

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

Report Template Version: V05

Telephone: +86-755-26648640 Fax: +86-755-26648637

Website: www.cqa-cert.com Report Template Revision Date: 2021-11-03

Test Report

Report No.: CQASZ20241002166E-01

Applicant: Shenzhen Dale Sensor Tech Co Ltd

Address of Applicant: 407, Building 6Qianhai Kexing Science ParkBao'an District, Shenzhen

Equipment Under Test (EUT):

Product: PocketDrum 2 MAX

Model No.:
PD2Max

Test Model No.:
PD2Max

PD2Max

AeroBand

FCC ID: 2BCSTPD02-D

Standards: 47 CFR Part 15, Subpart C

KDB558074 D01 15.247 Meas Guidance v05r02

ANSI C63.10:2013

Date of Receipt: 2024-10-12

Date of Test: 2024-10-12 to 2024-10-22

Date of Issue: 2024-11-05
Test Result: PASS*

*In the configuration tested, the EUT complied with the standards specified above.

Tested By:

(Lewis Zhou)

Reviewed By:

(Timo Lei)

Approved By:

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CQA, this report can't be reproduced except in full.

Report No.: CQASZ20241002166E-01

1 Version

Revision History Of Report

Report No.	Version	Description	Issue Date
CQASZ20241002166E-01	Rev.01	Initial report	2024-11-05

2 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 2013	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	ANSI C63.10 2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	ANSI C63.10 2013	PASS
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	ANSI C63.10 2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS

3 Contents

	Page
1 VERSION	2
2 TEST SUMMARY	3
3 CONTENTS	4
4 GENERAL INFORMATION	
4.1 CLIENT INFORMATION	5
4.2 GENERAL DESCRIPTION OF EUT	5
4.3 ADDITIONAL INSTRUCTIONS	7
4.4 Test Environment	
4.5 DESCRIPTION OF SUPPORT UNITS	
4.6 STATEMENT OF THE MEASUREMENT UNCERTAINTY	
4.7 TEST LOCATION	
4.8 TEST FACILITY	
4.9 DEVIATION FROM STANDARDS	
4.10 OTHER INFORMATION REQUESTED BY THE CUSTOMER	
4.11 EQUIPMENT LIST	
5 TEST RESULTS AND MEASUREMENT DATA	
5.1 Antenna Requirement	12
5.2 CONDUCTED EMISSIONS	
5.3 CONDUCTED PEAK OUTPUT POWER	
5.4 6dB Occupy Bandwidth	
5.5 POWER SPECTRAL DENSITY	
5.6 BAND-EDGE FOR RF CONDUCTED EMISSIONS	
5.7 Spurious RF Conducted Emissions	
5.8 RADIATED SPURIOUS EMISSION & RESTRICTED BANDS	
5.8.1 Spurious Emissions	
6 PHOTOGRAPHS - EUT TEST SETUP	39
6.1 RADIATED SPURIOUS EMISSION	
6.2 CONDUCTED EMISSIONS TEST SETUP	40
7 DUOTOGDADUS - EUT CONSTDUCTIONAL DETAILS	11

4 General Information

4.1 Client Information

Applicant:	Shenzhen Dale Sensor Tech Co Ltd
Address of Applicant:	407, Building 6Qianhai Kexing Science ParkBao'an District, Shenzhen
Manufacturer:	Shenzhen Dale Sensor Tech Co Ltd
Address of Manufacturer:	407, Building 6Qianhai Kexing Science ParkBao'an District, Shenzhen
Factory:	Ebulent Optronics (Shenzhen) Ltd., Huizhou Branch
Address of Factory:	701 and 801 of C2-2-1, 702 and 802 of C2-2-2, Qunyi Industrial Park, Zhongkai High-tech District, Huizhou, Guangdong, China

4.2 General Description of EUT

Product Name:	PocketDrum 2 MAX	
Model No.:	PD2Max	
Test Model No.:	PD2Max	
Trade Mark:	AeroBand	
Software Version:	V2.2	
Hardware Version:	V1.4	
Operation Frequency:	2402MHz~2480MHz	
Bluetooth Version:	V5.0	
Modulation Type:	GFSK	
Transfer Rate:	1Mbps, 2Mbps	
Number of Channel:	40	
Product Type:	☐ Mobile ☐ Portable	
Test Software of EUT:	BLE_DTM_1.2.2	
Antenna Type:	PCB antenna	
Antenna Gain:	0.04 dBi	
EUT Power Supply:	Li-ion battery: DC 3.7V 400mAh, Charge by DC 5V for adapter	
Simultaneous Transmission	☐ Simultaneous TX is supported and evaluated in this report.	
	⊠ Simultaneous TX is not supported.	

Report No.: CQASZ20241002166E-01

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel (CH0)	2402MHz
The middle channel (CH19)	2440MHz
The highest channel (CH39)	2480MHz

Report No.: CQASZ20241002166E-01

4.3 Additional Instructions

EUT Test Software Settings:						
Mode:	⊠ Special software is used.	⊠ Special software is used.				
	☐ Through engineering command into the engineering mode. engineering command: *#*#3646633#*#*					
EUT Power level:	Class2 (Power level is built-in set parameters and cannot be changed and selected)					
Use test software to set the lowest frequency, the middle frequency and the highest frequency keep						
transmitting of the EUT.	1					
Mode	Mode Channel Frequency(MHz)					
	CH0 2402					
GFSK	GFSK CH19 2440					
	CH39	2480				

Run Software:

Report No.: CQASZ20241002166E-01

4.4 Test Environment

Operating Environment	Operating Environment:		
Temperature:	24.5°C		
Humidity:	59% RH		
Atmospheric Pressure:	1009mbar		
Test Mode:	Use test software to set the lowest frequency, the middle frequency and the highest frequency keep transmitting of the EUT.		

4.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) Support equipment

Description	iption Manufacturer Model No.		Certification	Supplied by
/	/	/	/	/
2) Cable				
Cable No.	Description	Manufacturer	Cable Type/Length	Supplied by
	,	1	1	1

4.6 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate.

The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities.

The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the **Shenzhen Huaxia Testing Technology Co., Ltd.** guality system acc. to DIN EN ISO/IEC 17025.

Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for CQA laboratory is reported:

No.	Item	Uncertainty
1	Radiated Emission (Below 1GHz)	5.12dB
2	Radiated Emission (Above 1GHz)	4.60dB
3	Conducted Disturbance (0.15~30MHz)	3.34dB
4	Radio Frequency	3×10 ⁻⁸
5	Duty cycle	0.6 %
6	Occupied Bandwidth	1.1%
7	RF conducted power	0.86dB
8	RF power density	0.74
9	Conducted Spurious emissions	0.86dB
10	Temperature test	0.8℃
11	Humidity test	2.0%
12	Supply voltages	0.5 %
13	Frequency Error	5.5 Hz

Report No.: CQASZ20241002166E-01

4.7 Test Location

All tests were performed at:

Shenzhen Huaxia Testing Technology Co., Ltd.

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

4.8 Test Facility

• A2LA (Certificate No. 4742.01)

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 4742.01.

• FCC Registration No.: 522263

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.:522263

4.9 Deviation from Standards

None.

4.10 Other Information Requested by the Customer

None.

4.11 Equipment List

Test Equipment	Manufacturer	Model No.	Instrument No.	Calibration Date	Calibration Due Date
EMI Test Receiver	R&S	ESR7	CQA-005	2024/9/2	2025/9/1
Spectrum analyzer	R&S	FSU26	CQA-038	2024/9/2	2025/9/1
Spectrum analyzer	R&S	FSU40	CQA-075	2024/9/2	2025/9/1
Preamplifier	MITEQ	AFS4-00010300-18- 10P-4	CQA-035	2024/9/2	2025/9/1
Preamplifier	MITEQ	AMF-6D-02001800- 29-20P	CQA-036	2024/9/2	2025/9/1
Preamplifier	EMCI	EMC184055SE	CQA-089	2024/9/2	2025/9/1
Loop antenna	Schwarzbeck	FMZB1516	CQA-060	2023/9/8	2026/9/7
Bilog Antenna	R&S	HL562	CQA-011	2023/11/01	2026/10/31
Horn Antenna	R&S	HF906	CQA-012	2023/11/01	2026/10/31
Horn Antenna	Schwarzbeck	BBHA 9170	CQA-088	2024/9/2	2025/9/1
Coaxial Cable (Above 1GHz)	CQA	N/A	C007	2024/9/2	2025/9/1
Coaxial Cable (Below 1GHz)	CQA	N/A	C013	2024/9/2	2025/9/1
RF					
cable(9KHz~40GHz)	CQA	RF-01	CQA-079	2024/9/2	2025/9/1
Antenna Connector	CQA	RFC-01	CQA-080	2024/9/2	2025/9/1
Power Sensor	KEYSIGHT	U2021XA	CQA-30	2024/9/2	2025/9/1
N1918A Power Analysis Manager Power Panel	Agilent	N1918A	CQA-074	2024/9/2	2025/9/1
Power meter	R&S	NRVD	CQA-029	2024/9/2	2025/9/1
Power divider	MIDWEST	PWD-2533-02-SMA- 79	CQA-067	2024/9/2	2025/9/1
EMI Test Receiver	R&S	ESR7	CQA-005	2024/9/2	2025/9/1
LISN	R&S	ENV216	CQA-003	2024/9/2	2025/9/1
Coaxial cable	CQA	N/A	CQA-C009	2024/9/2	2025/9/1
DC power	KEYSIGHT	E3631A	CQA-028	2024/9/2	2025/9/1

Note:

The temporary antenna connector is soldered on the pcb board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

Report No.: CQASZ20241002166E-01

5 Test results and Measurement Data

5.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

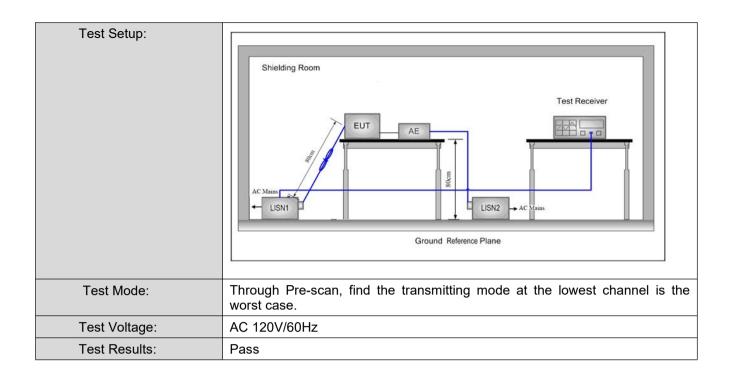
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is PCB antenna.

The connection/connection type between the antenna to the EUT's antenna port is: permanently attachment

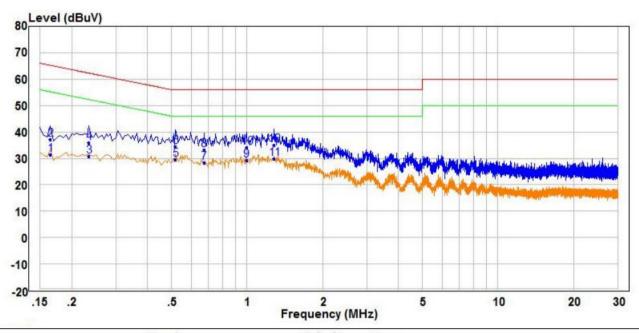
This is either permanently attachment or a unique coupling that satisfies the requirement.



Report No.: CQASZ20241002166E-01

5.2 Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.207					
Test Method:	ANSI C63.10: 2013					
Test Frequency Range:	150kHz to 30MHz					
Limit:	Francisco (MIII-)	Limit (dBuV)				
	Frequency range (MHz)	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	* Decreases with the logarithn	n of the frequency.				
Test Procedure:	The mains terminal disturbance voltage test was conducted in a shielded room.					
	2) The EUT was connected to	o AC power source thro	ough a LISN 1 (Line			
	Impedance Stabilization N	etwork) which provides	s a 50Ω/50μH + 5Ω liı	near		
	impedance. The power cal	bles of all other units of	f the EUT were			
	connected to a second LISN 2, which was bonded to the ground					
	reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple					
	power cables to a single LISN provided the rating of the LISN was not					
	exceeded.					
	3) The tabletop EUT was placed upon a non-metallic table 0.8m above the					
	ground reference plane. And for floor-standing arrangement, the EUT was					
	placed on the horizontal ground reference plane, 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground					
	reference plane. The LISN		•	he		
	-	•	-			
	unit under test and bonded to a ground reference plane for LISN mounted on top of the ground reference plane. This distance was					
	between the closest points		of			
	the EUT and associated ed					
	5) In order to find the maximu	ım emission, the relativ	e positions of			
	equipment and all of the in	terface cables must be	changed according	to		
	ANSI C63.10: 2013 on con	iducted measurement.				

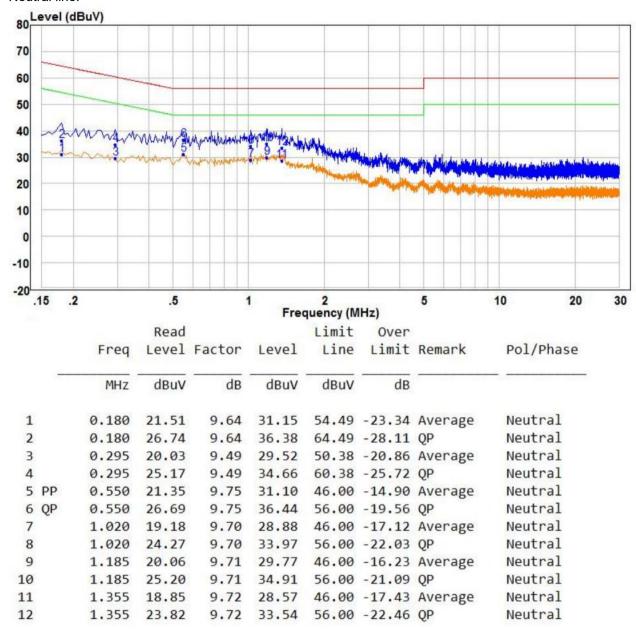


1#

Measurement Data

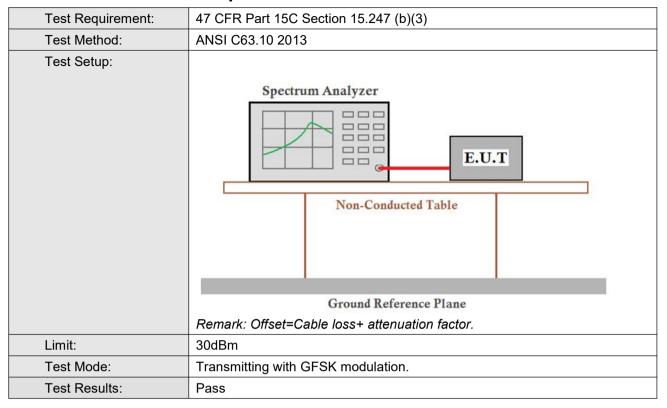
Live line:

		Read			Limit	Over		
F	req	Level	Factor	Level	Line	Limit	Remark	Pol/Phase
-	MHZ	dBuV	dB	dBuV	dBuV	dB	·	
0.	165	21.81	9.49	31.30	55.21	-23.91	Average	Line
0.	165	27.53	9.49	37.02	65.21	-28.19	QP	Line
0.	235	21.28	9.49	30.77	52.27	-21.50	Average	Line
0.	235	26.51	9.49	36.00	62.27	-26.27	QP	Line
0.	520	19.94	9.56	29.50	46.00	-16.50	Average	Line
0.	520	24.87	9.56	34.43	56.00	-21.57	QP	Line
0.	675	18.55	9.83	28.38	46.00	-17.62	Average	Line
0.	675	23.39	9.83	33.22	56.00	-22.78	QP	Line
0.	995	19.79	9.53	29.32	46.00	-16.68	Average	Line
0.	995	24.70	9.53	34.23	56.00	-21.77	QP	Line
PP 1.	285	20.31	9.52	29.83	46.00	-16.17	Average	Line
QP 1.	285	25.38	9.52	34.90	56.00	-21.10	QP	Line
	0. 0. 0. 0. 0. 0. 0.		MHz dBuV 0.165 21.81 0.165 27.53 0.235 21.28 0.235 26.51 0.520 19.94 0.520 24.87 0.675 18.55 0.675 23.39 0.995 19.79 0.995 24.70 1.285 20.31	MHz dBuV dB 0.165 21.81 9.49 0.165 27.53 9.49 0.235 21.28 9.49 0.235 26.51 9.49 0.520 19.94 9.56 0.520 24.87 9.56 0.675 18.55 9.83 0.675 23.39 9.83 0.995 19.79 9.53 0.995 24.70 9.53 0.995 24.70 9.53	MHZ dBuV dB dBuV 0.165 21.81 9.49 31.30 0.165 27.53 9.49 37.02 0.235 21.28 9.49 30.77 0.235 26.51 9.49 36.00 0.520 19.94 9.56 29.50 0.520 24.87 9.56 34.43 0.675 18.55 9.83 28.38 0.675 23.39 9.83 33.22 0.995 19.79 9.53 29.32 0.995 24.70 9.53 34.23 PP 1.285 20.31 9.52 29.83	MHz dBuV dB dBuV dBuV 0.165 21.81 9.49 31.30 55.21 0.165 27.53 9.49 37.02 65.21 0.235 21.28 9.49 30.77 52.27 0.235 26.51 9.49 36.00 62.27 0.520 19.94 9.56 29.50 46.00 0.520 24.87 9.56 34.43 56.00 0.675 18.55 9.83 28.38 46.00 0.675 23.39 9.83 33.22 56.00 0.995 19.79 9.53 29.32 46.00 0.995 24.70 9.53 34.23 56.00 0.995 24.70 9.53 34.23 56.00	Freq Level Factor Level Line Limit MHz dBuV dB dBuV dBuV dB 0.165 21.81 9.49 31.30 55.21 -23.91 0.165 27.53 9.49 37.02 65.21 -28.19 0.235 21.28 9.49 30.77 52.27 -21.50 0.235 26.51 9.49 36.00 62.27 -26.27 0.520 19.94 9.56 29.50 46.00 -16.50 0.520 24.87 9.56 34.43 56.00 -21.57 0.675 18.55 9.83 28.38 46.00 -17.62 0.675 23.39 9.83 33.22 56.00 -22.78 0.995 19.79 9.53 29.32 46.00 -16.68 0.995 24.70 9.53 34.23 56.00 -21.77 1.285 20.31 9.52 29.83 46.00 -16.17	MHz dBuV dB dBuV dBuV dB www.


Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

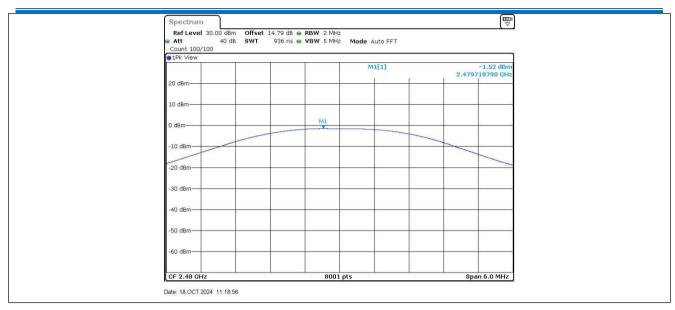
Neutral line:


Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level = Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

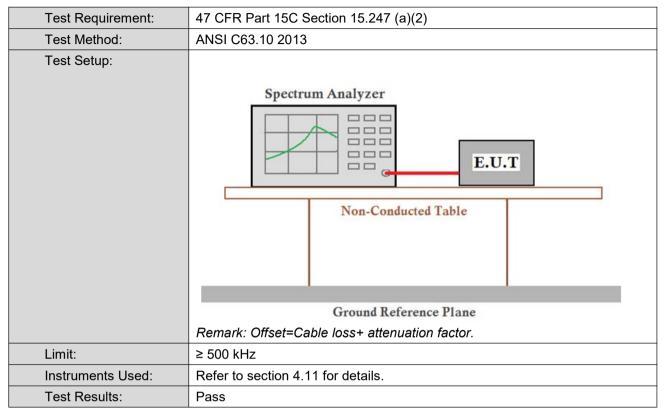
Report No.: CQASZ20241002166E-01

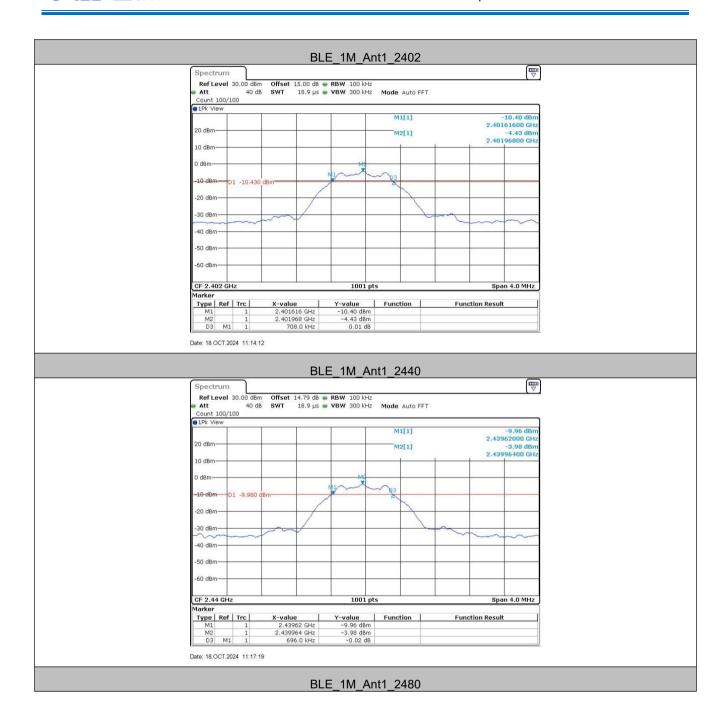
5.3 Conducted Peak Output Power

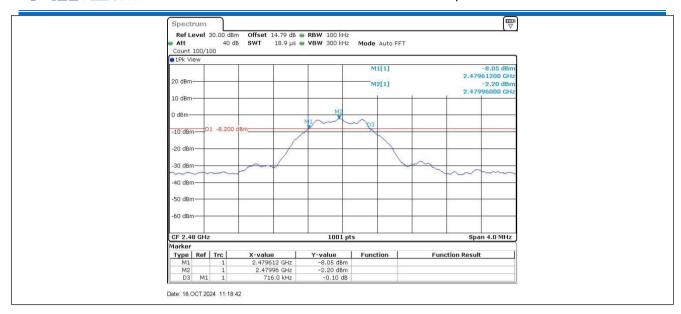


Measurement Data

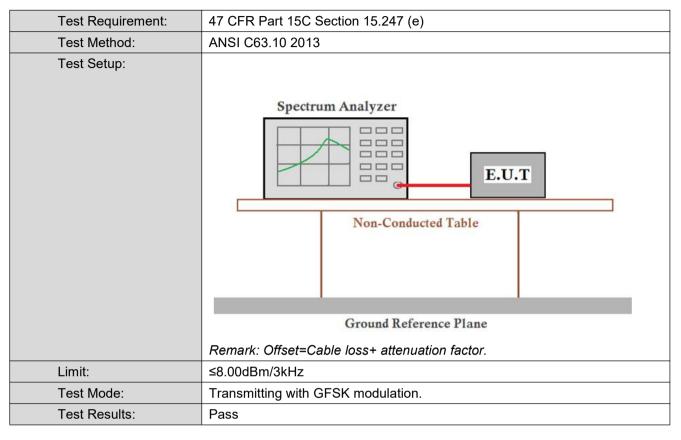
TestMod		Conducted Peak	Conducted		EIRP	Verdic
е	Freq(MHz)	Powert[dBm]	Limit[dBm]	EIRP[dBm]	Limit[dBm]	t
C		1 OWCIT[GDIII]	Limitabing		Limitabini	
	2402	-3.52	≤30	-3.48	≤36	PASS
BLE_1M	2440	-3.19	≤30	-3.15	≤36	PASS
	2480	-1.52	≤30	-1.48	≤36	PASS



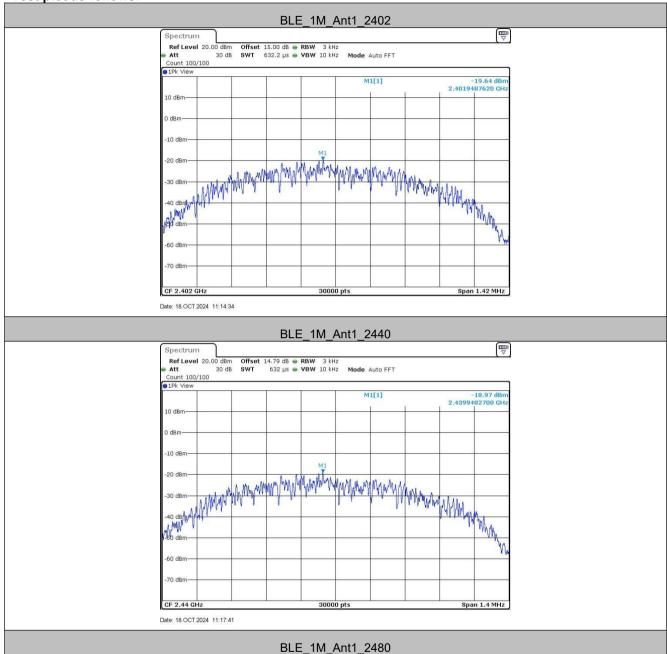

5.4 6dB Occupy Bandwidth


Measurement Data

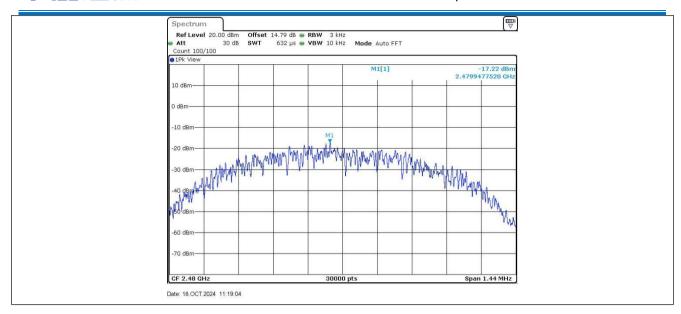
TestMod	Freq(MHz)	DTS BW	FL[MHz]	FH[MHz]	Limit[MHz]	Verdic
е		[MHz]				t
	2402	0.71	2401.62	2402.32	0.5	PASS
BLE_1M	2440	0.70	2439.62	2440.32	0.5	PASS
	2480	0.72	2479.61	2480.33	0.5	PASS



5.5 Power Spectral Density

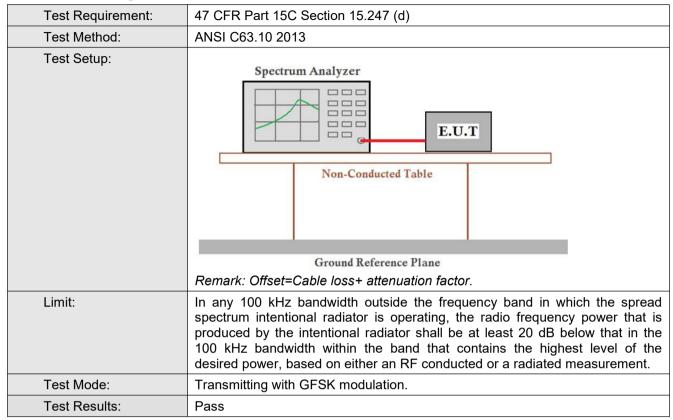

Measurement Data

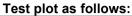
TestMode	Freq(MHz)	Result[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
	2402	-19.64	≤8.00	PASS
BLE_1M	2440	-18.97	≤8.00	PASS
	2480	-17.22	≤8.00	PASS



Report No.: CQASZ20241002166E-01

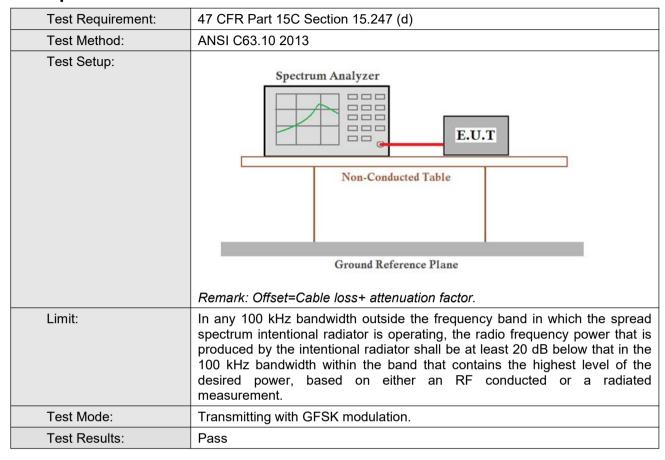
Test plot as follows:

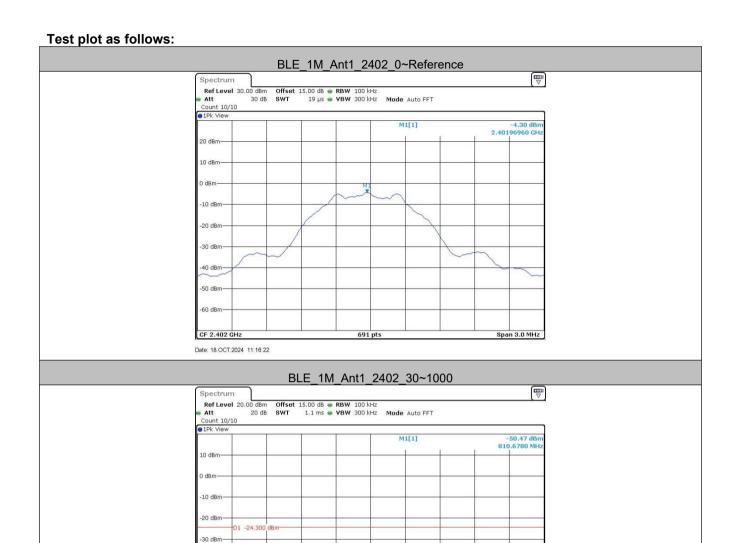



Report No.: CQASZ20241002166E-01

5.6 Band-edge for RF Conducted Emissions

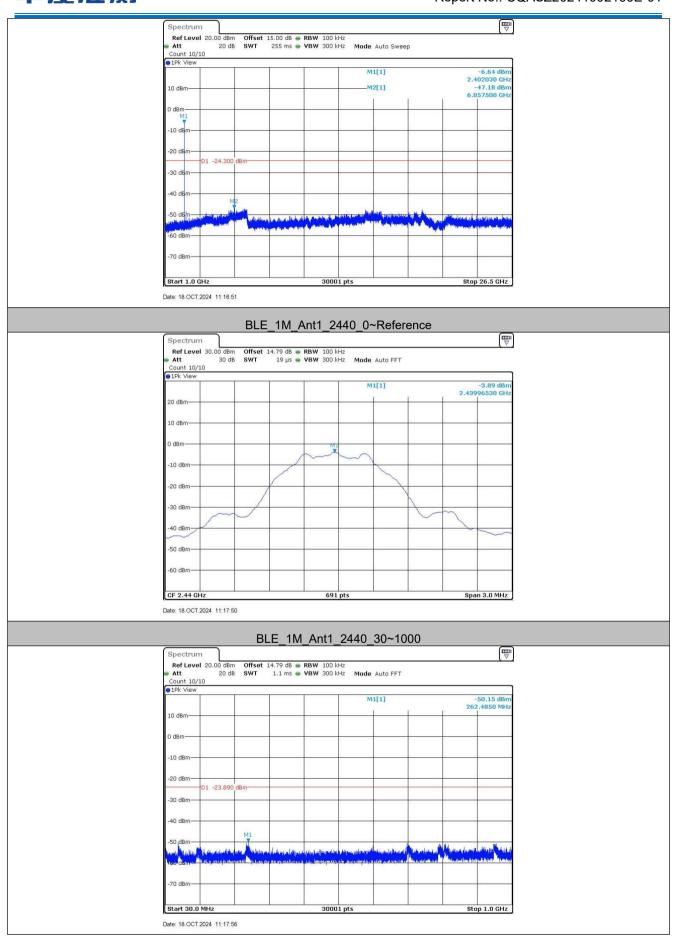
TestMode	ChName	Freq(MHz)	RefLevel[dBm]	Result[dBm]	Limit[dBm]	Verdict
	Low	2402	-4.36	-43.01	≤-24.36	PASS
BLE_1M	High	2480	-2.31	-40.73	≤-22.31	PASS



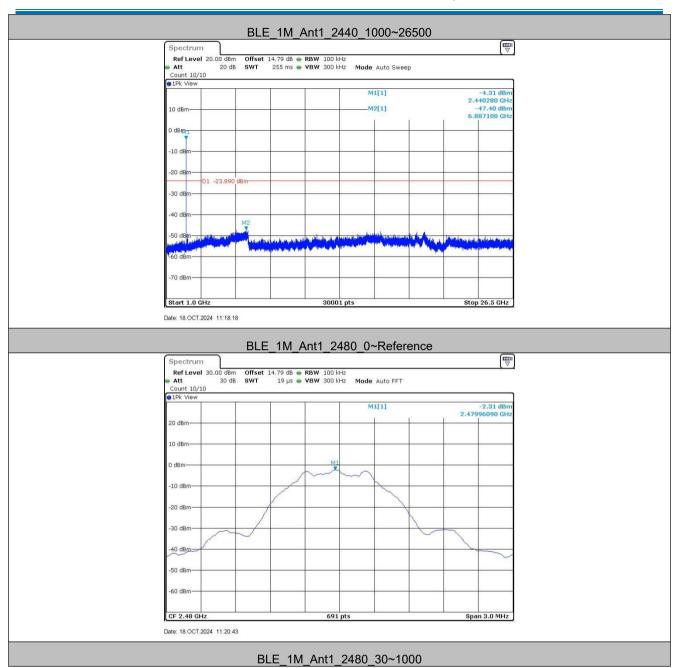

5.7 Spurious RF Conducted Emissions

Stop 1.0 GHz

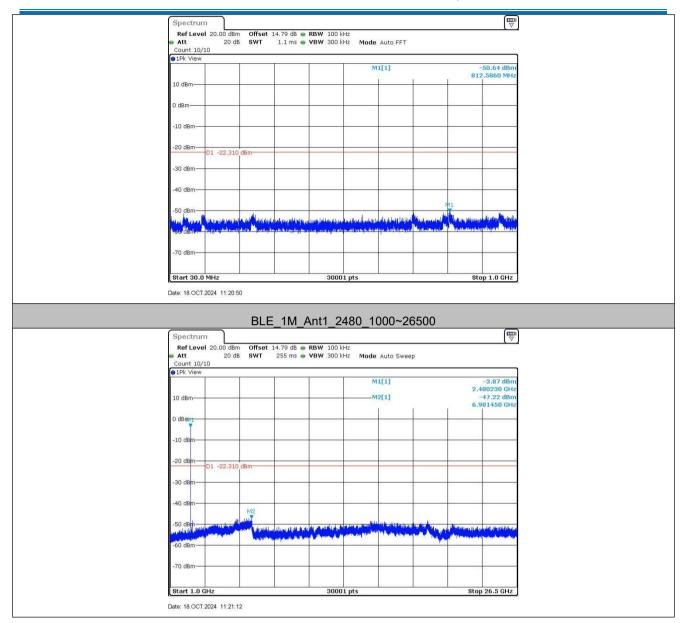
Report No.: CQASZ20241002166E-01


BLE_1M_Ant1_2402_1000~26500

30001 pts


Start 30.0 MHz

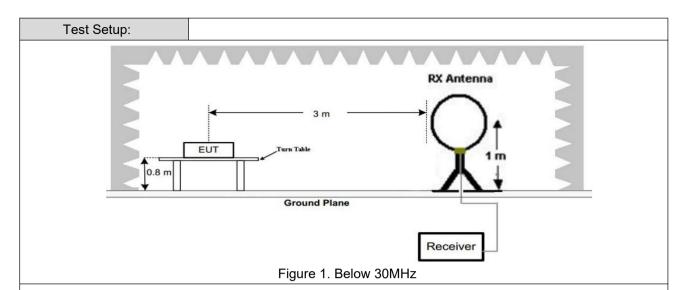
Date: 18.0CT.2024 11:16:29



Report No.: CQASZ20241002166E-01

Remark:

Pretest 9kHz to 25GHz, find the highest point when testing, so only the worst data were shown in the test report. Per FCC Part 15.33 (a) and 15.31 (o) ,The amplitude of spurious emissions from intentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this part.



5.8 Radiated Spurious Emission & Restricted bands

5.8.1 Spurious Emissions							
Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205						
Test Method:	ANSI C63.10 2013	ANSI C63.10 2013					
Test Site:	Measurement Distance	: 3m	n (Semi-Anecl	noic Cham	ber)		
Receiver Setup:	Frequency [Detector	RBW	VBW	Remark	
	0.009MHz-0.090MH	z	Peak	10kHz	z 30kHz	Peak	
	0.009MHz-0.090MH	z	Average	10kHz	z 30kHz	Average	
	0.090MHz-0.110MH	z	Quasi-peak	10kHz	z 30kHz	Quasi-peak	
	0.110MHz-0.490MH	z	Peak	10kHz	z 30kHz	Peak	
	0.110MHz-0.490MH	z	Average	10kHz	z 30kHz	Average	
	0.490MHz -30MHz		Quasi-peak	10kHz	z 30kHz	Quasi-peak	
	30MHz-1GHz Qua		Quasi-peak	100 kH	z 300kHz	Quasi-peak	
	Above 1GHz		Peak	1MHz	3MHz	Peak	
			Peak	1MHz	10Hz	Average	
Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measuremen distance (m)	
	0.009MHz-0.490MHz	2	400/F(kHz)	-	-	300	
	0.490MHz-1.705MHz	24	1000/F(kHz)	-	-	30	
	1.705MHz-30MHz		30	-	ı	30	
	30MHz-88MHz		100	40.0	Quasi-peak	3	
	88MHz-216MHz		150	43.5	Quasi-peal	3	
	216MHz-960MHz 200		46.0	Quasi-peal	3		
	960MHz-1GHz 500		500	54.0	Quasi-peal	3	
	Above 1GHz 500		54.0	Average	3		
	Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.					erage emission	

Antenna Tower

Artenna Antenna Tower

Ground Reference Plane

Test Receiver

Angular

Controller

AE EUT

Ground Rafeeros Plane

Test Receiver

Angeler Controller

Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

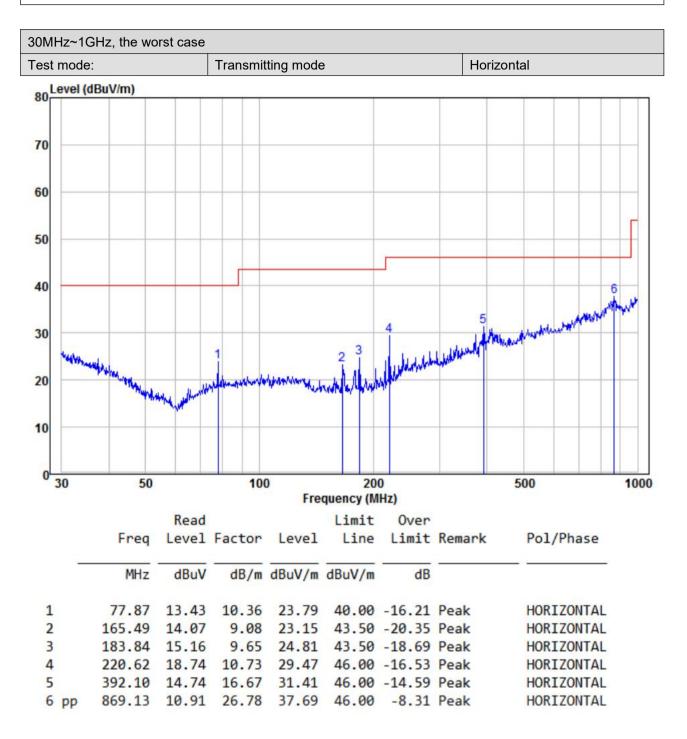
Test Procedure:

- a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

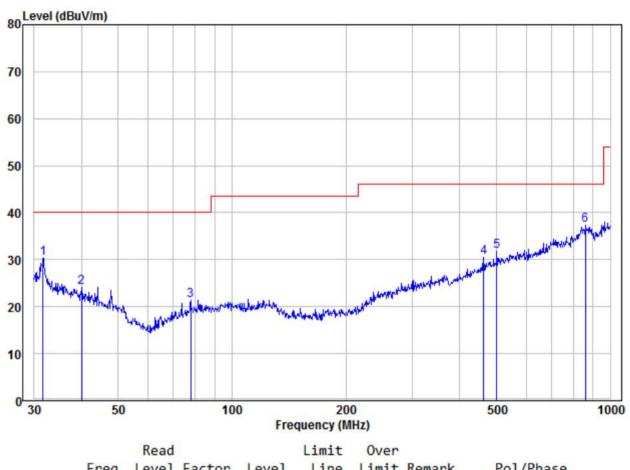
Note: For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both



	horizontal and vertical polarizations of the antenna are set to make the measurement.		
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.		
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.		
	 f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz) 		
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.		
	i. Repeat above procedures until all frequencies measured was complete.		
Exploratory Test Mode:	Transmitting with GFSK modulation. Transmitting mode.		
Final Test Mode:	Through Pre-scan, find the 1Mbps of data type and GFSK modulation is the worst case.		
	For below 1GHz part, through pre-scan, the worst case is the highest channel.		
	Only the worst case is recorded in the report.		
Test Results:	Pass		


Radiated Emission below 1GHz

30MHz~1GHz, the worst case					
Test mode:	Transmitting mode	Vertical			

	Freq	Read Level	Factor	Level	Limit Line	Over Limit	Remark	Pol/Phase
-	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		
1	31.62	14.56	15.74	30.30	40.00	-9.70	Peak	VERTICAL
2	39.99	10.68	13.47	24.15	40.00	-15.85	Peak	VERTICAL
3	77.87	11.03	10.36	21.39	40.00	-18.61	Peak	VERTICAL
4	462.35	11.47	19.01	30.48	46.00	-15.52	Peak	VERTICAL
5	501.18	11.58	20.31	31.89	46.00	-14.11	Peak	VERTICAL
6 pp	869 94	19.46	26.80	37.26	46.00	-8.74	Peak	VERTICAL

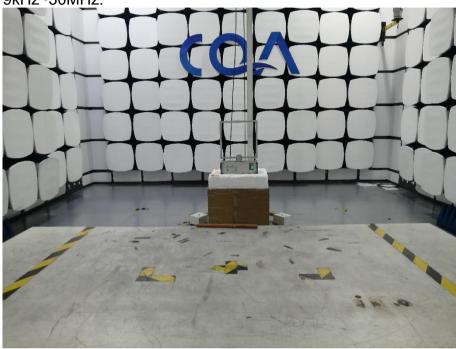
Report No.: CQASZ20241002166E-01

Transmitter Emission above 1GHz

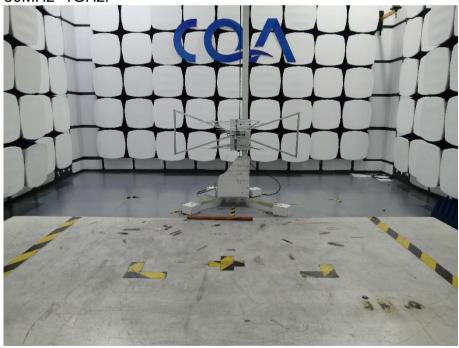
Worse case m	Worse case mode: GFSK(1Mbps)		Test channel:		Lowest		
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
2390	55.38	-9.2	46.18	74	-27.82	Peak	Н
2400	55.28	-9.39	45.89	74	-28.11	Peak	Н
4804	53.02	-4.33	48.69	74	-25.31	Peak	Н
7206	50.42	1.01	51.43	74	-22.57	Peak	Н
2390	53.32	-9.2	44.12	74	-29.88	Peak	V
2400	50.50	-9.39	41.11	74	-32.89	Peak	V
4804	53.37	-4.33	49.04	74	-24.96	Peak	V
7206	49.59	1.01	50.60	74	-23.40	Peak	V

Worse case m	Worse case mode: GFSK(1Mbps)		s)	Test channel:		Middle	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
4880	50.42	-4.11	46.31	74	-27.61	peak	Н
7320	48.87	1.51	50.38	74	-23.08	peak	Н
4880	52.71	-4.11	48.60	74	-23.94	peak	V
7320	49.59	1.51	51.10	74	-23.21	peak	V

Worse case mode:		GFSK(1Mbps)		Test channel:		Highest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
2483.5	56.94	-9.29	47.65	74	-26.35	Peak	Н
4960	50.27	-4.04	46.23	74	-27.77	Peak	Н
7440	50.23	1.57	51.80	74	-22.20	Peak	Н
2483.5	56.53	-9.29	47.24	74	-26.76	Peak	V
4960	49.60	-4.04	45.56	74	-28.44	Peak	V
7440	50.05	1.57	51.62	74	-22.38	Peak	V


Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.


6 Photographs - EUT Test Setup

6.1 Radiated Spurious Emission

30MHz~1GHz:

6.2 Conducted Emissions Test Setup

7 Photographs - EUT Constructional Details





*** END OF REPORT ***