. In the case of multiple accessory external ports, an external accessory shall be connected to one of each type of port. ### **TEST ENVIRONMENT** | Temperature | 24.3 °C | Relative Humidity | 61 % | |---------------------|---------|-------------------|----------| | Atmosphere Pressure | 101 kPa | Test Voltage | DC 3.7 V | #### **RESULTS** ### 8.1. RESTRICTED BANDEDGE #### 8.1.1. LE 1M MODE ## RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL) #### **PEAK** | l | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |---|-----|-----------|---------|---------|----------|----------|--------|--------| | | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | | 1 | 2390.000 | 14.51 | 32.66 | 47.17 | 74.00 | -26.83 | peak | Note: 1. Measurement = Reading Level + Correct Factor. - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. - 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit. ### RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL) #### **PEAK** | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 2390.000 | 15.09 | 32.66 | 47.75 | 74.00 | -26.25 | peak | Note: 1. Measurement = Reading Level + Correct Factor. - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. - 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit. REPORT NO.: 4790363727-8 Page 31 of 67 #### RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL) ## **PEAK** | | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |---|-----|-----------|---------|---------|----------|----------|--------|--------| | | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | Γ | 1 | 2483.500 | 27.63 | 33.10 | 60.73 | 74.00 | -13.27 | peak | Note: 1. Measurement = Reading Level + Correct Factor. - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. - 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit. #### **AVG** | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 2483,500 | 5.48 | 33.10 | 38.58 | 54.00 | -15.42 | AVG | Note: 1. Measurement = Reading Level + Correct Factor. - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. - 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit. Note: All the polarities (Vertical & Horizontal) had been tested, only the worst data was recorded in the report. ## 8.2. SPURIOUS EMISSIONS (1 GHz ~ 3 GHz) #### 8.2.1. **LE 1M MODE** ## HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL) | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|-------------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 1058.000 | 51.58 | -14.67 | 36.91 | 74.00 | -37.09 | peak | | 2 | 1196.000 | 49.97 | -13.73 | 36.24 | 74.00 | -37.76 | peak | | 3 | 1328.000 | 53.74 | -13.29 | 40.45 | 74.00 | -33.55 | peak | | 4 | 1464.000 | 51.41 | -12.64 | 38.77 | 74.00 | -35.23 | peak | | 5 | 1598.000 | 55.69 | -11.86 | 43.83 | 74.00 | -30.17 | peak | | 6 | 2402.000 | 54.52 | -8.94 | 45.58 | / | / | Fundamental | - 1. Peak Result = Reading Level + Correct Factor. - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. - 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses. - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain. ### HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL) | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|-------------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 1060.000 | 51.35 | -14.66 | 36.69 | 74.00 | -37.31 | peak | | 2 | 1380.000 | 58.78 | -13.13 | 45.65 | 74.00 | -28.35 | peak | | 3 | 1598.000 | 53.33 | -11.86 | 41.47 | 74.00 | -32.53 | peak | | 4 | 2128.000 | 48.07 | -10.16 | 37.91 | 74.00 | -36.09 | peak | | 5 | 2402.000 | 52.39 | -8.94 | 43.45 | / | / | Fundamental | | 6 | 2794.000 | 52.29 | -7.69 | 44.60 | 74.00 | -29.40 | peak | - 1. Peak Result = Reading Level + Correct Factor. - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. - 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses. - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain. #### HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL) | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|-------------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 1064.000 | 49.95 | -14.63 | 35.32 | 74.00 | -38.68 | peak | | 2 | 1194.000 | 50.79 | -13.75 | 37.04 | 74.00 | -36.96 | peak | | 3 | 1424.000 | 51.79 | -12.90 | 38.89 | 74.00 | -35.11 | peak | | 4 | 1598.000 | 55.02 | -11.86 | 43.16 | 74.00 | -30.84 | peak | | 5 | 1862.000 | 50.78 | -10.70 | 40.08 | 74.00 | -33.92 | peak | | 6 | 2440.000 | 54.20 | -8.86 | 45.34 | / | / | Fundamental | - 1. Peak Result = Reading Level + Correct Factor. - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. - 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses. - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain. **HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)** | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|-------------| | | (MHz) | (dBuV) |
(dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 1328.000 | 56.80 | -13.29 | 43.51 | 74.00 | -30.49 | peak | | 2 | 1386.000 | 57.18 | -13.11 | 44.07 | 74.00 | -29.93 | peak | | 3 | 1598.000 | 54.39 | -11.86 | 42.53 | 74.00 | -31.47 | peak | | 4 | 2440.000 | 50.96 | -8.86 | 42.10 | / | / | Fundamental | | 5 | 2664.000 | 52.10 | -8.28 | 43.82 | 74.00 | -30.18 | peak | | 6 | 2796.000 | 50.36 | -7.69 | 42.67 | 74.00 | -31.33 | peak | - 1. Peak Result = Reading Level + Correct Factor. - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. - 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses. - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain. HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL) | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|-------------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 1066.000 | 50.25 | -14.62 | 35.63 | 74.00 | -38.37 | peak | | 2 | 1328.000 | 51.47 | -13.29 | 38.18 | 74.00 | -35.82 | peak | | 3 | 1594.000 | 56.70 | -11.88 | 44.82 | 74.00 | -29.18 | peak | | 4 | 1866.000 | 50.41 | -10.70 | 39.71 | 74.00 | -34.29 | peak | | 5 | 2266.000 | 47.36 | -9.46 | 37.90 | 74.00 | -36.10 | peak | | 6 | 2480.000 | 53.75 | -8.76 | 44.99 | / | / | Fundamental | #### Note: - 1. Peak Result = Reading Level + Correct Factor. - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. - 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses. - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain. #### HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL) | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|-------------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 1068.000 | 51.52 | -14.60 | 36.92 | 74.00 | -37.08 | peak | | 2 | 1388.000 | 57.84 | -13.10 | 44.74 | 74.00 | -29.26 | peak | | 3 | 1598.000 | 54.65 | -11.86 | 42.79 | 74.00 | -31.21 | peak | | 4 | 1998.000 | 49.46 | -10.95 | 38.51 | 74.00 | -35.49 | peak | | 5 | 2480.000 | 54.17 | -8.76 | 45.41 | / | / | Fundamental | | 6 | 2794.000 | 51.58 | -7.69 | 43.89 | 74.00 | -30.11 | peak | #### Note: - 1. Peak Result = Reading Level + Correct Factor. - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. - 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses. - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain. # 8.3. SPURIOUS EMISSIONS (3 GHz ~ 18 GHz) #### 8.3.1. **LE 1M MODE** #### HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL) | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 4785.000 | 46.57 | -0.48 | 46.09 | 74.00 | -27.91 | peak | | 2 | 7770.000 | 37.96 | 6.93 | 44.89 | 74.00 | -29.11 | peak | | 3 | 9600.000 | 38.15 | 10.69 | 48.84 | 74.00 | -25.16 | peak | | 4 | 11955.000 | 34.71 | 17.28 | 51.99 | 74.00 | -22.01 | peak | | 5 | 13965.000 | 31.36 | 21.37 | 52.73 | 74.00 | -21.27 | peak | | 6 | 17970.000 | 27.21 | 25.08 | 52.29 | 74.00 | -21.71 | peak | - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. - 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses. - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain. #### HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL) | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 4785.000 | 46.23 | -0.48 | 45.75 | 74.00 | -28.25 | peak | | 2 | 6390.000 | 44.94 | 2.98 | 47.92 | 74.00 | -26.08 | peak | | 3 | 11415.000 | 35.62 | 15.85 | 51.47 | 74.00 | -22.53 | peak | | 4 | 13935.000 | 31.32 | 21.29 | 52.61 | 74.00 | -21.39 | peak | | 5 | 14415.000 | 35.73 | 19.40 | 55.13 | 74.00 | -18.87 | peak | | 6 | 14415.000 | 25.86 | 19.40 | 45.26 | 54.00 | -8.74 | AVG | | 7 | 17775.000 | 27.52 | 24.31 | 51.83 | 74.00 | -22.17 | peak | - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. - 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses. - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain. #### HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL) | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 4785.000 | 44.19 | -0.48 | 43.71 | 74.00 | -30.29 | peak | | 2 | 8160.000 | 37.77 | 7.80 | 45.57 | 74.00 | -28.43 | peak | | 3 | 9765.000 | 39.16 | 10.19 | 49.35 | 74.00 | -24.65 | peak | | 4 | 12210.000 | 34.19 | 17.62 | 51.81 | 74.00 | -22.19 | peak | | 5 | 14265.000 | 31.31 | 20.68 | 51.99 | 74.00 | -22.01 | peak | | 6 | 16935.000 | 31.83 | 20.12 | 51.95 | 74.00 | -22.05 | peak | - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. - 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses. - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain. #### HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL) | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 3180.000 | 50.35 | -5.18 | 45.17 | 74.00 | -28.83 | peak | | 2 | 4785.000 | 46.28 | -0.48 | 45.80 | 74.00 | -28.20 | peak | | 3 | 6390.000 | 45.15 | 2.98 | 48.13 | 74.00 | -25.87 | peak | | 4 | 9765.000 | 39.20 | 10.19 | 49.39 | 74.00 | -24.61 | peak | | 5 | 13545.000 | 32.36 | 20.38 | 52.74 | 74.00 | -21.26 | peak | | 6 | 14640.000 | 27.64 | 18.62 | 46.26 | 54.00 | -7.74 | AVG | | 7 | 14640.000 | 35.45 | 18.62 | 54.07 | 74.00 | -19.93 | peak | - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. - 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses. - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain. #### HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL) | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 4785.000 | 47.93 | -0.48 | 47.45 | 74.00 | -26.55 | peak | | 2 | 7815.000 | 38.98 | 7.10 | 46.08 | 74.00 | -27.92 | peak | | 3 | 9915.000 | 38.47 | 11.31 | 49.78 | 74.00 | -24.22 | peak | | 4 | 11835.000 | 35.24 | 16.98 | 52.22 | 74.00 | -21.78 | peak | | 5 | 13560.000 | 32.89 | 20.40 | 53.29 | 74.00 | -20.71 | peak | | 6 | 16860.000 | 32.58 | 19.82 | 52.40 | 74.00 | -21.60 | peak | - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. - 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses. - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain. HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL) | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 3180.000 | 50.26 | -5.18 | 45.08 | 74.00 | -28.92 | peak | | 2 | 4785.000 | 48.46 | -0.48 | 47.98 | 74.00 | -26.02 | peak | | 3 | 6390.000 | 43.78 | 2.98 | 46.76 | 74.00 | -27.24 | peak | | 4 | 9915.000 | 40.87 | 11.31 | 52.18 | 74.00 | -21.82 | peak | | 5 | 13560.000 | 32.09 | 20.40 | 52.49 | 74.00 | -21.51 | peak | | 6 | 14880.000 | 36.07 | 17.66 | 53.73 | 74.00 | -20.27 | peak | - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. - 4. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses. - 5. Proper operation of the transmitter prior to adding the filter to the measurement chain. 8.4. SPURIOUS EMISSIONS (18 GHz ~ 26 GHz) #### 8.4.1. **LE 1M MODE** #### SPURIOUS EMISSIONS (HIGH CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL) | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 18592.000 | 50.25 | -5.31 | 44.94 | 74.00 | -29.06 | peak | | 2 | 18592.000 | 50.25 | -5.31 | 44.94 | 74.00 | -29.06 | peak | | 3 | 20000.000 | 50.81 | -5.45 | 45.36 | 74.00 | -28.64 | peak | | 4 | 21600.000 | 50.02 | -4.54 | 45.48 | 74.00 | -28.52 | peak | | 5 | 23256.000 | 49.22
 -3.35 | 45.87 | 74.00 | -28.13 | peak | | 6 | 25072.000 | 47.67 | -1.97 | 45.70 | 74.00 | -28.30 | peak | Note: 1. Peak Result = Reading Level + Correct Factor. 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. 3. Peak: Peak detector. SPURIOUS EMISSIONS (HIGH CHANNEL, WORST-CASE CONFIGURATION, VERTICAL) | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 18528.000 | 50.11 | -5.26 | 44.85 | 74.00 | -29.15 | peak | | 2 | 19784.000 | 50.07 | -5.28 | 44.79 | 74.00 | -29.21 | peak | | 3 | 20240.000 | 50.32 | -5.61 | 44.71 | 74.00 | -29.29 | peak | | 4 | 22616.000 | 48.59 | -3.80 | 44.79 | 74.00 | -29.21 | peak | | 5 | 23216.000 | 48.01 | -3.38 | 44.63 | 74.00 | -29.37 | peak | | 6 | 24864.000 | 48.03 | -2.23 | 45.80 | 74.00 | -28.20 | peak | Note: 1. Peak Result = Reading Level + Correct Factor. - 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit. - 3. Peak: Peak detector. Note: All the modes and channels have been tested, but only the worst data was recorded in the report. # 8.5. SPURIOUS EMISSIONS (30 MHz ~ 1 GHz) #### 8.5.1. LE 1M MODE #### SPURIOUS EMISSIONS (HIGH CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL) | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 32.9100 | 33.37 | -19.22 | 14.15 | 40.00 | -25.85 | QP | | 2 | 57.1600 | 37.83 | -20.58 | 17.25 | 40.00 | -22.75 | QP | | 3 | 72.6800 | 38.46 | -20.76 | 17.70 | 40.00 | -22.30 | QP | | 4 | 215.2700 | 34.30 | -17.76 | 16.54 | 43.50 | -26.96 | QP | | 5 | 234.6700 | 32.18 | -18.90 | 13.28 | 46.00 | -32.72 | QP | | 6 | 947.6200 | 26.27 | -4.43 | 21.84 | 46.00 | -24.16 | QP | Note: 1. Result Level = Read Level + Correct Factor. 2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit. 3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto. SPURIOUS EMISSIONS (HIGH CHANNEL, WORST-CASE CONFIGURATION, VERTICAL) | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|---------|----------|----------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | | | 1 | 30.9700 | 32.78 | -19.04 | 13.74 | 40.00 | -26.26 | QP | | 2 | 56.1900 | 33.32 | -20.61 | 12.71 | 40.00 | -27.29 | QP | | 3 | 77.5300 | 36.25 | -21.14 | 15.11 | 40.00 | -24.89 | QP | | 4 | 98.8700 | 35.82 | -21.23 | 14.59 | 43.50 | -28.91 | QP | | 5 | 215.2700 | 31.60 | -17.76 | 13.84 | 43.50 | -29.66 | QP | | 6 | 889.4200 | 26.01 | -5.25 | 20.76 | 46.00 | -25.24 | QP | Note: 1. Result Level = Read Level + Correct Factor. - 2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit. - 3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto Note: All the modes and channels have been tested, but only the worst data was recorded in the report. #### 8.6. SPURIOUS EMISSIONS BELOW 30 MHz #### 8.6.1. **LE 1M MODE** # SPURIOUS EMISSIONS (HIGH CHANNEL, LOOP ANTENNA FACE ON TO THE EUT, WORST-CASE CONFIGURATION) #### 9 kHz~ 150 kHz | No. | Frequency | Reading | Correct | FCC | FCC | ISED | ISED | Margin | Remark | |-----|-----------|---------|---------|----------|----------|----------|----------|--------|--------| | | | | | Result | Limit | Result | Limit | | | | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dBuA/m) | (dBuA/m) | (dB) | | | 1 | 0.0100 | 75.22 | -101.40 | -26.18 | 47.6 | -77.68 | -3.90 | -73.78 | peak | | 2 | 0.0160 | 68.97 | -101.37 | -32.4 | 43.52 | -83.90 | -7.98 | -75.92 | peak | | 3 | 0.0279 | 66.17 | -101.38 | -35.21 | 38.69 | -86.71 | -12.81 | -73.90 | peak | | 4 | 0.0427 | 62.64 | -101.45 | -38.81 | 34.99 | -90.31 | -16.51 | -73.80 | peak | | 5 | 0.0589 | 60.81 | -101.52 | -40.71 | 32.2 | -92.21 | -19.30 | -72.91 | peak | | 6 | 0.0981 | 57.77 | -101.78 | -44.01 | 27.77 | -95.51 | -23.73 | -71.78 | peak | Note: 1. Measurement = Reading Level + Correct Factor (dBuA/m= dBuV/m- 20Log10[120 π] = dBuV/m- 51.5). - 2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit. - 3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report. #### 150 kHz ~ 490 kHz | No. | Frequency | Reading | Correct | FCC | FCC | ISED | ISED | Margin | Remark | |-----|-----------|---------|---------|----------|----------|----------|----------|--------|--------| | | | | | Result | Limit | Result | Limit | | | | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dBuA/m) | (dBuA/m) | (dB) | | | 1 | 0.1554 | 75.27 | -101.65 | -26.38 | 23.77 | -77.88 | -27.73 | -50.15 | peak | | 2 | 0.1621 | 73.92 | -101.65 | -27.73 | 23.41 | -79.23 | -28.09 | -51.14 | peak | | 3 | 0.1869 | 68.04 | -101.70 | -33.66 | 22.17 | -85.16 | -29.33 | -55.83 | peak | | 4 | 0.2442 | 64.53 | -101.79 | -37.26 | 19.85 | -88.76 | -31.65 | -57.11 | peak | | 5 | 0.3163 | 61.70 | -101.87 | -40.17 | 17.6 | -91.67 | -33.90 | -57.77 | peak | | 6 | 0.4062 | 58.14 | -101.96 | -43.82 | 15.43 | -95.32 | -36.07 | -59.25 | peak | Note: 1. Measurement = Reading Level + Correct Factor (dBuA/m= dBuV/m- $20Log10[120\pi] = dBuV/m- 51.5$). - 2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit. - 3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report. #### 490 kHz ~ 30 MHz | No. | Frequency | Reading | Correct | FCC
Result | FCC
Limit | ISED
Result | ISED
Limit | Margin | Remark | |-----|-----------|---------|---------|---------------|--------------|----------------|---------------|--------|--------| | | (MHz) | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dBuA/m) | (dBuA/m) | (dB) | | | 1 | 0.5039 | 63.43 | -62.07 | 1.36 | 33.56 | -50.14 | -17.94 | -32.20 | peak | | 2 | 0.8296 | 61.94 | -62.17 | -0.23 | 29.23 | -51.73 | -22.27 | -29.46 | peak | | 3 | 1.6149 | 56.62 | -62.00 | -5.38 | 23.44 | -56.88 | -28.06 | -28.82 | peak | | 4 | 3.7100 | 54.20 | -61.41 | -7.21 | 29.54 | -58.71 | -21.96 | -36.75 | peak | | 5 | 10.3168 | 52.48 | -60.81 | -8.33 | 29.54 | -59.83 | -21.96 | -37.87 | peak | | 6 | 19.9954 | 53.44 | -60.83 | -7.39 | 29.54 | -58.89 | -21.96 | -36.93 | peak | Note: 1. Measurement = Reading Level + Correct Factor (dBuA/m= dBuV/m- $20Log10[120\pi] = dBuV/m- 51.5$). - 2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit. - 3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report. REPORT NO.: 4790363727-8 Page 52 of 67 #### 9. ANTENNA REQUIREMENTS #### **APPLICABLE REQUIREMENTS** Please refer to FCC §15.203 An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. #### Please refer to FCC §15.247(b)(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi. #### **RESULTS** Complies REPORT NO.: 4790363727-8 Page 53 of 67 # 10. Appendix # 10.1. Appendix A: DTS Bandwidth 10.1.1. Test Result | Test Mode | Antenna | Channel | DTS BW
[MHz] | FL[MHz] | FH[MHz] | Limit[MHz] | Verdict | |-----------|---------|---------|-----------------|---------|---------|------------|---------| | | | 2402 | 0.71 | 2401.64 | 2402.35 | 0.5 | PASS | | BLE_1M | Ant1 | 2440 | 0.72 | 2439.63 | 2440.35 | 0.5 | PASS | | | | 2480 | 0.71 | 2479.64 | 2480.35 | 0.5 | PASS | ## 10.1.2. Test Graphs 10.2. Appendix B: Occupied Channel Bandwidth 10.2.1. Test Result | Test Mode | Antenna | Channel | OCB [MHz] | FL[MHz] | FH[MHz] | Verdict | |-----------|---------|---------|-----------|----------|----------|---------| | BLE_1M | Ant1 | 2402 | 1.043 | 2401.485 | 2402.527 | PASS | | | | 2440 | 1.043 | 2439.485 | 2440.527 | PASS | | | | 2480 | 1.039 | 2479.485 | 2480.523 | PASS | ## 10.2.2. Test Graphs # 10.3. Appendix C: Maximum conducted output power 10.3.1. Test Result #### Right Headphone: | Test Mode | Antenna | Channel | Peak Result[dBm] | Limit[dBm] | Verdict | |-----------|---------|---------|------------------|------------|---------| | BLE_1M | | 2402 | 8.27 | ≤30 | PASS | | | Ant1 | 2440 | 8.33 | ≤30 | PASS | | | | 2480 | 8.38 | ≤30 | PASS | | Test Mode | Antenna Channe | | AVG Result[dBm] | Limit[dBm] | Verdict | |-----------|----------------|------|-----------------|------------|---------| | | | 2402 | 7.59 | ≤30 | PASS | | BLE_1M | Ant1 | 2440 | 7.35 | ≤30 | PASS | | | | 2480 | 7.71 | ≤30 | PASS | ## Left Headphone: | Test Mode | Antenna | Channel | Peak Result[dBm] | Limit[dBm] | Verdict | |-----------|---------|---------|------------------|------------|---------| | | | 2402 | 8.81 | ≤30 | PASS | | BLE_1M | Ant1 | 2440 | 8.78 | ≤30 | PASS | | | | 2480 | 8.04 | ≤30 | PASS | | Test Mode | Antenna | Channel | AVG Result[dBm] | Limit[dBm] | Verdict
| |--------------|---------|---------|-----------------|------------|---------| | | | 2402 | 8.23 | ≤30 | PASS | | BLE_1M | Ant1 | 2440 | 8.29 | ≤30 | PASS | | - | | 2480 | 7.59 | ≤30 | PASS | 10.4. Appendix D: Maximum power spectral density 10.4.1. Test Result | Test Mode | Antenna | Channel | Result[dBm/3kHz] | Limit[dBm/3kHz] | Verdict | |-----------|---------|---------|------------------|-----------------|---------| | BLE_1M | | 2402 | -7.59 | ≤8.00 | PASS | | | Ant1 | 2440 | -7.54 | ≤8.00 | PASS | | | | 2480 | -7.38 | ≤8.00 | PASS | ## 10.4.2. Test Graphs 10.5. Appendix E: Band edge measurements 10.5.1. Test Result | Test Mode | Antenna | ChName | Channel | RefLevel[dBm] | Result[dBm] | Limit[dBm] | Verdict | |-----------|---------|--------|---------|---------------|-------------|------------|---------| | BLE_1M | Ant1 | Low | 2402 | 8.16 | -44.57 | ≤-11.84 | PASS | | | | High | 2480 | 8.21 | -44.3 | ≤-11.79 | PASS | 10.5.2. Test Graphs Page 62 of 67 #### 10.6. Appendix F: Conducted Spurious Emission **Test Result** 10.6.1. | Test Mode | Antenna | Channel | FreqRange
[MHz] | Result[dBm] | Limit[dBm] | Verdict | |-----------|---------|---------|--------------------|-------------|------------|---------| | | | | Reference | 8.13 | | PASS | | | | 2402 | 30~1000 | -53.79 | ≤-11.87 | PASS | | | | | 1000~26500 | -48.92 | ≤-11.87 | PASS | | | | 2440 | Reference | 8.19 | | PASS | | BLE_1M | Ant1 | | 30~1000 | -53.37 | ≤-11.81 | PASS | | | | | 1000~26500 | -49.09 | ≤-11.81 | PASS | | | | | Reference | 8.23 | | PASS | | | | 2480 | 30~1000 | -54.04 | ≤-11.77 | PASS | | | | | 1000~26500 | -49.79 | ≤-11.77 | PASS | ## 10.6.2. Test Graphs REPORT NO.: 4790363727-8 Page 66 of 67 # 10.7. Appendix G: Duty Cycle 10.7.1. Test Result | Test Mode | On Time
(msec) | Period
(msec) | Duty Cycle
x
(Linear) | Duty Cycle
(%) | Duty Cycle
Correction
Factor
(dB) | 1/T
Minimum
VBW
(kHz) | Final setting
For VBW
(kHz) | |-----------|-------------------|------------------|-----------------------------|-------------------|--|--------------------------------|-----------------------------------| | BLE_1M | 0.4 | 0.62 | 0.6452 | 64.52 | 1.90 | 2.50 | 3 | Note: Duty Cycle Correction Factor=10log (1/x). Where: x is Duty Cycle (Linear) Where: T is On Time If that calculated VBW is not available on the analyzer then the next higher value should be used. 10.7.2. Test Graphs **END OF REPORT**