

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

SAR EVALUATION REPORT

Applicant Name: LG ELECTRONICS U.S.A., INC 1000 Sylvan Avenue Englewood Cliffs, NJ 07632 United States Date of Testing: 07/08/18 - 07/23/18 Test Site/Location: PCTEST Lab, Columbia, MD, USA Document Serial No.: 1M1806290137-01-R3.ZNF

FCC ID: ZNFQ910QM

APPLICANT: LG ELECTRONICS U.S.A., INC.

DUT Type: Portable Handset
Application Type: Certification
FCC Rule Part(s): CFR §2.1093
LM-Q910QM

Additional Model(s) LMQ910QM, Q910QM, LM-Q910UM, LMQ910UM, Q910UM

Equipment	Band & Mode	Tx Frequency	SAR			
Class			1g Head (W/kg)	1g Body- Worn (W/kg)	1g Hotspot (W/kg)	10g Phablet (W/kg)
PCE	CDMA/EVDO BC10 (§90S)	817.90 - 823.10 MHz	0.20	0.46	0.55	N/A
PCE	CDMA/EVDO BC0 (§22H)	824.70 - 848.31 MHz	0.13	0.36	0.42	N/A
PCE	PCS CDMA/EVDO	1851.25 - 1908.75 MHz	0.13	0.53	0.92	2.94
PCE	GSM/GPRS/EDGE 850	824.20 - 848.80 MHz	0.21	0.37	0.37	N/A
PCE	GSM/GPRS/EDGE 1900	1850.20 - 1909.80 MHz	< 0.1	0.34	0.70	N/A
PCE	UMTS 850	826.40 - 846.60 MHz	0.18	0.39	0.39	N/A
PCE	UMTS 1750	1712.4 - 1752.6 MHz	0.13	0.48	0.88	3.19
PCE	UMTS 1900	1852.4 - 1907.6 MHz	0.12	0.57	1.10	2.51
PCE	LTE Band 12	699.7 - 715.3 MHz	0.11	0.43	0.43	N/A
PCE	LTE Band 17	706.5 - 713.5 MHz	N/A	N/A	N/A	N/A
PCE	LTE Band 13	779.5 - 784.5 MHz	0.17	0.44	0.44	N/A
PCE	LTE Band 5 (Cell)	824.7 - 848.3 MHz	0.12	0.36	0.36	N/A
PCE	LTE Band 26 (Cell)	814.7 - 848.3 MHz	0.12	0.43	0.43	N/A
PCE	LTE Band 66 (AWS)	1710.7 - 1779.3 MHz	0.10	0.46	0.70	2.98
PCE	LTE Band 4 (AWS)	1710.7 - 1754.3 MHz	N/A	N/A	N/A	N/A
PCE	LTE Band 25 (PCS)	1850.7 - 1914.3 MHz	0.13	0.60	0.93	2.68
PCE	LTE Band 2 (PCS)	1850.7 - 1909.3 MHz	N/A	N/A	N/A	N/A
PCE	LTE Band 30	2307.5 - 2312.5 MHz	< 0.1	0.51	0.64	N/A
PCE	LTE Band 7	2502.5 - 2567.5 MHz	< 0.1	1.19	1.20	N/A
PCE	LTE Band 41	2498.5 - 2687.5 MHz	< 0.1	0.51	0.51	N/A
DTS	2.4 GHz WLAN	2412 - 2462 MHz	0.49	0.34	0.34	N/A
NII	U-NII-1	5180 - 5240 MHz	N/A	N/A	0.82	N/A
NII	U-NII-2A	5260 - 5320 MHz	0.59	1.06	N/A	2.54
NII	U-NII-2C	5500 - 5720 MHz	0.53	0.70	N/A	1.47
NII	U-NII-3	5745 - 5825 MHz	0.50	0.73	0.73	N/A
DSS/DTS	Bluetooth	2402 - 2480 MHz	0.12	< 0.1	< 0.1	N/A
Simultaneous	SAR per KDB 690783 D01v01r03:		0.90	1.59	1.59	3.89

Note: This revised Test Report (S/N: 1M1806290137-01-R3.ZNF) supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.8 of this report; for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

The SAR Tick is an initiative of the Mobile & Wireless Forum (MWF). While a product may be considered eligible, use of the SAR Tick logo requires an agreement with the MWF. Further details can be obtained by emailing: sartick@mwfai.info.

	FCC ID: ZNFQ910QM	PCTEST MORNING LAJORATRIT. INC.	SAR EVALUATION REPORT (b) LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dage 4 of 120
	1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 1 of 138
201	9 DCTEST Engineering Laboratory Inc.			DEV/ 20 11 M

© 2018 PCTEST Engineering Laboratory, Inc.

TABLE OF CONTENTS

1	DEVICE	UNDER TEST	3
2	LTE INF	ORMATION	15
3	INTROD	UCTION	16
4	DOSIME	ETRIC ASSESSMENT	17
5	DEFINIT	TION OF REFERENCE POINTS	18
6	TEST C	ONFIGURATION POSITIONS	19
7	RF EXP	OSURE LIMITS	23
8	FCC ME	ASUREMENT PROCEDURES	24
9	RF CON	IDUCTED POWERS	32
10	SYSTEM	/I VERIFICATION	77
11	SAR DA	TA SUMMARY	81
12	FCC ML	ILTI-TX AND ANTENNA SAR CONSIDERATIONS	106
13	SAR ME	ASUREMENT VARIABILITY	132
14	EQUIPM	MENT LIST	134
15	MEASU	REMENT UNCERTAINTIES	135
16	CONCL	JSION	136
17	REFERE	ENCES	137
APPE	NDIX A:	SAR TEST PLOTS	
APPE	NDIX B:	SAR DIPOLE VERIFICATION PLOTS	
APPE	NDIX C:	PROBE AND DIPOLE CALIBRATION CERTIFICATES	
APPE	NDIX D:	SAR TISSUE SPECIFICATIONS	
APPE	NDIX E:	SAR SYSTEM VALIDATION	
APPE	NDIX F:	DUT ANTENNA DIAGRAM & SAR TEST SETUP PHOTOGRAPHS	
APPE	NDIX G:	POWER REDUCTION VERIFICATION	
APPEN	NDIX H:	DOWNLINK LTE CA RF CONDUCTED POWERS	

FCC ID: ZNFQ910QM	PCTEST:	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Domo 2 of 420
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 2 of 138

1.1 Device Overview

Band & Mode	Operating Modes	Tx Frequency
CDMA/EVDO BC10 (§90S)	Voice/Data	817.90 - 823.10 MHz
CDMA/EVDO BC0 (§22H)	Voice/Data	824.70 - 848.31 MHz
PCS CDMA/EVDO	Voice/Data	1851.25 - 1908.75 MHz
GSM/GPRS/EDGE 850	Voice/Data	824.20 - 848.80 MHz
GSM/GPRS/EDGE 1900	Voice/Data	1850.20 - 1909.80 MHz
UMTS 850	Voice/Data	826.40 - 846.60 MHz
UMTS 1750	Voice/Data	1712.4 - 1752.6 MHz
UMTS 1900	Voice/Data	1852.4 - 1907.6 MHz
LTE Band 12	Voice/Data	699.7 - 715.3 MHz
LTE Band 17	Voice/Data	706.5 - 713.5 MHz
LTE Band 13	Voice/Data	779.5 - 784.5 MHz
LTE Band 5 (Cell)	Voice/Data	824.7 - 848.3 MHz
LTE Band 26 (Cell)	Voice/Data	814.7 - 848.3 MHz
LTE Band 66 (AWS)	Voice/Data	1710.7 - 1779.3 MHz
LTE Band 4 (AWS)	Voice/Data	1710.7 - 1754.3 MHz
LTE Band 25 (PCS)	Voice/Data	1850.7 - 1914.3 MHz
LTE Band 2 (PCS)	Voice/Data	1850.7 - 1909.3 MHz
LTE Band 30	Voice/Data	2307.5 - 2312.5 MHz
LTE Band 7	Voice/Data	2502.5 - 2567.5 MHz
LTE Band 41	Voice/Data	2498.5 - 2687.5 MHz
2.4 GHz WLAN	Voice/Data	2412 - 2462 MHz
U-NII-1	Voice/Data	5180 - 5240 MHz
U-NII-2A	Voice/Data	5260 - 5320 MHz
U-NII-2C	Voice/Data	5500 - 5720 MHz
U-NII-3	Voice/Data	5745 - 5825 MHz
Bluetooth	Data	2402 - 2480 MHz
NFC	Data	13.56 MHz

1.2 Power Reduction for SAR

This device uses a power reduction mechanism for SAR compliance. The power reduction mechanism is activated when the device is used in close proximity to the user's body. FCC KDB Publication 616217 D04v01r02 Section 6 was used as a guideline for selecting SAR test distances for this device. Detailed descriptions of the power reduction mechanism are included in the operational description.

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 0 -f 400
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset		Page 3 of 138

© 2018 PCTEST Engineering Laboratory, Inc.

REV 20.11 M 06/19/2018 This device uses an independent fixed level power reduction mechanism for WLAN operations during voice or VoIP held to ear scenarios. Per FCC Guidance, the held-to-ear exposure conditions were evaluated at reduced power according to the head SAR positions described in IEEE 1528-2013. Detailed descriptions of the power reduction mechanism are included in the operational description.

1.3 Nominal and Maximum Output Power Specifications

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06.

1.3.1 Maximum PCE Output Power

Mode / Band		Voice (dBm)	Burst Average GMSK (dBm)			Burst Average 8-PSK (dBm)				
		1 TX Slot	1 TX Slots	2 TX Slots	3 TX Slots	4 TX Slots	1 TX Slots	2 TX Slots	3 TX Slots	4 TX Slots
GSM/GPRS/EDGE 850	Maximum	33.7	33.7	32.7	30.7	28.7	27.7	27.7	26.7	26.7
d3W/GFR3/EDGE 830	Nominal	33.2	33.2	32.2	30.2	28.2	27.2	27.2	26.2	26.2
GSM/GPRS/EDGE 1900	Maximum	30.7	30.7	29.7	27.7	25.7	26.7	26.7	25.7	25.7
	Nominal	30.2	30.2	29.2	27.2	25.2	26.2	26.2	25.2	25.2

		Modulated Average (dBm)				
Mode / Band	Mode / Band		3GPP	3GPP	3GPP	
	WCDMA	HSDPA	HSUPA	DC-HSDPA		
LINATE Development	Maximum	25.5	25.5	25.5	25.5	
UMTS Band 5 (850 MHz)	Nominal	25.0	25.0	25.0	25.0	
LIMITS Dand 4 (1750 MILE)	Maximum	24.7	24.7	24.7	24.7	
UMTS Band 4 (1750 MHz)	Nominal	24.2	24.2	24.2	24.2	
UMTS Band 2 (1900 MHz)	Maximum	24.4	24.4	24.4	24.4	
01V113 Ballu 2 (1900 IVIH2)	Nominal	23.9	23.9	23.9	23.9	

Mode / Band		Modulated Average (dBm)
CDMA/EVDO BC10 (§90S)	Maximum	25.5
CDIVIA/EVDO BCIO (9903)	Nominal	25.0
CDA44 /5/ /DO DCO /53311)	Maximum	25.5
CDMA/EVDO BC0 (§22H)	Nominal	25.0
PCS CDMA/EVDO	Maximum	24.4
PCS CDIVIA/EVDO	Nominal	23.9

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 4 -6 400
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset		Page 4 of 138

Mode / Band	d d	Modulated Average (dBm)
	Maximum	25.5
LTE Band 12	Nominal	25.0
LTE D. 147	Maximum	25.5
LTE Band 17	Nominal	25.0
LTE Donal 12	Maximum	25.5
LTE Band 13	Nominal	25.0
LTE Dand E (Call)	Maximum	25.5
LTE Band 5 (Cell)	Nominal	25.0
LTE Dand 26 (Call)	Maximum	25.5
LTE Band 26 (Cell)	Nominal	25.0
LTE Band 66 (AWS)	Maximum	24.2
	Nominal	23.7
LTC Dand 4 (AVAC)	Maximum	24.2
LTE Band 4 (AWS)	Nominal	23.7
LTE Dand 2E (DCC)	Maximum	24.4
LTE Band 25 (PCS)	Nominal	23.9
LTC Dand 2 (DCC)	Maximum	24.4
LTE Band 2 (PCS)	Nominal	23.9
LTE Band 30	Maximum	23.0
LIE Ddflu 30	Nominal	22.5
LTE Band 7	Maximum	23.7
LIE Ballu /	Nominal	23.2
LTE Band 41	Maximum	24.9
LIE Ballu 41	Nominal	24.4

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 5 6 400
1M1806290137-01-R3.ZNF 0	7/08/18 - 07/23/18	Portable Handset	Page 5 of 138

Reduced PCE Output Power 1.3.2

	Modulated Average (dBm)				
Mode / Band	3GPP	3GPP	3GPP	3GPP	
	WCDMA	HSDPA	HSUPA	DC-HSDPA	
LIMTS Band 4 (1750 MUz)	Maximum	23.2	23.2	23.2	23.2
UMTS Band 4 (1750 MHz)	Nominal	22.7	22.7	22.7	22.7
UMTS Band 2 (1900 MHz)	Maximum	22.2	22.2	22.2	22.2
OIVITS BATTU 2 (1900 IVITIZ)	Nominal	21.7	21.7	21.7	21.7

Mode / Band		Modulated Average (dBm)	
DCC CDMA/EVDO	Maximum	22.2	
PCS CDMA/EVDO	Nominal	21.7	

Mode / Band		Modulated Average (dBm)
LTE Band 66 (A)M(S)	Maximum	23.2
LTE Band 66 (AWS)	Nominal	22.7
LTE Dand 4 (ANAS)	Maximum	23.2
LTE Band 4 (AWS)	Nominal	22.7
LTE Band 25 (DCS)	Maximum	22.2
LTE Band 25 (PCS)	Nominal	21.7
LTE Band 2 (DCS)	Maximum	22.2
LTE Band 2 (PCS)	Nominal	21.7

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D C -f 400
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset		Page 6 of 138

Maximum WLAN and Bluetooth Output Power 1.3.3

Mode / Band	Modulated Average - Single Tx Chain			
·			(dBm)	
	Ch. 1-2	Ch. 3-9	Ch. 10-11	
IEEE 802 11b (2.4 CHz)	Maximum	20.5	20.5	20.5
IEEE 802.11b (2.4 GHz)	Nominal	19.5	19.5	19.5
IEEE 802.11g (2.4 GHz)	Maximum	18.0	19.5	17.0
TEEE 802.11g (2.4 GHZ)	Nominal	17.0	18.5	16.0
IEEE 902 115 (2.4 CHz)	Maximum	17.0	18.5	16.0
IEEE 802.11n (2.4 GHz)	Nominal	16.0	17.5	15.0
IEEE 902 1126 /2 4 CHz)	Maximum	17.0	18.5	16.0
IEEE 802.11ac (2.4 GHz)	Nominal	16.0	17.5	15.0

Mode / Band	Modulated Average - MIMO (dBm)			
	Ch. 1-2	Ch. 3-9	Ch. 10-11	
IEEE 902 11h /2 / CUz)	Maximum	23.5	23.5	23.5
IEEE 802.11b (2.4 GHz)	Nominal	22.5	22.5	22.5
IEEE 802 11a (2.4 CHz)	Maximum	21.0	22.5	20.0
IEEE 802.11g (2.4 GHz)	Nominal	20.0	21.5	19.0
IEEE 802 115 (2.4 CHz)	Maximum	20.0	21.5	19.0
IEEE 802.11n (2.4 GHz)	Nominal	19.0	20.5	18.0
IEEE 902 1126 /2 4 CHz)	Maximum	20.0	21.5	19.0
IEEE 802.11ac (2.4 GHz)	Nominal	19.0	20.5	18.0

		Modulated Average - Single Tx Chain (dBm)						
Mode / Band		20 MHz Bandwidth 40 MHz Bandwidth		20 MHz Bandwidth 40 MHz Bandwidth 80		80 MHz B	andwidth	
		Ch. 40, 56, 157, 161	Ch. 36, 44-52, 60-153, 165	Ch. 62-102	Ch. 62-102 Ch. 38 Ch. 46-54, 110-159			Ch. 42, 106-155
IEEE 802.11a (5 GHz)	Maximum	18.0	17.0					
TEEE 802.11a (5 GHZ)	Nominal	17.0	16.0					
IFFE 002 11= /F CII=)	Maximum	18.0	17.0	12.5	13.0	16.0		
IEEE 802.11n (5 GHz)	Nominal	17.0	16.0	11.5	12.0	15.0		
IEEE 003 11 (E CU-)	Maximum	18.0	17.0	12.5	13.0	16.0	10.5	13.5
IEEE 802.11ac (5 GHz)	Nominal	17.0	16.0	11.5	12.0	15.0	9.5	12.5

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT 6 LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dog 7 of 120
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 7 of 138

		,	Modulated Average - MIMO (dBm)						
Mode / Band		20 MHz B	andwidth	dwidth 40 MHz Bandwidth			80 MHz B	80 MHz Bandwidth	
		Ch. 40, 56, 157, 161	Ch. 36, 44-52, 60-153, 165	Ch. 62-102	Ch. 62-102 Ch. 38 Ch. 46-54, 110-159			Ch. 42, 106-155	
IEEE 802.11a (5 GHz)	Maximum	21.0	20.0						
TEEE 802.11a (5 GH2)	Nominal	20.0	19.0						
IEEE 003 11= (E CU-)	Maximum	21.0	20.0	15.5	16.0	19.0			
IEEE 802.11n (5 GHz)	Nominal	20.0	19.0	14.5	15.0	18.0			
IEEE 802.11ac (5 GHz)	Maximum	21.0	20.0	15.5	16.0	19.0	13.5	16.5	
TEEE 802.11ac (5 GHZ)	Nominal	20.0	19.0	14.5	15.0	18.0	12.5	15.5	

Mode / Band		Modulated Average (dBm)
Bluetooth	Maximum	12.0
Bluetootii	Nominal	11.0
Bluetooth LE	Maximum	5.0
Diuelootti LE	Nominal	4.0

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 0 of 120
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 8 of 138

Reduced WLAN Output Power (Held-to-Ear) 1.3.4

Mode / Band	Modulated Average - Single Tx Chain (dBm)			
	Ch. 1-2	Ch. 3-9	Ch. 10-11	
IEEE 902 11h /2 / CUz)	Maximum	18.0	18.0	18.0
IEEE 802.11b (2.4 GHz)	Nominal	17.0	17.0	17.0
IEEE 802.11g (2.4 GHz)	Maximum	18.0	18.0	17.0
TEEE 802.11g (2.4 GHZ)	Nominal	17.0	17.0	16.0
IEEE 902 115 (2.4 CHz)	Maximum	17.0	18.0	16.0
IEEE 802.11n (2.4 GHz)	Nominal	16.0	17.0	15.0
IEEE 902 1126 /2 4 CHz)	Maximum	17.0	18.0	16.0
IEEE 802.11ac (2.4 GHz)	Nominal	16.0	17.0	15.0

Mode / Band		Modulat	ed Average (dBm)	e - MIMO
		Ch. 1-2	Ch. 3-9	Ch. 10-11
IEEE 802.11b (2.4 GHz)	Maximum	21.0	21.0	21.0
TEEE 802.11b (2.4 GHZ)	Nominal	20.0	20.0	20.0
IEEE 802.11g (2.4 GHz)	Maximum	21.0	21.0	20.0
TEEE 802.11g (2.4 GHZ)	Nominal	20.0	20.0	19.0
IFFF 902 11 × (2.4 CHz)	Maximum	20.0	21.0	19.0
IEEE 802.11n (2.4 GHz)	Nominal	19.0	20.0	18.0
IEEE 902 1126 (2 4 CHz)	Maximum	20.0	21.0	19.0
IEEE 802.11ac (2.4 GHz)	Nominal	19.0	20.0	18.0

FCC ID: ZNFQ910QM	PCTEST:	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dags 0 of 120
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset		Page 9 of 138

Output Power during Scenarios with 2.4 GHz WLAN Ant 1 and 5 GHz WLAN Ant 2 1.3.5

		Modulate	d Average	- Single Tx
Made / Dand			Chain	
Mode / Band			(dBm)	
		Ch. 1-2	Ch. 3-9	Ch. 10-11
IEEE 802 11h (2.4 CHz)	Maximum	18.0	18.0	18.0
IEEE 802.11b (2.4 GHz)	Nominal	17.0	17.0	17.0
IFFF 902 11~ (2.4 CH-)	Maximum	18.0	18.0	17.0
IEEE 802.11g (2.4 GHz)	Nominal	17.0	17.0	16.0
IFFF 902 11 ~ (2.4 CH-)	Maximum	17.0	18.0	16.0
IEEE 802.11n (2.4 GHz)	Nominal	16.0	17.0	15.0
IEEE 902 1120 (2 4 CHz)	Maximum	17.0	18.0	16.0
IEEE 802.11ac (2.4 GHz)	Nominal	16.0	17.0	15.0

	•		1	Modulated Average - Sir (dBm)	ngle Tx Chain		
Mode / Band		20 MHz Bandwidth		40 MHz Bandwidth		80 MHz B	andwidth
		Ch. 36-165	Ch. 62-102	Ch. 38	Ch. 46-54, 110-159	Ch. 58	Ch. 42, 106-155
IEEE 802.11a (5 GHz)	Maximum	15.0					
TEEE 802.11a (5 GHZ)	Nominal	14.0					
LEEE 002 11= /E CU-)	Maximum	15.0	12.5	13.0	15.0		
IEEE 802.11n (5 GHz)	Nominal	14.0	11.5	12.0	14.0		
JEEE 902 1120 /E CH7)	Maximum	15.0	12.5	13.0	15.0	10.5	13.5
IEEE 802.11ac (5 GHz)	Nominal	14.0	11.5	12.0	14.0	9.5	12.5

FCC ID: ZNFQ910QM	PCTEST	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 10 of 120
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 10 of 138

1.4 DUT Antenna Locations

The overall dimensions of this device are > 9 x 5 cm. A diagram showing the location of the device antennas can be found in Appendix F. Since the diagonal dimension of this device is > 160 mm and <200 mm, it is considered a "phablet."

Table 1-1
Device Edges/Sides for SAR Testing

Mode	Back	Front	Тор	Bottom	Right	Left
EVDO BC10 (§90S)	Yes	Yes	No	Yes	Yes	Yes
EVDO BC0 (§22H)	Yes	Yes	No	Yes	Yes	Yes
PCS EVDO	Yes	Yes	No	Yes	No	Yes
GPRS 850	Yes	Yes	No	Yes	Yes	Yes
GPRS 1900	Yes	Yes	No	Yes	No	Yes
UMTS 850	Yes	Yes	No	Yes	Yes	Yes
UMTS 1750	Yes	Yes	No	Yes	No	Yes
UMTS 1900	Yes	Yes	No	Yes	No	Yes
LTE Band 12	Yes	Yes	No	Yes	Yes	Yes
LTE Band 13	Yes	Yes	No	Yes	Yes	Yes
LTE Band 26 (Cell)	Yes	Yes	No	Yes	Yes	Yes
LTE Band 66 (AWS)	Yes	Yes	No	Yes	No	Yes
LTE Band 25 (PCS)	Yes	Yes	No	Yes	No	Yes
LTE Band 30	Yes	Yes	No	Yes	Yes	Yes
LTE Band 7	Yes	Yes	No	Yes	Yes	Yes
LTE Band 5 (Cell)	Yes	Yes	No	Yes	Yes	Yes
LTE Band 41	Yes	Yes	No	Yes	Yes	Yes
2.4 GHz WLAN Ant 1	Yes	Yes	Yes	No	No	Yes
2.4 GHz WLAN Ant 2	Yes	Yes	Yes	No	No	Yes
5 GHz WLAN Ant 1	Yes	Yes	Yes	No	No	Yes
5 GHz WLAN Ant 2	Yes	Yes	Yes	No	No	Yes
5 GHz WLAN MIMO	Yes	Yes	Yes	No	No	Yes
Bluetooth	Yes	Yes	Yes	No	No	Yes

Note: Particular DUT edges were not required to be evaluated for wireless router SAR or phablet SAR if the edges were greater than 2.5 cm from the transmitting antenna according to FCC KDB Publication 941225 D06v02r01 Section III and FCC KDB Publication 648474 D04v01r03. The distances between the transmit antennas and the edges of the device are included in the filing. When wireless router mode is enabled, U-NII-2A and U-NII-2C operations are disabled.

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 44 6400
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 11 of 138

© 2018 PCTEST Engineering Laboratory, Inc.

1.5 Near Field Communications (NFC) Antenna

This DUT has NFC operations. The NFC antenna is integrated into the device for this model. Therefore, all SAR tests were performed with the device which already incorporates the NFC antenna. A diagram showing the location of the NFC antenna can be found in Appendix F.

1.6 Simultaneous Transmission Capabilities

According to FCC KDB Publication 447498 D01v06, transmitters are considered to be transmitting simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds.

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v06 4.3.2 procedures.

Table 1-2
Simultaneous Transmission Scenarios

	Silliultarieo	us IIalii	311113310	II OCEIIC	11103	
No.	Capable Transmit Configuration	Head	Body-Worn Accessory	Wireless Router	Phablet	Notes
1	1x CDMA voice + 2.4 GHz WI-FI	Yes	Yes	N/A	Yes	
2	1x CDMA voice + 5 GHz WI-FI	Yes	Yes	N/A	Yes	
3	1x CDMA voice + 2.4 GHz Bluetooth	Yes^	Yes	N/A	Yes	^Bluetooth Tethering is considered
4	1x CDMA voice + 2.4 GHz WI-FI MIMO	Yes	Yes	N/A	Yes	
5	1x CDMA voice + 5 GHz WI-FI MIMO	Yes	Yes	N/A	Yes	
6	1x CDMA voice + 2.4 GHz WI-FI Ant 1 + 5 GHz WI-FI Ant 2	Yes	Yes	N/A	Yes	
7	GSM voice + 2.4 GHz WI-FI	Yes	Yes	N/A	Yes	
8	GSM voice + 5 GHz WI-FI	Yes	Yes	N/A	Yes	
9	GSM voice + 2.4 GHz Bluetooth	Yes^	Yes	N/A	Yes	^Bluetooth Tethering is considered
10	GSM voice + 2.4 GHz W1-FI MIMO	Yes	Yes	N/A	Yes	Ĭ
11	GSM voice + 5 GHz WI-FI MIMO	Yes	Yes	N/A	Yes	
12	GSM voice + 2.4 GHz WI-FI Ant 1 + 5 GHz WI-FI Ant 2	Yes	Yes	N/A	Yes	
13	UMTS + 2.4 GHz WI-FI	Yes	Yes	Yes	Yes	
14	UMTS + 5 GHz WI-FI	Yes	Yes	Yes	Yes	
15	UMTS + 2.4 GHz Bluetooth	Yes^	Yes	Yes^	Yes	^Bluetooth Tethering is considered
16	UMTS + 2.4 GHz WI-FI MIMO	Yes	Yes	Yes	Yes	, , , , , , , , , , , , , , , , , , , ,
17	UMTS + 5 GHz WI-FI MIMO	Yes	Yes	Yes	Yes	
18	UMTS + 2.4 GHz WI-FI Ant 1 + 5 GHz WI-FI Ant 2	Yes	Yes	Yes	Yes	
19	LTE + 2.4 GHz WI-FI	Yes	Yes	Yes	Yes	
20	LTE + 5 GHz WI-FI	Yes	Yes	Yes	Yes	
21	LTE + 2.4 GHz Bluetooth	Yes^	Yes	Yes^	Yes	^Bluetooth Tethering is considered
22	LTE + 2.4 GHz WI-FI MIMO	Yes	Yes	Yes	Yes	
23	LTE + 5 GHz WI-FI MIMO	Yes	Yes	Yes	Yes	
24	LTE + 2.4 GHz WI-FI Ant 1 + 5 GHz WI-FI Ant 2	Yes	Yes	Yes	Yes	
25	CDMA/EVDO data + 2.4 GHz WI-FI	Yes*	Yes*	Yes	Yes	* Pre-installed VOIP applications are considered
26	CDMA/EVDO data + 5 GHz WI-FI	Yes*	Yes*	Yes	Yes	* Pre-installed VOIP applications are considered
27	CDMA/EVDO data + 2.4 GHz Bluetooth	Yes*^	Yes*	Yes^	Yes	* Pre-installed VOIP applications are considered ABluetooth Tethering is considered
28	CDMA/EVDO data + 2.4 GHz WI-FI MIMO	Yes*	Yes*	Yes	Yes	* Pre-installed VOIP applications are considered
29	CDMA/EVDO data + 5 GHz WI-FI MIMO	Yes*	Yes*	Yes	Yes	* Pre-installed VOIP applications are considered
30	CDMA/EVDO data + 2.4 GHz WI-FI Ant 1 + 5 GHz WI-FI Ant 2	Yes*	Yes*	Yes	Yes	* Pre-installed VOIP applications are considered
31	GPRS/EDGE + 2.4 GHz WI-FI	Yes*	Yes*	Yes	Yes	* Pre-installed VOIP applications are considered
32	GPRS/EDGE + 5 GHz WI-FI	Yes*	Yes*	Yes	Yes	* Pre-installed VOIP applications are considered
33	GPRS/EDGE + 2.4 GHz Bluetooth	Yes*^	Yes*	Yes^	Yes	* Pre-installed VOIP applications are considered ^Bluetooth Tethering is considered
34	GPRS/EDGE + 2.4 GHz WI-FI MIMO	Yes*	Yes*	Yes	Yes	* Pre-installed VOIP applications are considered
35	GPRS/EDGE + 5 GHz WI-FI MIMO	Yes*	Yes*	Yes	Yes	* Pre-installed VOIP applications are considered
36	GPRS/EDGE + 2.4 GHz WI-FI Ant 1 + 5 GHz WI-FI Ant 2	Yes*	Yes*	Yes	Yes	* Pre-installed VOIP applications are considered

- 1. Bluetooth cannot transmit simultaneously with WLAN.
- 2. All licensed modes share the same antenna path and cannot transmit simultaneously.
- 3. When the user utilizes multiple services in UMTS 3G mode it uses multi-Radio Access Bearer or multi-RAB. The power control is based on a physical control channel (Dedicated Physical Control Channel

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 42 of 420
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 12 of 138

- [DPCCH]) and power control will be adjusted to meet the needs of both services. Therefore, the UMTS+WLAN scenario also represents the UMTS Voice/DATA + WLAN Hotspot scenario.
- 4. Per the manufacturer, WIFI Direct is expected to be used in conjunction with a held-to-ear or body-worn accessory voice call. Therefore, the simultaneous transmission scenarios involving WIFI are listed in the above table.
- 5. 5 GHz Wireless Router is only supported for U-NII-1 and U-NII-3 by S/W, therefore U-NII2A, and U-NII2C were not evaluated for wireless router conditions.
- 6. This device supports 2x2 MIMO Tx for WLAN. 802.11a/g/n/ac modes support CDD, 802.11b mode supports TDD operations only, and 802.11n/ac modes additionally support SDM. Each WLAN antenna can transmit independently or together when operating with MIMO.
- 7. This device supports VOLTE.
- 8. This device supports VoWIFI.
- 9. This device supports BT Tethering.

Miscellaneous SAR Test Considerations 1.7

(A) WIFI/BT

Since U-NII-1 and U-NII-2A bands have the same maximum output power and the highest reported SAR for U-NII-2A is less than 1.2 W/kg, SAR is not required for U-NII-1 band according to FCC KDB Publication 248227 D01v02r02.

Since Wireless Router operations are not allowed by the chipset firmware using U-NII-2A & U-NII-2C WIFI, only 2.4 GHz, U-NII-1 and U-NII-3 WIFI Hotspot SAR tests and combinations are considered for SAR with respect to Wireless Router configurations according to FCC KDB 941225 D06v02r01.

This device supports IEEE 802.11ac with the following features:

- a) Up to 80 MHz Bandwidth only
- b) No aggregate channel configurations
- c) 2 Tx antenna output
- d) 256 QAM is supported
- e) TDWR and Band gap channels are supported

Per FCC KDB Publication 648474 D04v01r03, this device is considered a "phablet" since the diagonal dimension is greater than 160mm and less than 200mm. Phablet SAR tests are required when wireless router mode does not apply or if wireless router 1g SAR > 1.2 W/kg. Because wireless router operations are not supported for U-NII-2A & U-NII-2C WLAN, phablet SAR tests were performed. Phablet SAR was not evaluated for Bluetooth, 2.4 GHz, U-NII-1, and U-NII-3 WLAN operations since wireless router 1g SAR was <1.2 W/kg.

(B) Licensed Transmitter(s)

GSM/GPRS/EDGE DTM is not supported for US bands. Therefore, the GSM Voice modes in this report do not transmit simultaneously with GPRS/EDGE Data.

This device is only capable of QPSK HSUPA in the uplink. Therefore, no additional SAR tests are required beyond that described for devices with HSUPA in KDB 941225 D01v03r01.

LTE SAR for the higher modulations and lower bandwidths were not tested since the maximum average output power of all required channels and configurations was not more than 0.5 dB higher than the highest bandwidth; and the reported LTE SAR for the highest bandwidth was less than 1.45 W/kg for all configurations according to FCC KDB 941225 D05v02r04.

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 42 of 420
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 13 of 138

© 2018 PCTEST Engineering Laboratory, Inc.

CDMA 1X Advanced technology was not required for SAR since the maximum allowed output powers for 1x Advanced was not more than 0.25 dB higher than the maximum powers for 1x and the measured SAR in any 1x mode exposure conditions was not greater than 1.2 W/kg per FCC KDB Publication 941225 D01v03r01.

This device supports LTE Carrier Aggregation (CA) in the downlink only. All uplink communications are identical to Release 8 specifications. Per FCC KDB Publication 941225 D05A v01r02, SAR for LTE CA operations was not needed since the maximum average output power in LTE CA mode was not >0.25 dB higher than the maximum output power when downlink carrier aggregation was inactive. Downlink LTE CA conducted powers are included in Appendix H.

Per FCC KDB Publication 648474 D04v01r03, this device is considered a "phablet" since the diagonal dimension is greater than 160mm and less than 200mm. Therefore, phablet SAR tests are required when wireless router mode does not apply or if wireless router 1g SAR > 1.2 W/kg.

This device supports LTE capabilities with overlapping transmission frequency ranges. When the supported frequency range of an LTE Band falls completely within an LTE band with a larger transmission frequency range, both LTE bands have the same target power (or the band with the larger transmission frequency range has a higher target power), and both LTE bands share the same transmission path and signal characteristics, SAR was only assessed for the band with the larger transmission frequency range.

Additional SAR tests for phablet SAR were evaluated per KDB 616217 Section 6 (See Section 6.9 for more information).

1.8 Guidance Applied

- IEEE 1528-2013
- FCC KDB Publication 941225 D01v03r01, D05v02r04, D05Av01r02, D06v02r01 (2G/3G/4G and Hotspot)
- FCC KDB Publication 248227 D01v02r02 (SAR Considerations for 802.11 Devices)
- FCC KDB Publication 447498 D01v06 (General SAR Guidance)
- FCC KDB Publication 865664 D01v01r04, D02v01r02 (SAR Measurements up to 6 GHz)
- FCC KDB Publication 648474 D04v01r03 (Phablet Procedures)
- FCC KDB Publication 616217 D04v01r02 (Proximity Sensor)
- October 2013 TCB Workshop Notes (GPRS Testing Considerations)
- April 2018 TCB Workshop Notes (LTE Carrier Aggregation)

1.9 Device Serial Numbers

Several samples with identical hardware were used to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units. The serial numbers used for each test are indicated alongside the results in Section 11.

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 44 400
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 14 of 138

LTE I LTE LTE	LTE E LTE E LTE Ban LTE Band L	ZNFQ910QM Protable Handset and 12 (699.7 - 715.3 and 17 (706.5 - 713.5 and 17 (706.5 - 713.5 dz 6 (Cell) (814.7 - 84 d6 (AWS) (1710.7 - 17 4 (AWS) (1710.7 - 17 25 (PCS) (1850.7 - 19 12 (PCS) (1850.7 - 19 13 (PCS) (1850.7 - 19 14 (PCS) (1850.7 - 19 15 (PCS) (1850.7 - 19 16 (PCS) (1850.7 - 19 16 (PCS) (1850.7 - 19 16 (PCS) (1850.7 - 19 17 (PCS) (1850.7 - 19 17 (PCS) (1850.7 - 19 18 (PCS) (1850.7	MHz) MHz) MHz) MHz) MHz) MHz) MHz) MHz)
LTE I LTE LTE	LTE E LTE E LTE Ban LTE Band L	Band 12 (699.7 - 715.3 sand 12 (699.7 - 715.5 sand 13 (779.5 - 784.5 sand 13 (779.5 - 784.5 sand 13 (779.5 - 784.5 sd 26 (Cell) (814.7 - 844 s66 (AWS) (1710.7 - 17 4 (AWS) (1710.7 - 17 25 (PCS) (1850.7 - 19 12 (PCS) (185	MHz) MHz) MHz) MHz) MHz) MHz) MHz) MHz)
LTE I LTE LTE	LTE E LTE E LTE Ban LTE Band L	Band 17 (706.5 - 713.5 and 13 (779.5 - 784.5 dd 26 (Cell) (814.7 - 844 dd 5 (Cell) (824.7 - 848 dd 5 (Cell) (824.7 - 848 dd 5 (Cell) (825.7 - 848 dd 748.5 dd 7	MHz) MHz) MHz) MHz) MHz) MHz) MHz) MHz)
LTE I LTE LTE	LTE E LTE Band 12 LTE Band 62 LTE Band 66 (AWS): 1.4	3and 13 (779.5 - 784.5) dd 26 (Cell) (814.7 - 844 nd 5 (Cell) (824.7 - 848 nd 66 (AWS) (1710.7 - 17; 25 (PCS) (1850.7 - 19 12 (PCS) (1850.7 - 19 13 (PCS) (1850.7 - 19 14 (PCS) (1850.7 - 19 15 (PCS) (1850.7 - 19 16 (PCS) (1850.7 - 19 16 (PCS) (1850.7 - 19 16 (PCS) (1850.7 - 19 16 (PCS) (1850.7 - 19 16 (PCS) (1850.7 - 19 16 (PCS) (1850.7 - 19 16 (PCS) (1850.7 - 19 16 (PCS) (1850.7 - 19 16 (PCS) (1850.7 - 19 16 (PCS) (1850.7 - 19 16 (PCS) (1850.7 - 19 16 (PCS) (18	MHz) 3.3 MHz) 3.3 MHz) 779.3 MHz) 54.3 MHz) 114.3 MHz) 114.3 MHz) 114.3 MHz) 114.5 MHz) 114.7 MHz
LTE I LTE LTE	LTE Ban LTE Bard LTE Bard LTE Band 1: LTE Band 26 (Cell): LTE Band 5 (Cell): LTE Band 5 (Gal):	ud 26 (Cell) (814.7 - 848 d6 (AWS) (1710.7 - 173 d6 (AWS) (1710.7 - 173 d6 (AWS) (1710.7 - 173 d7 (AWS) (1710.7 -	8.3 MHz) 3.3 MHz) 779.3 MHz) 54.3 MHz) 54.3 MHz) 14.3 MHz) 99.3 MHz) 5 MHz) 5 MHz) 5 MHz) 5 MHz) 6 MHz) 6 MHz) 6 MHz) 6 MHz 6 MHz 6 MHz 6 MHz
LTE I LTE LTE	LTE Bard LTE Band 12 LTE Band 26 (Cell): LTE Band 26 (Cell): LTE Band 26 (Cell): LTE Band 26 (Cell):	nd 5 (Cell) (824.7 - 846 66 (AWS) (1710.7 - 17 4 (AWS) (1710.7 - 17 425 (PCS) (1850.7 - 19 12 (PCS) (1850.7 - 19 12 (PCS) (1850.7 - 19 and 7 (2502.5 - 2567.2 and 7 (2502.5 - 2567.2 21.4 MHz, 3 MHz, 5 M Band 17: 5 MHz, 10 M 1.4 MHz, 3 MHz, 5 M 1.4 MHz, 3 MHz, 5 M	3.3 MHz) 779.3 MHz) 54.3 MHz) 144.3 MHz) 193.3 MHz) 90.3 MHz) 5 MHz) 5 MHz) 5 MHz) 6 MHz 4 MHz 6 MHz
LTE I LTE LTE	LTE Band LTE Band LTE Band LTE Band LTE Ba LTE Ba LTE Ba LTE Band 1: LTE Band 1: LTE Band 6 (Cells) LTE Band 5 (CBand 66 (AWS): 1.4	4 (AWS) (1710.7 - 17: 25 (PCS) (1850.7 - 19: 12 (PCS) (1850.7 - 19: 12 (PCS) (1850.7 - 19: and 30 (2307.5 - 2312 and 7 (2502.5 - 2567.5 and 41 (2498.5 - 2687. 2: 1.4 MHz, 3 MHz, 5 N E Band 17: 5 MHz, 10 N E Band 13: 5 MHz, 10 N 1.4 MHz, 3 MHz, 5 M	54.3 MHz) 114.3 MHz) 99.3 MHz) 5 MHz) 5 MHz) 5 MHz) MHz) 4 MHz
LTE I LTE LTE	LTE Band LTE Band LTE Band LTE Ba LTE Ba LTE Band 1: LTE Band 1: LTE Band 26 (Cell) LTE Band 5 (CBand 66 (AWS): 1.4	25 (PCS) (1850.7 - 19 12 (PCS) (1850.7 - 19 and 30 (2307.5 - 2312. and 7 (2502.5 - 2567.5 and 41 (2498.5 - 2687. 2: 1.4 MHz, 3 MHz, 5 N E Band 17: 5 MHz, 10 N E Band 13: 5 MHz, 10 N 1.4 MHz, 3 MHz, 5 M	114.3 MHz) 09.3 MHz) 5 MHz) 5 MHz) 5 MHz) 5 MHz) 7 MHz 7 MHz 7 MHz 8 MHz
LTE I LTE LTE	LTE Band LTE Ba LTE Ba LTE Ba LTE Ba LTE Band 12 LTE LTE LTE LTE Band 26 (Cell): LTE Band 6 (AWS): 1.4	12 (PCS) (1850.7 - 190 and 30 (2307.5 - 2312.4 and 7 (2502.5 - 2567.5 and 41 (2498.5 - 2687.2 2: 1.4 MHz, 3 MHz, 5 N E Band 17: 5 MHz, 10 N E Band 13: 5 MHz, 10 N 1: 1.4 MHz, 3 MHz, 5 MHz, 10 N	09.3 MHz) 5 MHz) 5 MHz) 5 MHz) 5 MHz) 4 MHz, 10 MHz WHz, WHz, WHz
LTE I LTE LTE	LTE Ba LTE Ba LTE Band 12 LTE LTE LTE Band 26 (Cell): LTE Band 5 (Cell): LTE Band 6 (AWS): 1.4	and 30 (2307.5 - 2312.3 and 7 (2502.5 - 2567.5 and 41 (2498.5 - 2687.3 2: 1.4 MHz, 3 MHz, 5 M E Band 17: 5 MHz, 10 N E Band 13: 5 MHz, 10 N : 1.4 MHz, 3 MHz, 5 MH	5 MHz) 5 MHz) 5 MHz) 5 MHz) 7 MHz) 7 MHz) 7 MHz 7 MHz 7 MHz
LTE I LTE LTE	LTE B LTE Band 1: LTE LTE LTE LTE LTE LTE Band 26 (Cell): LTE Band 5 (Cell): LTE Band 66 (AWS): 1.4	and 7 (2502.5 - 2567.5 and 41 (2498.5 - 2687.5 2: 1.4 MHz, 3 MHz, 5 M E Band 17: 5 MHz, 10 M E Band 13: 5 MHz, 10 M : 1.4 MHz, 3 MHz, 5 MH	5 MHz) 5 MHz) HHz, 10 MHz WHz
LTE I LTE LTE	LTE Band 12 LTE Band 26 LTE Band 26 (Cell): LTE Band 5 (CBand 66 (AWS): 1.4	and 41 (2498.5 - 2687.4 2: 1.4 MHz, 3 MHz, 5 M E Band 17: 5 MHz, 10 M E Band 13: 5 MHz, 10 M : 1.4 MHz, 3 MHz, 5 MH	5 MHz) //Hz, 10 MHz //Hz //Hz
LTE I LTE LTE	LTE LTE Band 26 (Cell): LTE Band 5 (C Band 66 (AWS): 1.4	Band 17: 5 MHz, 10 M Band 13: 5 MHz, 10 M : 1.4 MHz, 3 MHz, 5 MH	MHz MHz
LTE I LTE LTE	LTE LTE Band 26 (Cell): LTE Band 5 (C Band 66 (AWS): 1.4	Band 13: 5 MHz, 10 M : 1.4 MHz, 3 MHz, 5 MH	MHz
LTE I LTE LTE	LTE Band 26 (Cell): LTE Band 5 (C Band 66 (AWS): 1.4	: 1.4 MHz, 3 MHz, 5 MH	
LTE I LTE LTE	LTE Band 5 (C Band 66 (AWS): 1.4		
LTE LTE	Band 66 (AWS): 1.4		
LTE LTE			10 MHz, 15 MHz, 20 MHz
	Band 4 (AWS): 1.4	MHz, 3 MHz, 5 MHz, 1	0 MHz, 15 MHz, 20 MHz
LTE			
Low	Low-Mid	Mid	Mid-High High
699.7 (230		707.5 (23095)	715.3 (23173)
700.5 (230	025)	707.5 (23095)	714.5 (23165)
701.5 (230	35)	707.5 (23095)	713.5 (23155)
		707.5 (23095)	711 (23130)
			713.5 (23825)
			711 (23800)
	:05)		784.5 (23255) N/A
	(07)		848.3 (27033)
			847.5 (27025)
			846.5 (27015)
			844 (26990)
821.5 (267	(65)	831.5 (26865)	841.5 (26965)
824.7 (204	107)	836.5 (20525)	848.3 (20643)
			847.5 (20635)
			846.5 (20625)
			844 (20600)
			1779.3 (132665) 1778.5 (132657)
			1777.5 (132647)
			1775 (132622)
			1772.5 (132597)
		1745 (132322)	1770 (132572)
		1732.5 (20175)	1754.3 (20393)
			1753.5 (20385)
			1752.5 (20375)
			1750 (20350)
			1747.5 (20325) 1745 (20300)
			1914.3 (26683)
			1913.5 (26675)
		1882.5 (26365)	1912.5 (26665)
1855 (260	90)	1882.5 (26365)	1910 (26640)
		1882.5 (26365)	1907.5 (26615)
			1905 (26590)
		,,	1909.3 (19193) 1908.5 (19185)
			1908.5 (19185)
			1905 (19150)
		1880 (18900)	1902.5 (19125)
		1880 (18900)	1900 (19100)
2307.5 (27)		2310 (27710)	2312.5 (27735)
N/A		2310 (27710)	N/A
2502.5 (20)		2535 (21100)	2567.5 (21425)
		2535 (21100)	2565 (21400)
		2535 (21100)	2562.5 (21375)
			2560 (21350)
2506 (39750)		2593 (40620)	2636.5 (41055) 2680 (414 2636.5 (41055) 2680 (414
		2593 (40620)	2636.5 (41055) 2680 (414 2636.5 (41055) 2680 (414
2506 (39750)	2549.5 (40185)	2593 (40620)	2636.5 (41055) 2680 (414
	(QPSK, 16QAM, 64	QAM, 256QAM), UL UE	E Cat 13 (QPSK, 16QAM, 64QAM)
	(QPSK, 16QAM, 64QAN YES	1
		YES	
	LTE Low 699.7 (230 700.5 (230 700.5 (230 701.5 (230 701.5 (230 704.(2300 706.5 (237 709.(237 779.5 (232 NA 814.7 (256 815.5 (267 819.(267 821.5 (267 824.5 (267 824.5 (267 824.7 (200 826.5 (200 826.	LTE Band 2 (PCS): 1.4 LTE LTE LTE Band 7 LOW LOW-Mid 699.7 (23017) 700.5 (23025) 701.5 (23035) 704.5 (23035) 704.5 (23035) 704.(23060) 706.5 (23755) 709 (23780) 779.5 (23205) NA 814.7 (26697) 815.5 (26705) 816.5 (26715) 819.5 (26705) 816.5 (26715) 819.(26740) 821.5 (26765) 824.7 (20407) 825.5 (20415) 826.5 (20425) 829.(20450) 1710.7 (131979) 1711.5 (131987) 1712.5 (131997) 1715.1 (131997) 1711.5 (131997) 1711.7 (19957) 1711.5 (13985) 1712.5 (19955) 1711.5 (19865) 1712.5 (19865) 1712.5 (19865) 1851.5 (26065) 1852.5 (20065) 1855.7 (26047) 1851.5 (26065) 1855.7 (26047) 1851.5 (26065) 1857.5 (26115) 1860 (26140) 1850.7 (18607) 1851.5 (18607) 1851.5 (18675) 1860 (18700) 2307.5 (27685) NA 2502.5 (20775) 2506 (39750) 2506 (39750) 2506 (39750) 2549.5 (40185) 2506 (39750) 2549.5 (40185) 2506 (39750) 2549.5 (40185) 2506 (39750) 2549.5 (40185) 2506 (39750) 2549.5 (40185) DL UE Cat 12 (OPSK, 160AM, 64) The technical description inck.	699.7 (23017) 707.5 (23095) 701.5 (23025) 707.5 (23095) 701.5 (23035) 707.5 (23095) 701.5 (23035) 707.5 (23095) 704 (23060) 707.5 (23095) 704 (23060) 707.5 (23095) 706 (23785) 710 (23790) 709 (23780) 710 (23790) 709 (23780) 710 (23790) 782 (23230) NA 782 (23230) NA 782 (23230) 814.7 (26897) 831.5 (26895) 814.7 (26897) 831.5 (26895) 814.5 (26705) 831.5 (26895) 815.5 (26705) 831.5 (26895) 816.5 (26715) 831.5 (26895) 816.5 (26715) 831.5 (26895) 824.7 (20407) 836.5 (20525) 826.5 (20415) 836.5 (20525) 826.5 (20425) 836.5 (20525) 826.5 (20425) 836.5 (20525) 826.5 (20425) 836.5 (20525) 827 (20415) 836.5 (20525) 828 (20450) 836.5 (20525) 828 (20450) 836.5 (20525) 829 (20450) 836.5 (20525) 820 (20450) 836.5 (20525) 821.7 (11.5 (131987) 1745 (132322) 1771.5 (132022) 1745 (132322) 1771.5 (132022) 1745 (132322) 1771.5 (132027) 1745 (132322) 1771.7 (19577) 1732.5 (20175) 1711.5 (19957) 1732.5 (20175) 1711.5 (20000) 1732.5 (20175) 1712.5 (19975) 1732.5 (20175) 1712.5 (20005) 1732.5 (20175) 1712.5 (20005) 1732.5 (20175) 1850.7 (26047) 1882.5 (26365) 1851.5 (26065) 1882.5 (26365) 1855.7 (26047) 1882.5 (26365) 1855.7 (26047) 1882.5 (26365) 1855.7 (26047) 1882.5 (26365) 1855.7 (26047) 1882.5 (26365) 1855.7 (26047) 1882.5 (26365) 1855.7 (26047) 1882.5 (26365) 1855.7 (26047) 1882.9 (26365) 1855.7 (26047) 1882.9 (26365) 1855.7 (26047) 1882.9 (26365) 1855.7 (26047) 1882.9 (26365) 1855.7 (2605) 1882.5 (26365) 1855.7 (2605) 1882.5 (26365) 1855.7 (2605) 1882.5 (26365) 1855.7 (2605) 1882.5 (26365) 1857.5 (2605) 1882.5 (26365) 1850.7 (2605) 1882.5 (26365) 1850.7 (2605) 1882.5 (26365) 1850.7 (2605) 1882.5 (26365) 1850.7 (2605) 1882.5 (26365) 1850.7 (2605) 1882.5 (26365) 1850.7 (2605) 1882.5 (26365) 1850.7 (2605) 1882.5 (26365) 1850.7 (2605) 1882.5 (26365) 1850.7 (2605) 1882.5 (26365) 1850.7 (2605) 1882.5 (26365) 1850.7 (2605) 1882.5 (26365) 1850.7 (2605) 1882.5 (26365) 1850.7 (2605) 1882.5 (26365) 1850.7 (2605) 2649.5 (40185) 2536 (40185) 2506 (39750) 2549.5 (40185) 2539.4 (4020) 2506 (39750) 2549.5 (40185) 2539.4 (4020) 2506 (39750) 2549

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 45 -f 400
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 15 of 138

3

The FCC and Innovation, Science, and Economic Development Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [22]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

3.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 3-1).

Equation 3-1 SAR Mathematical Equation

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m) ρ = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 46 of 120
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 16 of 138

© 2018 PCTEST Engineering Laboratory, Inc.

REV 20.11 M 06/19/2018

4.1 Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013:

- The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013.
- The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

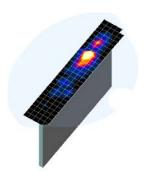


Figure 4-1 Sample SAR Area Scan

- 3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
 - a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 4-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
 - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

Table 4-1
Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04*

	Maximum Area Scan	Maximum Zoom Scan	Max	imum Zoom So Resolution (Minimum Zoom Scan
Frequency	Resolution (mm) (Δx _{area} , Δy _{area})	Resolution (mm) (Δx _{zoom} , Δy _{zoom})	Uniform Grid	G	raded Grid	Volume (mm) (x,y,z)
			Δz _{zoom} (n)	Δz _{zoom} (1)*	Δz _{zoom} (n>1)*	
≤ 2 GHz	≤15	≤8	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥30
2-3 GHz	≤12	≤5	≤5	≤4	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 30
3-4 GHz	≤12	≤5	≤4	≤3	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 28
4-5 GHz	≤10	≤4	≤3	≤ 2.5	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥ 25
5-6 GHz	≤10	≤4	≤2	≤2	$\leq 1.5*\Delta z_{zoom}(n-1)$	≥22

^{*}Also compliant to IEEE 1528-2013 Table 6

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 47 -f 400
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset		Page 17 of 138

© 2018 PCTEST Engineering Laboratory, Inc.

5.1 EAR REFERENCE POINT

Figure 5-2 shows the front, back and side views of the SAM Twin Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERP is 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 5-1. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front), also called the Reference Pivoting Line, is not perpendicular to the reference plane (see Figure 5-1). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning [5].

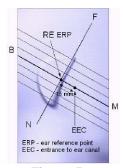


Figure 5-1 Close-Up Side view of ERP

5.2 HANDSET REFERENCE POINTS

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the acoustic output located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Figure 5-3). The acoustic output was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at its top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.

Figure 5-2 Front, back and side view of SAM Twin Phantom

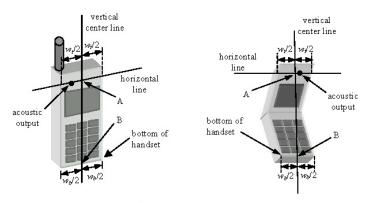


Figure 5-3 **Handset Vertical Center & Horizontal Line Reference Points**

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 40 -f 400
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset		Page 18 of 138
018 PCTEST Engineering Laboratory, Inc.	<u> </u>			REV 20.11 M

© 2018 PCTEST Engineering Laboratory, Inc.

6 TEST CONFIGURATION POSITIONS

6.1 Device Holder

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon = 3$ and loss tangent $\delta = 0.02$.

6.2 Positioning for Cheek

1. The test device was positioned with the device close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 6-1), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom.

Figure 6-1 Front, Side and Top View of Cheek Position

- 2. The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the pinna.
- 3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the reference plane.
- 4. The phone was then rotated around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF.
- 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the device contact with the ear, the device was rotated about the NF line until any point on the handset made contact with a phantom point below the ear (cheek) (See Figure 6-2).

6.3 Positioning for Ear / 15° Tilt

With the test device aligned in the "Cheek Position":

- 1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15degrees.
- 2. The phone was then rotated around the horizontal line by 15 degrees.
- 3. While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the handset touched the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. In this situation, the tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head (see Figure 6-2).

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 40 of 420
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 19 of 138

© 2018 PCTEST Engineering Laboratory, Inc.

REV 20.11 M 06/19/2018

Figure 6-2 Front, Side and Top View of Ear/15° Tilt
Position

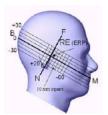


Figure 6-3
Side view w/ relevant markings

6.4 SAR Evaluations near the Mouth/Jaw Regions of the SAM Phantom

Antennas located near the bottom of a phone may require SAR measurements around the mouth and jaw regions of the SAM head phantom. This typically applies to clam-shell style phones that are generally longer in the unfolded normal use positions or to certain older style long rectangular phones. Per IEEE 1528-2013, a rotated SAM phantom is necessary to allow probe access to such regions. Both SAM heads of the TwinSAM-Chin20 are rotated 20 degrees around the NF line. Each head can be removed from the table for emptying and cleaning.

Under these circumstances, the following procedures apply, adopted from the FCC guidance on SAR handsets document FCC KDB Publication 648474 D04v01r03. The SAR required in these regions of SAM should be measured using a flat phantom. The phone should be positioned with a separation distance of 4 mm between the ear reference point (ERP) and the outer surface of the flat phantom shell. While maintaining this distance at the ERP location, the low (bottom) edge of the phone should be lowered from the phantom to establish the same separation distance between the peak SAR location identified by the truncated partial SAR distribution measured with the SAM phantom. The distance from the peak SAR location to the phone is determined by the straight line passing perpendicularly through the phantom surface. When it is not feasible to maintain 4 mm separation at the ERP while also establishing the required separation at the peak SAR location, the top edge of the phone will be allowed to touch the phantom with a separation < 4 mm at the ERP. The phone should not be tilted to the left or right while placed in this inclined position to the flat phantom.

6.5 Body-Worn Accessory Configurations

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 6-4). Per FCC KDB Publication 648474 D04v01r03, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01v06 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation

Figure 6-4
Sample Body-Worn Diagram

distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT (1)	LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 00 -f 400
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset		Page 20 of 138

© 2018 PCTEST Engineering Laboratory, Inc.

contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented.

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

6.6 Extremity Exposure Configurations

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions; i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. The 1g body and 10g extremity SAR Exclusion Thresholds found in KDB Publication 447498 D01v06 should be applied to determine SAR test requirements.

Per KDB Publication 447498 D01v06, Cell phones (handsets) are not normally designed to be used on extremities or operated in extremity only exposure conditions. The maximum output power levels of handsets generally do not require extremity SAR testing to show compliance. Therefore, extremity SAR was not evaluated for this device.

6.7 Wireless Router Configurations

Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06v02r01 where SAR test considerations for handsets (L x W \geq 9 cm x 5 cm) are based on a composite test separation distance of 10 mm from the front, back and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v06 procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time.

6.8 Phablet Configurations

For smart phones with a display diagonal dimension > 150 mm or an overall diagonal dimension > 160 mm that provide similar mobile web access and multimedia support found in mini-tablets or UMPC mini-tablets that

FCC ID: ZNFQ910QM	PCTEST - NOUNTERED LAPORATERY, INC.	SAR EVALUATION REPORT	LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 04 400
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset		Page 21 of 138
118 PCTEST Engineering Laboratory Inc				REV/ 20 11 M

© 2018 PCTEST Engineering Laboratory, Inc.

support voice calls next to the ear, the phablets procedures outlined in KDB Publication 648474 D04v01r03 should be applied to evaluate SAR compliance. A device marketed as phablets, regardless of form factors and operating characteristics must be tested as a phablet to determine SAR compliance. In addition to the normally required head and body-worn accessory SAR test procedures required for handsets, the UMPC mini-tablet procedures must also be applied to test the SAR of all surfaces and edges with an antenna <=25 mm from that surface or edge, in direct contact with the phantom, for 10g SAR. The UMPC mini-tablet 1g SAR at 5 mm is not required. When hotspot mode applies, 10g SAR is required only for the surfaces and edges with hotspot mode 1g SAR > 1.2 W/kg.

6.9 Additional Test Positions due to Proximity Conditions

This device uses a sensor to reduce voice and data powers in extremity (hand-held) use conditions.

When the sensor detects a user is touching the device on or near to the antenna the device reduces the maximum allowed output power However, the proximity sensor is not active when the device is moved beyond the sensor triggering distance and the maximum output power is no longer limited. Therefore, an additional exposure condition is needed in the vicinity of the triggering distance to ensure SAR is compliant when the device is allowed to operate at a non-reduced output power level.

The proximity sensor is designed to support sufficient detection range and sensitivity to cover regions of the sensors in all applicable directions since the proximity sensor entirely covers the antenna. FCC KDB Publication 616217 D04v01r02 Section 6 was used as a guideline for selecting SAR test distances for this device at these additional test positions. Sensor triggering distance summary data is included in Appendix G.

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 00 -f 400
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 22 of 138

7 RF EXPOSURE LIMITS

7.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

7.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 7-1
SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

HUMAN EXPOSURE LIMITS				
	UNCONTROLLED ENVIRONMENT	CONTROLLED ENVIRONMENT		
	General Population (W/kg) or (mW/g)	Occupational (W/kg) or (mW/g)		
Peak Spatial Average SAR _{Head}	1.6	8.0		
Whole Body SAR	0.08	0.4		
Peak Spatial Average SAR Hands, Feet, Ankle, Wrists, etc.	4.0	20		

- 1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- 2. The Spatial Average value of the SAR averaged over the whole body.
- 3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 22 of 120
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 23 of 138

© 2018 PCTEST Engineering Laboratory, Inc.

REV 20.11 M 06/19/2018

8 FCC MEASUREMENT PROCEDURES

Power measurements for licensed transmitters are performed using a base station simulator under digital average power.

8.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v06, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as *reported* SAR. The highest *reported* SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

8.2 3G SAR Test Reduction Procedure

In FCC KDB Publication 941225 D01v03r01, certain transmission modes within a frequency band and wireless mode evaluated for SAR are defined as primary modes. The equivalent modes considered for SAR test reduction are denoted as secondary modes. When the maximum output power including tune-up tolerance specified for production units in a secondary mode is \leq 0.25 dB higher than the primary mode or when the highest reported SAR of the primary mode, scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode, is \leq 1.2 W/kg, SAR measurements are not required for the secondary mode. These criteria are referred to as the 3G SAR test reduction procedure. When the 3G SAR test reduction procedure is not satisfied, SAR measurements are additionally required for the secondary mode.

8.3 Procedures Used to Establish RF Signal for SAR

The following procedures are according to FCC KDB Publication 941225 D01v03r01 "3G SAR Measurement Procedures."

The device is placed into a simulated call using a base station simulator in a RF shielded chamber. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. Devices under test are evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device is tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR evaluation, to assess for any power drifts during the evaluation. If the power drift deviates by more than 5%, the SAR test and drift measurements are repeated.

8.4 SAR Measurement Conditions for CDMA2000

The following procedures were performed according to FCC KDB Publication 941225 D01v03r01 "3G SAR Measurement Procedures."

8.4.1 Output Power Verification

See 3GPP2 C.S0011/TIA-98-E as recommended by FCC KDB Publication 941225 D01v03r01 "3G SAR Measurement Procedures." Maximum output power is verified on the High, Middle and Low channels according to procedures in section 4.4.5.2 of 3GPP2 C.S0011/TIA-98-E. SO55 tests were measured with power control bits in the "All Up" condition.

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 04 -f 400
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset		Page 24 of 138

© 2018 PCTEST Engineering Laboratory, Inc.

- 1. If the mobile station (MS) supports Reverse TCH RC 1 and Forward TCH RC 1, set up a call using Fundamental Channel Test Mode 1 (RC=1/1) with 9600 bps data rate only.
- 2. Under RC1, C.S0011 Table 4.4.5.2-1, Table 8-1 parameters were applied.
- 3. If the MS supports the RC 3 Reverse FCH, RC3 Reverse SCH₀ and demodulation of RC 3,4, or 5, set up a call using Supplemental Channel Test Mode 3 (RC 3/3) with 9600 bps Fundamental Channel and 9600 bps SCH0 data rate.
- 4. Under RC3, C.S0011 Table 4.4.5.2-2, Table 8-2 was applied.

Table 8-1
Parameters for Max. Power for RC1

Parameter	Units	Value
Ĩог	dBm/1.23 MHz	-104
Pilot E _c	dB	-7
Traffic E _c	dB	-7.4

Table 8-2
Parameters for Max. Power for RC3

Parameter	Units	Value
lor	dBm/1.23 MHz	-86
Pilot E _c	dB	-7
Traffic E _c	dB	-7.4

5. FCHs were configured at full rate for maximum SAR with "All Up" power control bits.

8.4.2 Head SAR Measurements

SAR for next to the ear head exposure is measured in RC3 with the handset configured to transmit at fullrate in SO55. The 3G SAR test reduction procedure is applied to RC1 with RC3 as the primary mode; otherwise, SAR is required for the channel with maximum measured output in RC1 using the head exposure configuration that results in the highest reported SAR in RC3.

Head SAR is additionally evaluated using EVDO Rev. A to support compliance for VoIP operations. See Section 8.4.5 for EVDO Rev. A configuration parameters.

8.4.3 Body-worn SAR Measurements

SAR for body-worn exposure configurations is measured in RC3 with the DUT configured to transmit at full rate on FCH with all other code channels disabled using TDSO / SO32. The 3G SAR test reduction procedure is applied to the multiple code channel configuration (FCH+SCHn), with FCH only as the primary mode. Otherwise, SAR is required for multiple code channel configuration (FCH + SCHn), with FCH at full rate and SCH0 enabled at 9600 bps, using the highest reported SAR configuration for FCH only. When multiple code channels are enabled, the transmitter output can shift by more than 0.5 dB and may lead to higher SAR drifts and SCH dropouts.

The 3G SAR test reduction procedure is applied to body-worn accessory SAR in RC1 with RC3 as the primary mode. Otherwise, SAR is required for RC1, with SO55 and full rate, using the highest reported SAR configuration for body-worn accessory exposure in RC3.

8.4.4 Body-worn SAR Measurements for EVDO Devices

For handsets with EVDO capabilities, the 3G SAR test reduction procedure is applied to EVDO Rev. 0 with 1x RTT RC3 as the primary mode to determine body-worn accessory test requirements. Otherwise, body-worn accessory SAR is required for Rev. 0, at 153.6 kbps, using the highest reported SAR configuration for body-worn accessory exposure in RC3.

The 3G SAR test reduction procedure is applied to Rev. A, with Rev. 0 as the primary mode to determine body-worn accessory SAR test requirements. When SAR is not required for Rev. 0, the 3G SAR test reduction is applied with 1x RTT RC3 as the primary mode.

FCC ID: ZNFQ910QM	PCTEST INSIDERAL INC.	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 25 of 120
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 25 of 138

© 2018 PCTEST Engineering Laboratory, Inc.

additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

When SAR is required for EVDO Rev. A, SAR is measured with a Reverse Data Channel payload size of 4096 bits and a Termination Target of 16 slots defined for Subtype 2 Physical Layer configurations, using the highest reported SAR configuration for body-worn accessory exposure in Rev. 0 or 1x RTT RC3, as appropriate.

8.4.5 Body SAR Measurements for EVDO Hotspot

Hotspot Body SAR is measured using Subtype 0/1 Physical Layer configurations for Rev. 0. The 3G SAR test reduction procedure is applied to Rev. A, Subtype 2 Physical layer configuration, with Rev. 0 as the primary mode; otherwise, SAR is measured for Rev. A using the highest reported SAR configuration for body-worn accessory exposure in Rev. 0. The AT is tested with a Reverse Data Channel rate of 153.6 kbps in Subtype 0/1 Physical Layer configurations; and a Reverse Data Channel payload size of 4096 bits and Termination Target of 16 slots in Subtype 2 Physical Layer configurations.

For EVDO data devices that also support 1x RTT voice and/or data operations, the 3G SAR test reduction procedure is applied to 1x RTT RC3 and RC1 with EVDO Rev. 0 and Rev. A as the respective primary modes. Otherwise, the 'Body-Worn Accessory SAR' procedures in the '3GPP2 CDMA 2000 1x Handsets' section are applied.

8.4.6 CDMA2000 1x Advanced

This device additionally supports 1x Advanced. Conducted powers are measured using SO75 with RC8 on the uplink and RC11 on the downlink per FCC KDB Publication 941225 D01v03r01. Smart blanking is disabled for all measurements. The EUT is configured with forward power control Mode 000 and reverse power control at 400 bps. Conducted powers are measured on an Agilent 8960 Series 10 Wireless Communications Test Set, Model E5515C using the CDMA2000 1x Advanced application, Option E1962B-410.

The 3G SAR test reduction procedure is applied to the 1x-Advanced transmission mode with 1x RTT RC3 as the primary mode. When SAR measurement is required, the 1x-Advanced power measurement configurations are used. The1x Advanced SAR procedures are applied separately to head, body-worn accessory and other exposure conditions.

8.5 SAR Measurement Conditions for UMTS

8.5.1 Output Power Verification

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in section 5.2 of 3GPP TS 34.121, using the appropriate RMC with TPC (transmit power control) set to all "1s" or applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HS-DPCCH etc) are tabulated in this test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations are identified.

8.5.2 Head SAR Measurements

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC as the

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dags 26 of 129	
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 26 of 138	

© 2018 PCTEST Engineering Laboratory, Inc.

primary mode. Otherwise, SAR is measured for 12.2 kbps AMR in 3.4 kbps SRB (signaling radio bearer) using the highest reported SAR configuration in 12.2 kbps RMC for head exposure.

8.5.3 **Body SAR Measurements**

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all "1s". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCH_n configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using an applicable RMC configuration with the corresponding spreading code or DPDCH_n, for the highest reported SAR configuration in 12.2 kbps RMC.

8.5.4 SAR Measurements with Rel 5 HSDPA

The 3G SAR test reduction procedure is applied to HSDPA body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSDPA is measured using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, for the highest reported SAR configuration in 12.2 kbps RMC without HSDPA. Handsets with both HSDPA and HSUPA are tested according to Release 6 HSPA test procedures.

8.5.5 SAR Measurements with Rel 6 HSUPA

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSPA is measured with E-DCH Subtest 5, using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 and power control algorithm 2, according to the highest reported body SAR configuration in 12.2 kbps RMC without HSPA.

When VOIP applies to head exposure, the 3G SAR test reduction procedure is applied with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body SAR measurements are applied to head exposure testing.

SAR Measurement Conditions for DC-HSDPA 8.5.6

SAR is required for Rel. 8 DC-HSDPA when SAR is required for Rel. 5 HSDPA; otherwise, the 3G SAR test reduction procedure is applied to DC-HSDPA with 12.2 kbps RMC as the primary mode. Power is measured for DC-HSDPA according to the H-Set 12, FRC configuration in Table C.8.1.12 of 3GPP TS 34.121-1 to determine SAR test reduction. A primary and a secondary serving HS-DSCH Cell are required to perform the power measurement and for the results to be acceptable.

8.6 SAR Measurement Conditions for LTE

LTE modes are tested according to FCC KDB 941225 D05v02r04 publication. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The R&S CMW500 or Anritsu MT8820C simulators are used for LTE output power measurements and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

8.6.1 Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

FCC ID: ZNFQ910QM	PCTEST:	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		D 07 -f 400	
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset		Page 27 of 138	
018 PCTEST Engineering Laboratory, Inc.				REV 20.11 M	

© 2018 PCTEST Engineering Laboratory, Inc.

8.6.2 MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.

8.6.3 A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

8.6.4 Required RB Size and RB Offsets for SAR Testing

According to FCC KDB 941225 D05v02r04:

- a. Per Section 5.2.1, SAR is required for QPSK 1 RB Allocation for the largest bandwidth
 - i. The required channel and offset combination with the highest maximum output power is required for SAR.
 - ii. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required. Otherwise, SAR is required for the remaining required test channels using the RB offset configuration with highest output power for that channel.
 - iii. When the reported SAR for a required test channel is > 1.45 W/kg, SAR is required for all RB offset configurations for that channel.
- b. Per Section 5.2.2, SAR is required for 50% RB allocation using the largest bandwidth following the same procedures outlined in Section 5.2.1.
- c. Per Section 5.2.3, QPSK SAR is not required for the 100% allocation when the highest maximum output power for the 100% allocation is less than the highest maximum output power of the 1 RB and 50% RB allocations and the reported SAR for the 1 RB and 50% RB allocations is < 0.8 W/kg.
- d. Per Section 5.2.4 and 5.3, SAR tests for higher order modulations and lower bandwidths configurations are not required when the conducted power of the required test configurations determined by Sections 5.2.1 through 5.2.3 is less than or equal to ½ dB higher than the equivalent configuration using QPSK modulation and when the QPSK SAR for those configurations is <1.45 W/kg.

8.6.5 TDD

LTE TDD testing is performed using the SAR test guidance provided in FCC KDB 941225 D05v02r04. TDD is tested at the highest duty factor using UL-DL configuration 0 with special subframe configuration 6 and applying the FDD LTE procedures in KDB 941225 D05v02r04. SAR testing is performed using the extended cyclic prefix listed in 3GPP TS 36.211 Section 4.

8.6.6 Downlink Only Carrier Aggregation

Conducted power measurements with LTE Carrier Aggregation (CA) (downlink only) active are made in accordance to KDB Publication 941225 D05Av01r02. The RRC connection is only handled by one cell, the primary component carrier (PCC) for downlink and uplink communications. After making a data connection to the PCC, the UE device adds secondary component carrier(s) (SCC) on the downlink only. All uplink communications and acknowledgements remain identical to specifications when downlink carrier aggregation is inactive on the PCC. Additional conducted output powers are measured with the downlink carrier aggregation active for the configuration with highest measured maximum conducted power with downlink carrier aggregation inactive measured among the channel bandwidth, modulation, and RB combinations in each frequency band. Per FCC KDB Publication 941225 D05Av01r02, no SAR measurements are required for downlink only carrier aggregation configurations when the average output

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT (b LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dana 00 at 400
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 28 of 138

© 2018 PCTEST Engineering Laboratory, Inc.

power with downlink only carrier aggregation active is not more than 0.25 dB higher than the average output power with downlink only carrier aggregation inactive.

8.7 **SAR Testing with 802.11 Transmitters**

The normal network operating configurations of 802.11 transmitters are not suitable for SAR measurements. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v02r02 for more details.

8.7.1 **General Device Setup**

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters.

A periodic duty factor is required for current generation SAR systems to measure SAR. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

8.7.2 U-NII-1 and U-NII-2A

For devices that operate in both U-NII-1 and U-NII-2A bands, when the same maximum output power is specified for both bands, SAR measurement using OFDM SAR test procedures is not required for U-NII-1 unless the highest reported SAR for U-NII-2A is > 1.2 W/kg. When different maximum output powers are specified for the bands. SAR measurement for the U-NII band with the lower maximum output power is not required unless the highest reported SAR for the U-NII band with the higher maximum output power, adjusted by the ratio of lower to higher specified maximum output power for the two bands, is > 1.2 W/kg. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

8.7.3 U-NII-2C and U-NII-3

The frequency range covered by U-NII-2C and U-NII-3 is 380 MHz (5.47 – 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements. When Terminal Doppler Weather Radar (TDWR) restriction applies, the channels at 5.60 – 5.65 GHz in U-NII-2C band must be disabled with acceptable mechanisms and documented in the equipment certification. Unless band gap channels are permanently disabled. SAR must be considered for these channels. Each band is tested independently according to the normally required OFDM SAR measurement and probe calibration frequency points requirements.

8.7.4 **Initial Test Position Procedure**

For exposure conditions with multiple test positions, such as handset operating next to the ear, devices with hotspot mode or UMPC mini-tablet, procedures for initial test position can be applied. Using the transmission mode determined by the DSSS procedure or initial test configuration, area scans are measured for all positions in an exposure condition. The test position with the highest extrapolated (peak) SAR is used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test positions is required. Otherwise, SAR is evaluated at the subsequent highest peak SAR

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 20 of 420
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 29 of 138

© 2018 PCTEST Engineering Laboratory, Inc.

positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

8.7.5 2.4 GHz SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- 1) When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2) When the reported SAR is > 0.8 W/kg, SAR is required for that position using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

2.4 GHz 802.11 g/n OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

8.7.6 **OFDM Transmission Mode and SAR Test Channel Selection**

When the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. When the maximum output power of a channel is the same for equivalent OFDM configurations; for example, 802.11a, 802.11n and 802.11ac or 802.11g and 802.11n with the same channel bandwidth, modulation and data rate etc., the lower order 802.11 mode i.e., 802.11a, then 802.11n and 802.11ac or 802.11g then 802.11n, is used for SAR measurement. When the maximum output power are the same for multiple test channels, either according to the default or additional power measurement requirements, SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel.

8.7.7 **Initial Test Configuration Procedure**

For OFDM, an initial test configuration is determined for each frequency band and aggregated band, according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output power is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration(s) with the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order IEEE 802.11 mode. The channel of the transmission mode with the highest average RF output conducted power will be the initial test configuration.

When the reported SAR is ≤ 0.8 W/kg, no additional measurements on other test channels are required. Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is ≤ 1.2 W/kg or all channels are measured. When there are multiple untested channels having the same subsequent highest average RF output power, the channel with higher frequency from the lowest 802.11 mode is considered for SAR measurements (See Section 8.7.6). When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	G	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		D 00 -f 100	
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset		Page 30 of 138	

© 2018 PCTEST Engineering Laboratory, Inc.

additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

8.7.8 Subsequent Test Configuration Procedures

For OFDM configurations in each frequency band and aggregated band, SAR is evaluated for initial test configuration using the fixed test position or the initial test position procedure. When the highest reported SAR (for the initial test configuration), adjusted by the ratio of the specified maximum output power of the subsequent test configuration to initial test configuration, is ≤ 1.2 W/kg, no additional SAR tests for the subsequent test configurations are required. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

8.7.9 MIMO SAR considerations

Per KDB Publication 248227 D01v02r02, the simultaneous SAR provisions in KDB Publication 447498 D01v06 should be applied to determine simultaneous transmission SAR test exclusion for WIFI MIMO. If the sum of 1g single transmission chain SAR measurements is <1.6 W/kg, no additional SAR measurements for MIMO are required. Alternatively, SAR for MIMO can be measured with all antennas transmitting simultaneously at the specified maximum output power of MIMO operation. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dags 24 of 420	
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 31 of 138	

9.1 **CDMA Conducted Powers**

Table 9-1 **Maximum Conducted Power**

Band	Channel	Rule Part	Frequency	SO55 [dBm]	SO55 [dBm]	SO75 [dBm]	TDSO SO32 [dBm]	TDSO SO32 [dBm]	1x EvDO Rev. 0 [dBm]	1x EvDO Rev. A [dBm]
	F-RC		MHz	RC1	RC3	RC11	FCH+SCH	FCH	(RTAP)	(RETAP)
Cellular	564	90S	820.1	25.27	25.21	25.26	25.30	25.26	25.20	25.31
	1013	22H	824.7	24.23	24.26	24.15	24.18	24.25	24.17	24.32
Cellular	384	22H	836.52	25.32	25.21	25.24	25.17	25.30	25.18	25.22
	777	22H	848.31	24.91	24.87	24.80	24.80	24.82	24.95	24.88
	25	24E	1851.25	24.30	24.40	24.34	24.29	24.30	24.40	24.38
PCS	600	24E	1880	24.11	24.09	24.10	24.08	24.14	24.26	24.04
	1175	24E	1908.75	24.10	24.22	24.14	24.19	24.11	24.09	24.12

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dags 22 of 420	
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 32 of 138	

© 2018 PCTEST Engineering Laboratory, Inc.

REV 20.11 M

Table 9-2
Reduced Conducted Power

Band	Channel	Rule Part	Frequency	SO55 [dBm]	SO55 [dBm]	SO75 [dBm]	TDSO SO32 [dBm]	TDSO SO32 [dBm]	1x EvDO Rev. 0 [dBm]	1x EvDO Rev. A [dBm]
	F-RC		MHz	RC1	RC3	RC11	FCH+SCH	FCH	(RTAP)	(RETAP)
	25	24E	1851.25	21.88	22.06	22.04	21.94	21.99	21.95	22.00
PCS	600	24E	1880	21.96	22.03	22.00	21.89	21.97	21.98	22.03
	1175	24E	1908.75	21.93	21.89	21.99	21.80	21.76	21.96	21.96

Note: RC1 is only applicable for IS-95 compatibility. For FCC Rule Part 90S, Per FCC KDB Publication 447498 D01v06 4.1.g), only one channel is required since the device operates within the transmission range of 817.90 – 823.10 MHz.

Figure 9-1
Power Measurement Setup

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	LG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		D 00 -f 400	
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset		Page 33 of 138	

9.2 **GSM Conducted Powers**

Table 9-3 **Maximum Conducted Power**

Maximum Burst-Averaged Output Power											
		Voice			DGE Data /ISK)		EDGE Data (8-PSK)				
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	GPRS [dBm] 3 Tx Slot	GPRS [dBm] 4 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot	EDGE [dBm] 3 Tx Slot	EDGE [dBm] 4 Tx Slot	
	128	33.52	33.20	32.57	30.31	28.50	27.06	27.02	26.37	26.10	
GSM 850	190	33.66	33.39	32.69	30.44	28.56	26.92	26.91	26.22	26.04	
	251	33.65	33.31	32.67	30.40	28.39	27.01	27.01	26.30	26.13	
	512	30.28	30.32	29.70	27.42	25.47	26.70	26.41	25.25	24.91	
GSM 1900	661	30.46	30.59	29.67	27.42	25.43	26.66	26.30	25.09	24.80	
	810	30.44	30.51	29.58	27.39	25.36	26.59	26.22	25.01	24.67	

Calculated Maximum Frame-Averaged Output Power											
		Voice	GPRS/EDGE Data (GMSK)				EDGE Data (8-PSK)				
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	GPRS [dBm] 3 Tx Slot	GPRS [dBm] 4 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot	EDGE [dBm] 3 Tx Slot	EDGE [dBm] 4 Tx Slot	
	128	24.49	24.17	26.55	26.05	25.49	18.03	21.00	22.11	23.09	
GSM 850	190	24.63	24.36	26.67	26.18	25.55	17.89	20.89	21.96	23.03	
	251	24.62	24.28	26.65	26.14	25.38	17.98	20.99	22.04	23.12	
	512	21.25	21.29	23.68	23.16	22.46	17.67	20.39	20.99	21.90	
GSM 1900	661	21.43	21.56	23.65	23.16	22.42	17.63	20.28	20.83	21.79	
	810	21.41	21.48	23.56	23.13	22.35	17.56	20.20	20.75	21.66	
GSM 850	Frame	24.17	24.17	26.18	25.94	25.19	18.17	21.18	21.94	23.19	
GSM 1900	Avg.Targets:	21.17	21.17	23.18	22.94	22.19	17.17	20.18	20.94	22.19	

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 24 of 129
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 34 of 138

Note:

- 1. Both burst-averaged and calculated frame-averaged powers are included. Frame-averaged power was calculated from the measured burst-averaged power by converting the slot powers into linear units and calculating the energy over 8 timeslots.
- 2. GPRS/EDGE (GMSK) output powers were measured with coding scheme setting of 1 (CS1) on the base station simulator. CS1 was configured to measure GPRS output power measurements and SAR to ensure GMSK modulation in the signal. Our Investigation has shown that CS1 CS4 settings do not have any impact on the output levels or modulation in the GPRS modes.
- 3. EDGE (8-PSK) output powers were measured with MCS7 on the base station simulator. MCS7 coding scheme was used to measure the output powers for EDGE since investigation has shown that choosing MCS7 coding scheme will ensure 8-PSK modulation. It has been shown that MCS levels that produce 8PSK modulation do not have an impact on output power.

GSM Class: B

GPRS Multislot class: 12 (Max 4 Tx uplink slots) EDGE Multislot class: 12 (Max 4 Tx uplink slots)

DTM Multislot Class: N/A

Figure 9-2 Power Measurement Setup

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT 6 LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Daga 25 of 120
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 35 of 138

9.3 **UMTS Conducted Powers**

Table 9-4 **Maximum Conducted Power**

Maximum Conducted I Ower												
3GPP Release Mode	3GPP 34.121 Subtest	Cellular Band [dBm]			AWS Band [dBm]			PCS Band [dBm]			3GPP	
Version	Version	Sublesi	4132	4183	4233	1312	1412	1513	9262	9400	9538	MPR [dB]
99	WCDMA	12.2 kbps RMC	25.35	25.22	25.32	24.58	24.31	24.62	24.34	24.23	24.31	-
99	VVCDIVIA	12.2 kbps AMR	25.36	25.23	25.34	24.63	24.33	24.63	24.32	24.21	24.34	-
6		Subtest 1	25.14	25.04	25.05	24.45	24.15	24.41	24.21	24.03	24.23	0
6	HSDPA	Subtest 2	25.10	24.98	25.07	24.44	24.18	24.44	24.15	24.07	24.18	0
6	HODEA	Subtest 3	24.71	24.56	24.57	24.01	23.70	23.92	23.75	23.58	23.87	0.5
6		Subtest 4	24.71	24.53	24.56	23.91	23.81	24.02	23.75	23.56	23.81	0.5
6		Subtest 1	24.06	24.08	24.11	23.59	23.32	23.55	23.27	23.12	23.35	0
6		Subtest 2	22.19	22.03	22.09	21.53	21.23	21.30	21.23	21.03	21.28	2
6	HSUPA	Subtest 3	23.09	23.05	23.03	22.50	22.26	22.47	22.28	22.00	22.23	1
6		Subtest 4	22.10	22.08	22.04	21.44	21.26	21.47	21.18	20.95	21.21	2
6		Subtest 5	24.67	24.59	24.70	23.99	23.84	24.00	23.79	23.67	23.77	0
8		Subtest 1	25.06	25.02	24.98	24.46	24.09	24.26	24.20	23.99	24.21	0
8	DC-HSDPA	Subtest 2	25.12	24.94	24.92	24.28	24.19	24.32	24.09	24.20	24.20	0
8	DC-HSDPA	Subtest 3	24.76	24.45	24.61	24.12	23.71	23.81	23.64	23.59	23.89	0.5
8		Subtest 4	24.78	24.54	24.41	23.78	23.86	23.96	23.74	23.51	23.86	0.5

Table 9-5 **Reduced Conducted Power**

3GPP Release	Mode	3GPP 34.121 Subtest	AW	S Band [d	Bm]	PC	3GPP MPR [dB]		
Version		Subtest	1312	1412	1513	9262	9400	9538	WIF IX [GD]
99	WCDMA	12.2 kbps RMC	23.06	23.00	23.12	21.90	22.01	22.04	-
99	VVCDIVIA	12.2 kbps AMR	23.06	22.76	22.96	22.12	22.01	21.92	-
6		Subtest 1	23.01	22.74	22.98	22.20	22.03	22.17	0
6	HSDPA	Subtest 2	23.02	22.71	23.05	21.95	21.88	21.97	0
6	I IODI A	Subtest 3	22.66	22.26	22.40	21.67	21.45	21.60	0.5
6		Subtest 4	22.43	22.36	22.64	21.57	21.53	21.63	0.5
6		Subtest 1	22.26	21.83	22.14	21.09	21.07	21.32	0
6		Subtest 2	20.07	19.83	19.92	19.09	18.88	19.21	2
6	HSUPA	Subtest 3	21.19	20.75	21.15	20.05	19.94	20.08	1
6		Subtest 4	20.02	19.71	20.00	19.11	18.83	19.09	2
6		Subtest 5	22.44	22.46	22.58	21.76	21.62	21.54	0
8		Subtest 1	22.93	22.70	22.86	22.06	21.78	21.99	0
8	DC-HSDPA	Subtest 2	22.91	22.69	23.01	22.03	22.01	22.11	0
8		Subtest 3	22.60	22.19	22.47	21.49	21.49	21.66	0.5
8		Subtest 4	22.25	22.45	22.61	21.61	21.36	21.64	0.5

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dogg 26 of 120	
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 36 of 138	

DC-HSDPA considerations

- 3GPP Specification 34.121-1 Release 8 Ver 8.10.0 was used for DC-HSDPA guidance
- H-Set 12 (QPSK) was confirmed to be used during DC-HSDPA measurements
- The DUT supports UE category 24 for HSDPA

It is expected by the manufacturer that MPR for some HSPA subtests may be up to 2 dB more than specified by 3GPP, but also as low as 0 dB according to the chipset implementation in this model.

Figure 9-3
Power Measurement Setup

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 27 - (420
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 37 of 138

9.4 LTE Conducted Powers

9.4.1 LTE Band 12

Table 9-6
LTE Band 12 Conducted Powers - 10 MHz Bandwidth

	LTE Band 12 Conducted Powers - 10 MH2 Bandwidth LTE Band 12 10 MHz Bandwidth						
			Mid Channel				
Modulation	RB Size	RB Offset	23095 (707.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]		
			Conducted Power	55 []			
			[dBm]				
	1	0	25.20		0		
	1	25	25.20	0	0		
	1	49	25.25		0		
QPSK	25	0	24.37		1		
	25	12	24.36	0-1	1		
	25	25	24.39	U - I	1		
	50	0	24.31		1		
	1	0	24.37		1		
	1	25	24.46	0-1	1		
	1	49	24.38		1		
16QAM	25	0	23.37		2		
	25	12	23.34	0.0	2		
	25	25	23.38	0-2	2		
	50	0	23.36		2		
	1	0	23.35		2		
	1	25	23.39	0-2	2		
	1	49	23.25		2		
64QAM	25	0	22.34		3		
	25	12	22.34		3		
	25	25	22.35	0-3	3		
ı	50	0	22.30		3		

Note: LTE Band 12 at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 20 of 120
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 38 of 138

© 2018 PCTEST Engineering Laboratory, Inc.

Table 9-7 LTF Band 12 Conducted Powers - 5 MHz Bandwidth

				LTE Band 12 5 MHz Bandwidth			
			Low Channel 23035	Mid Channel 23095	High Channel 23155	MPR Allowed per	
Modulation	RB Size	RB Offset	(701.5 MHz)	(707.5 MHz)	(713.5 MHz)	3GPP [dB]	MPR [dB]
			(Conducted Power [dBn	1]		
	1	0	25.31	25.30	25.33		0
	1	12	25.28	25.32	25.27	0	0
	1	24	25.36	25.18	25.22		0
QPSK	12	0	24.32	24.24	24.25		1
	12	6	24.35	24.25	24.31	0-1	1
	12	13	24.27	24.25	24.25		1
	25	0	24.33	24.22	24.29		1
	1	0	24.33	24.38	24.44		1
	1	12	24.39	24.48	24.43	0-1	1
	1	24	24.43	24.46	24.38	1	1
16QAM	12	0	23.37	23.20	23.33		2
	12	6	23.37	23.22	23.31	0-2	2
	12	13	23.36	23.16	23.31	0-2	2
	25	0	23.36	23.25	23.31		2
	1	0	23.31	23.33	23.42		2
	1	12	23.34	23.34	23.43	0-2	2
	1	24	23.33	23.36	23.30		2
64QAM	12	0	22.28	22.10	22.20		3
	12	6	22.32	22.14	22.17		3
	12	13	22.31	22.11	22.19	0-3	3
	25	0	22.31	22.22	22.21	1	3

Table 9-8 LTE Band 12 Conducted Powers - 3 MHz Bandwidth

				LTE Band 12 3 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 23025 (700.5 MHz)	Mid Channel 23095 (707.5 MHz)	High Channel 23165 (714.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	25.21	25.33	25.30		0
	1	7	25.29	25.36	25.32	0	0
	1	14	25.18	25.27	25.18		0
QPSK	8	0	24.30	24.33	24.24		1
	8	4	24.35	24.33	24.25	0-1	1
	8	7	24.30	24.28	24.25	-	1
	15	0	24.29	24.29	24.22		1
	1	0	24.50	24.43	24.48		1
	1	7	24.35	24.36	24.41	0-1	1
	1	14	24.45	24.42	24.46		1
16QAM	8	0	23.36	23.32	23.20		2
	8	4	23.40	23.31	23.22	0-2	2
	8	7	23.37	23.29	23.16	0-2	2
	15	0	23.31	23.32	23.25		2
·	1	0	23.39	23.37	23.39		2
	1	7	23.30	23.35	23.37	0-2	2
	1	14	23.40	23.42	23.44		2
64QAM	8	0	22.28	22.27	22.07		3
	8	4	22.27	22.26	22.12	0-3	3
	8	7	22.31	22.28	22.05	J 0-3	3
	15	0	22.22	22.25	22.23		3

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 20 -f 420
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 39 of 138

REV 20.11 M

Table 9-9 LTF Rand 12 Conducted Powers -1 4 MHz Randwidth

				LTE Band 12			
		1	Low Channel	1.4 MHz Bandwidth Mid Channel	High Channel	T T	
Modulation	RB Size	RB Offset	23017 (699.7 MHz)	23095 (707.5 MHz)	23173 (715.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBn	n]		
	1	0	25.21	25.23	25.12		0
	1	2	25.25	25.27	25.20		0
	1	5	25.16	25.23	25.11	0	0
QPSK	3	0	25.22	25.25	25.12] " [0
	3	2	25.27	25.32	25.17	0-1	0
	3	3	25.22	25.24	25.12		0
	6	0	24.23	24.21	24.15		1
	1	0	24.44	24.37	24.45		1
	1	2	24.42	24.43	24.49		1
	1	5	24.43	24.48	24.39] ₀₄ [1
16QAM	3	0	24.40	24.27	24.22	0-1	1
	3	2	24.43	24.30	24.27		1
	3	3	24.38	24.25	24.25	Ī	1
	6	0	23.20	23.17	23.27	0-2	2
	1	0	23.35	23.31	23.39		2
	1	2	23.35	23.34	23.44		2
	1	5	23.43	23.46	23.31		2
64QAM	3	0	23.30	23.18	23.08	0-2	2
	3	2	23.33	23.23	23.16	1	2
	3	3	23.29	23.22	23.11		2
	6	0	22.10	22.13	22.18	0-3	3

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 40 of 420
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 40 of 138

9.4.2 LTE Band 13

Table 9-10 LTE Band 13 Conducted Powers - 10 MHz Bandwidth

	LTE Band 13 Conducted Powers - 10 MHz Bandwidth LTE Band 13 10 MHz Bandwidth							
			Mid Channel					
Modulation	RB Size	RB Offset	23230 (782.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
			Conducted Power [dBm]	JOIT [UD]				
	1	0	25.22		0			
	1	25	25.16	0	0			
	1	49	25.09		0			
QPSK	25	0	24.32		1			
	25	12	24.33	0-1	1			
	25	25	24.28	0-1	1			
	50	0	24.28		1			
	1	0	24.48		1			
	1	25	24.44	0-1	1			
	1	49	24.41		1			
16QAM	25	0	23.34		2			
	25	12	23.34	0-2	2			
	25	25	23.30	0-2	2			
	50	0	23.29		2			
	1	0	23.13		2			
	1	25	23.03	0-2	2			
	1	49	23.16		2			
64QAM	25	0	22.20		3			
	25	12	22.02	0.2	3			
	25	25	22.12	0-3	3			
	50	0	22.06		3			

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Dogg 44 of 420	
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset		Page 41 of 138	

Table 9-11
LTE Band 13 Conducted Powers - 5 MHz Bandwidth

	LTE Band 13 Conducted Powers - 5 MHz Bandwidth LTE Band 13 5 MHz Bandwidth						
Modulation	RB Size	RB Offset	Mid Channel 23230 (782.0 MHz) Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]		
	1	0	25.29		0		
	1	12	25.22	0	0		
	1	24	25.16		0		
QPSK	12	0	24.28		1		
	12	6	24.28	0-1	1		
	12	13	24.27	0-1	1		
	25	0	24.24		1		
	1	0	24.43	0-1	1		
	1	12	24.48		1		
	1	24	24.49		1		
16QAM	12	0	23.34		2		
	12	6	23.32	0-2	2		
	12	13	23.27	0-2	2		
	25	0	23.25		2		
	1	0	23.30		2		
	1	12	23.15	0-2	2		
	1	24	23.21		2		
64QAM	12	0	22.21		3		
	12	6	22.26	0-3	3		
	12	13	22.35] 0-3	3		
	25	0	22.31	1	3		

Note: LTE Band 13 at 5 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 40 -f 400
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 42 of 138

9.4.1 LTE Band 5 (Cell)

Table 9-12 LTE Band 5 (Cell) Conducted Powers - 10 MHz Bandwidth

	LTE Band 5 (Cell) Conducted Powers - 10 MHz Bandwidth LTE Band 5 (Cell) 10 MHz Bandwidth									
			Mid Channel							
Modulation	RB Size	RB Offset	20525 (836.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]					
			Conducted Power							
			[dBm]							
	1	0	25.35		0					
	1	25	25.37	0	0					
	1	49	25.27		0					
QPSK	25	0	24.36		1					
	25	12	24.29	0-1	1					
	25	25	24.40	0-1	1					
	50	0	24.38		1					
	1	0	24.47		1					
	1	25	24.43	0-1	1					
	1	49	24.41		1					
16QAM	25	0	23.36		2					
	25	12	23.35	0-2	2					
	25	25	23.36	0-2	2					
	50	0	23.45		2					
	1	0	23.44		2					
	1	25	23.35	0-2	2					
	1	49	23.34		2					
64QAM	25	0	22.34		3					
	25	12	22.27	0.2	3					
	25	25	22.22	0-3	3					
	50	0	22.40		3					

Note: LTE Band 5 (Cell) at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 40 -f 400
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 43 of 138

© 2018 PCTEST Engineering Laboratory, Inc.

Table 9-13 LTE Band 5 (Cell) Conducted Powers - 5 MHz Bandwidth

	LTE Band 5 (Cell) Conducted Fowers - 5 Minz Bandwidth LTE Band 5 (Cell) 5 MHz Bandwidth									
			Low Channel 20425	Mid Channel 20525	High Channel 20625	MPR Allowed per				
Modulation	RB Size	RB Offset	(826.5 MHz)	(836.5 MHz)	(846.5 MHz)	3GPP [dB]	MPR [dB]			
			O	Conducted Power [dBm]					
	1	0	25.34	25.33	25.26		0			
	1	12	25.30	25.41	25.13	0	0			
	1	24	25.39	25.34	25.08		0			
QPSK	12	0	24.43	24.30	24.22		1			
	12	6	24.39	24.40	24.25	0-1	1			
	12	13	24.35	24.32	24.20] 0-1	1			
	25	0	24.46	24.37	24.26		1			
	1	0	24.39	24.41	24.41		1			
	1	12	24.42	24.43	24.49	0-1	1			
	1	24	24.37	24.37	24.50		1			
16QAM	12	0	23.46	23.34	23.35		2			
	12	6	23.41	23.43	23.38	0-2	2			
	12	13	23.38	23.37	23.36	0-2	2			
	25	0	23.44	23.43	23.25		2			
	1	0	23.29	23.37	23.40		2			
	1	12	23.36	23.29	23.37	0-2	2			
	1	24	23.30	23.27	23.37		2			
64QAM	12	0	22.33	22.27	22.29		3			
	12	6	22.40	22.39	22.30	0-3	3			
	12	13	22.28	22.36	22.22]	3			
	25	0	22.31	22.34	22.24] [3			

Table 9-14 LTE Band 5 (Cell) Conducted Powers - 3 MHz Bandwidth

				LTE Band 5 (Cell) 3 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 20415 (825.5 MHz)	Mid Channel 20525 (836.5 MHz)	High Channel 20635 (847.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	25.40	25.29	25.11		0
	1	7	25.47	25.46	25.21	0	0
	1	14	25.39	25.33	25.09		0
QPSK	8	0	24.42	24.30	24.22		1
	8	4	24.42	24.42	24.18	0.4	1
	8	7	24.39	24.35	24.19	0-1	1
	15	0	24.42	24.38	24.17		1
	1	0	24.48	24.36	24.42		1
	1	7	24.44	24.31	24.45	0-1	1
	1	14	24.49	24.42	24.40		1
16QAM	8	0	23.47	23.27	23.30		2
	8	4	23.46	23.33	23.29	0-2	2
	8	7	23.45	23.34	23.26	0-2	2
	15	0	23.43	23.38	23.19		2
	1	0	23.43	23.24	23.36		2
	1	7	23.42	23.20	23.38	0-2	2
	1	14	23.42	23.32	23.38		2
64QAM	8	0	22.34	22.18	22.18		3
	8	4	22.32	22.24	22.20	0-3	3
	8	7	22.38	22.32	22.21] 0-3	3
	15	0	22.33	22.33	22.05		3

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 44 -f 400
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 44 of 138

Table 9-15 LTE Rand 5 (Cell) Conducted Powers -1 4 MHz Randwidth

				LTE Band 5 (Cell) 1.4 MHz Bandwidth			
Modulation		RB Offset	Low Channel 20407	Mid Channel 20525	High Channel 20643	MPR Allowed per	MDD (4D)
wodulation	RB Size	RB Offset	(824.7 MHz)	(836.5 MHz)	(848.3 MHz)	3GPP [dB]	MPR [dB]
	,	2		Conducted Power [dBn			
	1	0	25.35	25.21	25.10	-	0
	1	2	25.38	25.24	25.16	↓	0
	1	5	25.31	25.27	25.09	0	0
QPSK	3	0	25.36	25.22	25.15	<u> </u>	0
	3	2	25.39	25.39	25.16		0
	3	3	25.32	25.30	25.10		0
	6	0	24.34	24.27	24.09	0-1	1
	1	0	24.46	24.49	24.34		1
	1	2	24.48	24.35	24.44	1	1
	1	5	24.43	24.38	24.33	1 F	1
16QAM	3	0	24.49	24.25	24.29	0-1	1
	3	2	24.41	24.40	24.31	Ī	1
	3	3	24.47	24.39	24.26	1	1
	6	0	23.32	23.27	23.12	0-2	2
	1	0	23.39	23.40	23.20		2
	1	2	23.46	23.32	23.36	1	2
	1	5	23.41	23.30	23.24	†	2
64QAM	3	0	23.44	23.22	23.25	0-2	2
	3	2	23.30	23.29	23.31	†	2
	3	3	23.33	23.31	23.15	† – – – –	2
	6	0	22.25	22.23	22.04	0-3	3

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dogo 45 of 120	
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 45 of 138	

9.4.2 LTE Band 26 (Cell)

Table 9-16 LTE Band 26 (Cell) Conducted Powers - 15 MHz Bandwidth

	LTE Band 26 (Cell) LTE Band 26 (Cell) 15 MHz Bandwidth								
			Mid Channel						
Modulation	RB Size	RB Offset	26865 (831.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]				
			Conducted Power	3011 [db]					
		-	[dBm]		_				
	1	0	25.09		0				
	1	36	25.29	0	0				
	1	74	25.18		0				
QPSK	36	0	24.42		1				
	36	18	24.40	0-1	1				
	36	37	24.24] 0-1	1				
	75	0	24.33		1				
	1	0	24.31		1				
	1	36	24.48	0-1	1				
	1	74	24.48		1				
16QAM	36	0	23.43		2				
	36	18	23.42	0-2	2				
	36	37	23.28	0-2	2				
	75	0	23.38		2				
	1	0	23.26		2				
	1	36	23.47	0-2	2				
	1	74	23.38		2				
64QAM	36	0	22.31		3				
	36	18	22.31	0.0	3				
	36	37	22.26	0-3	3				
	75	0	22.27		3				

Note: LTE Band 26 (Cell) at 15 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 46 of 120
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 46 of 138

© 2018 PCTEST Engineering Laboratory, Inc.

06/19/2018

Table 9-17 LTE Band 26 (Cell) Conducted Powers - 10 MHz Bandwidth

			Jana 20 (3011) 3	LTE Band 26 (Cell)	TO TO MITTE BUT	Idvidai	
				10 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 26740 (819.0 MHz)	Mid Channel 26865 (831.5 MHz)	High Channel 26990 (844.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm	n]		
	1	0	25.32	25.32	25.33		0
	1	25	25.35	25.26	25.33	0	0
	1	49	25.26	25.17	25.32		0
QPSK	25	0	24.34	24.37	24.41		1
	25	12	24.44	24.34	24.41	0-1	1
	25	25	24.38	24.27	24.41	0-1	1
	50	0	24.41	24.30	24.37		1
	1	0	24.49	24.41	24.42		1
	1	25	24.48	24.43	24.41	0-1	1
	1	49	24.43	24.44	24.41		1
16QAM	25	0	23.42	23.38	23.42		2
	25	12	23.46	23.39	23.27	0-2	2
	25	25	23.43	23.33	23.37	0-2	2
	50	0	23.44	23.35	23.25		2
	1	0	23.38	23.37	23.30		2
	1	25	23.35	23.40	23.29	0-2	2
	1	49	23.38	23.33	23.28		2
64QAM	25	0	22.30	22.28	22.33		3
	25	12	22.38	22.39	22.20][3
	25	25	22.39	22.24	22.26	0-3	3
	50	0	22.44	22.27	22.22]	3

Table 9-18 LTE Band 26 (Cell) Conducted Powers - 5 MHz Bandwidth

	LTE Band 26 (Cell)								
				5 MHz Bandwidth					
			Low Channel	Mid Channel	High Channel				
Modulation	RB Size	RB Offset	26715 (816.5 MHz)	26865 (831.5 MHz)	27015 (846.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]		
			O	Conducted Power [dBn	n]				
	1	0	25.36	25.42	25.17		0		
	1	12	25.33	25.35	25.21	0	0		
	1	24	25.39	25.30	25.18		0		
QPSK	12	0	24.37	24.33	24.38		1		
	12	6	24.35	24.33	24.32	0-1	1		
	12	13	24.32	24.32	24.27	0-1	1		
	25	0	24.33	24.33	24.34		1		
	1	0	24.44	24.43	24.50		1		
	1	12	24.42	24.40	24.49	0-1	1		
	1	24	24.48	24.47	24.46		1		
16QAM	12	0	23.38	23.36	23.45		2		
	12	6	23.40	23.38	23.47	0-2	2		
	12	13	23.37	23.29	23.42	0-2	2		
	25	0	23.36	23.38	23.36		2		
	1	0	23.31	23.29	23.37		2		
	1	12	23.38	23.39	23.42	0-2	2		
	1	24	23.47	23.47	23.34		2		
64QAM	12	0	22.36	22.22	22.36		3		
	12	6	22.39	22.32	22.34	0-3	3		
	12	13	22.29	22.24	22.42	0-3	3		
	25	0	22.35	22.30	22.34		3		

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 47 400
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 47 of 138

Table 9-19 LTE Band 26 (Cell) Conducted Powers - 3 MHz Bandwidth

			Baria 20 (OCII) C	LTE Band 26 (Cell) 3 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	26705 (815.5 MHz)	26865 (831.5 MHz)	27025 (847.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm	1]		
	1	0	25.24	25.37	25.26		0
	1	7	25.34	25.43	25.36	0	0
	1	14	25.20	25.29	25.23		0
QPSK	8	0	24.34	24.34	24.31	1	1
	8	4	24.40	24.33	24.30	0-1	1
	8	7	24.31	24.31	24.27	0-1	1
	15	0	24.36	24.31	24.27		1
	1	0	24.48	24.40	24.42		1
	1	7	24.38	24.49	24.44	0-1	1
	1	14	24.41	24.45	24.49		1
16QAM	8	0	23.43	23.30	23.28		2
	8	4	23.42	23.31	23.33	0-2	2
	8	7	23.37	23.24	23.26	0-2	2
	15	0	23.33	23.31	23.32		2
	1	0	23.42	23.26	23.34		2
	1	7	23.38	23.38	23.42	0-2	2
	1	14	23.34	23.34	23.46		2
64QAM	8	0	22.40	22.22	22.21		3
	8	4	22.34	22.28	22.27	0-3	3
	8	7	22.23	22.10	22.26		3
	15	0	22.22	22.18	22.18		3

Table 9-20 LTE Band 26 (Cell) Conducted Powers -1.4 MHz Bandwidth

				LTE Band 26 (Cell) 1.4 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 26697 (814.7 MHz)	Mid Channel 26865 (831.5 MHz)	High Channel 27033 (848.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm	n]		
	1	0	25.22	25.24	25.15		0
	1	2	25.27	25.30	25.20		0
	1	5	25.22	25.23	25.15		0
QPSK	3	0	25.26	25.28	25.20	0	0
	3	2	25.31	25.26	25.22		0
	3	3	25.26	25.20	25.20		0
	6	0	24.24	24.25	24.20	0-1	1
	1	0	24.49	24.41	24.48		1
	1	2	24.49	24.47	24.32		1
	1	5	24.50	24.48	24.38	0-1	1
16QAM	3	0	24.42	24.31	24.21	0-1	1
	3	2	24.43	24.38	24.28		1
	3	3	24.40	24.33	24.23		1
	6	0	23.26	23.41	23.14	0-2	2
	1	0	23.44	23.35	23.41		2
	1	2	23.39	23.44	23.27	Ī	2
	1	5	23.48	23.39	23.35	0-2	2
64QAM	3	0	23.28	23.21	23.19	0-2	2
	3	2	23.35	23.26	23.21		2
	3	3	23.33	23.25	23.22		2
	6	0	22.16	22.40	22.01	0-3	3

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 40 -f 400
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 48 of 138

REV 20.11 M

LTE Band 66 (AWS) 9.4.3

Table 9-21 LTE Band 66 (AWS) Maximum Conducted Powers - 20 MHz Bandwidth

			()	LTE Band 66 (AWS)			
			1 011	20 MHz Bandwidth	Hint Observed	1	
Modulation	RB Size	RB Offset	132072 (1720.0 MHz)	Mid Channel 132322 (1745.0 MHz)	High Channel 132572 (1770.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	24.04	24.18	23.99		0
	1	50	23.90	23.92	24.03	0	0
	1	99	23.98	23.96	24.04		0
QPSK	50	0	23.01	23.00	22.93		1
	50	25	22.91	22.87	23.08	0-1	1
	50	50	22.85	22.90	22.95	0-1	1
	100	0	22.87	22.85	23.03		1
	1	0	23.10	23.00	23.09	0-1	1
	1	50	23.13	22.82	22.78		1
	1	99	23.06	22.79	22.86		1
16QAM	50	0	22.02	21.99	22.07		2
	50	25	21.94	21.98	22.08	0-2	2
	50	50	21.93	21.89	21.97	0-2	2
	100	0	21.95	21.87	22.04		2
	1	0	22.04	21.82	22.02		2
	1	50	22.04	21.63	21.80	0-2	2
	1	99	21.99	21.81	21.86		2
64QAM	50	0	20.92	20.82	21.03		3
	50	25	20.89	20.87	20.94	0-3	3
	50	50	20.85	20.95	20.78		3
	100	0	20.87	20.88	20.93	<u> </u>	3

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 40 -f 400
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 49 of 138

Table 9-22
LTE Band 66 (AWS) Maximum Conducted Powers - 15 MHz Bandwidth

	<u> </u>	L Dana o	(AVVO) Maxilli	LTE Band 66 (AWS)	OWCIS- IS IVII	iz Ballawiatii	
				15 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	132047 (1717.5 MHz)	132322 (1745.0 MHz)	132597 (1772.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			O	Conducted Power [dBm	1]		
	1	0	23.96	23.78	23.83		0
	1	36	23.94	23.78	23.91	0	0
	1	74	23.87	23.73	23.86		0
QPSK	36	0	22.95	22.98	22.97		1
	36	18	23.03	23.04	23.02	0-1	1
	36	37	22.88	22.96	22.95		1
	75	0	22.95	22.98	23.02		1
	1	0	22.73	23.03	23.10		1
	1	36	22.62	23.10	23.08	0-1	1
	1	74	22.62	23.06	23.15		1
16QAM	36	0	22.04	21.99	21.95		2
	36	18	21.96	21.88	22.03	0-2	2
	36	37	21.92	21.86	21.90	0-2	2
	75	0	21.95	21.92	21.90		2
	1	0	21.63	21.97	22.06		2
	1	36	21.55	21.94	22.05	0-2	2
	1	74	21.51	21.92	21.99		2
64QAM	36	0	20.99	20.87	20.77		3
	36	18	20.86	20.86	20.84	0-3	3
	36	37	20.94	20.84	20.86		3
1	75	0	20.79	20.73	20.90		3

Table 9-23
LTE Band 66 (AWS) Maximum Conducted Powers - 10 MHz Bandwidth

			•	LTE Band 66 (AWS) 10 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 132022 (1715.0 MHz)	Mid Channel 132322 (1745.0 MHz)	High Channel 132622 (1775.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	23.93	23.90	23.85		0
	1	25	23.84	23.95	23.89	0	0
	1	49	23.97	23.82	23.83		0
QPSK	25	0	22.95	22.83	23.05		1
	25 12	12	22.89	22.94	22.93	0-1	1
	25	25	22.82	22.88	22.98] "-1	1
	50	0	22.89	23.06	23.01		1
	1	0	22.68	23.13	23.11		1
	1	25	22.73	23.17	23.20	0-1	1
	1	49	22.60	23.15	23.16		1
16QAM	25	0	22.02	22.01	21.94		2
	25	12	22.01	21.91	21.89	0-2	2
	25	25	22.05	21.90	21.99] "-2	2
	50	0	21.93	21.84	21.87		2
	1	0	21.72	22.09	22.08		2
	1	25	21.54	22.13	22.13	0-2	2
	1	49	21.62	22.09	9 22.09		2
64QAM	25	0	21.09	20.87	20.97		3
	25	12	20.99	20.97	20.98	0-3	3
	25	25	20.89	20.89	20.89	J 0-3	3
	50	0	20.99	20.88	20.85] [3

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 50 -6400
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 50 of 138

Table 9-24
LTE Band 66 (AWS) Maximum Conducted Powers - 5 MHz Bandwidth

			, -,	LTE Band 66 (AWS) 5 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	131997 (1712.5 MHz)	132322 (1745.0 MHz)	132647 (1777.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm	n]		
	1	0	24.07	23.78	23.77		0
	1	12	23.91	23.78	23.80	0	0
	1	24	23.98	23.89	23.83		0
QPSK	12	0	22.98	22.93	22.83		1
	12	6	22.97	22.82	22.86	0-1	1
	12	13	22.82	22.84	22.89	- 0-1	1
	25	0	22.94	22.93	22.89		1
	1	0	22.95	23.15	23.14		1
	1	12	23.00	23.13	23.11	0-1	1
	1	24	22.91	23.08	23.20		1
16QAM	12	0	21.98	21.96	22.11		2
	12	6	21.92	22.04	21.99	0-2	2
	12	13	21.87	22.05	21.97	0-2	2
	25	0	21.95	21.87	21.81		2
	1	0	21.97	22.16	22.03		2
	1	12	21.81	22.05	22.16	0-2	2
	1	24	21.80	22.06	22.04		2
64QAM	12	0	20.88	20.91	20.96		3
	12	6	20.90	20.89	20.97	0-3	3
	12	13	20.87	20.86	21.07		3
	25	0	20.91	20.70	20.83] [3

Table 9-25
LTE Band 66 (AWS) Maximum Conducted Powers - 3 MHz Bandwidth

				LTE Band 66 (AWS) 3 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	131987 (1711.5 MHz)	132322 (1745.0 MHz)	132657 (1778.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	23.88	23.90	23.93		0
	1	7	23.87	23.94	23.88	0	0
	1	14	23.89	23.94	23.95		0
QPSK	8	0	23.14	23.16	23.10		1
	8	4	23.14	23.14	23.18	0-1	1
	8	7	23.04	23.12	23.11] 0-1	1
	15	0	22.85	22.90	22.83		1
	1	0	23.18	23.14	23.13		1
	1	7	23.03	23.13	23.06	0-1	1
	1	14	23.16	23.16	23.13		1
16QAM	8	0	22.08	22.06	22.16		2
	8	4	22.18	22.00	22.12	0-2	2
	8	7	22.13	22.14	22.14	0-2	2
	15	0	22.02	22.00	22.00		2
	1	0	22.12	22.03	22.16		2
	1	7	21.96	22.10	22.01	0-2	2
	1	14	22.01	22.07	22.13]	2
64QAM	8	0	20.97	20.96	20.95		3
	8	4	21.18	21.08	20.96	1	3
	8	7	20.88	20.99	20.98	0-3	3
	15	0	20.86	20.90	20.79	1	3

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Danie 54 of 400
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 51 of 138

Table 9-26 LTF Band 66 (AWS) Maximum Conducted Powers -1 4 MHz Bandwidth

				LTE Band 66 (AWS) 1.4 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 131979 (1710.7 MHz)	Mid Channel 132322 (1745.0 MHz)	High Channel 132665 (1779.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm	,	1	
	1	0	23.90	23.98	23.85		0
	1	2	23.86	23.88	23.89		0
	1	5	23.97	23.83	23.84	0 [0
QPSK	3	0	23.90	23.90	23.84		0
	3	2	23.89	23.94	23.91		0
	3	3	23.88	23.96	23.89		0
	6	0	23.12	23.05	22.90	0-1	1
	1	0	23.02	23.06	22.87		1
	1	2	23.20	22.90	22.87		1
	1	5	23.16	23.12	23.02	0-1	1
16QAM	3	0	23.18	23.08	23.16	0-1	1
	3	2	23.13	23.10	23.09		1
	3	3	23.11	23.00	23.20		1
	6	0	22.01	22.07	22.12	0-2	2
	1	0	22.17	21.91	21.93		2
	1	2	22.19	21.93	21.83		2
	1	5	22.11	21.88	21.86] ₀₂ [2
64QAM	3	0	22.07	22.04	22.05	0-2	2
	3	2	22.01	22.00	22.02		2
	3	3	22.01	21.91	22.02		2
	6	0	20.95	20.99	20.95	0-3	3

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Daga 52 of 420
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 52 of 138

Table 9-27
LTE Band 66 (AWS) Reduced Conducted Powers - 20 MHz Bandwidth

	<u>=</u>	TE Bana o	o (ATTO) Reduc	LTE Band 66 (AWS)	OWCIS - ZO WIT	2 Banawiatii	
				20 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	132072 (1720.0 MHz)	132322 (1745.0 MHz)	132572 (1770.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm	1]		
	1	0	22.74	22.94	22.94		0
	1	50	22.99	22.74	23.02	0	0
	1	99	22.99	22.97	22.84		0
QPSK	50	0	22.71	22.85	22.75		0
	50	25	22.95	22.89	22.72	0-1	0
	50	50	22.91	22.86	22.73	0-1	0
	100	0	22.82	22.79	22.80		0
	1	0	22.78	22.76	22.94		0
	1	50	22.77	22.71	22.80	0-1	0
	1	99	22.74	23.00	22.82] [0
16QAM	50	0	21.87	21.90	22.19		1
	50	25	21.98	21.86	21.94	0-2	1
	50	50	21.95	21.79	21.73	0-2	1
	100	0	21.92	21.86	22.04] [1
	1	0	21.95	21.93	21.99		1
	1	50	21.87	22.16	22.16	0-2	1
	1	99	22.13	22.00	21.93	<u>]</u> [1
64QAM	50	0	21.05	21.11	20.77		2
	50	25	20.98	20.91	21.05	1	2
	50	50	20.85	20.97	21.16	0-3	2
	100	0	21.07	21.12	21.10] [2

Table 9-28
LTE Band 66 (AWS) Reduced Conducted Powers - 15 MHz Bandwidth

		TE Barra o	o (Attro) Houdo	LTE Band 66 (AWS) 15 MHz Bandwidth		<u> </u>	
Modulation	RB Size	RB Offset	Low Channel 132047 (1717.5 MHz)	Mid Channel 132322 (1745.0 MHz)	High Channel 132597 (1772.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	22.97	23.00	22.95		0
	1	36	22.96	22.95	22.95	0	0
	1	74	22.96	22.73	23.01		0
QPSK	36	0	22.96	23.01	22.76		0
	36	18	22.80	23.00	22.77	0-1	0
	36	37	22.97	22.87	22.71	0-1	0
	75	0	22.79	23.02	22.79		0
	1	0	22.88	22.71	22.94		0
	1	36	22.84	22.86	22.71	0-1	0
	1	74	22.95	22.82	22.71		0
16QAM	36	0	21.77	21.92	22.15		1
	36	18	21.96	21.94	22.11	0-2	1
	36	37	21.87	21.83	21.84	0-2	1
	75	0	21.95	22.02	22.05		1
	1	0	22.17	22.11	22.06		1
	1	36	21.96	22.10	21.84	0-2	1
İ	1	74	21.98	22.07	22.16		1
64QAM	36	0	20.95	21.00	21.06		2
	36	18	21.12	21.18	21.11	0-3	2
	36	37	21.05	20.79	20.97] 0-3	2
	75	0	20.85	21.02	20.86]	2

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 50 400
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 53 of 138

Table 9-29
LTE Band 66 (AWS) Reduced Conducted Powers - 10 MHz Bandwidth

	_	TE Balla 0	o (Avio) iteado	LTE Band 66 (AWS) 10 MHz Bandwidth		<u> </u>	
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	132022 (1715.0 MHz)	132322 (1745.0 MHz)	132622 (1775.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	22.79	22.89	22.79		0
[1	25	22.77	23.02	22.75	0	0
	1	49	23.02	22.82	22.84		0
QPSK	25	0	22.75	22.77	22.93		0
	25	12	22.73	22.82	23.02	0-1	0
[25	25	22.92	22.81	22.81		0
	50	0	22.87	22.87	22.71		0
	1	0	22.84	22.72	22.88		0
	1	25	23.02	22.96	22.90	0-1	0
	1	49	23.03	22.83	22.94] [0
16QAM	25	0	21.84	21.72	22.19		1
	25	12	21.79	22.00	21.96	0-2	1
	25	25	21.88	21.97	22.18	0-2	1
	50	0	22.14	22.12	21.84] [1
	1	0	22.13	21.90	22.04		1
	1	25	21.78	21.74	22.10	0-2	1
	1	49	21.89	22.06	22.17		1
64QAM	25	0	20.97	21.11	21.10		2
	25	12	20.98	20.80	20.91	1	2
	25	25	20.81	20.93	21.16	0-3	2
ĺ	50	0	21.14	21.08	20.86] [2

Table 9-30 LTE Band 66 (AWS) Reduced Conducted Powers - 5 MHz Bandwidth

				LTE Band 66 (AWS) 5 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	131997 (1712.5 MHz)	132322 (1745.0 MHz)	132647 (1777.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	22.75	22.83	22.75		0
	1	12	22.96	22.71	22.96	0	0
	1	24	22.85	22.79	22.94		0
QPSK	12	0	22.97	22.78	22.76		0
	12	6	22.82	23.00	22.90	0-1	0
	12	13	22.80	22.72	22.86	U-1	0
	25	0	22.72	22.81	22.99		0
	1	0	22.85	22.81	23.03		0
	1	12	22.78	22.91	22.87	0-1	0
	1	24	22.92	22.72	23.02		0
16QAM	12	0	21.81	22.02	21.98		1
	12	6	21.75	21.93	21.82	0-2	1
	12	13	21.96	21.90	21.91	U-Z	1
	25	0	22.06	22.13	21.91		1
	1	0	22.13	22.07	22.02		1
	1	12	22.01	21.86	21.82	0-2	1
	1	24	22.04	22.08	21.80		1
64QAM	12	0	21.11	20.84	21.05		2
	12	6	21.03	21.17	21.03	0-3	2
	12	13	20.97	21.04	20.77	0-3	2
	25	0	21.06	20.91	20.89		2

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT		Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 54 6400
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset		Page 54 of 138

Table 9-31 LTE Band 66 (AWS) Reduced Conducted Powers - 3 MHz Bandwidth

	-	<u></u>	o (Fire) House	LTE Band 66 (AWS) 3 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	131987 (1711.5 MHz)	132322 (1745.0 MHz)	132657 (1778.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	22.76	22.83	22.74		0
[1	7	23.00	22.78	22.83	0	0
[1	14	22.91	22.82	23.02		0
QPSK	8	0	22.99	22.72	22.76		0
	8	4	22.91	22.91	22.78	0-1	0
[8	7	22.88	22.91	22.81	0-1	0
	15	0	22.71	22.93	22.93		0
	1	0	22.89	22.88	22.79		0
	1	7	22.94	22.71	22.83	0-1	0
	1	14	22.87	22.93	23.02]	0
16QAM	8	0	22.07	22.09	22.06		1
	8	4	21.84	21.97	21.89	0-2	1
	8	7	21.82	22.00	22.04	0-2	1
	15	0	21.84	21.98	22.17]	1
	1	0	21.90	21.83	22.10		1
	1	7	22.14	22.12	22.09	0-2	1
•	1	14	21.96	22.20	22.03		1
64QAM	8	0	21.01	20.72	20.95		2
	8	4	21.00	21.02	21.04	1 , 1	2
	8	7	20.97	21.12	21.08	0-3	2
	15	0	20.87	21.01	21.07] [2

Table 9-32 LTE Band 66 (AWS) Reduced Conducted Powers - 1.4 MHz Bandwidth

				LTE Band 66 (AWS) 1.4 MHz Bandwidth		12 Banawiatii	
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	131979 (1710.7 MHz)	132322 (1745.0 MHz)	132665 (1779.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	23.02	22.99	22.94		0
	1	2	22.99	22.87	23.01		0
	1	5	22.99	22.81	22.98	0	0
QPSK	3	0	22.99	22.97	22.71]	0
	3	2	22.98	23.00	22.83	0-1	0
	3	3	22.99	23.03	22.79		0
	6	0	22.78	22.93	23.02		0
	1	0	22.72	22.91	22.85		0
	1	2	22.81	22.87	22.99		0
	1	5	22.79	22.79	22.80	0-1	0
16QAM	3	0	22.94	22.71	22.82] 0-1	0
	3	2	23.01	22.92	22.88		0
	3	3	22.74	22.94	22.82		0
	6	0	22.10	22.12	21.95	0-2	1
	1	0	22.01	22.01	21.78		1
	1	2	21.77	21.89	22.03		1
64QAM	1	5	21.94	22.17	22.01	1 02	1
	3	0	21.74	22.10	21.86	0-2	1
	3	2	22.10	21.80	22.05		1
	3	3	22.01	22.00	21.92		1
	6	0	21.01	20.85	21.14	0-3	2

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 55 of 120
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 55 of 138

LTE Band 25 (PCS) 9.4.4

Table 9-33 LTE Band 25 (PCS) Maximum Conducted Powers - 20 MHz Bandwidth

			ze (i ee) maxim	LTE Band 25 (PCS)	1 011010 20 1111		
				20 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 26140 (1860.0 MHz)	Mid Channel 26365 (1882.5 MHz)	High Channel 26590 (1905.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			C	Conducted Power [dBm	1]		
	1	0	24.32	24.35	24.22		0
	1	50	24.23	24.06	24.31	0	0
	1	99	24.29	24.14	24.20		0
QPSK	50	0	23.05	23.37	23.36		1
	50	25	23.08	23.10	23.31	0-1	1
	50	50	23.06	23.02	23.21	0-1	1
	100	0	23.07	23.17	23.29		1
	1	0	23.22	23.26	23.38	0-1	1
	1	50	23.15	23.32	23.39		1
	1	99	23.27	23.38	23.32		1
16QAM	50	0	22.19	22.13	22.37		2
	50	25	22.11	22.13	22.35	0-2	2
	50	50	22.11	22.03	22.25	0-2	2
	100	0	22.09	22.15	22.31		2
	1	0	22.12	22.21	22.35		2
	1	50	22.11	22.28	22.36	0-2	2
	1	99	22.22	22.32	22.27		2
64QAM	50	0	21.19	21.09	21.28		3
	50	25	21.10	21.00	21.27	0-3	3
	50	50	21.09	20.98	21.19	0-3	3
	100	0	21.03	21.05	21.17		3

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 50 -4400
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 56 of 138

Table 9-34 LTE Band 25 (PCS) Maximum Conducted Powers - 15 MHz Bandwidth

	_	Dana	zo (i oo) iiiaxiiii	LTE Band 25 (PCS)			
				15 MHz Bandwidth			
			Low Channel	Mid Channel	annel High Channel		
Modulation	RB Size	RB Offset	26115 (1857.5 MHz)	26365 (1882.5 MHz)	26615 (1907.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm	n]		
	1	0	24.10	24.17	24.38		0
	1	36	23.82	24.04	24.28	0	0
	1	74	23.92	24.05	24.18		0
QPSK	36	0	23.11	23.11	23.35		1
	36	18	23.01	23.11	23.35	0-1	1
	36	37	23.09	23.08	23.27		1
	75	0	23.10	23.07	23.31		1
	1	0	23.40	23.37	23.27	0-1	1
	1	36	23.19	23.30	23.29		1
	1	74	23.27	23.30	23.34		1
16QAM	36	0	22.13	22.11	22.40		2
	36	18	22.03	22.08	22.36	0-2	2
	36	37	22.09	22.10	22.31	0-2	2
	75	0	22.14	22.13	22.31		2
	1	0	22.33	22.24	22.14		2
	1	36	22.12	22.21	22.25	0-2	2
	1	74	22.17	22.21	22.31		2
64QAM	36	0	21.08	21.05	21.34		3
	36	18	20.90	21.03	21.35	0-3	3
	36	37	20.96	21.03	21.30] 0-3	3
	75	0	21.02	21.04	21.20		3

Table 9-35 LTE Band 25 (PCS) Maximum Conducted Powers - 10 MHz Bandwidth

			LO (1 OO) MAXIM	LTE Band 25 (PCS) 10 MHz Bandwidth			
Modulation	RB Size	Size RB Offset	Low Channel 26090 (1855.0 MHz)	Mid Channel 26365 (1882.5 MHz)	High Channel 26640 (1910.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			C	Conducted Power [dBm	1]		
	1	0	24.21	24.27	24.29		0
	1	25	23.87	24.03	24.21	0	0
	1	49	24.11	24.19	24.11		0
QPSK	25	0	23.08	23.04	23.31		1
	25	12	23.01	23.06	23.22	0-1	1
	25	25	22.94	23.10	23.21	0-1	1
	50	0	23.03	23.11	23.20		1
	1	0	23.35	23.29	23.35	0-1	1
	1	25	23.21	23.35	23.33		1
	1	49	23.38	23.31	23.29		1
16QAM	25	0	22.11	22.12	22.34		2
	25	12	22.10	22.08	22.23	0-2	2
	25	25	22.01	22.12	22.28	0-2	2
	50	0	22.06	22.11	22.27		2
	1	0	22.31	22.20	22.30		2
	1	25	22.13	22.31	22.31	0-2	2
	1	49	22.30	22.28	22.18		2
64QAM	25	0	21.01	21.01	21.24		3
	25	12	21.00	20.98	21.10] [3
	25	25	20.96	21.01	21.25	0-3	3
	50	0	20.93	21.09	21.23		3

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 57 of 120
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 57 of 138

Table 9-36
LTE Band 25 (PCS) Maximum Conducted Powers - 5 MHz Bandwidth

			20 (1 00) maxim	LTE Band 25 (PCS)			
				5 MHz Bandwidth			
Modulation	RB Size	RB Offset	26065 (1852.5 MHz)	Mid Channel 26365 (1882.5 MHz)	High Channel 26665 (1912.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm			
	1	0	24.15	24.09	24.14		0
	1	12	24.02	24.05	24.07	0	0
	1	24	23.99	24.07	24.00		0
QPSK	12	0	23.10	23.02	23.22		1
	12	6	23.10	23.02	23.21	0-1	1
	12	13	23.05	23.03	23.13	0-1	1
	25	0	23.06	23.06	23.17		1
	1	0	23.38	23.31	23.26	0-1	1
	1	12	23.31	23.29	23.27		1
	1	24	23.33	23.37	23.31		1
16QAM	12	0	22.16	22.10	22.34		2
	12	6	22.15	22.12	22.29	0-2	2
	12	13	22.11	22.07	22.27	0-2	2
	25	0	22.08	22.10	22.23		2
·	1	0	22.28	22.17	22.25		2
	1	12	22.31	22.24	22.17	0-2	2
	1	24	22.21	22.28	22.28		2
64QAM	12	0	21.14	21.04	21.20		3
	12	6	21.02	21.07	21.28	0-3	3
	12	13	21.05	21.02	21.23]	3
	25	0	21.05	21.06	21.12		3

Table 9-37
LTE Band 25 (PCS) Maximum Conducted Powers - 3 MHz Bandwidth

				LTE Band 25 (PCS) 3 MHz Bandwidth				
Modulation	RB Size	RB Size	RB Offset	Low Channel 26055 (1851.5 MHz)	Mid Channel 26365 (1882.5 MHz)	High Channel 26675 (1913.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]			
	1	0	23.93	24.00	24.13		0	
[1	7	24.03	24.10	24.16	0	0	
[1	14	23.90	24.01	24.09		0	
QPSK	8	0	23.06	23.03	23.20		1	
[8	4	23.08	23.04	23.20	0-1	1	
[8	7	23.00	23.04	23.17] 0-1	1	
Ī	15	0	23.07	23.01	23.18		1	
	1	0	23.25	23.30	23.28	0-1	1	
[1	7	23.36	23.40	23.26		1	
[1	14	23.24	23.30	23.12		1	
16QAM	8	0	22.16	22.01	22.18		2	
	8	4	22.17	22.05	22.16	0-2	2	
ſ	8	7	22.12	22.01	22.15	0-2	2	
	15	0	22.08	22.05	22.17		2	
	1	0	22.17	22.27	22.20		2	
j	1	7	22.26	22.35	22.23	0-2	2	
	1	14	22.21	22.22	22.01	<u>] </u>	2	
64QAM	8	0	21.12	20.94	21.11		3	
	8	4	21.08	20.92	21.05	0-3	3	
	8	7	21.09	20.99	21.10] 0-3	3	
	15	0	20.95	21.05	21.09] [3	

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 50 -f 100
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset		Page 58 of 138

Table 9-38 LTE Band 25 (PCS) Maximum Conducted Powers -1 4 MHz Bandwidth

	<u>_</u>	IL Dallu A	23 (FCS) WAXIII	LTE Band 25 (PCS)	FOWEIS-1.4 IVII	12 Danawiath	
				1.4 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	26047 (1850.7 MHz)	26365 (1882.5 MHz)	26683 (1914.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm	n]		
	1	0	23.92	24.18	24.00		0
	1	2	24.04	24.20	24.08	1	0
	1	5	23.95	24.17	23.99	0	0
QPSK	3	0	24.01	24.24	24.08		0
	3	2	24.02	24.26	24.13		0
	3	3	23.97	24.24	24.07		0
	6	0	22.97	23.21	23.04	0-1	1
	1	0	23.19	23.34	23.29	0-1	1
	1	2	23.28	23.38	23.35		1
	1	5	23.18	23.29	23.26		1
16QAM	3	0	23.18	23.26	23.21] 0-1	1
	3	2	23.17	23.34	23.30		1
	3	3	23.14	23.22	23.22		1
	6	0	22.00	22.15	22.04	0-2	2
	1	0	22.17	22.24	22.17		2
	1	2	22.25	22.37	22.24		2
	1	5	22.10	22.24	22.25] ₀₂ [2
64QAM	3	0	22.11	22.12	22.18	0-2	2
	3	2	22.09	22.25	22.25		2
	3	3	22.07	22.12	22.21		2
	6	0	20.87	21.02	20.92	0-3	3

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 50 of 120
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 59 of 138

Table 9-39
LTE Band 25 (PCS) Reduced Conducted Powers - 20 MHz Bandwidth

	_			LTE Band 25 (PCS)			
				20 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	26140 (1860.0 MHz)	26365 (1882.5 MHz)	26590 (1905.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm	i]		
	1	0	21.76	21.81	21.80		0
	1	50	22.03	21.83	22.08	0	0
	1	99	21.93	21.96	21.85		0
QPSK	50	0	22.00	21.80	21.90		0
	50	25	21.96	22.02	21.85	0-1	0
	50	50	22.04	22.06	21.82	0 1	0
	100	0	21.93	21.77	21.99		0
	1	0	21.72	22.00	21.90	0-1	0
	1	50	21.94	21.95	21.84		0
	1	99	21.87	22.07	21.81		0
16QAM	50	0	21.98	21.92	22.04		0
	50	25	21.87	21.92	21.72	0-2	0
	50	50	21.93	21.90	21.87	0-2	0
	100	0	21.84	21.84	22.02]	0
	1	0	21.84	21.81	21.99		0
	1	50	21.93	21.83	22.09	0-2	0
	1	99	21.99	21.73	21.87] [0
64QAM	50	0	20.89	20.99	20.96		1
	50	25	20.89	20.87	20.79	1	1
	50	50	21.04	20.85	20.79	0-3	1
	100	0	21.02	21.05	21.04	1	1

Table 9-40 LTE Band 25 (PCS) Reduced Conducted Powers - 15 MHz Bandwidth

				LTE Band 25 (PCS)			
				15 MHz Bandwidth			
			Low Channel Mid Channel High Channel				
Modulation	RB Size	RB Offset	26115 (1857.5 MHz)	26365 (1882.5 MHz)	26615 (1907.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm	1]		
	1	0	22.00	21.94	21.97		0
	1	36	21.90	21.95	21.98	0	0
	1	74	22.02	21.77	22.04		0
QPSK	36	0	22.05	22.02	21.87		0
	36	18	21.73	21.76	21.79	0-1	0
	36	37	21.82	21.92	21.92	U-1	0
	75	0	21.78	22.03	21.80		0
	1	0	21.77	21.78	21.84	0-1	0
	1	36	21.95	21.80	21.90		0
	1	74	21.77	21.93	22.07		0
16QAM	36	0	22.04	21.89	21.93		0
	36	18	22.03	21.96	21.79	0-2	0
	36	37	21.84	22.01	21.77	0-2	0
	75	0	21.90	21.90	21.82		0
	1	0	21.71	22.07	21.78		0
	1	36	22.00	21.81	21.71	0-2	0
	1	74	21.84	21.88	21.89		0
64QAM	36	0	20.94	20.77	20.77		1
	36	18	21.01	21.06	20.82	1	1
	36	37	20.89	20.90	20.83	0-3	1
	75	0	21.10	20.84	20.81		1

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT] LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 00 -f 100
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset		Page 60 of 138

Table 9-41
LTE Band 25 (PCS) Reduced Conducted Powers - 10 MHz Bandwidth

	_			LTE Band 25 (PCS)			
				10 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	26090 (1855.0 MHz)	26365 (1882.5 MHz)	26640 (1910.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			C	Conducted Power [dBm	n]		
	1	0	21.94	21.79	21.74		0
	1	25	21.93	21.74	21.95	0	0
	1	49	21.93	21.80	21.72		0
QPSK	25	0	21.84	21.76	21.98		0
	25	12	21.92	22.06	21.87	0-1	0
	25	25	21.78	21.92	21.85		0
	50	0	21.75	21.98	22.01		0
	1	0	21.96	21.77	21.87	0-1	0
	1	25	22.07	22.00	21.80		0
	1	49	21.80	21.77	22.01		0
16QAM	25	0	21.94	21.79	21.79		0
	25	12	21.99	21.99	21.99	0-2	0
	25	25	21.86	21.85	21.86	0-2	0
	50	0	22.02	21.97	21.85		0
	1	0	21.76	21.97	22.01		0
	1	25	22.00	21.88	21.85	0-2	0
	1	49	21.94	21.97	21.85		0
64QAM	25	0	20.87	20.88	20.96		1
	25	12	20.70	20.89	20.92	1	1
	25	25	20.99	21.03	21.05	0-3	1
	50	0	20.91	20.93	20.98]	1

Table 9-42
LTE Band 25 (PCS) Reduced Conducted Powers - 5 MHz Bandwidth

			20 (1 00) 11000	LTE Band 25 (PCS) 5 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 26065 (1852.5 MHz)	Mid Channel 26365 (1882.5 MHz)	High Channel 26665 (1912.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm	1]		
	1	0	21.85	21.75	22.06		0
	1	12	22.07	22.09	21.94	0	0
[1	24	21.97	22.05	21.71		0
QPSK	12	0	21.95	21.93	21.89		0
	12	6	21.99	21.90	22.10	0-1	0
	12	13	21.73	22.09	22.02] 0-1	0
ſ	25	0	22.03	21.78	21.90		0
	1	0	21.91	22.03	21.86		0
ĺ	1	12	21.80	21.93	21.83	0-1	0
ĺ	1	24	21.86	21.90	21.86	1	0
16QAM	12	0	21.86	21.92	21.91		0
	12	6	22.03	21.72	21.78	0-2	0
ſ	12	13	21.96	22.00	21.83	0-2	0
	25	0	21.99	22.02	21.99		0
	1	0	21.98	22.07	21.96		0
	1	12	21.90	21.79	21.88	0-2	0
ĺ	1	24	21.87	21.75	22.08	1	0
64QAM	12	0	20.98	20.93	20.98		1
Ī	12	6	20.99	21.02	20.87		1
	12	13	20.77	20.85	20.74	0-3	1
j	25	0	21.07	21.02	20.71]	1

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT (b) L	LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 04 -f 400
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset		Page 61 of 138

Table 9-43 LTE Band 25 (PCS) Reduced Conducted Powers - 3 MHz Bandwidth

			20 (1 00) 11000	LTE Band 25 (PCS)			
				3 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	26055 (1851.5 MHz)	26365 (1882.5 MHz)	26675 (1913.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			C	Conducted Power [dBm]		
	1	0	22.02	22.05	21.98		0
	1	7	21.93	21.71	21.90	0	0
	1	14	22.08	22.10	21.73		0
QPSK	8	0	22.04	22.07	22.08	0-1	0
	8	4	21.81	22.04	21.90		0
	8	7	21.95	22.04	22.04		0
	15	0	21.83	22.00	22.05		0
	1	0	21.80	22.03	21.99		0
	1	7	21.80	21.85	21.77	0-1	0
	1	14	21.92	21.90	22.06		0
16QAM	8	0	21.92	21.89	21.90		0
	8	4	22.09	21.95	21.84	0-2	0
	8	7	21.76	21.94	21.83	0-2	0
	15	0	21.90	21.71	21.80		0
	1	0	21.81	21.86	21.91		0
	1	7	21.88	21.93	22.05	0-2	0
	1	14	21.84	22.01	22.05		0
64QAM	8	0	21.08	21.05	20.72		1
	8	4	21.06	20.98	21.03	0-3	1
	8	7	20.86	20.79	21.08] 0-3	1
	15	0	20.91	20.79	21.04]	1

Table 9-44 LTE Band 25 (PCS) Reduced Conducted Powers – 1.4 MHz Bandwidth

	_		<u> </u>	LTE Band 25 (PCS)			
				1.4 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 26047 (1850.7 MHz)	Mid Channel 26365 (1882.5 MHz)	High Channel 26683 (1914.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			C	Conducted Power [dBm	1]	•	
	1	0	22.09	22.01	21.76		0
	1	2	21.98	21.82	21.84		0
	1	5	21.88	21.95	21.88		0
QPSK	3	0	22.07	22.04	22.09		0
	3	2	22.00	21.81	21.75		0
	3	3	22.10	21.95	21.99		0
	6	0	21.72	21.95	21.83	0-1	0
	1	0	21.81	21.81	21.97		0
	1	2	21.83	21.80	21.89		0
	1	5	21.75	21.80	22.06] 01	0
16QAM	3	0	21.91	21.94	22.01	0-1	0
	3	2	21.77	21.90	21.95		0
	3	3	21.87	22.09	21.70		0
	6	0	22.00	22.07	22.01	0-2	0
	1	0	21.97	21.96	21.91		0
	1	2	22.06	21.71	21.71	[0
	1	5	21.99	21.71	21.71	1 02	0
64QAM	3	0	21.79	22.03	21.97	0-2	0
	3	2	21.94	21.79	21.75		0
	3	3	21.86	21.88	21.99		0
	6	0	20.88	20.77	20.78	0-3	1

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 62 of 120
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 62 of 138

9.4.5 LTE Band 30

Table 9-45 LTE Band 30 Conducted Powers - 10 MHz Bandwidth

	LTE Band 30 Conducted Powers - 10 MHz Bandwidth LTE Band 30 10 MHz Bandwidth								
			10 MHz Bandwidth						
			Mid Channel						
Modulation	RB Size	RB Offset	27710 (2310.0 MHz)	MPR Allowed per	MPR [dB]				
Modulation	ND 0126	ND Offset	Conducted Power	3GPP [dB]	ini it [db]				
			[dBm]						
	1	0	22.81		0				
	1	25	22.83	0	0				
	1	49	22.78]	0				
QPSK	25	0	21.88		1				
	25	12	21.89	0.4	1				
	25	25	21.87	0-1	1				
	50	0	21.83		1				
	1	0	21.84		1				
	1	25	21.72	0-1	1				
	1	49	21.67		1				
16QAM	25	0	20.91		2				
	25	12	20.87	0-2	2				
	25	25	20.90	0-2	2				
	50	0	20.87		2				
	1	0	20.96		2				
	1	25	20.94	0-2	2				
	1	49	20.86]	2				
64QAM	25	0	19.80		3				
	25	12	19.94	0-3	3				
	25	25	19.97	U-3	3				
	50	0	19.86		3				

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 02 -f 120
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 63 of 138

Table 9-46
LTE Band 30 Conducted Powers - 5 MHz Bandwidth

	LTE Band 30 Conducted Powers - 5 MHz Bandwidth LTE Band 30 5 MHz Bandwidth									
			Mid Channel							
Modulation	RB Size	RB Offset	27710 (2310.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]					
			Conducted Power	JOHN [UD]						
		-	[dBm]							
	1	0	22.76		0					
	1	12	22.82	0	0					
	1	24	22.69		0					
QPSK	12	0	21.89		1					
	12	6	21.76	0-1	1					
	12	13	21.70	0-1	1					
	25	0	21.79		1					
	1	0	21.60		1					
	1	12	21.62	0-1	1					
	1	24	21.57		1					
16QAM	12	0	20.83		2					
	12	6	20.92		2					
	12	13	20.85	0-2	2					
	25	0	20.95		2					
	1	0	20.97		2					
	1	12	20.76	0-2	2					
	1	24	20.86		2					
64QAM	12	0	19.71		3					
	12	6	19.84	1	3					
	12	13	19.74	0-3	3					
	25	0	19.74		3					

Note: LTE Band 30 at 5 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 64 of 120
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 64 of 138

© 2018 PCTEST Engineering Laboratory, Inc.

9.4.6 LTE Band 7

Table 9-47 LTE Band 7 Conducted Powers - 20 MHz Bandwidth

				LTE Band 7			
				20 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20850 (2510.0 MHz)	21100 (2535.0 MHz)	21350 (2560.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm	1]		
	1	0	23.37	23.62	23.45		0
	1	50	23.25	23.46	23.20	0	0
	1	99	23.26	23.47	23.21		0
QPSK	50	0	22.33	22.54	22.33		1
	50	25	22.33	22.51	22.37	0-1	1
	50	50	22.33	22.53	22.37		1
	100	0	22.33	22.53	22.37		1
	1	0	22.66	22.57	22.62		1
	1	50	22.59	22.70	22.66	0-1	1
	1	99	22.58	22.69	22.64		1
16QAM	50	0	21.39	21.55	21.41		2
	50	25	21.39	21.50	21.39	0-2	2
	50	50	21.39	21.45	21.40	0-2	2
	100	0	21.38	21.50	21.38		2
	1	0	21.55	21.43	21.51		2
	1	50	21.51	21.66	21.60	0-2	2
	1	99	21.51	21.63	21.59		2
64QAM	50	0	20.28	20.54	20.40		3
	50	25	20.38	20.47	20.35		3
	50	50	20.31	20.34	20.29	0-3	3
	100	0	20.24	20.39	20.32		3

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 65 of 120
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 65 of 138

Table 9-48 LTE Band 7 Conducted Powers - 15 MHz Bandwidth

			E Ballu / Colle	iucted Powers -	13 WILL Dalluw	idiii	
				LTE Band 7 15 MHz Bandwidth			
			Low Channel	Mid Channel			
Modulation	RB Size	RB Offset	20825 (2507.5 MHz)	21100 (2535.0 MHz)	21375 (2562.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			C	Conducted Power [dBm	1]	•	
	1	0	23.41	23.40	23.62		0
	1	36	23.07	23.30	23.37	0	0
	1	74	23.10	23.19	23.37	1	0
QPSK	36	0	22.37	22.37	22.37		1
	36	18	22.29	22.40	22.33	0-1	1
	36	37	22.23	22.36	22.34		1
	75	0	22.24	22.31	22.43	1	1
	1	0	22.61	22.66	22.63		1
	1	36	22.44	22.56	22.56	0-1	1
	1	74	22.45	22.47	22.61		1
16QAM	36	0	21.42	21.40	21.43		2
	36	18	21.25	21.39	21.36		2
	36	37	21.20	21.31	21.37	0-2	2
	75	0	21.29	21.39	21.44	1	2
	1	0	21.59	21.57	21.60		2
	1	36	21.40	21.47	21.44	0-2	2
	1	74	21.43	21.44	21.59]	2
64QAM	36	0	20.33	20.31	20.36		3
	36	18	20.13	20.29	20.28	1 [3
	36	37	20.15	20.27	20.30	0-3	3
	75	0	20.24	20.27	20.37	1	3

Table 9-49 LTE Band 7 Conducted Powers - 10 MHz Bandwidth

LTE Band 7								
				10 MHz Bandwidth				
			Low Channel	Mid Channel	High Channel			
Modulation	RB Size	RB Offset	20800 (2505.0 MHz)	21100 (2535.0 MHz)	21400 (2565.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]	
			C	Conducted Power [dBm	1]			
	1	0	23.32	23.34	23.32		0	
	1	25	23.27	23.30	23.32	0	0	
	1	49	23.04	23.19	23.31		0	
QPSK	25	0	22.37	22.38	22.33		1	
	25	12	22.34	22.39	22.51	0-1	1	
	25	25	22.19	22.33	22.40	0-1	1	
	50	0	22.30	22.36	22.35		1	
	1	0	22.57	22.63	22.43	0-1	1	
	1	25	22.51	22.59	22.47		1	
	1	49	22.37	22.48	22.52		1	
16QAM	25	0	21.38	21.37	21.39		2	
	25	12	21.34	21.34	21.51	0-2	2	
	25	25	21.22	21.32	21.45	0-2	2	
	50	0	21.33	21.33	21.41		2	
	1	0	21.57	21.57	21.39		2	
	1	25	21.42	21.49	21.36	0-2	2	
	1	49	21.35	21.43	21.47		2	
64QAM	25	0	20.37	20.26	20.30		3	
	25	12	20.29	20.22	20.42	0-3	3	
	25	25	20.21	20.26	20.44] 0-3	3	
	50	0	20.22	20.27	20.34		3	

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT (6)	LG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Page 66 of 139	
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset		Page 66 of 138	

REV 20.11 M

Table 9-50 LTE Band 7 Conducted Powers - 5 MHz Bandwidth

			TE Balla 7 Coll	LTE Band 7	- 5 WITTE Ballaw	idtii	
				5 MHz Bandwidth			
Modulation	RB Size	RB Offset	Low Channel 20775 (2502.5 MHz)	Mid Channel 21100 (2535.0 MHz)	High Channel 21425 (2567.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm		0011 [02]	
	1	0	23.40	23.34	23.30		0
	1	12	23.37	23.32	23.36	0	0
QPSK 12 12 12 12	1	24	23.32	23.31	23.28	1	0
	12	0	22.42	22.33	22.46		1
	12	6	22.42	22.35	22.44	0-1	1
	12	13	22.32	22.29	22.41	0-1	1
	25	0	22.35	22.30	22.43		1
	1	0	22.68	22.60	22.70	0-1	1
	1	12	22.66	22.59	22.67		1
	1	24	22.65	22.57	22.69		1
16QAM	12	0	21.45	21.36	21.55		2
	12	6	21.42	21.39	21.58	0-2	2
	12	13	21.37	21.34	21.49	0-2	2
	25	0	21.35	21.35	21.44		2
·	1	0	21.68	21.53	21.58		2
	1	12	21.61	21.55	21.61	0-2	2
	1	24	21.55	21.51	21.63		2
64QAM	12	0	20.40	20.24	20.42		3
	12	6	20.32	20.39	20.50	0-3	3
	12	13	20.29	20.25	20.38	0-3	3
	25	0	20.27	20.25	20.42		3

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 67 of 120
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 67 of 138

9.4.7 LTE Band 41

Table 9-51 LTE Band 41 Conducted Powers - 20 MHz Bandwidth

			ETE Bana		LTE Band 41	- ZU IVINZ Da	iiawiatii		
					MHz Bandwidth			T T	
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co	nducted Power [di	Bm]			
	1	0	24.77	24.86	24.88	24.79	24.90		0
	1	50	24.71	24.77	24.86	24.63	24.77	0	0
	1	99	24.72	24.78	24.80	24.64	24.72		0
QPSK	50	0	23.83	23.82	23.78	23.77	23.67		1
	50	25	23.71	23.77	23.76	23.69	23.71	0-1	1
	50	50	23.69	23.74	23.76	23.61	23.85	0-1	1
	100	0	23.76	23.76	23.72	23.72	23.72		1
	1	0	23.81	23.88	23.87	23.79	23.78	0-1	1
	1	50	23.79	23.85	23.88	23.85	23.79		1
	1	99	23.82	23.79	23.87	23.82	23.86		1
16QAM	50	0	22.83	22.85	22.84	22.75	22.75		2
	50	25	22.71	22.84	22.79	22.70	22.76	0-2	2
	50	50	22.71	22.72	22.81	22.58	22.75	0-2	2
	100	0	22.75	22.80	22.71	22.66	22.72		2
	1	0	22.77	22.85	22.79	22.66	22.76		2
	1	50	22.77	22.82	22.75	22.72	22.74	0-2	2
	1	99	22.76	22.66	22.80	22.71	22.74		2
64QAM	50	0	21.79	21.74	21.77	21.73	21.71		3
	50	25	21.67	21.72	21.65	21.63	21.65	0-3	3
	50	50	21.59	21.60	21.68	21.56	21.66		3
	100	0	21.67	21.69	21.64	21.54	21.61		3

Table 9-52 LTE Band 41 Conducted Powers - 15 MHz Bandwidth

					LTE Band 41 MHz Bandwidth	- 15 MITZ Ba			
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co	nducted Power [dl	Bm]			
	1	0	24.83	24.82	24.75	24.77	24.85		0
	1	36	24.70	24.77	24.74	24.53	24.75	0	0
	1	74	24.58	24.73	24.74	24.52	24.76		0
QPSK	36	0	23.82	23.82	23.80	23.73	23.79		1
	36	18	23.81	23.80	23.75	23.66	23.76	0-1	1
	36	37	23.69	23.76	23.76	23.55	23.75	0-1	1
	75	0	23.80	23.77	23.68	23.63	23.80		1
	1	0	23.81	23.81	23.89	23.87	23.87	0-1	1
	1	36	23.80	23.86	23.87	23.77	23.87		1
	1	74	23.82	23.87	23.85	23.74	23.73		1
16QAM	36	0	22.83	22.83	22.81	22.70	22.80		2
	36	18	22.83	22.80	22.78	22.66	22.73	0-2	2
	36	37	22.68	22.76	22.80	22.58	22.79	0-2	2
	75	0	22.81	22.79	22.72	22.65	22.83		2
	1	0	22.71	22.79	22.81	22.80	22.77	_	2
	1	36	22.72	22.84	22.76	22.64	22.77	0-2	2
	1	74	22.71	22.75	22.74	22.71	22.62		2
64QAM	36	0	21.83	21.77	21.70	21.59	21.74	_	3
	36	18	21.72	21.80	21.65	21.65	21.64	0-3	3
	36	37	21.62	21.65	21.75	21.45	21.65		3
	75	0	21.80	21.70	21.61	21.58	21.77		3

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Page 68 of 138	
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset		Page 68 of 138	

Table 9-53 LTE Band 41 Conducted Powers - 10 MHz Bandwidth

	LTE Band 41 10 MHz Bandwidth								
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co	nducted Power [di	Bm]			
	1	0	24.74	24.81	24.86	24.71	24.87		0
	1	25	24.72	24.82	24.74	24.59	24.83	0	0
	1	49	24.65	24.86	24.81	24.60	24.81		0
QPSK	25	0	23.81	23.81	23.76	23.69	23.75		1
	25	12	23.81	23.81	23.71	23.67	23.84	0-1	1
	25	25	23.80	23.77	23.80	23.61	23.74	0-1	1
	50	0	23.81	23.79	23.70	23.66	23.82		1
	1	0	23.81	23.81	23.89	23.86	23.88		1
	1	25	23.80	23.84	23.87	23.80	23.81	0-1	1
	1	49	23.88	23.87	23.85	23.81	23.83		1
16QAM	25	0	22.84	22.85	22.82	22.71	22.74		2
	25	12	22.87	22.82	22.80	22.67	22.81	0-2	2
	25	25	22.84	22.78	22.81	22.61	22.78	0-2	2
	50	0	22.84	22.85	22.79	22.64	22.84		2
	1	0	22.79	22.70	22.85	22.81	22.87		2
	1	25	22.76	22.71	22.74	22.75	22.71	0-2	2
	1	49	22.86	22.87	22.78	22.69	22.72		2
64QAM	25	0	21.76	21.78	21.70	21.57	21.64		3
	25	12	21.84	21.81	21.77	21.53	21.76	0-3	3
	25	25	21.79	21.78	21.73	21.56	21.71		3
	50	0	21.72	21.75	21.69	21.56	21.77		3

Table 9-54 LTE Band 41 Conducted Powers - 5 MHz Bandwidth

				5	LTE Band 41 MHz Bandwidth	- 5 WITTE Bar			
			Low Channel	Low-Mid Channel	Mid Channel	Mid-High Channel	High Channel		
Modulation	RB Size	RB Offset	39750 (2506.0 MHz)	40185 (2549.5 MHz)	40620 (2593.0 MHz)	41055 (2636.5 MHz)	41490 (2680.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Co	nducted Power [di	Bm]			
	1	0	24.80	24.81	24.64	24.69	24.78		0
	1	12	24.80	24.79	24.62	24.62	24.78	0	0
	1	24	24.70	24.76	24.66	24.61	24.79		0
QPSK	12	0	23.82	23.80	23.74	23.67	23.73		1
	12	6	23.82	23.80	23.74	23.72	23.75	0-1	1
	12	13	23.81	23.76	23.81	23.65	23.67	0-1	1
	25	0	23.79	23.75	23.70	23.65	23.70		1
	1	0	23.89	23.83	23.82	23.82	23.85	0-1	1
	1	12	23.80	23.81	23.80	23.80	23.85		1
	1	24	23.83	23.85	23.88	23.86	23.87		1
16QAM	12	0	22.83	22.80	22.83	22.74	22.74		2
	12	6	22.90	22.81	22.82	22.71	22.75	0-2	2
	12	13	22.82	22.77	22.89	22.66	22.70	0-2	2
	25	0	22.81	22.81	22.76	22.66	22.76		2
	1	0	22.87	22.80	22.69	22.68	22.84		2
	1	12	22.77	22.71	22.70	22.69	22.72	0-2	2
	1	24	22.82	22.85	22.84	22.86	22.79		2
64QAM	12	0	21.70	21.80	21.76	21.73	21.64		3
	12	6	21.90	21.78	21.73	21.64	21.62	0-3	3
	12	13	21.75	21.68	21.88	21.53	21.58	0-3	3
	25	0	21.71	21.70	21.67	21.58	21.67		3

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates: DUT Type:		Dags 60 of 129
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 69 of 138

9.5 WLAN Conducted Powers

Table 9-55
2.4 GHz WLAN Maximum Average RF Power – Ant 1

2.4GHz Conducted Power [dBm]						
		IEEE Transm	802.11g			
Freq [MHz]	Channel	802.11b	802.11g Average 17.93			
		Average	Average			
2412	1	20.42	17.93			
2422	3	N/A	19.35			
2437	6	20.47	19.48			
2452	9	N/A	19.46			
2462	11	20.48	16.95			

Table 9-56
2.4 GHz WLAN Maximum Average RF Power – Ant 2

2.4GHz Conducted Power [dBm]						
		IEEE Transmission Mode				
Freq [MHz]	Channel	802.11b	-			
		Average	Average			
2412	1	20.43	17.90			
2422	3	N/A	19.46			
2437	6	20.49	19.39			
2452	9	N/A	19.36			
2462	11	20.47	16.83			

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dog 70 of 120
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 70 of 138

Table 9-57 5 GHz WLAN Maximum Average RF Power - Ant 1

5GHz (20MHz) Conducted Power [dBm]				
		IEEE Transmission Mode		
Freq [MHz]	Channel	802.11a	802.11n	802.11ac
		Average	Average	Average
5180	36	16.95	16.94	16.93
5200	40	17.99	17.98	17.96
5220	44	16.95	16.92	16.86
5240	48	16.97	16.94	16.95
5260	52	16.97	16.91	16.93
5280	56	17.98	17.97	17.94
5300	60	16.97	16.93	16.95
5320	64	16.99	16.97	16.97
5500	100	16.93	16.90	16.88
5600	120	16.99	16.96	16.97
5620	124	16.97	16.91	16.92
5720	144	16.99	16.96	16.94
5745	149	16.99	16.98	16.96
5785	157	17.99	17.98	17.96
5825	165	16.98	16.94	16.96

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 74 -f 400
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 71 of 138

Table 9-58
5 GHz WLAN Maximum Average RF Power – Ant 2

5GHz (20MHz) Conducted Power [dBm]				
		IEEE Transmission Mode		
Freq [MHz]	Channel	802.11a	802.11n	802.11ac
		Average	Average	Average
5180	36	16.91	16.73	16.73
5200	40	17.95	17.94	17.90
5220	44	16.98	16.94	16.93
5240	48	16.99	16.90	16.94
5260	52	16.97	16.79	16.80
5280	56	17.98	17.98	17.96
5300	60	16.96	16.90	16.90
5320	64	16.99	16.96	16.96
5500	100	16.99	16.92	16.91
5600	120	16.98	16.91	16.89
5620	124	16.94	16.83	16.84
5720	144	16.99	16.95	16.93
5745	149	16.99	16.96	16.96
5785	157	17.95	17.87	17.87
5825	165	16.97	16.80	16.82

Table 9-59
5 GHz WLAN Maximum Average RF Power – MIMO

5GHz (20MHz) 802.11n Conducted Power [dBm]				
Freq [MHz]	Channel	ANT1	ANT2	MIMO
5180	36	16.94	16.73	19.85
5200	40	17.98	17.94	20.97
5220	44	16.92	16.94	19.94
5240	48	16.94	16.90	19.93
5260	52	16.91	16.79	19.86
5280	56	17.97	17.98	20.99
5300	60	16.93	16.90	19.93
5320	64	16.97	16.96	19.98
5500	100	16.90	16.92	19.92
5600	120	16.96	16.91	19.95
5620	124	16.91	16.83	19.88
5720	144	16.96	16.95	19.97
5745	149	16.98	16.96	19.98
5785	157	17.98	17.87	20.94
5825	165	16.94	16.80	19.88

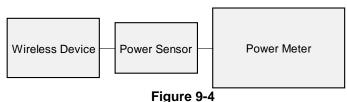
FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 72 of 120
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 72 of 138

Table 9-60
2.4 GHz WLAN Reduced Average RF Power – Ant 1 (Held-to-ear and During Conditions with 2.4 GHz
WLAN Ant 1 and 5 GHz WLAN Ant 2)

2.4GHz Conducted Power [dBm]								
		IEEE Transmission Mode						
Freq [MHz]	Channel	802.11b	802.11g	802.11n	802.11ac			
		Average	Average	Average	Average			
2412	1	17.96	17.96	16.83	16.85			
2422	3	N/A	17.90	17.73	17.71			
2437	6	17.98	17.96	17.86	17.88			
2452	9	N/A	17.94	17.74	17.76			
2462	11	17.97	16.98	15.76	15.75			

Table 9-61
2.4 GHz WLAN Reduced Average RF Power – Ant 2 (Held-to-ear)

2.4GHz Conducted Power [dBm]								
		IEEE Transmission Mode						
Freq [MHz]	Channel	802.11b	802.11g	802.11n	802.11ac			
		Average Average		Average	Average			
2412	1	17.96	17.92	16.65	16.68			
2422	3	N/A	17.93	17.68	17.70			
2437	6	17.97	17.97	17.79	17.77			
2452	9	N/A	17.83	17.56	17.56			
2462	11	17.92	16.85	15.60	15.62			


Table 9-62
5GHz WLAN Reduced Output Powers During Conditions with 2.4 GHz Ant 1 and 5 GHz WLAN Ant 2

5GHz (40MHz) Conducted Power [dBm]							
		IEEE Transmission Mode					
Freq [MHz]	Channel	802.11n	802.11ac				
		Average	Average				
5190	38	12.51	12.75				
5230	46	14.80	14.98				
5270	54	14.81	14.99				
5310	62	12.20	12.41				
5510	102	12.16	12.44				
5590	118	14.71	14.92				
5630	126	14.90	14.57				
5710	142	14.54	14.91				
5755	151	14.55	14.97				
5795	159	14.97	14.92				

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dogo 72 of 120	
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 73 of 138	

Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02:

- Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units.
- For transmission modes with the same maximum output power specification, powers were measured for the largest channel bandwidth, lowest order modulation and lowest data rate.
- For transmission modes with identical maximum specified output power, channel bandwidth, modulation and data rates, power measurements were required for all identical configurations.
- For each transmission mode configuration, powers were measured for the highest and lowest channels; and at the mid-band channel(s) when there were at least 3 channels supported. For configurations with multiple mid-band channels, due to an even number of channels, both channels were measured.
- The bolded data rate and channel above were tested for SAR.

Power Measurement Setup

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 74 of 120
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 74 of 138

Bluetooth Conducted Powers 9.6

Table 9-63 Bluetooth Average RF Power

	Data		Avg Conducted Power		
Frequency [MHz]	Rate [Mbps]	Channel No.	[dBm]	[mW]	
2402	1.0	0	11.50	14.125	
2441	1.0	39	11.86	15.346	
2480	1.0	78	11.18	13.122	
2402	2.0	0	10.84	12.134	
2441	2.0	39	11.22	13.243	
2480	2.0	78	10.52	11.272	
2402	3.0	0	10.88	12.246	
2441	3.0	39	11.29	13.459	
2480	3.0	78	10.57	11.402	

Note: The bolded data rates and channel above were tested for SAR.

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT (b)	LG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		D 75 100	
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset		Page 75 of 138	

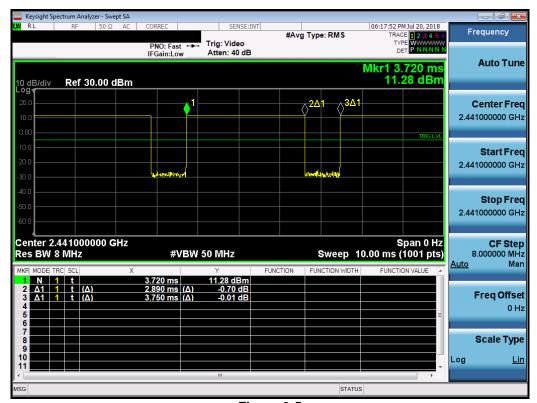


Figure 9-5 Bluetooth Transmission Plot

Equation 9-1 Bluetooth Duty Cycle Calculation

$$\textit{Duty Cycle} = \frac{\textit{Pulse Width}}{\textit{Period}} * 100\% = \frac{2.89 ms}{3.75 ms} * 100\% = 77.1\%$$

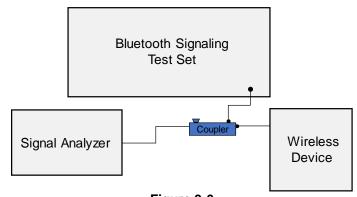


Figure 9-6 Power Measurement Setup

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		D 70 100	
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset		Page 76 of 138	

Tissue Verification 10.1

Table 10-1 Measured Head Tissue Properties

			ioacai ca		JOGO I TOP	011100			
Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (°C)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	% dev σ	% dev ε
OII.							The state of the s	0.000/	0.700/
			680	0.863	40.705	0.888	42.305	-2.82%	-3.78%
			695	0.872	40.666	0.889	42.227	-1.91%	-3.70%
			700	0.872	40.624	0.889	42.201	-1.91%	-3.74%
7/19/2018	750H	21.8	710	0.877	40.601	0.890	42.149	-1.46%	-3.67%
			740	0.887	40.504	0.893	41.994	-0.67%	-3.55%
			755	0.891	40.498	0.894	41.916	-0.34%	-3.38%
			770	0.898	40.365	0.895	41.838	0.34%	-3.52%
			785	0.904	40.335	0.896	41.760	0.89%	-3.41%
7/40/0040	00511	04.0	820	0.922	41.578	0.899	41.578	2.56%	0.00%
7/16/2018	835H	21.2	835	0.927	41.540	0.900	41.500	3.00%	0.10%
			850	0.932	41.497	0.916	41.500	1.75%	-0.01%
			1710	1.330	39.904	1.348	40.142	-1.34%	-0.59%
7/10/2018	1750H	21.1	1750	1.353	39.840	1.371	40.079	-1.31%	-0.60%
			1790	1.374	39.772	1.394	40.016	-1.43%	-0.61%
			1850	1.432	40.058	1.400	40.000	2.29%	0.15%
7/12/2018	1900H	22.8	1880	1.446	40.050	1.400	40.000	3.29%	0.12%
			1910	1.469	40.000	1.400	40.000	4.93%	0.00%
			1850	1.390	41.014	1.400	40.000	-0.71%	2.54%
7/16/2018	1900H	20.8	1880	1.411	40.995	1.400	40.000	0.79%	2.49%
			1910	1.432	40.905	1.400	40.000	2.29%	2.26%
			2300	1.681	38.529	1.670	39.500	0.66%	-2.46%
7/11/2018	2450H	22.4	2310	1.693	38.500	1.679	39.480	0.83%	-2.48%
			2320	1.700	38.434	1.687	39.460	0.77%	-2.60%
			2400	1.793	39.195	1.756	39.289	2.11%	-0.24%
			2450	1.852	39.033	1.800	39.200	2.89%	-0.43%
			2500	1.907	38.828	1.855	39.136	2.80%	-0.79%
7/16/2018	2450H	21.6	2550	1.968	38.636	1.909	39.073	3.09%	-1.12%
			2600	2.023	38.439	1.964	39.009	3.00%	-1.46%
			2650	2.083	38.247	2.018	38.945	3.22%	-1.79%
			2700	2.139	38.033	2.073	38.882	3.18%	-2.18%
			2400	1.796	39.035	1.756	39.289	2.28%	-0.65%
7/18/2018	2450H	22.8	2450	1.853	38.837	1.800	39.200	2.94%	-0.93%
			2500	1.909	38.650	1.855	39.136	2.91%	-1.24%
			5240	4.607	35.738	4.696	35.940	-1.90%	-0.56%
			5260	4.628	35.683	4.717	35.917	-1.89%	-0.65%
			5280	4.655	35.637	4.737	35.894	-1.73%	-0.72%
			5300	4.669	35.624	4.758	35.871	-1.87%	-0.69%
			5320	4.693	35.577	4.778	35.849	-1.78%	-0.76%
			5500	4.886	35.265	4.963	35.643	-1.55%	-1.06%
			5520	4.917	35.198	4.983	35.620	-1.32%	-1.18%
			5540	4.931	35.192	5.004	35.597	-1.46%	-1.14%
	5055		5560	4.963	35.144	5.024	35.574	-1.21%	-1.21%
07/09/2018	5200H- 5800H	20.3	5580	4.984	35.106	5.045	35.551	-1.21%	-1.25%
	JOUUH		5600	5.014	35.059	5.065	35.529	-1.01%	-1.32%
			5620	5.030	35.008	5.086	35.506	-1.10%	-1.40%
	1	1	5640	5.046	34.981	5.106	35.483	-1.18%	-1.41%
	1	1	5660	5.097	34.957	5.127	35.460	-0.59%	-1.42%
		1	5680	5.105	34.956	5.147	35.437	-0.82%	-1.36%
			5700	5.129	34.876	5.168	35.414	-0.75%	-1.52%
			5745	5.183	34.784	5.214	35.363	-0.59%	-1.64%
	1	1	5765	5.211	34.730	5.234	35.340	-0.44%	-1.73%
			5785	5.226	34.702	5.255	35.317	-0.55%	-1.74%
		1	5.00		-				

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dogo 77 of 120	
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 77 of 138	

© 2018 PCTEST Engineering Laboratory, Inc.

REV 20.11 M

Table 10-2
Measured Body Tissue Properties

		IVICA	Suicu	Douy 11	SSUC I I	operties	,		
Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (°C)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	%dev σ	% dev ε
			680	0.943	53.629	0.958	55.804	-1.57%	-3.90%
			695	0.952	53.541	0.959	55.745	-0.73%	-3.95%
			700	0.953	53.533	0.959	55.726	-0.63%	-3.94%
7/19/2018	750B	21.5	710	0.959	53.503	0.960	55.687	-0.10%	-3.92%
7/19/2018	750B	21.5	740	0.966	53.410	0.963	55.570	0.31%	-3.89%
			755	0.971	53.471	0.964	55.512	0.73%	-3.68%
			770	0.978	53.394	0.965	55.453	1.35%	-3.71%
			785	0.985	53.325	0.966	55.395	1.97%	-3.74%
			820	0.997	53.226	0.969	55.258	2.89%	-3.68%
7/17/2018	835B	20.5	835	1.003	53.203	0.970	55.200	3.40%	-3.62%
			850	1.009	53.159	0.988	55.154	2.13%	-3.62%
			820	0.990	53.190	0.969	55.258	2.17%	-3.74%
7/20/2018	835B	20.0	835	0.993	53.151	0.970	55.200	2.37%	-3.71%
			850	0.999	53.086	0.988	55.154	1.11%	-3.75%
			1710	1.461	51.712	1.463	53.537	-0.14%	-3.41%
7/16/2018	1750B	20.4	1750	1.490	51.674	1.488	53.432	0.13%	-3.29%
			1790	1.521	51.602	1.514	53.326	0.46%	-3.23%
			1850	1.506	52.525	1.520	53.300	-0.92%	-1.45%
7/8/2018	1900B	22.2	1880	1.541	52.499	1.520	53.300	1.38%	-1.50%
			1910	1.578	52.368	1.520	53.300	3.82%	-1.75%
			1850	1.511	52.497	1.520	53.300	-0.59%	-1.51%
7/11/2018	1900B	22.3	1880	1.544	52.399	1.520	53.300	1.58%	-1.69%
			1910	1.576	52.306	1.520	53.300	3.68%	-1.86%
			1850	1.509	51.758	1.520	53.300	-0.72%	-2.89%
7/16/2018	1900B	21.4	1880	1.541	51.653	1.520	53.300	1.38%	-3.09%
			1910	1.579	51.555	1.520	53.300	3.88%	-3.27%
			2300	1.818	51.779	1.809	52.900	0.50%	-2.12%
7/9/2018	2450B	22.8	2310	1.834	51.764	1.816	52.887	0.99%	-2.12%
			2320	1.840	51.737	1.826	52.873	0.77%	-2.15%
			2400	1.961	50.922	1.902	52.767	3.10%	-3.50%
			2450	2.025	50.739	1.950	52.700	3.85%	-3.72%
			2500	2.078	50.596	2.021	52.636	2.82%	-3.88%
7/12/2018	2450B	21.6	2550	2.132	50.505	2.092	52.573	1.91%	-3.93%
			2600	2.190	50.319	2.163	52.509	1.25%	-4.17%
			2650	2.253	50.162	2.234	52.445	0.85%	-4.35%
			2700	2.305	49.992	2.305	52.382	0.00%	-4.56%
			2400	1.971	51.003	1.902	52.767	3.63%	-3.34%
			2450	2.027	50.882	1.950	52.700	3.95%	-3.45%
			2500	2.088	50.709	2.021	52.636	3.32%	-3.66%
7/16/2018	2450B	21.6	2550	2.149	50.568	2.092	52.573	2.72%	-3.81%
7710/2010	24300	21.0	2600	2.149	50.400	2.163	52.509	2.03%	-4.02%
			2650	2.271	50.254	2.234	52.309	1.66%	-4.02 % -4.18%
			2700	2.329	50.073	2.305	52.382	1.04%	-4.41%
			2400	1.947	50.814	1.902	52.767	2.37%	-3.70%
			2450	2.007	50.654	1.950	52.700	2.92%	-3.88%
				2.062					
7/23/2018	2450B	04.0	2500		50.487	2.021	52.636	2.03%	-4.08%
112312018	Z400B	21.8	2550	2.121	50.333	2.092	52.573	1.39%	-4.26%
			2600	2.175	50.177	2.163	52.509	0.55%	-4.44%
			2650	2.233	50.018	2.234	52.445	-0.04%	-4.63%
	-		2700	2.292	49.876	2.305	52.382	-0.56%	-4.78%
	l	Ì	5180	5.360	48.377	5.276	49.041	1.59%	-1.35%
			5200	5.393	48.318	5.299	49.014	1.77%	-1.42%
	l	Ì	5220	5.416	48.296	5.323	48.987 48.960	1.75%	-1.41%
	l	Ì	5240	5.434	48.261	5.346		1.65%	-1.43%
	l	Ì	5260	5.464	48.235	5.369	48.933	1.77%	-1.43%
	l	Ì	5280	5.500	48.202	5.393	48.906	1.98%	-1.44%
			5300	5.519	48.168	5.416	48.879	1.90%	-1.45%
	l	Ì	5320	5.540	48.121	5.439	48.851	1.86%	-1.49%
	l	Ì	5500	5.774	47.818	5.650	48.607	2.19%	-1.62%
	l	Ì	5520	5.809	47.779	5.673	48.580	2.40%	-1.65%
07/16/2018	5200B-	22.0	5540	5.841	47.779	5.696	48.553	2.55%	-1.59%
27710/2010	5800B	22.0	5560	5.865	47.729	5.720	48.526	2.53%	-1.64%
			5580	5.892	47.688	5.743	48.499	2.59%	-1.67%
			5600	5.915	47.648	5.766	48.471	2.58%	-1.70%
	l	Ì	5620	5.960	47.602	5.790	48.444	2.94%	-1.74%
			5640	5.986	47.556	5.813	48.417	2.98%	-1.78%
	l	Ì	5660	6.013	47.532	5.837	48.390	3.02%	-1.77%
	l	Ì	5680	6.026	47.559	5.860	48.363	2.83%	-1.66%
	l	Ì	5700	6.069	47.476	5.883	48.336	3.16%	-1.78%
			5745	6.131	47.422	5.936	48.275	3.29%	-1.77%
			5765	6.168	47.380	5.959	48.248	3.51%	-1.80%
	1	1	5785	6.199	47.341	5.982	48.220	3.63%	-1.82%

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 D01v01r04 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		D 70 -f 100	
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	ortable Handset		Page 78 of 138	

© 2018 PCTEST Engineering Laboratory, Inc.

REV 20.11 M 06/19/2018

10.2 Test System Verification

Prior to SAR assessment, the system is verified to $\pm 10\%$ of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in Appendix E.

Table 10-3 System Verification Results – 1g

				<u></u>		ystem Ve	rification					
					TA	RGET & N	IEASUREI	D		=		
SAR System #	Tissue Frequency (MHz)	Tissue Type	Date:	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	Source SN	Probe SN	Measured SAR _{1g} (W/kg)	1 W Target SAR _{1g} (W/kg)	1 W Normalized SAR _{1g} (W/kg)	Deviation _{1g} (%)
E	750	HEAD	07/19/2018	22.0	21.8	0.200	1161	3213	1.570	8.170	7.850	-3.92%
Е	835	HEAD	07/16/2018	21.9	21.2	0.200	4d047	3213	1.950	9.130	9.750	6.79%
E	1750	HEAD	07/10/2018	23.3	21.1	0.100	1150	3213	3.570	36.100	35.700	-1.11%
Е	1900	HEAD	07/12/2018	24.0	22.8	0.100	5d148	3213	4.130	40.100	41.300	2.99%
Н	1900	HEAD	07/16/2018	23.5	20.8	0.100	5d080	7409	3.950	39.300	39.500	0.51%
G	2300	HEAD	07/11/2018	21.9	21.4	0.100	1008	3332	4.970	49.600	49.700	0.20%
G	2450	HEAD	07/16/2018	22.4	21.5	0.100	797	3332	5.290	52.700	52.900	0.38%
G	2450	HEAD	07/18/2018	22.7	21.4	0.100	719	3332	5.460	51.900	54.600	5.20%
G	2600	HEAD	07/16/2018	22.4	21.5	0.100	1004	3332	5.760	55.900	57.600	3.04%
Н	5250	HEAD	07/09/2018	20.3	20.3	0.050	1191	7409	3.820	78.900	76.400	-3.17%
Н	5600	HEAD	07/09/2018	20.3	20.3	0.050	1191	7409	4.060	83.600	81.200	-2.87%
Н	5750	HEAD	07/09/2018	20.3	20.3	0.050	1191	7409	3.810	79.100	76.200	-3.67%
1	750	BODY	07/19/2018	23.4	21.5	0.200	1003	7406	1.750	8.580	8.750	1.98%
J	835	BODY	07/17/2018	20.3	20.5	0.200	4d133	3347	1.900	9.410	9.500	0.96%
J	835	BODY	07/20/2018	20.1	20.0	0.200	4d133	3347	1.940	9.410	9.700	3.08%
J	1750	BODY	07/16/2018	20.1	20.4	0.100	1008	3347	3.770	37.400	37.700	0.80%
1	1900	BODY	07/08/2018	20.3	21.1	0.100	5d080	7406	4.110	39.100	41.100	5.12%
1	1900	BODY	07/11/2018	21.3	21.8	0.100	5d149	7406	4.280	40.100	42.800	6.73%
1	1900	BODY	07/16/2018	21.3	21.3	0.100	5d080	7406	4.090	39.100	40.900	4.60%
К	2300	BODY	07/09/2018	22.2	22.0	0.100	1073	3319	5.040	48.100	50.400	4.78%
К	2450	BODY	07/12/2018	23.3	21.6	0.100	797	3319	5.390	51.100	53.900	5.48%
К	2450	BODY	07/16/2018	22.6	21.6	0.100	797	3319	5.490	51.100	54.900	7.44%
К	2450	BODY	07/23/2018	22.4	21.8	0.100	797	3319	5.070	51.100	50.700	-0.78%
К	2600	BODY	07/12/2018	23.3	21.6	0.100	1004	3319	5.580	54.800	55.800	1.82%
K	2600	BODY	07/16/2018	22.6	21.6	0.100	1071	3319	5.480	54.200	54.800	1.11%
К	2600	BODY	07/23/2018	22.4	21.8	0.100	1071	3319	5.290	54.200	52.900	-2.40%
D	5250	BODY	07/16/2018	21.7	21.6	0.050	1237	7357	3.540	76.900	70.800	-7.93%
D	5600	BODY	07/16/2018	21.7	21.6	0.050	1237	7357	3.980	78.500	79.600	1.40%
D	5750	BODY	07/16/2018	21.7	21.6	0.050	1237	7357	3.630	77.100	72.600	-5.84%

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 70 of 120
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 79 of 138

Table 10-4

	System Verification Results – 10g System Verification													
						ystem Ver RGET & M)						
SAR System #	Tissue Frequency (MHz)	Tissue Type	Date:	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	Source SN	Probe SN	Measured SAR _{10g} (W/kg)	1 W Target SAR10g (W/kg)	1 W Normalized SAR _{10g} (W/kg)	Deviation _{10g} (%)		
J	1750	BODY	07/16/2018	20.1	20.4	0.100	1008	3347	2.010	19.900	20.100	1.01%		
1	1900	BODY	07/08/2018	20.3	21.1	0.100	5d080	7406	2.090	20.700	20.900	0.97%		
1	1900	BODY	07/16/2018	21.3	21.3	0.100	5d080	7406	2.080	20.700	20.800	0.48%		
D	5250	BODY	07/16/2018	21.7	21.6	0.050	1237	7357	1.010	21.500	20.200	-6.05%		
D	5600	BODY	07/16/2018	21.7	21.6	0.050	1237	7357	1.100	22.100	22.000	-0.45%		
D	5750	BODY	07/16/2018	21.7	21.6	0.050	1237	7357	1.000	21.400	20.000	-6.54%		

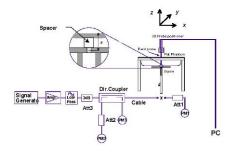


Figure 10-1 System Verification Setup Diagram

Figure 10-2 **System Verification Setup Photo**

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 90 of 129
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 80 of 138

11 SAR DATA SUMMARY

11.1 Standalone Head SAR Data

Table 11-1 CDMA BC10 (§90S) Head SAR

					CDIVIA		(3000)	11000						
					М	EASURE	MENT R	ESULTS						
FREQUE	ENCY	Mode/Band	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number		(W/kg)		(W/kg)	
820.10	564	CDMA BC10 (§90S)	RC3/SO55	25.5	25.21	0.01	Right	Cheek	04118	1:1	0.182	1.069	0.195	A1
820.10	564	CDMA BC10 (§90S)	RC3/SO55	25.5	25.21	-0.04	Right	Tilt	04118	1:1	0.093	1.069	0.099	
820.10	564	CDMA BC10 (§90S)	RC3/S055	25.5	25.21	0.05	Left	Cheek	04118	1:1	0.131	1.069	0.140	
820.10	564	CDMA BC10 (§90S)	RC3 / SO55	25.5	25.21	0.21	Left	Tilt	04118	1:1	0.082	1.069	0.088	
820.10	564	CDMA BC10 (§90S)	EVDO Rev. A	25.5	25.31	0.00	Right	Cheek	04118	1:1	0.148	1.045	0.155	
820.10	564	CDMA BC10 (§90S)	EVDO Rev. A	25.5	25.31	0.04	Right	Tilt	04118	1:1	0.071	1.045	0.074	
820.10	564	CDMA BC10 (§90S)	EVDO Rev. A	25.5	25.31	0.01	Left	Cheek	04118	1:1	0.106	1.045	0.111	
820.10	564	CDMA BC10 (§90S)	EVDO Rev. A	25.5	25.31	0.01	Left	Tilt	04118	1:1	0.059	1.045	0.062	
			EE C95.1 1992 - Spatial Pea d Exposure/Ge	ak							Head W/kg (mW/g) ged over 1 gran			

Table 11-2 CDMA BC0 (§22H) Head SAR

					M	EASURE	MENT RE	SULTS						
FREQUE	ENCY	Mode/Band	Service	Maxim um Allowed	Conducted	Power	Side	Test	Device Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number		(W/kg)		(W/kg)	
836.52	384	CDMA BC0 (§22H)	RC3/SO55	25.5	25.21	0.05	Right	Cheek	04118	1:1	0.111	1.069	0.119	
836.52	384	CDMA BC0 (§22H)	RC3 / SO55	25.5	25.21	0.06	Right	Tilt	04118	1:1	0.057	1.069	0.061	
836.52	384	CDMA BC0 (§22H)	RC3 / SO55	25.5	25.21	0.09	Left	Cheek	04118	1:1	0.082	1.069	0.088	
836.52	384	CDMA BC0 (§22H)	RC3 / SO55	25.5	25.21	0.16	Left	Tilt	04118	1:1	0.050	1.069	0.053	
836.52	384	CDMA BC0 (§22H)	EVDO Rev. A	25.5	25.22	0.06	Right	Cheek	04118	1:1	0.119	1.067	0.127	A2
836.52	384	CDMA BC0 (§22H)	EVDO Rev. A	25.5	25.22	0.04	Right	Tilt	04118	1:1	0.055	1.067	0.059	
836.52	384	CDMA BC0 (§22H)	EVDO Rev. A	25.5	25.22	0.09	Left	Cheek	04118	1:1	0.095	1.067	0.101	
836.52	384	CDMA BC0 (§22H)	EVDO Rev. A	25.5	25.22	0.11	Left	Tilt	04118	1:1	0.052	1.067	0.055	
		ANSI / IE	EE C95.1 1992 - Spatial Pea		Т					1.6	Head W/kg (mW/g)			
	Uncontrolled Exposure/General Population									averag	ged over 1 gran	n		

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 94 of 129
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 81 of 138

© 2018 PCTEST Engineering Laboratory, Inc.

REV 20.11 M 06/19/2018

Table 11-3 PCS CDMA Head SAR

					M	EASURE	MENT RE	ESULTS						
FREQUE	NCY	Mode/Band	Service	Maxim um Allow ed	Conducted	Power	Side	Test	Device Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	, ,	(W/kg)	ŭ	(W/kg)	
1880.00	600	PCS CDMA	RC3/SO55	24.4	24.09	0.07	Right	Cheek	04118	1:1	0.079	1.074	0.085	
1880.00	600	PCS CDMA	RC3 / SO55	24.4	24.09	0.15	Right	Tilt	04118	1:1	0.056	1.074	0.060	
1880.00	600	PCS CDMA	RC3 / SO55	24.4	24.09	-0.08	Left	Cheek	04118	1:1	0.117	1.074	0.126	
1880.00	600	PCS CDMA	RC3 / SO55	24.4	24.09	-0.10	Left	Tilt	04118	1:1	0.055	1.074	0.059	
1880.00	600	PCS CDMA	EVDO Rev. A	24.4	24.04	-0.17	Right	Cheek	04118	1:1	0.069	1.086	0.075	
1880.00	600	PCS CDMA	EVDO Rev. A	24.4	24.04	-0.18	Right	Tilt	04118	1:1	0.060	1.086	0.065	
1880.00	600	PCS CDMA	EVDO Rev. A	24.4	24.04	0.16	Left	Cheek	04118	1:1	0.118	1.086	0.128	A3
1880.00	600	PCS CDMA	EVDO Rev. A	24.4	24.04	-0.15	Left	Tilt	04118	1:1	0.052	1.086	0.056	
			EE C95.1 1992 - Spatial Pea d Exposure/Ge	ak							Head W/kg (mW/g) ged over 1 gran	า		

Table 11-4 GSM 850 Head SAR

						MEAS	UREMEN	T RESUL	TS						
FREQUE	ENCY	Mode/Band	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	# of Time	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	Slots	, ,	(W/kg)	, and the second	(W/kg)	
836.60	190	GSM 850	GSM	33.7	33.66	-0.01	Right	Cheek	04126	1	1:8.3	0.161	1.009	0.162	
836.60	190	GSM 850	GSM	33.7	33.66	0.10	Right	Tilt	04126	1	1:8.3	0.077	1.009	0.078	
836.60	190	GSM 850	GSM	33.7	33.66	0.01	Left	Cheek	04126	1	1:8.3	0.133	1.009	0.134	
836.60	190	GSM 850	GSM	33.7	33.66	0.05	Left	Tilt	04126	1	1:8.3	0.076	1.009	0.077	
836.60	190	GSM 850	GPRS	30.7	30.44	0.00	Right	Cheek	04126	3	1:2.76	0.193	1.062	0.205	A4
836.60	190	GSM 850	GPRS	30.7	30.44	-0.04	Right	Tilt	04126	3	1:2.76	0.092	1.062	0.098	
836.60	190	GSM 850	GPRS	30.7	30.44	-0.03	Left	Cheek	04126	3	1:2.76	0.148	1.062	0.157	
836.60	190	GSM 850	GPRS	30.7	30.44	0.21	Left	Tilt	04126	3	1:2.76	0.087	1.062	0.092	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population										Hea 1.6 W/kg averaged ov	(mW/g)			

FCC ID: ZNFQ910QM	PCTEST:	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dama 92 of 129
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 82 of 138

Table 11-5 GSM 1900 Head SAR

						COIN	10001	ieau S	/\\\						
						MEAS	UREMEN	T RESUL	TS						
FREQUE	ENCY	Mode/Band	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	# of Time	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	Slots		(W/kg)		(W/kg)	
1880.00	661	GSM 1900	GSM	30.7	30.46	0.12	Right	Cheek	04118	1	1:8.3	0.036	1.057	0.038	
1880.00	661	GSM 1900	GSM	30.7	30.46	0.10	Right	Tilt	04118	1	1:8.3	0.034	1.057	0.036	
1880.00	661	GSM 1900	GSM	30.7	30.46	-0.08	Left	Cheek	04118	1	1:8.3	0.056	1.057	0.059	
1880.00	661	GSM 1900	GSM	30.7	30.46	0.08	Left	Tilt	04118	1	1:8.3	0.029	1.057	0.031	
1880.00	661	GSM 1900	GPRS	27.7	27.42	0.20	Right	Cheek	04118	3	1:2.76	0.044	1.067	0.047	
1880.00	661	GSM 1900	GPRS	27.7	27.42	0.08	Right	Tilt	04118	3	1:2.76	0.038	1.067	0.041	
1880.00	661	GSM 1900	GPRS	27.7	27.42	0.03	Left	Cheek	04118	3	1:2.76	0.064	1.067	0.068	A5
1880.00	661	GSM 1900	GPRS	27.7	27.42	0.06	Left	Tilt	04118	3	1:2.76	0.036	1.067	0.038	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population										Hea 1.6 W/kg averaged ov	(mW/g)			

Table 11-6 UMTS 850 Head SAR

					М	EASURE	MENT RI	ESULTS						
FREQUI	ENCY	Mode/Band	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Num ber	, ., .	(W/kg)	3	(W/kg)	
836.60	4183	UMTS 850	RMC	25.5	25.22	0.02	Right	Cheek	04126	1:1	0.171	1.067	0.182	A6
836.60	4183	UMTS 850	RMC	25.5	25.22	0.02	Right	Tilt	04126	1:1	0.080	1.067	0.085	
836.60	4183	UMTS 850	RMC	25.5	25.22	-0.01	Left	Cheek	04126	1:1	0.144	1.067	0.154	
836.60	4183	UMTS 850	RMC	25.5	25.22	0.07	Left	Tilt	04126	1:1	0.083	1.067	0.089	
		ANSI / IEI	EE C95.1 1992 -	SAFETY LIMI	Т		Head							
			Spatial Pea				1.6 W/kg (mW/g)							
	Uncontrolled Exposure/General Population									averaç	ged over 1 gran	<u>n</u>		

Table 11-7 UMTS 1750 Head SAR

					M	EACLIDE	MENT RE	ECILI TO						
					IVI	EASURE	WENTRE	-50L15						
FREQUE	ENCY	Mode/Band	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number		(W/kg)		(W/kg)	
1732.40	1412	UMTS 1750	RMC	24.7	24.31	0.07	Right	Cheek	04118	1:1	0.076	1.094	0.083	
1732.40	1412	UMTS 1750	RMC	24.7	24.31	-0.05	Right	Tilt	04118	1:1	0.065	1.094	0.071	
1732.40	1412	UMTS 1750	RMC	24.7	24.31	0.09	Left	Cheek	04118	1:1	0.122	1.094	0.133	A7
1732.40	1412	UMTS 1750	RMC	24.7	24.31	0.02	Left	Tilt	04118	1:1	0.074	1.094	0.081	
		ANSI / IEI	EE C95.1 1992 -	SAFETY LIMI	Т						Head			
			Spatial Pea	ak						1.6	W/kg (mW/g)			
		Uncontrolle	d Exposure/Ge	neral Popula	tion					averaç	ged over 1 gran	n		

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 00 -f 400
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset		Page 83 of 138

Table 11-8 UMTS 1900 Head SAR

					<u> </u>	110 13	OU LICE	au SAN	<u> </u>					
					M	EASURE	MENT RE	ESULTS						
FREQUE	NCY	Mode/Band	Service	Maximum Allowed	Conducted	Power	Side	Test	De vice Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.	Wode/Barid	Service	Power [dBm]	Power [dBm]	Drift [dB]	Side	Position	Number	Duty Cycle	(W/kg)	Scaling Factor	(W/kg)	PIOL#
1880.00	9400	UMTS 1900	RMC	24.4	24.23	0.04	Right	Cheek	04126	1:1	0.077	1.040	0.080	
1880.00	9400	UMTS 1900	RMC	24.4	24.23	-0.04	Right	Tilt	04126	1:1	0.060	1.040	0.062	
1880.00	9400	UMTS 1900	RMC	24.4	24.23	-0.19	Left	Cheek	04126	1:1	0.119	1.040	0.124	A8
1880.00	9400	UMTS 1900	RMC	24.4	24.23	-0.14	Left	Tilt	04126	1:1	0.057	1.040	0.059	
		ANSI / IEI	EE C95.1 1992 -	SAFETY LIMI	Т						Head			
			Spatial Pea	ak						1.6	W/kg (mW/g)			
		Uncontrolle	d Exposure/Ge	neral Popula	tion					averaç	jed over 1 gran	n		

Table 11-9 LTE Band 12 Head SAR

								MEAS	SUREM	ENT RE	SULTS								
FR	EQUENCY	,	Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	CI	h.		[MHZ]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
707.50	23095	Mid	LTE Band 12	10	25.5	25.25	0.01	0	Right	Cheek	QPSK	1	49	04134	1:1	0.101	1.059	0.107	A9
707.50	23095	Mid	LTE Band 12	10	24.5	24.39	0.06	1	Right	Cheek	QPSK	25	25	04134	1:1	0.086	1.026	0.088	
707.50	23095	Mid	LTE Band 12	10	25.5	25.25	0.10	0	Right	Tilt	QPSK	1	49	04134	1:1	0.039	1.059	0.041	
707.50	23095	Mid	LTE Band 12	10	24.5	24.39	0.12	1	Right	Tilt	QPSK	25	25	04134	1:1	0.031	1.026	0.032	
707.50	23095	Mid	LTE Band 12	10	25.5	25.25	-0.01	0	Left	Cheek	QPSK	1	49	04134	1:1	0.080	1.059	0.085	
707.50	23095	Mid	LTE Band 12	10	24.5	24.39	0.01	1	Left	Cheek	QPSK	25	25	04134	1:1	0.076	1.026	0.078	
707.50	23095	Mid	LTE Band 12	10	25.5	25.25	0.18	0	Left	Tilt	QPSK	1	49	04134	1:1	0.037	1.059	0.039	
707.50	23095	Mid	LTE Band 12	10	24.5	24.39	0.03	1	Left	Tilt	QPSK	25	25	04134	1:1	0.031	1.026	0.032	
			ANSI / IEEE C	Spatial Pe	ak									Head .6 W/kg (neraged over	nW/g)				

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Daga 94 of 129
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 84 of 138

Table 11-10 LTE Band 13 Head SAR

								MEAS	SUREMI	ENT RES	SULTS								
FR	EQUENCY	,	Mode	Bandwidth	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot#
MHz	Cł	h.		[MHZ]	Power [dBm]	Power [dBm]	Drift [ab]			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
782.00	23230	Mid	LTE Band 13	10	25.5	25.22	-0.09	0	Right	Cheek	QPSK	1	0	04134	1:1	0.159	1.067	0.170	A10
782.00	23230	Mid	LTE Band 13	10	24.5	24.33	0.03	1	Right	Cheek	QPSK	25	12	04134	1:1	0.136	1.040	0.141	
782.00	23230	Mid	LTE Band 13	10	25.5	25.22	-0.04	0	Right	Tilt	QPSK	1	0	04134	1:1	0.078	1.067	0.083	
782.00	23230	Mid	LTE Band 13	10	24.5	24.33	0.03	1	Right	Tilt	QPSK	25	12	04134	1:1	0.069	1.040	0.072	
782.00	23230	Mid	LTE Band 13	10	25.5	25.22	-0.04	0	Left	Cheek	QPSK	1	0	04134	1:1	0.126	1.067	0.134	
782.00	23230	Mid	LTE Band 13	10	24.5	24.33	0.04	1	Left	Cheek	QPSK	25	12	04134	1:1	0.104	1.040	0.108	
782.00	23230	Mid	LTE Band 13	10	25.5	25.22	0.04	0	Left	Tilt	QPSK	1	0	04134	1:1	0.076	1.067	0.081	
782.00	23230	Mid	LTE Band 13	10	24.5	24.33	-0.01	1	Left	Tilt	QPSK	25	12	04134	1:1	0.063	1.040	0.066	
			ANSI / IEEE C	Spatial Pe	ak									Head .6 W/kg (neraged over	nW/g)				

Table 11-11 LTE Band 5 (Cell) Head SAR

								u		, (55.	ij i ica	u 0,							
								M	EASUR	EMENT	RESULTS								
FR	EQUENCY	′	Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	CI	h.		[MHz]	Power [dBm]	Power [dBm]	Dritt (dB)			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.5	25.37	0.03	0	Right	Cheek	QPSK	1	25	04167	1:1	0.119	1.030	0.123	A11
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.5	24.40	0.09	1	Right	Cheek	QPSK	25	25	04167	1:1	0.096	1.023	0.098	
836.50 20525 Mid LTE Band 5 (Cell) 10 25.5 25.37 0.0									Right	Tilt	QPSK	1	25	04167	1:1	0.061	1.030	0.063	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.5	24.40	0.08	1	Right	Tilt	QPSK	25	25	04167	1:1	0.048	1.023	0.049	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.5	25.37	0.04	0	Left	Cheek	QPSK	1	25	04167	1:1	0.101	1.030	0.104	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.5	24.40	0.03	1	Left	Cheek	QPSK	25	25	04167	1:1	0.080	1.023	0.082	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.5	25.37	0.00	0	Left	Tilt	QPSK	1	25	04167	1:1	0.052	1.030	0.054	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.5	24.40	0.03	1	Left	Tilt	QPSK	25	25	04167	1:1	0.040	1.023	0.041	
			ANSI / IEEE	C95.1 1992 -	SAFETY LIM	IT								Head					
				Spatial Pea	k								1.6	W/kg (mW/g)					
			Uncontrolled I	Exposure/Ge	neral Popula	tion							avera	ged over 1 gra	m				

Table 11-12 LTE Band 26 (Cell) Head SAR

								MEAS	SUREMI	ENT RES	SULTS								
FR	EQUENCY	,	Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	Cł	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.5	25.29	0.01	0	Right	Cheek	QPSK	1	36	04167	1:1	0.117	1.050	0.123	A12
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.5	24.42	0.07	1	Right	Cheek	QPSK	36	0	04167	1:1	0.099	1.019	0.101	
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.5	25.29	0.09	0	Right	Tilt	QPSK	1	36	04167	1:1	0.053	1.050	0.056	
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.5	24.42	0.08	1	Right Tilt QPSK 36 0 04167 1:1 0.042 1.019										
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.5	25.29	0.04	0	Left	Cheek	QPSK	1	36	04167	1:1	0.096	1.050	0.101	
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.5	24.42	0.05	1	Left	Cheek	QPSK	36	0	04167	1:1	0.079	1.019	0.081	
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.5	25.29	0.07	0	Left	Tilt	QPSK	1	36	04167	1:1	0.043	1.050	0.045	
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.5	1	Left	Tilt	QPSK	36	0	04167	1:1	0.037	1.019	0.038			
			ANSI / IEEE C			MIT								Head					
				Spatial Pea										.6 W/kg (r					
			Uncontrolled Ex	kposure/G	eneral Popul	ation							ave	eraged over	r 1 gram				

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 05 -(400
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 85 of 138

Table 11-13 LTE Band 66 (AWS) Head SAR

							. I	Jana	<u> </u>	7110	Heat	OAI	<u> </u>						
								MEAS	SUREM	ENT RE	SULTS								
FR	EQUENCY	,	Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	CI	h.		[MHZ]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.2	24.18	0.05	0	Right	Cheek	QPSK	1	0	04159	1:1	0.091	1.005	0.091	
1770.00	132572	High	LTE Band 66 (AWS)	20	23.2	23.08	0.04	1	Right	Cheek	QPSK	50	25	04159	1:1	0.083	1.028	0.085	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.2	24.18	0.07	0	Right	Tilt	QPSK	1	0	04159	1:1	0.085	1.005	0.085	
1770.00	132572	High	LTE Band 66 (AWS)	20	23.2	23.08	0.09	1	Right	Tilt	QPSK	50	25	04159	1:1	0.073	1.028	0.075	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.2	24.18	0.10	0	Left	Cheek	QPSK	1	0	04159	1:1	0.096	1.005	0.096	A13
1770.00	132572	High	LTE Band 66 (AWS)	20	23.2	23.08	0.09	1	Left	Cheek	QPSK	50	25	04159	1:1	0.089	1.028	0.091	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.2	24.18	-0.02	0	Left	Tilt	QPSK	1	0	04159	1:1	0.094	1.005	0.094	
1770.00	132572	High	LTE Band 66 (AWS)	20	23.2	23.08	0.03	1	Left	Tilt	QPSK	50	25	04159	1:1	0.080	1.028	0.082	
			ANSI / IEEE C	95.1 1992	- SAFETY LI	MIT								Head	_				
				Spatial Pe	ak								1	.6 W/kg (r	nW/g)				
			Uncontrolled E	xposure/G	eneral Popul	lation							ave	eraged over	r 1 gram				

Table 11-14 LTE Band 25 (PCS) Head SAR

								Jana		. 00,	ricad	0,	•						
								MEAS	SUREMI	ENT RES	SULTS								
FRI	EQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	Cł	٦.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	24.4	24.35	0.09	0	Right	Cheek	QPSK	1	0	04159	1:1	0.086	1.012	0.087	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.4	23.37	0.01	1	Right	Cheek	QPSK	50	0	04159	1:1	0.067	1.007	0.067	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	24.4	24.35	0.14	0	Right	Tilt	QPSK	1	0	04159	1:1	0.062	1.012	0.063	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.4	23.37	0.09	1	Right	Tilt	QPSK	50	0	04159	1:1	0.053	1.007	0.053	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	24.4	24.35	0.18	0	Left	Cheek	QPSK	1	0	04159	1:1	0.132	1.012	0.134	A14
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.4	23.37	0.15	1	Left	Cheek	QPSK	50	0	04159	1:1	0.104	1.007	0.105	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	24.4	24.35	0.15	0	Left	Tilt	QPSK	1	0	04159	1:1	0.065	1.012	0.066	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.4	23.37	-0.01	1	Left	Tilt	QPSK	50	0	04159	1:1	0.050	1.007	0.050	
			ANSI / IEEE C	95.1 1992	- SAFETY LI	MIT								Head		_			
				Spatial Pea	ak								1	.6 W/kg (r	nW/g)				
			Uncontrolled Ex	kposure/G	eneral Popul	ation							ave	eraged over	r 1 gram				

Table 11-15 LTE Band 30 Head SAR

								MEAS	UREMI	ENT RE	SULTS								
FR	EQUENCY	,	Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	CI	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
2310.00	27710	Mid	LTE Band 30	10	23.0	22.83	0.09	0	Right	Cheek	QPSK	1	25	04134	1:1	0.018	1.040	0.019	A15
2310.00	27710	Mid	LTE Band 30	10	22.0	21.89	0.17	1	Right	Cheek	QPSK	25	12	04134	1:1	0.014	1.026	0.014	
2310.00	27710	Mid	LTE Band 30	10	23.0	22.83	0.13	0	Right	Tilt	QPSK	1	25	04134	1:1	0.012	1.040	0.012	
2310.00	27710	Mid	LTE Band 30	10	22.0	21.89	0.19	1	Right	Tilt	QPSK	0.011	1.026	0.011					
2310.00	27710	Mid	LTE Band 30	10	23.0	22.83	0.11	0	Left	Cheek	QPSK	1	25	04134	1:1	0.016	1.040	0.017	
2310.00	27710	Mid	LTE Band 30	10	22.0	21.89	-0.03	1	Left	Cheek	QPSK	25	12	04134	1:1	0.015	1.026	0.015	
2310.00	27710	Mid	LTE Band 30	10	23.0	22.83	0.05	0	Left	Tilt	QPSK	1	25	04134	1:1	0.012	1.040	0.012	
2310.00	27710	Mid	LTE Band 30	10	22.0	21.89	0.17	1	Left	Tilt	QPSK	25	12	04134	1:1	0.009	1.026	0.009	
			ANSI / IEEE C	Spatial Pea	ak									Head .6 W/kg (reraged over	nW/g)				

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Domo 96 of 129
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 86 of 138

Table 11-16 LTE Band 7 Head SAR

								М	EASUR	EMENT	RESULTS								
FR	EQUENCY	1	Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	Cł	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
2535.00	21100	Mid	LTE Band 7	20	23.7	23.62	0.16	0	Right	Cheek	QPSK	1	0	04134	1:1	0.037	1.019	0.038	
2535.00	21100	Mid	LTE Band 7	20	22.7	22.54	0.17	1	Right	Cheek	QPSK	50	0	04134	1:1	0.031	1.038	0.032	
2535.00	21100	Mid	LTE Band 7	20	23.7	23.62	0.13	0	Right	Tilt	QPSK	1	0	04134	1:1	0.030	1.019	0.031	
2535.00	21100	Mid	LTE Band 7	20	22.7	22.54	0.14	1	Right	Tilt	QPSK	50	0	04134	1:1	0.025	1.038	0.026	
2535.00										Cheek	QPSK	1	0	04134	1:1	0.036	1.019	0.037	
2535.00	21100	Mid	LTE Band 7	20	22.7	22.54	0.14	1	Left	Cheek	QPSK	50	0	04134	1:1	0.035	1.038	0.036	
2535.00	21100	Mid	LTE Band 7	20	23.7	23.62	0.15	0	Left	Tilt	QPSK	1	0	04134	1:1	0.040	1.019	0.041	A16
2535.00	21100	Mid	LTE Band 7	20	22.7	22.54	0.00	1	Left	Tilt	QPSK	50	0	04134	1:1	0.035	1.038	0.036	
			ANSI / IEEE Uncontrolled I	C95.1 1992 - Spatial Peal Exposure/Ge	k									Head W/kg (mW/g) ged over 1 gra					

Table 11-17 LTE Band 41 Head SAR

								MEAS	SUREMI	ENT RES	SULTS									
FR	EQUENCY	,	Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	Device Serial	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot#	
MHz	С	h.		[WHZ]	Power [dBm]	Power (abm)	Drift (ab)			Position				Number	Cycle	(W/kg)	Factor	(W/kg)		
2680.00	41490	High	LTE Band 41	20	24.9	24.90	0.19	0	Right	Cheek	QPSK	1	0	04134	1:1.58	0.033	1.000	0.033	A17	
2680.00	41490	High	LTE Band 41	20	23.9	23.85	0.19	1	Right	Cheek	QPSK	50	50	04134	1:1.58	0.025	1.012	0.025		
2680.00	41490	High	LTE Band 41	20	24.9	24.90	0.15	0												
2680.00	41490	High	LTE Band 41	20	23.9	23.85	0.17	1	Right	Tilt	QPSK	50	1:1.58	0.008	1.012	0.008				
2680.00	41490	High	LTE Band 41	20	24.9	24.90	0.13	0	Left	Cheek	QPSK	1	0	04134	1:1.58	0.022	1.000	0.022		
2680.00	41490	High	LTE Band 41	20	23.9	23.85	0.16	1	Left	Cheek	QPSK	50	50	04134	1:1.58	0.012	1.012	0.012		
2680.00	41490	High	LTE Band 41	20	24.9	24.90	0.07	0	Left	Tilt	QPSK	1	0	04134	1:1.58	0.024	1.000	0.024		
2680.00	41490	High	LTE Band 41	20	23.9	23.85	0.21	1	Left	Tilt	QPSK	50	50	04134	1:1.58	0.013	1.012	0.013		
			ANSI / IEEE C	Spatial Pea	ak									Head .6 W/kg (reraged over	nW/g)					

Table 11-18 DTS Head SAR

									<u> </u>	<i>-</i>	,,								
								MEA	SUREM	ENT RE	SULTS								
FREQU	ENCY	Mode	Service	Bandwidth	Maximum Allowed	Conducted	Power	Side	Test Position	Antenna	Device Serial		Duty Cycle	Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Scaling Factor (Duty	Reported SAR (1g)	Plot#
MHz	Ch.			[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Position	Config.	Number	(Mbps)	(%)	W/kg	(W/kg)	(Power)	Cycle)	(W/kg)	
2437	6	802.11b	DSSS	22	18.0	17.98	0.20	Right	Cheek	1	04175	1	100.0	0.481	0.484	1.005	1.000	0.486	A18
2437	6	802.11b	DSSS	22	18.0	17.98	0.09	Right	Tilt	1	04175	1	100.0	0.475	0.372	1.005	1.000	0.374	
2437	6	802.11b	DSSS	22	18.0	17.98	0.00	Left	Cheek	1	04175	1	100.0	0.351	-	1.005	1.000	-	
2437	6	802.11b	DSSS	22	18.0	17.98	0.19	Left	Tilt	1	04175	1	100.0	0.406	-	1.005	1.000	-	
2437	6	802.11b	DSSS	22	18.0	17.97	0.14	Right	Cheek	2	04175	1	100.0	0.100	0.075	1.007	1.000	0.076	
2437	6	802.11b	DSSS	22	18.0	17.97	0.21	Right	Tilt	2	04175	1	100.0	0.047	-	1.007	1.000	-	
2437	6	802.11b	DSSS	22	18.0	17.97	0.16	Left	Cheek	2	04175	1	100.0	0.027	-	1.007	1.000	-	
2437	6	802.11b	DSSS	22	18.0	17.97	0.18	Left	Tilt	2	04175	1	100.0	0.014	-	1.007	1.000	-	
			•	ial Peak	ETY LIMIT									Head .6 W/kg (mW eraged over 1					

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 97 of 129
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 87 of 138

Table 11-19 NII Head SAR

								14	ш пе	au S	<u> </u>								
								MEA	SUREM	ENT RE	SULTS								
FREQUE	ENCY	Mode	Service	Bandwidth	Maximum Allowed	Conducted	Power	Side	Test	Antenna	Device Serial		Duty Cycle	Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Scaling Factor (Duty	Reported SAR (1g)	Plot#
MHz	Ch.			[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Position	Config.	Number	(Mbps)	(%)	W/kg	(W/kg)	(Power)	Cycle)	(W/kg)	
5280	56	802.11a	OFDM	20	18.0	17.98	0.11	Right	Cheek	1	04175	6	99.2	1.033	0.579	1.005	1.008	0.587	A19
5280	56	802.11a	OFDM	20	18.0	17.98	0.13	Right	Tilt	1	04175	6	99.2	0.683	0.411	1.005	1.008	0.416	
5280	56	802.11a	OFDM	20	18.0	17.98	0.01	Left	Cheek	1	04175	6	99.2	0.345	-	1.005	1.008	-	
5280	56	802.11a	OFDM	20	18.0	17.98	0.15	Left	Tilt	1	04175	6	99.2	0.363	-	1.005	1.008	-	
5280	56	802.11a	OFDM	20	18.0	17.98	0.16	Right	Cheek	2	04175	6	98.8	0.087	0.033	1.005	1.012	0.034	
5280	56	802.11a	OFDM	20	18.0	17.98	0.14	Right	Tilt	2	04175	6	98.8	0.053	-	1.005	1.012	-	
5280	56	802.11a	OFDM	20	18.0	17.98	0.19	Left	Cheek	2	04175	6	98.8	0.057	-	1.005	1.012	-	
5280	56	802.11a	OFDM	20	18.0	17.98	0.00	Left	Tilt	2	04175	6	98.8	0.058	-	1.005	1.012	-	
5600	120	802.11a	OFDM	20	17.0	16.99	0.14	Right	Cheek	1	04175	6	99.2	1.170	0.523	1.002	1.008	0.528	
5600	120	802.11a	OFDM	20	17.0	16.99	0.16	Right	Tilt	1	04175	6	99.2	0.811	0.409	1.002	1.008	0.413	
5600	120	802.11a	OFDM	20	17.0	16.99	-0.18	Left	Cheek	1	04175	6	99.2	0.401	-	1.002	1.008	-	
5600	120	802.11a	OFDM	20	17.0	16.99	-0.12	Left	Tilt	1	04175	6	99.2	0.348	-	1.002	1.008	-	
5720	144	802.11a	OFDM	20	17.0	16.99	0.12	Right	Cheek	2	04175	6	98.8	0.167	0.036	1.002	1.012	0.037	
5720	144	802.11a	OFDM	20	17.0	16.99	0.18	Right	Tilt	2	04175	6	98.8	0.040	-	1.002	1.012	-	
5720	144	802.11a	OFDM	20	17.0	16.99	0.12	Left	Cheek	2	04175	6	98.8	0.097	-	1.002	1.012	-	
5720	144	802.11a	OFDM	20	17.0	16.99	-0.15	Left	Tilt	2	04175	6	98.8	0.050	-	1.002	1.012	-	
5785	157	802.11a	OFDM	20	18.0	17.99	-0.12	Right	Cheek	1	04175	6	99.2	0.893	0.498	1.002	1.008	0.503	
5785	157	802.11a	OFDM	20	18.0	17.99	0.12	Right	Tilt	1	04175	6	99.2	0.846	0.382	1.002	1.008	0.386	
5785	157	802.11a	OFDM	20	18.0	17.99	0.16	Left	Cheek	1	04175	6	99.2	0.339	-	1.002	1.008	-	
5785	157	802.11a	OFDM	20	18.0	17.99	0.12	Left	Tilt	1	04175	6	99.2	0.334	-	1.002	1.008	-	
5785	157	802.11a	OFDM	20	18.0	17.95	0.20	Right	Cheek	2	04175	6	98.8	0.221	0.101	1.012	1.012	0.103	
5785	157	802.11a	OFDM	20	18.0	17.95	0.13	Right	Tilt	2	04175	6	98.8	0.063	-	1.012	1.012	-	
5785	157	802.11a	OFDM	20	18.0	17.95	-0.19	Left	Cheek	2	04175	6	98.8	0.141	-	1.012	1.012	-	
5785	157	802.11a	OFDM	20	18.0	17.95	0.13	Left	Tilt	2	04175	6	98.8	0.070	-	1.012	1.012	-	
		ANSI /	IEEE C95.1	1992 - SAF	ETY LIMIT				•					Head					
		Uncorter	•	ial Peak	al Population									.6 W/kg (mW raged over 1					
		Uncontro	meu Expos	ui e/Genera	a r opulation								ave	ageu over I	gralli				

Table 11-20 DSS Head SAR

							D 33	Heau								
						М	EASURE	MENT F	RESULT	s						
FREQUI	ENCY	Mode	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Data Rate	Duty	SAR (1g)	Scaling Factor (Cond	Scaling Factor (Duty	Reported SAR (1g)	Plot #
MHz	Ch.	wode	Service	Power [dBm]	Power [dBm]	Drift [dB]	Side	Position	Number	(Mbps)	Cycle %	(W/kg)	Power)	Cycle)	(W/kg)	PIOL#
2441.00	39	Bluetooth	FHSS	12.0	11.86	-0.17	Right	Cheek	04183	1	77.1	0.089	1.033	1.297	0.119	A20
2441.00	39	Bluetooth	FHSS	12.0	11.86	0.18	Right	Tilt	04183	1	77.1	0.068	1.033	1.297	0.091	
2441.00	39	Bluetooth	FHSS	12.0	11.86	0.09	Left	Cheek	04183	1	77.1	0.050	1.033	1.297	0.067	
2441.00	39	Bluetooth	FHSS	12.0	11.86	0.16	Left	Tilt	04183	1	77.1	0.058	1.033	1.297	0.078	
		ANSI / IEE	E C95.1 1992	- SAFETY LII	MIT							Head				
			Spatial Pe	ak							1.6	W/kg (mW/	g)			j
		Uncontrolled	Exposure/G	eneral Popul	ation						avera	aged over 1 g	ram			

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 00 -f 400
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 88 of 138

11.2 Standalone Body-Worn SAR Data

Table 11-21 GSM/UMTS/CDMA Body-Worn SAR Data

					ME			RESULTS							
FREQUE	NCY	Mode	Service	Maximum Allowed	Conducted	Power Drift [dB]	Spacing	Device Serial	# of Time Slots	Duty	Side	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [aB]		Number	Slots	Cycle		(W/kg)	Factor	(W/kg)	
820.10	564	CDMA BC10 (§90S)	TDSO / SO32	25.5	25.26	-0.15	10 mm	04118	N/A	1:1	back	0.434	1.057	0.459	A21
836.52	384	CDMA BC0 (§22H)	TDSO / SO32	25.5	25.30	0.04	10 mm	04118	N/A	1:1	back	0.344	1.047	0.360	A23
1880.00	600	PCS CDMA	TDSO / SO32	24.4	24.14	0.00	10 mm	04118	N/A	1:1	back	0.499	1.062	0.530	A25
836.60	190	GSM 850	GSM	33.7	33.66	-0.16	10 mm	04126	1	1:8.3	back	0.311	1.009	0.314	
836.60	190	GSM 850	GPRS	30.7	30.44	-0.14	10 mm	04126	3	1:2.76	back	0.351	1.062	0.373	A27
1880.00	661	GSM 1900	GSM	30.7	30.46	-0.01	10 mm	04126	1	1:8.3	back	0.277	1.057	0.293	
1880.00	661	GSM 1900	GPRS	27.7	27.42	-0.09	10 mm	04126	3	1:2.76	back	0.315	1.067	0.336	A28
836.60	4183	UMTS 850	RMC	25.5	25.22	-0.13	10 mm	04126	N/A	1:1	back	0.368	1.067	0.393	A30
1732.40	1412	UMTS 1750	RMC	24.7	24.31	0.01	10 mm	04126	N/A	1:1	back	0.438	1.094	0.479	A31
1880.00	9400	UMTS 1900	RMC	24.4	24.23	0.05	10 mm	04126	N/A	1:1	back	0.547	1.040	0.569	A33
			C95.1 1992 - S. Spatial Peak								1.6 W/k	ody g (mW/g)			
		Uncontrolled	Exposure/Gene	ral Population	on		L			a	veraged	over 1 gram			

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 90 of 120
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 89 of 138

Table 11-22 LTE Body-Worn SAR

								L BU	uy-vv	orn S	AN								
							1	MEASUF	REMENT	RESULTS	S								
FF	REQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Cł	١.		[WIFIZ]	Power [dBm]	Power [dBm]	Dilit [ub]		Number						Cycle	(W/kg)	racioi	(W/kg)	
707.50	23095	Mid	LTE Band 12	10	25.5	25.25	-0.09	0	04167	QPSK	1	49	10 mm	back	1:1	0.406	1.059	0.430	A35
707.50	23095	Mid	LTE Band 12	10	24.5	24.39	-0.08	1	04167	QPSK	25	25	10 mm	back	1:1	0.333	1.026	0.342	
782.00	23230	Mid	LTE Band 13	10	25.5	25.22	-0.07	0	04167	QPSK	1	0	10 mm	back	1:1	0.412	1.067	0.440	A36
782.00	23230	Mid	LTE Band 13	10	24.5	24.33	-0.06	1	04167	QPSK	25	12	10 mm	back	1:1	0.356	1.040	0.370	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.5	25.37	0.04	0	04134	QPSK	1	25	10 mm	back	1:1	0.353	1.030	0.364	A37
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.5	24.40	0.05	1	04134	QPSK	25	25	10 mm	back	1:1	0.279	1.023	0.285	
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.5	25.29	-0.12	0	04167	QPSK	1	36	10 mm	back	1:1	0.408	1.050	0.428	A38
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.5	24.42	-0.11	1	04167	QPSK	36	0	10 mm	back	1:1	0.332	1.019	0.338	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.2	24.18	-0.04	0	04142	QPSK	1	0	10 mm	back	1:1	0.455	1.005	0.457	A39
1770.00	132572	High	LTE Band 66 (AWS)	20	23.2	23.08	0.00	1	04142	QPSK	50	25	10 mm	back	1:1	0.407	1.028	0.418	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	24.4	24.35	0.07	0	04159	QPSK	1	0	10 mm	back	1:1	0.591	1.012	0.598	A41
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.4	23.37	0.03	1	04159	QPSK	50	0	10 mm	back	1:1	0.483	1.007	0.486	
2310.00	27710	Mid	LTE Band 30	10	23.0	22.83	-0.03	0	04142	QPSK	1	25	10 mm	back	1:1	0.486	1.040	0.505	A43
2310.00	27710	Mid	LTE Band 30	10	22.0	21.89	-0.01	1	04142	QPSK	25	12	10 mm	back	1:1	0.414	1.026	0.425	
2510.00	20850	Low	LTE Band 7	20	23.7	23.37	-0.05	0	04142	QPSK	1	0	10 mm	back	1:1	1.030	1.079	1.111	
2535.00	21100	Mid	LTE Band 7	20	23.7	23.62	-0.08	0	04142	QPSK	1	0	10 mm	back	1:1	1.140	1.019	1.162	A45
2560.00	21350	High	LTE Band 7	20	23.7	23.45	-0.08	0	04142	QPSK	1	0	10 mm	back	1:1	1.120	1.059	1.186	
2510.00	20850	Low	LTE Band 7	20	22.7	22.33	-0.06	1	04142	QPSK	50	0	10 mm	back	1:1	0.936	1.089	1.019	
2535.00	21100	Mid	LTE Band 7	20	22.7	22.54	-0.14	1	04142	QPSK	50	0	10 mm	back	1:1	1.000	1.038	1.038	
2560.00	21350	High	LTE Band 7	20	22.7	22.37	-0.10	1	04142	QPSK	50	50	10 mm	back	1:1	0.954	1.079	1.029	
2535.00	21100	Mid	LTE Band 7	20	22.7	22.53	-0.06	1	04142	QPSK	100	0	10 mm	back	1:1	0.985	1.040	1.024	
2680.00	41490	High	LTE Band 41	20	24.9	24.90	-0.04	0	04142	QPSK	1	0	10 mm	back	1:1.58	0.514	1.000	0.514	A47
2680.00	41490	High	LTE Band 41	20	23.9	23.85	-0.06	1	04142	QPSK	50	50	10 mm	back	1:1.58	0.310	1.012	0.314	
			ANSI / IEEE C			MIT									dy				
				Spatial Pea											g (mW/g)				
			Uncontrolled Ex	posure/Ge	nerai Popula	ition							av	eraged c	over 1 gra	ım			

Table 11-23 DTS Body-Worn SAR

									uy-11	•	<u> </u>	•							
							N	IEASUR	EMENT	RESUL	TS								
FREQU	JENCY	Mode	Service	Bandwidth [MHz]	Maximum Allowed Power	Conducted Power	Power Drift [dB]	Spacing	Antenna Config.	Device Serial	Data Rate	Side	Duty Cycle	Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Scaling Factor (Duty	Reported SAR (1g)	Plot #
MHz	Ch.			[WIFIZ]	[dBm]	[ubiii]	[UB]		Coning.	Number	(Mbps)		(%)	W/kg	(W/kg)	(Power)	Cycle)	(W/kg)	
2462	11	802.11b	DSSS	22	20.5	20.48	0.02	10 mm	1	04183	1	back	100.0	0.274	0.229	1.005	1.000	0.230	
2437								10 mm	2	04183	1	back	100.0	0.318	0.334	1.002	1.000	0.335	A48
				C95.1 1992 Spatial Pe Exposure/G				•		•	а	Body 1.6 W/kg (mi	-						

				,
FCC ID: ZNFQ910QM	@ PCTEST	SAR EVALUATION REPORT	① LG	Approved by:
1 00 ID. ZIVI QOTOQIVI	V SHOINLERING LAROKATORY, INC.	SAIN EVALOAMON NEI ON		Quality Manager
Document S/N:	Test Dates:	DUT Type:		Daga 00 of 129
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset		Page 90 of 138

Table 11-24 NII SISO Body-Worn SAR

									MEASURE	MENT RESU	ILTS								
FREQU	IENCY	Mode	Service	Bandwidth	Maximum Allowed		Power Drift	Spacing	Antenna	Device Serial Number	Data Rate	Side	Duty Cycle (%)	Peak SAR of Area Scan	SAR (1g)		Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			[MHz]	Power [dBm]	[dBm]	[dB]		Config.	Number	(Mbps)			W/kg	(W/kg)	(Power)	(Duty Cycle)	(W/kg)	
5280	56	802.11a	OFDM	20	18.0	17.98	0.19	10 mm	1	04175	6	back	99.2	0.247	0.109	1.005	1.008	0.110	
5260	52	802.11a	OFDM	20	17.0	16.97	0.06	10 mm	2	04175	6	back	98.8	1.761	0.786	1.007	1.012	0.801	
5280	56	802.11a	OFDM	20	18.0	17.98	0.02	10 mm	2	04175	6	back	98.8	2.296	1.040	1.005	1.012	1.058	
5320	64	802.11a	OFDM	20	17.0	16.99	0.06	10 mm	2	04175	6	back	98.8	2.021	0.917	1.002	1.012	0.930	
5600	120	802.11a	OFDM	20	17.0	16.99	0.12	10 mm	1	04175	6	back	99.2	0.150	0.040	1.002	1.008	0.040	
5720	144	802.11a	OFDM	20	17.0	16.99	0.06	10 mm	2	04175	6	back	98.8	1.885	0.690	1.002	1.012	0.700	
5785	157	802.11a	OFDM	20	18.0	17.99	0.20	10 mm	1	04175	6	back	99.2	0.134	0.048	1.002	1.008	0.048	
5785	157	802.11a	OFDM	20	18.0	17.95	0.13	0.13 10 mm 2 04175 6 back 98.8 1.468 0.710 1.012 1.012 0.727											
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT												Boo	iy					
	Spatial Peak Uncontrolled Exposure/General Population											1.6 W/kg averaged ov							

Table 11-25 NII MIMO Body-Worn SAR

									ME	ASUREME	NT RESUL	.TS									
FREQU	ENCY	Mode	Service	Bandwidth	Maximum Allowed Power	Conducted Power	Maximum Allowed Power	Conducted Power		Spacing	Antenna	Device Serial	Data Rate	Side	Duty Cycle (%)	Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Scaling Factor (Duty	Reported SAR (1g)	Plot#
MHz	Ch.			[MHz]	(Ant 1) [dBm]	(Ant 1) [dBm]	(Ant 2) [dBm]	(Ant 2) [dBm]	[dB]	.,	Config.	Number	(Mbps)		.,.,	W/kg	(W/kg)	(Power)	Cycle)	(W/kg)	
5260	52	802.11n	OFDM	20	17.0	16.91	17.0	16.79	0.11	10 mm	MIMO	04175	13	back	98.4	1.911	0.806	1.050	1.016	0.860	
5280	56	802.11n	OFDM	20	18.0	17.97	18.0	17.98	0.08	10 mm	MIMO	04175	13	back	98.4	2.538	1.120	1.007	1.016	1.146	A49
5320	64	802.11n	OFDM	20	17.0	16.97	17.0	16.96	0.13	0.13 10 mm MMO 04175 13 back 98.4 2.240 0.969 1.009 1.016 0.993											
5720	144	802.11n	OFDM	20	17.0	16.96	17.0	16.95	0.07	10 mm	MIMO	04175	13	back	98.4	1.596	0.698	1.012	1.016	0.718	
5785	157	802.11n	OFDM	20	18.0	17.98	18.0	17.87	0.12	10 mm	MIMO	04175	13	back	98.4	1.827	0.758	1.030	1.016	0.793	
5280	56	802.11n	OFDM	20	18.0	17.97	18.0	17.98	0.10	10 mm	MIMO	04175	13	back	98.4	2.373	1.120	1.007	1.016	1.146	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT												•	Во	dy	•	•				
		Spatial Peak Uncontrolled Exposure/General Population												1.6 W/kg averaged o							

Note:

- 1. Blue entries represent variability measurements.
- 2. To achieve the 5GHz WLAN 20.0 dBm (Ch. 52, 64, 144) and 21 dBm (Ch. 56, 157) maximum allowed MIMO power shown in the documentation, each antenna transmits at a maximum allowed power of 17.0 dBm (Ch. 52, 64, 144) and 18.0 dBm (Ch. 56, 157).

Table 11-26
NII Body-Worn SAR for Conditions with 2.4 GHz Ant 1 and 5 GHz Ant 2 WLAN

					•				MEASURE	MENT RESU	ILTS								
FREQU	IENCY	Mode	Service		Maximum Allowed		Power Drift	Spacing	Antenna Config.	Device Serial	Data Rate	Side	Duty Cycle (%)	Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			[MHz]	Power [dBm]	[dBm]	[dB]		Config.	Number	(Mbps)			W/kg	(W/kg)	(Power)	(Duty Cycle)	(W/kg)	
5270	54	802.11n	OFDM	40	15.0	14.81	0.10	10 mm	2	04175	13.5	back	98.2	1.239	0.505	1.045	1.018	0.537	
5630	126	802.11n	OFDM	40	15.0	14.90	0.02	10 mm	2	04175	13.5	back	98.2	1.083	0.507	1.023	1.018	0.528	
5795	159	802.11n	OFDM	40	15.0	14.97	0.12	10 mm	2	04175	13.5	back	98.2	0.959	0.381	1.007	1.018	0.391	
			ANSI / IEE	E C95.1 1992	- SAFETY LIMIT								Boo	dy					
	Spatial Peak Uncontrolled Exposure/General Population											1.6 W/kg averaged ov							

NII was additionally evaluated at the maximum allowed output power during operations with simultaneous 2.4 GHz Ant 1 and 5 GHz Ant 2 WLAN. 2.4 GHz Ant1 WIFI was not transmitting during the above evaluations.

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT 6 LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 04 -f 400
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 91 of 138

Table 11-27 DSS Body-Worn SAR

							0 000	. <u>,</u>								
						ME	ASURE	MENT F	RESUL	гs						
FREQU	ENCY	Mode	Service	Maximum Allowed		Power Drift	Spacing	Device Serial	Data Rate	Side	Duty Cycle	SAR (1g)	Scaling Factor (Cond	Scaling Factor (Duty	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	[dB]	,	Number	(Mbps)		(%)	(W/kg)	Power)	Cycle)	(W/kg)	
2441	39	Bluetooth	FHSS	12.0	11.86	0.21	10 mm	04183	1	back	77.1	0.016	1.033	1.297	0.021	A51
		ANSI / IEEE	C95.1 199	92 - SAFETY	LIMIT							Body				
			Spatial I	Peak							1	.6 W/kg (m\	V/g)			
	Uncontrolled Exposure/General Population averaged over 1 gram															

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 02 of 120
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 92 of 138

11.3 Standalone Hotspot SAR Data

Table 11-28 GPRS/UMTS/CDMA Hotspot SAR Data

			Gr	² K5/U						MN	Dai	.a			
				T	I	ASURE	MENII	RESULTS	_			I	ı	Reported SAR	
FREQUE	NCY Ch.	Mode	Service	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	Spacing	Device Serial Number	# of GPRS Slots	Duty Cycle	Side	SAR (1g)	Scaling Factor	(1g)	Plot#
820.10	564	CDMA BC10	EVDO Rev. 0	25.5	25.20	-0.05	10 mm	04118	N/A	1:1	back	(W/kg) 0.515	1.072	(W/kg) 0.552	A22
820.10	564	(§90S) CDMA BC10	EVDO Rev. 0	25.5	25.20	-0.08	10 mm	04118	N/A	1:1	front	0.374	1.072	0.401	
820.10	564	(§90S) CDMA BC10	EVDO Rev. 0	25.5	25.20	-0.09	10 mm	04118	N/A	1:1	bottom	0.173	1.072	0.185	
820.10	564	(§90S) CDMA BC10	EVDO Rev. 0	25.5	25.20	0.00	10 mm	04118	N/A	1:1	right	0.272	1.072	0.292	
820.10	564	(§90S) CDMA BC10	EVDO Rev. 0	25.5	25.20	-0.02	10 mm	04118	N/A	1:1	left	0.101	1.072	0.108	
836.52	384	(§90S) CDMA BC0 (§22H)	EVDO Rev. 0	25.5	25.18	0.03	10 mm	04118	N/A	1:1	back	0.388	1.076	0.417	A24
836.52	384	CDMA BC0 (§22H)	EVDO Rev. 0	25.5	25.18	0.05	10 mm	04118	N/A	1:1	front	0.282	1.076	0.303	
836.52	384	CDMA BC0 (§22H)	EVDO Rev. 0	25.5	25.18	-0.04	10 mm	04118	N/A	1:1	bottom	0.110	1.076	0.118	
836.52	384	CDMA BC0 (§22H)	EVDO Rev. 0	25.5	25.18	-0.02	10 mm	04118	N/A	1:1	right	0.164	1.076	0.176	
836.52	384	CDMA BC0 (§22H)	EVDO Rev. 0	25.5	25.18	0.04	10 mm	04118	N/A	1:1	left	0.036	1.076	0.039	
1880.00	600	PCS CDMA	EVDO Rev. 0	24.4	24.26	-0.03	10 mm	04118	N/A	1:1	back	0.471	1.033	0.487	
1880.00	600	PCS CDMA	EVDO Rev. 0	24.4	24.26	-0.02	10 mm	04118	N/A	1:1	front	0.428	1.033	0.442	
1851.25	25	PCS CDMA	EVDO Rev. 0	24.4	24.40	0.05	10 mm	04118	N/A	1:1	bottom	0.676	1.000	0.676	
1880.00	600	PCS CDMA	EVDO Rev. 0	24.4	24.26	-0.01	10 mm	04118	N/A	1:1	bottom	0.689	1.033	0.712	
1908.75	1175	PCS CDMA	EVDO Rev. 0	24.4	24.09	0.02	10 mm	04118	N/A	1:1	bottom	0.852	1.074	0.915	A26
1880.00	600	PCS CDMA	EVDO Rev. 0	24.4	24.26	-0.04	10 mm	04118	N/A	1:1	left	0.238	1.033	0.246	
836.60	190	GSM 850	GPRS	30.7	30.44	-0.14	10 mm	04126	3	1:2.76	back	0.351	1.062	0.373	A27
836.60	190	GSM 850	GPRS	30.7	30.44	-0.08	10 mm	04126	3	1:2.76	front	0.321	1.062	0.341	
836.60	190	GSM 850	GPRS	30.7	30.44	-0.07	10 mm	04126	3	1:2.76	bottom	0.261	1.062	0.277	
836.60	190	GSM 850	GPRS	30.7	30.44	-0.13	10 mm	04126	3	1:2.76	right	0.285	1.062	0.303	
836.60	190	GSM 850	GPRS	30.7	30.44	-0.16	10 mm	04126	3	1:2.76	left	0.096	1.062	0.102	
1880.00	661	GSM 1900	GPRS	27.7	27.42	-0.09	10 mm	04126	3	1:2.76	back	0.315	1.067	0.336	
1880.00	661	GSM 1900	GPRS	27.7	27.42	0.05	10 mm	04126	3	1:2.76	front	0.260	1.067	0.277	
1850.20	512	GSM 1900	GPRS	27.7	27.42	-0.04	10 mm	04126	3	1:2.76	bottom	0.612	1.067	0.653	
1880.00	661	GSM 1900	GPRS	27.7	27.42	-0.02	10 mm	04126	3	1:2.76	bottom	0.579	1.067	0.618	
1909.80	810	GSM 1900	GPRS	27.7	27.39	0.00	10 mm	04126	3	1:2.76	bottom	0.648	1.074	0.696	A29
1880.00	661	GSM 1900	GPRS	27.7	27.42	0.05	10 mm	04126	3	1:2.76	left	0.138	1.067	0.147	
836.60	4183	UMTS 850	RMC	25.5	25.22	-0.13	10 mm	04126	N/A	1:1	back	0.368	1.067	0.393	A30
836.60	4183	UMTS 850	RMC	25.5	25.22	0.00	10 mm	04126	N/A	1:1	front	0.322	1.067	0.344	
836.60	4183	UMTS 850	RMC	25.5	25.22	-0.08	10 mm	04126	N/A	1:1	bottom	0.261	1.067	0.278	
836.60	4183	UMTS 850	RMC	25.5	25.22	-0.03	10 mm	04126	N/A	1:1	right	0.286	1.067	0.305	
836.60	4183	UMTS 850	RMC	25.5	25.22	-0.02	10 mm	04126	N/A	1:1	left	0.102	1.067	0.109	
1732.40	1412	UMTS 1750	RMC	24.7	24.31	0.01	10 mm	04126	N/A	1:1	back	0.438	1.094	0.479	
1732.40	1412	UMTS 1750	RMC	24.7	24.31	-0.03	10 mm	04126	N/A	1:1	front	0.438	1.094	0.479	
1712.40	1312	UMTS 1750	RMC	24.7	24.51	-0.06	10 mm	04126	N/A	1:1	bottom	0.831	1.094	0.854	
1732.40	1412	UMTS 1750	RMC	24.7	24.30	-0.05	10 mm	04126	N/A	1:1	bottom	0.799	1.026	0.874	
1752.60	1513	UMTS 1750	RMC	24.7	24.62	-0.03	10 mm	04126	N/A	1:1	bottom	0.868	1.019	0.884	A32
1732.40	1412	UMTS 1750	RMC	24.7	24.02	-0.03	10 mm	04126	N/A	1:1	left	0.301	1.094	0.329	
1752.60	1513	UMTS 1750	RMC	24.7	24.62	0.00	10 mm	04126	N/A	1:1	bottom	0.847	1.019	0.863	
1880.00	9400	UMTS 1900	RMC	24.7	24.02	0.05	10 mm	04126	N/A	1:1	back	0.547	1.040	0.569	
1880.00	9400	UMTS 1900	RMC	24.4	24.23	0.03	10 mm	04126	N/A	1:1	front	0.473	1.040	0.492	
1852.40	9262	UMTS 1900	RMC	24.4	24.23	-0.01	10 mm	04126	N/A	1:1	bottom	0.473	1.014	0.492	
1880.00	9400	UMTS 1900	RMC	24.4	24.23	0.00	10 mm	04126	N/A	1:1	bottom	0.951	1.040	0.989	
1907.60	9538	UMTS 1900	RMC	24.4	24.23	0.00	10 mm	04126	N/A	1:1	bottom	1.080	1.040	1.103	A34
1880.00	9400	UMTS 1900	RMC	24.4	24.31	0.00	10 mm	04126	N/A	1:1	left	0.229	1.021	0.238	734
1907.60	9400	UMTS 1900	RMC	24.4	24.23	-0.03	10 mm	04126	N/A N/A	1:1	bottom	1.030	1.040	1.052	
	5550		C95.1 1992 - S			5.00	10 /1111/	0.120				ody	1.021	1.502	
			Spatial Peak								1.6 W/k	g (mW/g)			
		Uncontrolled	Exposure/Gen	eral Populati	on		Щ		:1:4	а	veraged	over 1 gram			

Note: Blue entries represent variability measurements.

FCC ID: ZNFQ910QM	PCTEST'	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 02 of 120
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset		Page 93 of 138
018 PCTEST Engineering Laboratory, Inc.	·	•		REV 20.11 M

© 2018 PCTEST Engineering Laboratory, Inc.

06/19/2018

Table 11-29 LTE Band 12 Hotspot SAR

							<u> </u>	Danie	<i>.</i> 12 1	iotspo	נטא	11.7							
								MEASU	JREMENT	result	s								
FR	EQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot#
MHz	CI	n.		[2]	Power [dBm]	. one. [abiii]	Dim [ub]		Number							(W/kg)		(W/kg)	
707.50	23095	Mid	LTE Band 12	10	25.5	25.25	-0.09	0	04167	QPSK	1	49	10 mm	back	1:1	0.406	1.059	0.430	A35
707.50	23095	Mid	LTE Band 12	10	24.5	24.39	-0.08	1	04167	QPSK	25	25	10 mm	back	1:1	0.333	1.026	0.342	
707.50	23095	Mid	LTE Band 12	10	25.5	25.25	0.01	0	04167	QPSK	1	49	10 mm	front	1:1	0.315	1.059	0.334	
707.50	23095	Mid	LTE Band 12	10	24.5	24.39	0.04	1	04167	QPSK	25	25	10 mm	front	1:1	0.259	1.026	0.266	
707.50	23095	Mid	LTE Band 12	10	25.5	25.25	0.16	0 04167 QPSK 1 49 10 mm bottom 1:1 0.033 1.059 0.035											
707.50	23095	Mid	LTE Band 12	10	24.5	24.39	0.21	1 04167 QPSK 25 25 10 mm bottom 1:1 0.055 1.026 0.056											
707.50	23095	Mid	LTE Band 12	10	25.5	25.25	0.05	0	04167	QPSK	1	49	10 mm	right	1:1	0.091	1.059	0.096	
707.50	23095	Mid	LTE Band 12	10	24.5	24.39	0.10	1	04167	QPSK	25	25	10 mm	right	1:1	0.050	1.026	0.051	
707.50	23095	Mid	LTE Band 12	10	25.5	25.25	0.15	0	04167	QPSK	1	49	10 mm	left	1:1	0.026	1.059	0.028	
707.50	23095	Mid	LTE Band 12	10	24.5	24.39	0.07	1	04167	QPSK	25	25	10 mm	left	1:1	0.033	1.026	0.034	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT													Body					
	Spatial Peak												1.6 W	/kg (mV	V/g)				
		Ur	controlled Expo	sure/Gener	ral Populatio	n							average	ed over 1	gram				

Table 11-30 LTE Band 13 Hotspot SAR

								MEASU	REMENT	RESULT	s								
FRE	EQUENCY	,	Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	CI	h.		[WITIZ]	Power [dBm]	Fower [dbill]	Driit [db]		Number							(W/kg)	racioi	(W/kg)	
782.00	23230	Mid	LTE Band 13	10	25.5	25.22	-0.07	0	04167	QPSK	1	0	10 mm	back	1:1	0.412	1.067	0.440	A36
782.00	23230	Mid	LTE Band 13	10	24.5	24.33	-0.06	1	04167	QPSK	25	12	10 mm	back	1:1	0.356	1.040	0.370	
782.00	23230	Mid	LTE Band 13	10	25.5	25.22	-0.01	0	04167	QPSK	1	0	10 mm	front	1:1	0.330	1.067	0.352	
782.00	23230	Mid	LTE Band 13	10	24.5	24.33	-0.02	1	04167	QPSK	25	12	10 mm	front	1:1	0.287	1.040	0.298	
782.00	23230	Mid	LTE Band 13	10	25.5	25.22	0.04	0	04167	QPSK	1	0	10 mm	bottom	1:1	0.206	1.067	0.220	
782.00	23230	Mid	LTE Band 13	10	24.5	24.33	0.02	1	04167	QPSK	25	12	10 mm	bottom	1:1	0.173	1.040	0.180	
782.00	23230	Mid	LTE Band 13	10	25.5	25.22	0.07	07 0 04167 QPSK 1 0 10 mm right 1:1 0.255 1.067 0.272											
782.00	23230	Mid	LTE Band 13	10	24.5	24.33	0.01	1	04167	QPSK	25	12	10 mm	right	1:1	0.224	1.040	0.233	
782.00	23230	Mid	LTE Band 13	10	25.5	25.22	0.06	0	04167	QPSK	1	0	10 mm	left	1:1	0.123	1.067	0.131	
782.00	23230	Mid	LTE Band 13	10	24.5	24.33	-0.13	1	04167	QPSK	25	12	10 mm	left	1:1	0.113	1.040	0.118	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT											·		Body	<u> </u>	·		·	
	Spatial Peak												1.6 W	/kg (mV	V/g)				Į.
		Un	controlled Expo	sure/Gener	al Populatio	n					,		average	ed over 1	gram				

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 04 of 120
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 94 of 138

Table 11-31 LTE Band 5 (Cell) Hotspot SAR

								<u> </u>	10011	<i>)</i> 11013	POL	O/NI	<u> </u>						
								MEASU	JREMENT	RESULT	s								
FRI	QUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling	Reported SAR (1g)	Plot#
MHz	CI	۱.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Number							(W/kg)	Factor	(W/kg)	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.5	25.37	0.04	0	04134	QPSK	1	25	10 mm	back	1:1	0.353	1.030	0.364	A37
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.5	24.40	0.05	1	04134	QPSK	25	25	10 mm	back	1:1	0.279	1.023	0.285	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.5	25.37	0.05	0	04134	QPSK	1	25	10 mm	front	1:1	0.271	1.030	0.279	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.5	0.07	1	04134	QPSK	25	25	10 mm	front	1:1	0.215	1.023	0.220		
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.5	-0.10	0	04134	QPSK	1	25	10 mm	bottom	1:1	0.093	1.030	0.096		
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.5	24.40	-0.10	1	04134	QPSK	25	25	10 mm	bottom	1:1	0.077	1.023	0.079	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.5	25.37	-0.03	0	04134	QPSK	1	25	10 mm	right	1:1	0.173	1.030	0.178	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.5	24.40	-0.05	1	04134	QPSK	25	25	10 mm	right	1:1	0.139	1.023	0.142	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.5	25.37	0.05	0	04134	QPSK	1	25	10 mm	left	1:1	0.032	1.030	0.033	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.5	0.07	1	04134	QPSK	25	25	10 mm	left	1:1	0.026	1.023	0.027		
		1	ANSI / IEEE C95.	1 1992 - SA	FETY LIMIT									Body					
			Spa	tial Peak									1.6 W	//kg (mV	V/g)				
		Ur	controlled Expo	sure/Gener	ral Population	n		ĺ					average	ed over 1	gram				

Table 11-32 LTE Band 26 (Cell) Hotspot SAR

									(- (.,		<u> </u>							
								MEASU	REMENT	result	S								
FRE	EQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot#
MHz	Cl	۱.		[MHz]	Power [dBm]	Power (abm)	υτιπ (αΒ)		Number							(W/kg)	Factor	(W/kg)	
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.5	25.29	-0.12	0	04167	QPSK	1	36	10 mm	back	1:1	0.408	1.050	0.428	A38
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.5	24.42	-0.11	1	04167	QPSK	36	0	10 mm	back	1:1	0.332	1.019	0.338	
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.5	25.29	0.06	0	04167	QPSK	1	36	10 mm	front	1:1	0.288	1.050	0.302	
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.5	24.42	0.07	1	04167	QPSK	36	0	10 mm	front	1:1	0.232	1.019	0.236	
831.50	26865 Mid LTE Band 26 (Cell) 15 25.5 25.29							0	04167	QPSK	1	36	10 mm	bottom	1:1	0.113	1.050	0.119	
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.5	24.42	-0.04	1	04167	QPSK	36	0	10 mm	bottom	1:1	0.099	1.019	0.101	
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.5	25.29	-0.01	0	04167	QPSK	1	36	10 mm	right	1:1	0.174	1.050	0.183	
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.5	24.42	0.00	1	04167	QPSK	36	0	10 mm	right	1:1	0.141	1.019	0.144	
831.50	26865	Mid	LTE Band 26 (Cell)	15	25.5	25.29	0.00	0	04167	QPSK	1	36	10 mm	left	1:1	0.048	1.050	0.050	
831.50	26865	Mid	LTE Band 26 (Cell)	15	24.5	24.42	0.02	1	04167	QPSK	36	0	10 mm	left	1:1	0.039	1.019	0.040	
			ANSI / IEEE C95.	1 1992 - SA	FETY LIMIT									Body					
			Spa	tial Peak									1.6 W	//kg (m\	N/g)				
		Ur	ncontrolled Expo	sure/Gener	al Populatio	n							average	ed over 1	gram				

Table 11-33 LTE Band 66 (AWS) Hotspot SAR

						LTE	Ban	d 66	(AWS	S) Hot	spo	t SA	R						
								MEASU	REMENT	RESULT	s								
FR	REQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	Ch			[MHz]	Power [dBm]	Power [dBm]	υτιπ (αΒ)		Number							(W/kg)	Factor	(W/kg)	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.2	24.18	-0.04	0	04142	QPSK	1	0	10 mm	back	1:1	0.455	1.005	0.457	
1770.00	132572	High	LTE Band 66 (AWS)	20	23.2	23.08	0.00	1	04142	QPSK	50	25	10 mm	back	1:1	0.407	1.028	0.418	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.2	24.18	-0.04	0	04142	QPSK	1	0	10 mm	front	1:1	0.361	1.005	0.363	
1770.00	132572	High	LTE Band 66 (AWS)	20	23.2	-0.02	1	04142	QPSK	50	25	10 mm	front	1:1	0.324	1.028	0.333		
1720.00	132072	Low	LTE Band 66 (AWS)	20	24.2	24.04	-0.01	0	04142	QPSK	1	0	10 mm	bottom	1:1	0.673	1.038	0.699	A40
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.2	24.18	0.13	0	04142	QPSK	1	0	10 mm	bottom	1:1	0.643	1.005	0.646	
1770.00	132572	High	LTE Band 66 (AWS)	20	24.2	24.04	-0.04	0	04142	QPSK	1	99	10 mm	bottom	1:1	0.651	1.038	0.676	
1770.00	132572	High	LTE Band 66 (AWS)	20	23.2	23.08	-0.03	1	04142	QPSK	50	25	10 mm	bottom	1:1	0.591	1.028	0.608	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.2	24.18	0.01	0	04142	QPSK	1	0	10 mm	left	1:1	0.261	1.005	0.262	
1770.00	132572	High	LTE Band 66 (AWS)	20	23.2	0.01	1	04142	QPSK	50	25	10 mm	left	1:1	0.228	1.028	0.234		
		Α	NSI / IEEE C95.1	1992 - SAI	FETY LIMIT									Body					
			Spat	ial Peak									1.6 W	//kg (mV	V/g)				
		Unc	controlled Expos	ure/Genera	al Population								average	ed over 1	gram				

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 05 of 120
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 95 of 138

Table 11-34 LTE Band 25 (PCS) Hotspot SAR

									7	<i>)</i> 1100									
								MEASU	IREMENT	result	s								
FRE	QUENCY	,	Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	CI	h.		[WITZ]	Power [dBm]	Power [dbm]	υτιπ (αΒ)		Number							(W/kg)	Factor	(W/kg)	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	24.4	24.35	0.07	0	04159	QPSK	1	0	10 mm	back	1:1	0.591	1.012	0.598	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.4	23.37	0.03	1	04159	QPSK	50	0	10 mm	back	1:1	0.483	1.007	0.486	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	24.4	24.35	0.01	0	04159	QPSK	1	0	10 mm	front	1:1	0.395	1.012	0.400	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.4	23.37	0.00	1	04159	QPSK	50	0	10 mm	front	1:1	0.324	1.007	0.326	
1860.00	26140	Low	LTE Band 25 (PCS)	20	24.4	24.32	-0.01	0	04159	QPSK	1	0	10 mm	bottom	1:1	0.618	1.019	0.630	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	24.4	24.35	0.02	0	04159	QPSK	1	0	10 mm	bottom	1:1	0.678	1.012	0.686	
1905.00	26590	High	LTE Band 25 (PCS)	20	24.4	24.31	0.04	0	04159	QPSK	1	50	10 mm	bottom	1:1	0.911	1.021	0.930	A42
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.4	23.37	0.00	1	04159	QPSK	50	0	10 mm	bottom	1:1	0.576	1.007	0.580	
1905.00	26590	High	LTE Band 25 (PCS)	20	23.4	23.29	0.03	1	04159	QPSK	100	0	10 mm	bottom	1:1	0.812	1.026	0.833	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	24.4	24.35	0.01	0	04159	QPSK	1	0	10 mm	left	1:1	0.260	1.012	0.263	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	0.05	1	04159	QPSK	50	0	10 mm	left	1:1	0.209	1.007	0.210			
		-	ANSI / IEEE C95.	1 1992 - SA	FETY LIMIT									Body	•				
			Spa	atial Peak									1.6 W	//kg (mV	V/g)				
		Un	controlled Expo	sure/Gener	al Populatio	n							average	ed over 1	gram				

Table 11-35 LTE Band 30 Hotspot SAR

										RESULT									
								WEASU	KEWEN	KESULI	3								
FRE	QUENCY		Mode	Bandwidth	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot#
MHz	CI	١.		[MHz]	Power [dBm]	Power [aBm]	Drift [dB]		Number							(W/kg)	Factor	(W/kg)	
2310.00	27710	Mid	LTE Band 30	10	23.0	22.83	-0.03	0	04142	QPSK	1	25	10 mm	back	1:1	0.486	1.040	0.505	
2310.00	27710	Mid	LTE Band 30	10	22.0	21.89	-0.01	1	04142	QPSK	25	12	10 mm	back	1:1	0.414	1.026	0.425	
2310.00	27710	Mid	LTE Band 30	10	23.0	22.83	-0.04	0	04142	QPSK	1	25	10 mm	front	1:1	0.207	1.040	0.215	
2310.00	27710	Mid	LTE Band 30	10	22.0	21.89	-0.05	1	04142	QPSK	25	12	10 mm	front	1:1	0.177	1.026	0.182	
2310.00	27710	Mid	LTE Band 30	10	23.0	22.83	-0.06	0	04142	QPSK	1	25	10 mm	bottom	1:1	0.617	1.040	0.642	A44
2310.00	27710	Mid	LTE Band 30	10	22.0	21.89	0.12	1	04142	QPSK	25	12	10 mm	bottom	1:1	0.570	1.026	0.585	
2310.00	27710	Mid	LTE Band 30	10	23.0	22.83	0.15	0	04142	QPSK	1	25	10 mm	right	1:1	0.011	1.040	0.011	
2310.00	27710	Mid	LTE Band 30	10	22.0	21.89	0.14	1	04142	QPSK	25	12	10 mm	right	1:1	0.006	1.026	0.006	
2310.00	27710	Mid	LTE Band 30	10	23.0	22.83	-0.01	0	04142	QPSK	1	25	10 mm	left	1:1	0.072	1.040	0.075	
2310.00	27710 Mid LTE Band 30 10 22.0 21.89							1	04142	QPSK	25	12	10 mm	left	1:1	0.060	1.026	0.062	
		ANSI / IEEE C95.1 1992 - SAFETY LIMIT												Body					
			Spa	atial Peak									1.6 W	//kg (mV	V/g)				
		Un	controlled Expo	sure/Gener	ral Populatio	n							average	ed over 1	gram				

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 06 of 120
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 96 of 138

Table 11-36 LTE Band 7 Hotspot SAR

										T RESULT									
	EQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	С	h.		[2]	Power [dBm]	· owo. [abiii]	Sint [ab]		Number							(W/kg)		(W/kg)	
2510.00	20850	Low	LTE Band 7	20	23.7	23.37	-0.05	0	04142	QPSK	1	0	10 mm	back	1:1	1.030	1.079	1.111	
2535.00	21100	Mid	LTE Band 7	20	23.7	23.62	-0.08	0	04142	QPSK	1	0	10 mm	back	1:1	1.140	1.019	1.162	
2560.00	21350	High	LTE Band 7	20	23.7	23.45	-0.08	0	04142	QPSK	1	0	10 mm	back	1:1	1.120	1.059	1.186	
2510.00	20850	Low	LTE Band 7	20	22.7	22.33	-0.06	1	04142	QPSK	50	0	10 mm	back	1:1	0.936	1.089	1.019	
2535.00	21100	Mid	LTE Band 7	20	22.7	22.54	-0.14	1	04142	QPSK	50	0	10 mm	back	1:1	1.000	1.038	1.038	
2560.00	21350	High	LTE Band 7	20	22.7	22.37	-0.10	1	04142	QPSK	50	50	10 mm	back	1:1	0.954	1.079	1.029	
2535.00	21100	Mid	LTE Band 7	20	22.7	22.53	-0.06	1	04142	QPSK	100	0	10 mm	back	1:1	0.985	1.040	1.024	
2535.00	21100	Mid	LTE Band 7	20	23.7	23.62	-0.04	0	04142	QPSK	1	0	10 mm	front	1:1	0.504	1.019	0.514	
2535.00	21100	Mid	LTE Band 7	20	22.7	22.54	0.17	1	04142	QPSK	50	0	10 mm	front	1:1	0.459	1.038	0.476	
2510.00	20850	Low	LTE Band 7	20	23.7	23.37	0.03	0	04142	QPSK	1	0	10 mm	bottom	1:1	1.100	1.079	1.187	
2535.00	21100	Mid	LTE Band 7	20	23.7	23.62	-0.03	0	04142	QPSK	1	0	10 mm	bottom	1:1	1.170	1.019	1.192	A46
2560.00	21350	High	LTE Band 7	20	23.7	23.45	-0.07	0	04142	QPSK	1	0	10 mm	bottom	1:1	1.130	1.059	1.197	
2510.00	20850	Low	LTE Band 7	20	22.7	22.33	-0.03	1	04142	QPSK	50	0	10 mm	bottom	1:1	1.020	1.089	1.111	
2535.00	21100	Mid	LTE Band 7	20	22.7	22.54	0.04	1	04142	QPSK	50	0	10 mm	bottom	1:1	1.060	1.038	1.100	
2560.00	21350	High	LTE Band 7	20	22.7	22.37	0.13	1	04142	QPSK	50	50	10 mm	bottom	1:1	0.997	1.079	1.076	
2535.00	21100	Mid	LTE Band 7	20	22.7	22.53	0.03	1	04142	QPSK	100	0	10 mm	bottom	1:1	1.030	1.040	1.071	
2535.00	21100	Mid	LTE Band 7	20	23.7	23.62	0.07	0	04142	QPSK	1	0	10 mm	right	1:1	0.066	1.019	0.067	
2535.00	21100	Mid	LTE Band 7	20	22.7	22.54	0.01	1	04142	QPSK	50	0	10 mm	right	1:1	0.056	1.038	0.058	
2535.00	21100 Mid LTE Band 7 20 23.7 23.62							0	04142	QPSK	1	0	10 mm	left	1:1	0.075	1.019	0.076	
2535.00	21100 Mid LTE Band 7 20 22.7 22.54 (1	04142	QPSK	50	0	10 mm	left	1:1	0.069	1.038	0.072	
2510.00	20850	Low	LTE Band 7	20	23.7	-0.04	0	04142	QPSK	1	0	10 mm	bottom	1:1	1.090	1.079	1.176		
2535.00	21100	Mid	LTE Band 7	20	23.7	-0.03	0	04142	QPSK	1	0	10 mm	bottom	1:1	1.160	1.019	1.182		
		-	ANSI / IEEE C95.	1 1992 - SA	FETY LIMIT									Body					
			Spa	tial Peak									1.6 W	/kg (mV	V/g)				
		Un	controlled Expo	sure/Gener	al Populatio	n							average	ed over 1	gram				

Note: Blue entries represent variability measurements.

Table 11-37 LTE Band 41 Hotspot SAR

							LIE	Band	3 41 F	iotspo	t SA	K							
								MEASU	JREMENT	Γ RESULT	s								
FRE	EQUENCY	,	Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot#
MHz	С	h.		[MHZ]	Power [dBm]	Power [abm]	Drift [ab]		Number							(W/kg)	Factor	(W/kg)	
2680.00	41490	High	LTE Band 41	20	24.9	24.90	-0.04	0	04142	QPSK	1	0	10 mm	back	1:1.58	0.514	1.000	0.514	A47
2680.00	41490	High	LTE Band 41	20	23.9	23.85	-0.06	1	04142	QPSK	50	50	10 mm	back	1:1.58	0.310	1.012	0.314	
2680.00	41490	High	LTE Band 41	20	24.9	24.90	-0.07	0	04142	QPSK	1	0	10 mm	front	1:1.58	0.206	1.000	0.206	
2680.00								1	04142	QPSK	50	50	10 mm	front	1:1.58	0.131	1.012	0.133	
2680.00	41490	High	LTE Band 41	20	24.9	0.04	0	04142	QPSK	1	0	10 mm	bottom	1:1.58	0.500	1.000	0.500		
2680.00	41490	High	LTE Band 41	20	23.9	23.85	0.05	1	04142	QPSK	50	50	10 mm	bottom	1:1.58	0.327	1.012	0.331	
2680.00	41490	High	LTE Band 41	20	24.9	24.90	-0.04	0	04142	QPSK	1	0	10 mm	right	1:1.58	0.037	1.000	0.037	
2680.00	41490	High	LTE Band 41	20	23.9	23.85	0.07	1	04142	QPSK	50	50	10 mm	right	1:1.58	0.026	1.012	0.026	
2680.00	41490	High	LTE Band 41	20	24.9	24.90	0.04	0	04142	QPSK	1	0	10 mm	left	1:1.58	0.026	1.000	0.026	
2680.00								1	04142	QPSK	50	50	10 mm	left	1:1.58	0.024	1.012	0.024	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT										-			Body			•		
			Spa	atial Peak									1.6 W	//kg (mV	V/g)				
		Un	controlled Expo	sure/Gener	al Populatio	n							average	ed over 1	gram				

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Daga 07 of 120
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 97 of 138

Table 11-38 WLAN SISO Hotspot SAR

						•	VLAN MI		MENT F										
FREQU	ENCY	Mode	Service	Bandwidth	Maximum Allowed Power	Conducted Power	Power Drift	Spacing	Antenna	Device Serial	Data Rate	Side	Duty Cycle	Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Scaling Factor (Duty	Reported SAR (1g)	Plot #
MHz	Ch.	mode	0011100	[MHz]	[dBm]	[dBm]	[dB]	орионія	Config.	Number	(Mbps)	Orac	(%)	W/kg	(W/kg)	(Power)	Cycle)	(W/kg)	
2462	11	802.11b	DSSS	22	20.5	20.48	0.02	10 mm	1	04183	1	back	100.0	0.274	0.229	1.005	1.000	0.230	
2462	11	802.11b	DSSS	22	20.5	20.48	0.17	10 mm	1	04183	1	front	100.0	0.245	-	1.005	1.000	-	
2462	11	802.11b	DSSS	22	20.5	20.48	0.14	10 mm	1	04183	1	top	100.0	0.435	0.327	1.005	1.000	0.329	
2462	11	802.11b	DSSS	22	20.5	20.48	0.14	10 mm	1	04183	1	left	100.0	0.082	-	1.005	1.000	-	
2437	6	802.11b	DSSS	22	20.5	20.49	0.01	10 mm	2	04183	1	back	100.0	0.318	0.334	1.002	1.000	0.335	A48
2437	6	802.11b	DSSS	22	20.5	20.49	0.19	10 mm	2	04183	1	front	100.0	0.038	-	1.002	1.000	-	
2437	6	802.11b	DSSS	22	20.5	20.49	0.12	10 mm	2	04183	1	top	100.0	0.030	-	1.002	1.000	-	
2437	6	802.11b	DSSS	22	20.5	20.49	0.20	10 mm	2	04183	1	left	100.0	0.189	-	1.002	1.000	-	
5200	40	802.11a	OFDM	20	18.0	17.99	0.20	10 mm	1	04175	6	back	99.2	0.211	0.099	1.002	1.008	0.100	
5200	40	802.11a	OFDM	20	18.0	17.99	0.00	10 mm	1	04175	6	front	99.2	0.037	-	1.002	1.008	-	
5200	40	802.11a	OFDM	20	18.0	17.99	0.20	10 mm	1	04175	6	top	99.2	0.033	-	1.002	1.008	-	
5200	40	802.11a	OFDM	20	18.0	17.99	0.19	10 mm	1	04175	6	left	99.2	0.021	-	1.002	1.008	-	
5180	36	802.11a	OFDM	20	17.0	16.91	0.13	10 mm	2	04175	6	back	98.8	1.314	0.585	1.021	1.012	0.604	
5200	40	802.11a	OFDM	20	18.0	17.95	0.10	10 mm	2	04175	6	back	98.8	1.877	0.804	1.012	1.012	0.823	
5240	48	802.11a	OFDM	20	17.0	16.99	0.20	10 mm	2	04175	6	back	98.8	1.757	0.725	1.002	1.012	0.735	
5200	40	802.11a	OFDM	20	18.0	17.95	0.21	10 mm	2	04175	6	front	98.8	0.011	0.004	1.012	1.012	0.004	
5200	40	802.11a	OFDM	20	18.0	17.95	0.19	10 mm	2	04175	6	top	98.8	0.106	-	1.012	1.012	-	
5200	40	802.11a	OFDM	20	18.0	17.95	0.18	10 mm	2	04175	6	left	98.8	0.391	0.182	1.012	1.012	0.186	
5785	157	802.11a	OFDM	20	18.0	17.99	0.20	10 mm	1	04175	6	back	99.2	0.134	0.048	1.002	1.008	0.048	
5785	157	802.11a	OFDM	20	18.0	17.99	0.21	10 mm	1	04175	6	front	99.2	0.039	-	1.002	1.008	-	
5785	157	802.11a	OFDM	20	18.0	17.99	-0.12	10 mm	1	04175	6	top	99.2	0.044	-	1.002	1.008	-	
5785	157	802.11a	OFDM	20	18.0	17.99	-0.21	10 mm	1	04175	6	left	99.2	0.041	-	1.002	1.008	-	
5785	157	802.11a	OFDM	20	18.0	17.95	0.13	10 mm	2	04175	6	back	98.8	1.468	0.710	1.012	1.012	0.727	
5785	157	802.11a	OFDM	20	18.0	17.95	0.00	10 mm	2	04175	6	front	98.8	0.010	0.006	1.012	1.012	0.006	
5785	157	802.11a	OFDM	20	18.0	17.95	0.16	10 mm	2	04175	6	top	98.8	0.094	-	1.012	1.012	-	
5785	157	802.11a	OFDM	20	18.0	17.95	0.16	10 mm	2	04175	6	left	98.8	0.470	0.186	1.012	1.012	0.190	
		Al	NSI / IEEE	C95.1 1992	- SAFETY LIMIT	,								Body				•	
				Spatial Pe										1.6 W/kg (m\					
		Unc	ontrolled	Exposure/G	eneral Population	n							av	eraged over	1 gram				

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT (1)	LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dama 00 of 120
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset		Page 98 of 138

Table 11-39 WLAN MIMO Hotspot SAR

								MEASU	JREMEN	T RESU	LTS										
FREQU	ENCY	Mode	Service	Bandwidth [MHz]	Maximum Allowed Power	Conducted Power (Ant 1) [dBm]	Maximum Allowed Power	Conducted Power (Ant 2) [dBm]	Power Drift [dB]	Spacing	Antenna Config.	Device Serial	Data Rate	Side	Duty Cycle	Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Scaling Factor (Duty	Reported SAR (1g)	Plot #
MHz	Ch.			[mriz]	(Ant 1) [dBm]	(Alit 1) [dbill]	(Ant 2) [dBm]	(Alit 2) [dBill]	[ub]		Coming.	Number	(Mbps)		(%)	W/kg	(W/kg)	(Power)	Cycle)	(W/kg)	
5180	36	802.11n	OFDM	20	17.0	16.94	17.0	16.73	0.07	10 mm	MIMO	04175	13	back	98.4	1.533	0.624	1.064	1.016	0.675	
5200	40	802.11n	OFDM	20	18.0	17.98	18.0	17.94	0.18	10 mm	MIMO	04175	13	back	98.4	1.976	0.834	1.014	1.016	0.859	A50
5220	44	802.11n	OFDM	20	17.0	16.92	17.0	16.94	0.21	10 mm	MIMO	04175	13	back	98.4	1.637	0.718	1.019	1.016	0.743	
5240	48	802.11n	OFDM	20	17.0	16.94	17.0	16.90	0.02	10 mm	MIMO	04175	13	back	98.4	1.809	0.778	1.023	1.016	0.809	
5200	40	802.11n	OFDM	20	18.0	17.98	18.0	17.94	0.19	10 mm	MIMO	04175	13	front	98.4	0.045	0.015	1.014	1.016	0.015	
5200 40 802.11n OFDM 20 18.0 17.98 18.0 17.94 -0.01 10 mm MMO 04175 13 top 98.4 0.142 - 1.014												1.016	-								
5200	40	802.11n	OFDM	20	18.0	17.98	18.0	17.94	0.13	10 mm	MIMO	04175	13	left	98.4	0.393	0.191	1.014	1.016	0.197	
5785	157	802.11n	OFDM	20	18.0	17.98	18.0	17.87	0.12	10 mm	MIMO	04175	13	back	98.4	1.827	0.758	1.030	1.016	0.793	
5785	157	802.11n	OFDM	20	18.0	17.98	18.0	17.87	0.20	10 mm	MIMO	04175	13	front	98.4	0.042	0.013	1.030	1.016	0.014	
5785	157	802.11n	OFDM	20	18.0	17.98	18.0	17.87	0.15	10 mm	MIMO	04175	13	top	98.4	0.132		1.030	1.016	٠	
5785	157	802.11n	OFDM	20	17.87	-0.15	10 mm	MIMO	04175	13	left	98.4	0.408	0.175	1.030	1.016	0.183				
				,	•					Body	•		•	•							
				Uncontrol	Spatial Pea	ak eneral Populatio	n									1.6 W/kg (m) veraged over					Ì

Note: To achieve the 5GHz WLAN 20.0 dBm (Ch. 36, 44, 48) and 21 dBm (Ch. 40, 157) maximum allowed MIMO power shown in the documentation, each antenna transmits at a maximum allowed power of 17.0 dBm (Ch. 36, 44, 48) and 18.0 dBm (Ch. 40, 157).

Table 11-40
WLAN Hotspot SAR for Conditions with 2.4 GHz Ant 1 and 5 GHz WLAN Ant 2

					•		М	EASURE	EMENT R	ESULT	S								
FREQU	IENCY	Mode	Service	Bandw idth		Conducted Power		Spacing	Antenna	Device Serial	Data Rate	Side	Duty Cycle	Peak SAR of Area Scan	SAR (1g)		Scaling Factor	Reported SAR (1g)	Plot #
MHz	Ch.			[MHz]	Power [dBm]	[dBm]	[dB]		Config.	Number	(Mbps)		(%)	W/kg	(W/kg)	(Power)	(Duty Cycle)	(W/kg)	
5230	46	802.11n	OFDM	40	15.0	14.80	0.07	10 mm	2	04175	13.5	back	98.2	1.168	0.436	1.047	1.018	0.465	
5230	46	802.11n	OFDM	40	15.0	14.80	0.19	10 mm	2	04175	13.5	front	98.2	0.005		1.047	1.018	-	
5230	46	802.11n	OFDM	40	15.0	14.80	0.19	10 mm	2	04175	13.5	top	98.2	0.065		1.047	1.018	-	
5230	46	802.11n	OFDM	40	15.0	14.80	0.17	10 mm	2	04175	13.5	left	98.2	0.228	0.100	1.047	1.018	0.107	
5795	159	802.11n	OFDM	40	15.0	14.97	0.12	10 mm	2	04175	13.5	back	98.2	0.959	0.381	1.007	1.018	0.391	
5795	159	802.11n	OFDM	40	15.0	14.97	0.19	10 mm	2	04175	13.5	front	98.2	0.007		1.007	1.018	-	
5795	159	802.11n	OFDM	40	15.0	14.97	-0.19	10 mm	2	04175	13.5	top	98.2	0.048		1.007	1.018	-	
5795	159 802.11n OFDM 40 15.0 14.97							10 mm	2	04175	13.5	left	98.2	0.211		1.007	1.018	-	
										Body	•		•						
											1.6 W/kg (mV	V/g)				Ì			
		Un	controlled	Exposure/Ge	neral Population									averaged over 1	gram				

NII was additionally evaluated at the maximum allowed output power during operations with simultaneous 2.4 GHz Ant 1 and 5 GHz Ant 2 WLAN. 2.4 GHz Ant1 WIFI was not transmitting during the above evaluations.

Table 11-41 DSS Hotspot SAR

								Jiapu	נטתו	`						
						ME	ASURE	MENT F	RESUL	ΓS						
FREQU	ENCY	Mode	Service	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	Spacing	Device Serial	Data Rate	Side	Duty Cycle	SAR (1g)	Scaling Factor (Cond	Scaling Factor (Duty	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	rower [abin]	լասյ		Number	(Mbps)		(%)	(W/kg)	Power)	Cycle)	(W/kg)	
2441	39	Bluetooth	FHSS	12.0	11.86	0.21	10 mm	04183	1	back	77.1	0.016	1.033	1.297	0.021	
2441	39	Bluetooth	FHSS	12.0	11.86	0.17	10 mm	04183	1	front	77.1	0.010	1.033	1.297	0.013	
2441	39	Bluetooth	FHSS	12.0	11.86	0.06	10 mm	04183	1	top	77.1	0.023	1.033	1.297	0.031	A52
2441	39	Bluetooth	FHSS	12.0	11.86	0.02	10 mm	04183	1	left	77.1	0.005	1.033	1.297	0.007	
		ANSI / IEEE	C95.1 19	92 - SAFETY	LIMIT							Body				
			Spatial	Peak							1	1.6 W/kg (m\	N/g)			
		Uncontrolled E	Exposure	General Po	oulation						av	eraged over 1	gram			

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	(1) LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 00 -f 400
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset		Page 99 of 138

© 2018 PCTEST Engineering Laboratory, Inc.

REV 20.11 M 06/19/2018

Standalone Phablet SAR Data

Table 11-42 UMTS/CDMA Phablet SAR Data

						UREME		ULTS						
FREQUE	NCY	Mada	O a mala a	Maximum	Conducted	Power	0	Device	Duty	014-	SAR (10g)	Scaling	Reported SAR (10g)	DI-1#
MHz	Ch.	Mode	Service	Allowed Power [dBm]	Power [dBm]	Drift [dB]	Spacing	Serial Number	Cycle	Side	(W/kg)	Factor	(W/kg)	Plot #
1880.00	600	PCS CDMA	EVDO Rev. 0	24.4	24.26	0.00	3 mm	04118	1:1	back	0.768	1.033	0.793	
1880.00	600	PCS CDMA	EVDO Rev. 0	24.4	24.26	-0.02	2 mm	04118	1:1	front	0.672	1.033	0.694	
1880.00	600	PCS CDMA	EVDO Rev. 0	24.4	24.26	-0.04	5 mm	04118	1:1	bottom	0.915	1.033	0.945	
1880.00	600	PCS CDMA	EVDO Rev. 0	24.4	24.26	-0.02	0 mm	04118	1:1	left	0.538	1.033	0.556	
1880.00	600	PCS CDMA	EVDO Rev. 0	22.2	21.98	0.03	0 mm	04118	1:1	back	1.770	1.052	1.862	
1880.00	600	PCS CDMA	EVDO Rev. 0	22.2	21.98	0.00	0 mm	04118	1:1	front	1.250	1.052	1.315	
1851.25	25	PCS CDMA	EVDO Rev. 0	22.2	21.95	0.01	0 mm	04118	1:1	bottom	2.730	1.059	2.891	
1880.00	600	PCS CDMA	EVDO Rev. 0	22.2	21.98	0.01	0 mm	04118	1:1	bottom	2.740	1.052	2.882	
1908.75	1175	PCS CDMA	EVDO Rev. 0	22.2	21.96	0.01	0 mm	04118	1:1	bottom	2.780	1.057	2.938	A53
1908.75	1175	PCS CDMA	EVDO Rev. 0	22.2	21.96	-0.07	0 mm	04118	1:1	bottom	2.730	1.057	2.886	
1732.40	1412	UMTS 1750	RMC	24.7	24.31	0.00	3 mm	04126	1:1	back	0.826	1.094	0.904	
1732.40	1412	UMTS 1750	RMC	24.7	24.31	-0.06	2 mm	04126	1:1	front	0.936	1.094	1.024	
1732.40	1412	UMTS 1750	RMC	24.7	24.31	-0.03	5 mm	04126	1:1	bottom	1.030	1.094	1.127	
1732.40	1412	UMTS 1750	RMC	24.7	24.31	-0.10	0 mm	04126	1:1	left	0.806	1.094	0.882	
1732.40	1412	UMTS 1750	RMC	23.2	23.00	-0.01	0 mm	04126	1:1	back	1.520	1.047	1.591	
1732.40	1412	UMTS 1750	RMC	23.2	23.00	-0.13	0 mm	04126	1:1	front	1.340	1.047	1.403	
1712.40	1312	UMTS 1750	RMC	23.2	23.06	-0.05	0 mm	04126	1:1	bottom	3.010	1.033	3.109	
1732.40	1412	UMTS 1750	RMC	23.2	23.00	-0.07	0 mm	04126	1:1	bottom	3.050	1.047	3.193	
1752.60	1513	UMTS 1750	RMC	23.2	23.12	-0.06	0 mm	04126	1:1	bottom	3.130	1.019	3.189	A54
1752.60	1513	UMTS 1750	RMC	23.2	23.12	-0.12	0 mm	04126	1:1	bottom	3.070	1.019	3.128	
1880.00	9400	UMTS 1900	RMC	24.4	24.23	0.08	3 mm	04126	1:1	back	0.915	1.040	0.952	
1880.00	9400	UMTS 1900	RMC	24.4	24.23	0.05	2 mm	04126	1:1	front	1.090	1.040	1.134	
1880.00	9400	UMTS 1900	RMC	24.4	24.23	0.02	5 mm	04126	1:1	bottom	1.250	1.040	1.300	
1880.00	9400	UMTS 1900	RMC	24.4	24.23	0.01	0 mm	04126	1:1	left	0.736	1.040	0.765	
1880.00	9400	UMTS 1900	RMC	22.2	22.01	-0.03	0 mm	04188	1:1	back	1.860	1.045	1.944	
1880.00	9400	UMTS 1900	RMC	22.2	22.01	0.09	0 mm	04188	1:1	front	1.460	1.045	1.526	
1852.40	9262	UMTS 1900	RMC	22.2	21.90	-0.03	0 mm	04188	1:1	bottom	2.340	1.072	2.508	A55
1880.00	9400	UMTS 1900	RMC	22.2	22.01	-0.05	0 mm	04188	1:1	bottom	2.340	1.045	2.445	
1907.60	9538	UMTS 1900	RMC	22.2	22.04	-0.08	0 mm	04188	1:1	bottom	2.200	1.038	2.284	
		ANSI / IEEE	C95.1 1992 - S	AFETY LIMIT					,	4.0	Phablet	۸ .		
		Uncontrolled	Spatial Peak Exposure/Gene	eral Populati	on						W/kg (mW/g ed over 10 gr	-		

FCC ID: ZNFQ910QM	PCTEST:	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 400 of 420
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 100 of 138

Table 11-43 LTE Phablet SAR

										RESULTS									
	REQUENCY	,		<u> </u>	Maximum	I			Device	I I	<u> </u>	Ι	Ι			CAD (40-)		Reported SAR	
MHz	C		Mode	Bandwidth [MHz]	Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (10g) (W/kg)	Scaling Factor	(10g) (W/kg)	Plot#
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.2	24.18	-0.03	0	04142	QPSK	1	0	3 mm	back	1:1	0.711	1.005	0.715	
1770.00	132572	High	LTE Band 66 (AWS)	20	23.2	23.08	-0.03	1	04142	QPSK	50	25	3 mm	back	1:1	0.628	1.028	0.646	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.2	24.18	0.00	0	04142	QPSK	1	0	2 mm	front	1:1	0.833	1.005	0.837	
1770.00	132572	High	LTE Band 66 (AWS)	20	23.2	23.08	-0.06	1	04142	QPSK	50	25	2 mm	front	1:1	0.745	1.028	0.766	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.2	24.18	-0.04	0	04142	QPSK	1	0	5 mm	bottom	1:1	0.884	1.005	0.888	
1770.00	132572	High	LTE Band 66 (AWS)	20	23.2	23.08	-0.04	1	04142	QPSK	50	25	5 mm	bottom	1:1	0.804	1.028	0.827	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.2	24.18	-0.11	0	04142	QPSK	1	0	0 mm	left	1:1	0.644	1.005	0.647	
1770.00	132572	High	LTE Band 66 (AWS)	20	23.2	23.08	-0.13	1	04142	QPSK	50	25	0 mm	left	1:1	0.567	1.028	0.583	
1770.00	132572	High	LTE Band 66 (AWS)	20	23.2	23.02	-0.04	0	04159	QPSK	1	50	0 mm	back	1:1	1.680	1.042	1.751	
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.2	22.95	-0.04	0	04159	QPSK	50	25	0 mm	back	1:1	1.640	1.059	1.737	
1770.00	132572	High	LTE Band 66 (AWS)	20	23.2	23.02	-0.13	0	04159	QPSK	1	50	0 mm	front	1:1	1.310	1.042	1.365	
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.2	22.95	-0.18	0	04159	QPSK	50	25	0 mm	front	1:1	1.070	1.059	1.133	
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.2	22.99	-0.02	0	04159	QPSK	1	50	0 mm	bottom	1:1	2.110	1.050	2.216	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	23.2	22.97	-0.04	0	04159	QPSK	1	99	0 mm	bottom	1:1	2.340	1.054	2.466	
1770.00	132572	High	LTE Band 66 (AWS)	20	23.2	23.02	-0.07	0	04159	QPSK	1	50	0 mm	bottom	1:1	2.460	1.042	2.563	
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.2	22.95	-0.05	0	04159	QPSK	50	25	0 mm	bottom	1:1	2.220	1.059	2.351	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	23.2	22.89	-0.02	0	04159	QPSK	50	25	0 mm	bottom	1:1	2.470	1.074	2.653	
1770.00	132572	High	LTE Band 66 (AWS)	20	23.2	22.75	-0.05	0	04159	QPSK	50	0	0 mm	bottom	1:1	2.690	1.109	2.983	A56
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.2	22.82	0.02	0	04159	QPSK	100	0	0 mm	bottom	1:1	2.230	1.091	2.433	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	24.4	24.35	-0.02	0	04126	QPSK	1	0	3 mm	back	1:1	1.050	1.012	1.063	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.4	23.37	-0.10	1	04126	QPSK	50	0	3 mm	back	1:1	0.842	1.007	0.848	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	24.4	24.35	0.11	0	04126	QPSK	1	0	2 mm	front	1:1	0.952	1.012	0.963	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.4	23.37	0.11	1	04126	QPSK	50	0	2 mm	front	1:1	0.784	1.007	0.789	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	24.4	24.35	0.04	0	04126	QPSK	1	0	5 mm	bottom	1:1	0.867	1.012	0.877	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.4	23.37	0.05	1	04126	QPSK	50	0	5 mm	bottom	1:1	0.740	1.007	0.745	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	24.4	24.35	-0.01	0	04126	QPSK	1	0	0 mm	left	1:1	0.721	1.012	0.730	
1882.50	26365	Mid	LTE Band 25 (PCS)	20	23.4	23.37	0.02	1	04126	QPSK	50	0	0 mm	left	1:1	0.589	1.007	0.593	
1905.00	26590	High	LTE Band 25 (PCS) LTE Band 25	20	22.2	22.08	0.17	0	04134	QPSK	1	50	0 mm	back	1:1	1.230	1.028	1.264	
1882.50	26365	Mid	(PCS)	20	22.2	22.06	-0.11	0	04134	QPSK	50	50	0 mm	back	1:1	1.300	1.033	1.343	
1905.00	26590	High	LTE Band 25 (PCS) LTE Band 25	20	22.2	22.08	0.03	0	04134	QPSK	1	50	0 mm	front	1:1	1.450	1.028	1.491	
1882.50	26365	Mid	(PCS) LTE Band 25	20	22.2	22.06	0.06	0	04134	QPSK	50	50	0 mm	front	1:1	1.400	1.033	1.446	
1860.00	26140	Low	(PCS) LTE Band 25	20	22.2	22.03	0.02	0	04134	QPSK	1	50	0 mm	bottom	1:1	2.280	1.040	2.371	
1882.50	26365	Mid	(PCS) LTE Band 25	20	22.2	21.96	0.01	0	04134	QPSK	1	99	0 mm	bottom	1:1	2.310	1.057	2.442	
1905.00	26590	High	(PCS) LTE Band 25	20	22.2	22.08	0.03	0	04134	QPSK	1	50	0 mm	bottom	1:1	2.290	1.028	2.354	
1860.00	26140	Low	(PCS) LTE Band 25	20	22.2	22.04	0.03	0	04134	QPSK	50	50	0 mm	bottom	1:1	2.360	1.038	2.450	
1882.50	26365	Mid	(PCS) LTE Band 25	20	22.2	22.06	0.02	0	04134	QPSK	50	50	0 mm	bottom	1:1	2.300	1.033	2.376	
1905.00	26590	High	(PCS) LTE Band 25	20	22.2	21.90	0.03	0	04134	QPSK	50	0	0 mm	bottom	1:1	2.500	1.072	2.680	A57
1905.00	26590	High	(PCS)	20 1992 - SAF	22.2 FTY I IMIT	21.99	0.05	0	04134	QPSK	100	0	0 mm	bottom	1:1	2.440	1.050	2.562	
			Spatia	al Peak								4.0 W	//kg (mV					ŀ	
		Unce	ontrolled Exposu	ire/Genera	Population			<u> </u>				-	averaged	over 10	grams				

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	L G	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 404 -f 400
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset		Page 101 of 138

Table 11-44 WLAN SISO Phablet SAR

							M	IEASURI	EMENT R	ESULT	S								
FREQU	Ch.	Mode	Service	Bandwidth [MHz]	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	Spacing	Antenna Config.	Device Serial Number	Data Rate (Mbps)	Side	Duty Cycle (%)	Peak SAR of Area Scan W/kg	SAR (10g) (W/kg)	Scaling Factor (Power)	Scaling Factor (Duty Cycle)	Reported SAR (10g) (W/kg)	Plot #
5280	56	802.11a	OFDM	20	18.0	17.98	-0.11	0 mm	1	04175	6	back	99.2	5.114	0.314	1.005	1.008	0.318	
5280	56	802.11a	OFDM	20	18.0	17.98	0.17	0 mm	1	04175	6	front	99.2	3.760	-	1.005	1.008		
5280	56	802.11a	OFDM	20	18.0	17.98	0.12	0 mm	1	04175	6	top	99.2	0.451	-	1.005	1.008		
5280	56	802.11a	OFDM	20	18.0	17.98	0.21	0 mm	1	04175	6	left	99.2	0.308	-	1.005	1.008	-	
5260	52	802.11a	OFDM	20	17.0	16.97	-0.12	0 mm	2	04175	6	back	98.8	30.287	1.960	1.007	1.012	1.997	
5280	56	802.11a	OFDM	20	18.0	17.98	0.03	0 mm	2	04175	6	back	98.8	38.606	2.500	1.005	1.012	2.543	
5320	64	802.11a	OFDM	20	17.0	16.99	-0.01	0 mm	2	04175	6	back	98.8	47.827	2.150	1.002	1.012	2.180	
5280	56	802.11a	OFDM	20	18.0	17.98	0.19	0 mm	2	04175	6	front	98.8	0.164	0.022	1.005	1.012	0.022	
5280	56	802.11a	OFDM	20	18.0	17.98	0.16	0 mm	2	04175	6	top	98.8	0.278	-	1.005	1.012		
5280	56	802.11a	OFDM	20	18.0	17.98	0.18	0 mm	2	04175	6	left	98.8	3.903	0.437	1.005	1.012	0.444	
5600	120	802.11a	OFDM	20	17.0	16.99	0.13	0 mm	1	04175	6	back	99.2	8.236	0.350	1.002	1.008	0.354	
5600	120	802.11a	OFDM	20	17.0	16.99	0.18	0 mm	1	04175	6	front	99.2	4.023	-	1.002	1.008		
5600	120	802.11a	OFDM	20	17.0	16.99	0.13	0 mm	1	04175	6	top	99.2	0.428	-	1.002	1.008	-	
5600	120	802.11a	OFDM	20	17.0	16.99	0.16	0 mm	1	04175	6	left	99.2	0.473	-	1.002	1.008		
5720	144	802.11a	OFDM	20	17.0	16.99	0.16	0 mm	2	04175	6	back	98.8	13.882	1.450	1.002	1.012	1.470	
5720	144	802.11a	OFDM	20	17.0	16.99	0.19	0 mm	2	04175	6	front	98.8	0.482	0.080	1.002	1.012	0.081	
5720	144	802.11a	OFDM	20	17.0	16.99	0.18	0 mm	2	04175	6	top	98.8	0.174	-	1.002	1.012		
5720	144	802.11a	0.19	0 mm	2	04175	6	left	98.8	2.546	0.320	1.002	1.012	0.324					
				Spatial Pea	SAFETY LIMIT k neral Population								a	Phablet 4.0 W/kg (mV eraged over 10	V/g)				

Table 11-45 WLAN MIMO Phablet SAR

								MEASU	JREMEN	T RESU	LTS										
FREQU	ENCY	Mode	Service	Bandwidth [MHz]	Maximum Allowed Power	Conducted Power (Ant 1) [dBm]	Maximum Allowed Power	Conducted Power (Ant 2) [dBm]	Power Drift [dB]	Spacing	Antenna Config.	Device Serial	Data Rate	Side	Duty Cycle	Peak SAR of Area Scan	SAR (10g)	Scaling Factor	Scaling Factor (Duty	Reported SAR (10g)	Plot #
MHz	Ch.			[]	(Ant 1) [dBm]	(Aut. 1) [GBIII]	(Ant 2) [dBm]	(All 2) [CDIII]	[GD]		coming.	Number	(Mbps)		(%)	W/kg	(W/kg)	(Power)	Cycle)	(W/kg)	
5260	52	802.11n	OFDM	20	17.0	16.91	17.0	16.79	0.20	0 mm	MIMO	04175	13	back	98.4	23.840	2.050	1.050	1.016	2.187	
5280	56	802.11n	OFDM	20	18.0	17.97	18.0	17.98	-0.02	0 mm	MIMO	04175	13	back	98.4	54.401	2.690	1.007	1.016	2.752	A58
5320	64	802.11n	OFDM	20	17.0	16.97	17.0	16.96	0.21	0 mm	MIMO	04175	13	back	98.4	42.277	2.150	1.009	1.016	2.204	
5280	56	802.11n	OFDM	20	18.0	17.97	18.0	17.98	0.15	0 mm	MIMO	04175	13	front	98.4	3.525	0.279	1.007	1.016	0.285	
5280	56	802.11n	OFDM	20	18.0	17.97	18.0	17.98	-0.08	0 mm	MIMO	04175	13	top	98.4	0.620		1.007	1.016		
5280	56	802.11n	OFDM	20	18.0	17.97	18.0	17.98	0.13	0 mm	MIMO	04175	13	left	98.4	4.009	0.443	1.007	1.016	0.453	
5720	144	802.11n	OFDM	20	17.0	16.96	17.0	16.95	0.18	0 mm	MIMO	04175	13	back	98.4	24.032	1.480	1.012	1.016	1.522	
5720	144	802.11n	OFDM	20	17.0	16.96	17.0	16.95	0.21	0 mm	MIMO	04175	13	front	98.4	2.185	0.270	1.012	1.016	0.278	
5720	144	802.11n	OFDM	20	17.0	16.96	17.0	16.95	0.14	0 mm	MIMO	04175	13	top	98.4	0.517		1.012	1.016		
5720	144	802.11n	OFDM	20	17.0	16.96	17.0	16.95	0.18	0 mm	MIMO	04175	13	left	98.4	2.645	0.311	1.012	1.016	0.320	
5280	56	802.11n	OFDM	20	18.0	17.97	18.0	17.98	0.06	0 mm	MIMO	04175	13	back	98.4	48.467	2.530	1.007	1.016	2.588	
				ANSI / IE								Phablet									
					Spatial Per	ak										4.0 W/kg (mV	V/g)				
				Uncontrol	led Exposure/G	eneral Populatio	n								ave	eraged over 10) grams				

Note:

- 1. Blue entries indicate variability measurements.
- 2. To achieve the 5GHz WLAN 20.0 dBm (Ch. 52, 64, 144) and 21 dBm (Ch. 56) maximum allowed MIMO power shown in the documentation, each antenna transmits at a maximum allowed power of 17.0 dBm (Ch. 52, 64, 144) and 18.0 dBm (Ch. 56).

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dama 102 of 120
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 102 of 138

11.5 SAR Test Notes

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2013, and FCC KDB Publication 447498 D01v06.
- 2. Batteries are fully charged at the beginning of the SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06.
- 6. Device was tested using a fixed spacing for body-worn accessory testing. A separation distance of 10 mm was considered because the manufacturer has determined that there will be body-worn accessories available in the marketplace for users to support this separation distance.
- 7. Per FCC KDB Publication 648474 D04v01r03, body-worn SAR was evaluated without a headset connected to the device. Since the standalone reported body-worn SAR was ≤ 1.2 W/kg, no additional body-worn SAR evaluations using a headset cable were required.
- 8. Per FCC KDB 865664 D01v01r04, variability SAR tests were performed when the measured SAR results for a frequency band were greater than or equal to 0.8 W/kg. Repeated SAR measurements are highlighted in the tables above for clarity. Please see Section 13 for variability analysis.
- 9. During SAR Testing for the Wireless Router conditions per FCC KDB Publication 941225 D06v02r01, the actual Portable Hotspot operation (with actual simultaneous transmission of a transmitter with WIFI) was not activated (See Section 6.7 for more details).
- 10. Per FCC KDB Publication 648474 D04v01r03, this device is considered a "phablet" since the diagonal dimension is > 160 mm and < 200 mm. Therefore, phablet SAR tests are required when wireless router mode does not apply or if wireless router 1g SAR > 1.2 W/kg.
- 11. Unless otherwise noted, when 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds below.
- 12. Additional SAR tests for phablet SAR were evaluated per KDB 616217 Section 6 (See Section 6.9 for more information).
- 13. This device utilizes power reduction for some wireless modes and technologies, as outlined in Section 1.3. The maximum output power allowed for each transmitter and exposure condition was evaluated for SAR compliance based on expected use conditions and simultaneous transmission scenarios.

GSM Test Notes:

- 1. Body-Worn accessory testing is typically associated with voice operations. Therefore, GSM voice was evaluated for body-worn SAR.
- Justification for reduced test configurations per KDB Publication 941225 D01v03r01 and October 2013
 TCB Workshop Notes: The source-based frame-averaged output power was evaluated for all
 GPRS/EDGE slot configurations. The configuration with the highest target frame averaged output power
 was evaluated for hotspot SAR. When the maximum frame-averaged powers are equivalent across two or
 more slots (within 0.25 dB), the configuration with the most number of time slots was tested.
- 3. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg for 1g evaluations then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.
- 4. GPRS was additionally evaluated for head and body-worn exposure conditions to address possible VoIP scenarios.

CDMA Notes:

 Head SAR for CDMA2000 mode was tested under RC3/SO55 per FCC KDB Publication 941225 D01v03r01.

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 400 400
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset		Page 103 of 138
19 DCTEST Engineering Laboratory Inc.				DEV/ 20 11 M

© 2018 PCTEST Engineering Laboratory, Inc.

06/19/2018

- Body-Worn SAR was tested with 1x RTT with TDSO / SO32 FCH Only. EVDO Rev0 and RevA and TDSO / SO32 FCH+SCH SAR tests were not required per the 3G SAR Test Reduction Procedure in FCC KDB Publication 941225 D01v03r01.
- 3. CDMA Wireless Router SAR is measured using Subtype 0/1 Physical Layer configurations for Rev. 0 according to KDB 941225 D01v03r01 procedures for data devices. Wireless Router SAR tests for Subtype 2 of Rev.A and 1x RTT configurations were not required per the 3G SAR Test Reduction Policy in KDB Publication 941225 D01v03r01.
- 4. Head SAR was additionally evaluated using EVDO Rev. A to determine compliance for VoIP operations.
- 5. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg for 1g evaluations then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.
- 6. CDMA 1X Advanced technology was not required for SAR since the maximum allowed output powers for 1X Advanced was not more than 0.25 dB higher than the maximum powers for 1X.

UMTS Notes:

- 1. UMTS mode in was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01v03r01. AMR and HSPA SAR was not required per the 3G Test Reduction Procedure in KDB Publication 941225 D01v03r01.
- 2. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg for 1g evaluations then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.

LTE Notes:

- LTE Considerations: LTE test configurations are determined according to SAR Evaluation Considerations for LTE Devices in FCC KDB Publication 941225 D05v02r04. The general test procedures used for testing can be found in Section 8.6.4.
- 2. MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 6.2.5 under Table 6.2.3-1.
- 3. A-MPR was disabled for all SAR tests by setting NS=01 on the base station simulator. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).
- 4. Per FCC KDB Publication 447498 D01v06, when the reported LTE Band 41 SAR measured at the highest output power channel in a given a test configuration was > 0.6 W/kg for 1g evaluations, testing at the other channels was required for such test configurations.
- 5. TDD LTE was tested per the guidance provided in FCC KDB Publication 941225 D05v02r04. Testing was performed using UL-DL configuration 0 with 6 UL subframes and 2 S subframes using extended cyclic prefix only and special subframe configuration 6. SAR tests were performed at maximum output power and worst-case transmission duty factor in extended cyclic prefix. Per 3GPP 36.211 Section 4, the duty factor for special subframe configuration 6 using extended cyclic prefix is 0.633.
- 6. Per KDB Publication 941225 D05Av01r02, SAR for downlink only LTE CA operations was not needed since the maximum average output power in LTE CA mode was not >0.25 dB higher than the maximum output power when downlink carrier aggregation was inactive.

WLAN Notes:

1. For held-to-ear and hotspot operations, the initial test position procedures were applied. The test position with the highest extrapolated peak SAR will be used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg for 1g evaluations, no additional testing for the remaining test

FCC ID: ZNFQ910QM	PCTEST'	SAR EVALUATION REPORT		Approved by: Quality Manager		
Document S/N:	Test Dates:	DUT Type:				
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset		Page 104 of 138		
118 PCTEST Engineering Laboratory Inc.				REV/ 20 11 M		

© 2018 PCTEST Engineering Laboratory, Inc.

06/19/2018

- positions was required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured.
- Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 2.4 GHz WIFI
 single transmission chain operations, the highest measured maximum output power channel for DSSS
 was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11g/n) was not required due to
 the maximum allowed powers and the highest reported DSSS SAR. See Section 8.7.5 for more
 information.
- 3. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 5 GHz WIFI single transmission chain operations, the initial test configuration was selected according to the transmission mode with the highest maximum allowed powers. Other transmission modes were not investigated since the highest reported SAR for initial test configuration adjusted by the ratio of maximum output powers is less than 1.2 W/kg for 1g evaluations. See Section 8.7.6 for more information.
- 4. Per KDB Publication 248227 D01v02r02, SAR for MIMO was evaluated by following the simultaneous SAR provisions from KDB Publication 447498 D01v06 by either evaluating the sum of the 1g SAR values of each antenna transmitting independently or making a SAR measurement with both antennas transmitting simultaneously. Please see Section 12 for complete analysis.
- 5. When the maximum reported 1g averaged SAR is ≤0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg for 1g evaluations or all test channels were measured.
- 6. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools. The reported SAR was scaled to the 100% transmission duty factor to determine compliance. Procedures used to measure the duty factor are identical to that in the associated EMC test reports.
- 7. When 10-g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

Bluetooth Notes

Bluetooth SAR was measured with the device connected to a call box with hopping disabled with DH5
operation and Tx Tests test mode type. Per October 2016 TCB Workshop Notes, the reported SAR was
scaled to the 100% transmission duty factor to determine compliance. See Section 9.6 for the time
domain plot and calculation for the duty factor of the device.

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	G	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 405 of 420	
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset		Page 105 of 138

12 FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS

12.1 Introduction

The following procedures adopted from FCC KDB Publication 447498 D01v06 are applicable to devices with built-in unlicensed transmitters such as 802.11 and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

12.2 Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB Publication 447498 D01v06 4.3.2 and IEEE 1528-2013 Section 6.3.4.1.2, simultaneous transmission SAR test exclusion may be applied when the sum of the 1g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤1.6 W/kg. The different test positions in an exposure condition may be considered collectively to determine SAR test exclusion according to the sum of 1g or 10g SAR.

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dogg 100 of 120	
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 106 of 138	

Head SAR Simultaneous Transmission Analysis

Table 12-1 Simultaneous Transmission Scenario with 2.4 GHz WLAN (Held to Ear)

Exposure Condition Mode		2G/3G/4G SAR (W/kg)	2.4 GHz WLAN Ant 1 SAR (W/kg)	2.4 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg)		
		1	2	3	1+2	1+3	1+2+3
	CDMA/EVDO BC10 (§90S)	0.195	0.486	0.076	0.681	0.271	0.757
	CDMA/EVDO BC0 (§22H)	0.127	0.486	0.076	0.613	0.203	0.689
	PCS CDMA/EVDO	0.128	0.486	0.076	0.614	0.204	0.690
	GSM/GPRS 850	0.205	0.486	0.076	0.691	0.281	0.767
	GSM/GPRS 1900	0.068	0.486	0.076	0.554	0.144	0.630
	UMTS 850	0.182	0.486	0.076	0.668	0.258	0.744
	UMTS 1750	0.133	0.486	0.076	0.619	0.209	0.695
	UMTS 1900	0.124	0.486	0.076	0.610	0.200	0.686
Head SAR	LTE Band 12	0.107	0.486	0.076	0.593	0.183	0.669
	LTE Band 13	0.170	0.486	0.076	0.656	0.246	0.732
	LTE Band 5 (Cell)	0.123	0.486	0.076	0.609	0.199	0.685
	LTE Band 26 (Cell)	0.123	0.486	0.076	0.609	0.199	0.685
	LTE Band 66 (AWS)	0.096	0.486	0.076	0.582	0.172	0.658
	LTE Band 25 (PCS)	0.134	0.486	0.076	0.620	0.210	0.696
	LTE Band 30	0.019	0.486	0.076	0.505	0.095	0.581
	LTE Band 7	0.041	0.486	0.076	0.527	0.117	0.603
	LTE Band 41	0.033	0.486	0.076	0.519	0.109	0.595

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 407 - 4400
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 107 of 138

Table 12-2 Simultaneous Transmission Scenario with 5 GHz WLAN (Held to Ear)

	Simultaneous Transmission Scenario with 5 GHz WLAN (Held to Ear)							
Exposure Condition Mode		2G/3G/4G SAR (W/kg)	5 GHz WLAN Ant 1 SAR (W/kg)	5 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg)			
		1	2	3	1+2	1+3	1+2+3	
	CDMA/EVDO BC10 (§90S)	0.195	0.587	0.103	0.782	0.298	0.885	
	CDMA/EVDO BC0 (§22H)	0.127	0.587	0.103	0.714	0.230	0.817	
	PCS CDMA/EVDO	0.128	0.587	0.103	0.715	0.231	0.818	
	GSM/GPRS 850	0.205	0.587	0.103	0.792	0.308	0.895	
GS	GSM/GPRS 1900	0.068	0.587	0.103	0.655	0.171	0.758	
	UMTS 850	0.182	0.587	0.103	0.769	0.285	0.872	
	UMTS 1750	0.133	0.587	0.103	0.720	0.236	0.823	
	UMTS 1900	0.124	0.587	0.103	0.711	0.227	0.814	
Head SAR	LTE Band 12	0.107	0.587	0.103	0.694	0.210	0.797	
	LTE Band 13	0.170	0.587	0.103	0.757	0.273	0.860	
	LTE Band 5 (Cell)	0.123	0.587	0.103	0.710	0.226	0.813	
	LTE Band 26 (Cell)	0.123	0.587	0.103	0.710	0.226	0.813	
	LTE Band 66 (AWS)	0.096	0.587	0.103	0.683	0.199	0.786	
	LTE Band 25 (PCS)	0.134	0.587	0.103	0.721	0.237	0.824	
	LTE Band 30	0.019	0.587	0.103	0.606	0.122	0.709	
	LTE Band 7	0.041	0.587	0.103	0.628	0.144	0.731	
	LTE Band 41	0.033	0.587	0.103	0.620	0.136	0.723	

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 400 -f 400
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 108 of 138

Table 12-3
Simultaneous Transmission Scenario with 2.4 GHz WLAN Ant 1 and 5 GHz WLAN Ant 2 (Held to Ear)

Silliultai	leous Transmission Scen	ario with 2.4	GHZ WLAN	Ant Lanu	J GHZ WLA	N AIIL Z (HE	u to Lai
Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN Ant 1 SAR (W/kg)	5 GHz WLAN Ant 2 SAR (W/kg)	Σ	Σ SAR (W/kg)	
		1	2	3	1+2	1+3	1+2+3
	CDMA/EVDO BC10 (§90S)	0.195	0.486	0.103	0.681	0.298	0.784
	CDMA/EVDO BC0 (§22H)	0.127	0.486	0.103	0.613	0.230	0.716
	PCS CDMA/EVDO	0.128	0.486	0.103	0.614	0.231	0.717
	GSM/GPRS 850	0.205	0.486	0.103	0.691	0.308	0.794
	GSM/GPRS 1900	0.068	0.486	0.103	0.554	0.171	0.657
	UMTS 850	0.182	0.486	0.103	0.668	0.285	0.771
	UMTS 1750	0.133	0.486	0.103	0.619	0.236	0.722
	UMTS 1900	0.124	0.486	0.103	0.610	0.227	0.713
Head SAR	LTE Band 12	0.107	0.486	0.103	0.593	0.210	0.696
	LTE Band 13	0.170	0.486	0.103	0.656	0.273	0.759
	LTE Band 5 (Cell)	0.123	0.486	0.103	0.609	0.226	0.712
	LTE Band 26 (Cell)	0.123	0.486	0.103	0.609	0.226	0.712
	LTE Band 66 (AWS)	0.096	0.486	0.103	0.582	0.199	0.685
	LTE Band 25 (PCS)	0.134	0.486	0.103	0.620	0.237	0.723
	LTE Band 30	0.019	0.486	0.103	0.505	0.122	0.608
	LTE Band 7	0.041	0.486	0.103	0.527	0.144	0.630
	LTE Band 41	0.033	0.486	0.103	0.519	0.136	0.622

Note: For some simultaneous transmission scenarios with 2.4 GHz WLAN and 5 GHz WLAN, SAR values at the maximum output power level were used since they were conservative.

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 400 -f 400
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 109 of 138

© 2018 PCTEST Engineering Laboratory, Inc.

Table 12-4 Simultaneous Transmission Scenario with Bluetooth (Held to Ear)

Simultaneous Transmission Scenario With Bluetooth (Heid to Ear)								
Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)				
		1	2	1+2				
	CDMA/EVDO BC10 (§90S)	0.195	0.119	0.314				
	CDMA/EVDO BC0 (§22H)	0.127	0.119	0.246				
	PCS CDMA/EVDO	0.128	0.119	0.247				
	GSM/GPRS 850	0.205	0.119	0.324				
	GSM/GPRS 1900	0.068	0.119	0.187				
	UMTS 850	0.182	0.119	0.301				
	UMTS 1750	0.133	0.119	0.252				
	UMTS 1900	0.124	0.119	0.243				
Head SAR	LTE Band 12	0.107	0.119	0.226				
	LTE Band 13	0.170	0.119	0.289				
	LTE Band 5 (Cell)	0.123	0.119	0.242				
	LTE Band 26 (Cell)	0.123	0.119	0.242				
	LTE Band 66 (AWS)	0.096	0.119	0.215				
	LTE Band 25 (PCS)	0.134	0.119	0.253				
	LTE Band 30	0.019	0.119	0.138				
	LTE Band 7	0.041	0.119	0.160				
	LTE Band 41	0.033	0.119	0.152				

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	D 440 4400	
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 110 of 138	

12.4 **Body-Worn Simultaneous Transmission Analysis**

Simultaneous Transmission Scenario with 2.4 GHz WLAN (Body-Worn at 1.0 cm)

	official and the second of the										
Exposure Condition Mode		2G/3G/4G SAR (W/kg)	2.4 GHz WLAN Ant 1 SAR (W/kg)	2.4 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg)				SPLSR		
		1	2	3	1+2	1+3	1+2+3	1+2	1+3	2+3	
	CDMA BC10 (§90S)	0.459	0.230	0.335	0.689	0.794	1.024	N/A	N/A	N/A	
	CDMA BC0 (§22H)	0.360	0.230	0.335	0.590	0.695	0.925	N/A	N/A	N/A	
	PCS CDMA	0.530	0.230	0.335	0.760	0.865	1.095	N/A	N/A	N/A	
	GSM/GPRS 850	0.373	0.230	0.335	0.603	0.708	0.938	N/A	N/A	N/A	
	GSM/GPRS 1900	0.336	0.230	0.335	0.566	0.671	0.901	N/A	N/A	N/A	
	UMTS 850	0.393	0.230	0.335	0.623	0.728	0.958	N/A	N/A	N/A	
	UMTS 1750	0.479	0.230	0.335	0.709	0.814	1.044	N/A	N/A	N/A	
	UMTS 1900	0.569	0.230	0.335	0.799	0.904	1.134	N/A	N/A	N/A	
Body-Worn	LTE Band 12	0.430	0.230	0.335	0.660	0.765	0.995	N/A	N/A	N/A	
	LTE Band 13	0.440	0.230	0.335	0.670	0.775	1.005	N/A	N/A	N/A	
	LTE Band 5 (Cell)	0.364	0.230	0.335	0.594	0.699	0.929	N/A	N/A	N/A	
	LTE Band 26 (Cell)	0.428	0.230	0.335	0.658	0.763	0.993	N/A	N/A	N/A	
	LTE Band 66 (AWS)	0.457	0.230	0.335	0.687	0.792	1.022	N/A	N/A	N/A	
	LTE Band 25 (PCS)	0.598	0.230	0.335	0.828	0.933	1.163	N/A	N/A	N/A	
	LTE Band 30	0.505	0.230	0.335	0.735	0.840	1.070	N/A	N/A	N/A	
	LTE Band 7	1.186	0.230	0.335	1.416	1.521	See Note 1	0.01	0.01	0.02	
	LTE Band 41	0.514	0.230	0.335	0.744	0.849	1.079	N/A	N/A	N/A	

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Domo 111 of 120	
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 111 of 138	

Table 12-6 Simultaneous Transmission Scenario with 5 GHz WLAN (Body-Worn at 1.0 cm)

Simultaneous Transmission Scenario with 3 GHz WEAN (Body-Worll at 1.0 Cm)							
Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	5 GHz WLAN Ant 1 SAR (W/kg)	5 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg)		SPLSR
		1	2	3	1+2	1+3	1+3
	CDMA BC10 (§90S)	0.459	0.110	1.058	0.569	1.517	N/A
	CDMA BC0 (§22H)	0.360	0.110	1.058	0.470	1.418	N/A
	PCS CDMA	0.530	0.110	1.058	0.640	1.588	N/A
	GSM/GPRS 850	0.373	0.110	1.058	0.483	1.431	N/A
	GSM/GPRS 1900	0.336	0.110	1.058	0.446	1.394	N/A
	UMTS 850	0.393	0.110	1.058	0.503	1.451	N/A
	UMTS 1750	0.479	0.110	1.058	0.589	1.537	N/A
	UMTS 1900	0.569	0.110	1.058	0.679	See Note 1	0.02
Body-Worn	LTE Band 12	0.430	0.110	1.058	0.540	1.488	N/A
	LTE Band 13	0.440	0.110	1.058	0.550	1.498	N/A
	LTE Band 5 (Cell)	0.364	0.110	1.058	0.474	1.422	N/A
	LTE Band 26 (Cell)	0.428	0.110	1.058	0.538	1.486	N/A
	LTE Band 66 (AWS)	0.457	0.110	1.058	0.567	1.515	N/A
	LTE Band 25 (PCS)	0.598	0.110	1.058	0.708	See Note 1	0.02
	LTE Band 30	0.505	0.110	1.058	0.615	1.563	N/A
	LTE Band 7	1.186	0.110	1.058	1.296	See Note 1	0.03
	LTE Band 41	0.514	0.110	1.058	0.624	1.572	N/A

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dags 112 of 129	
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 112 of 138	

Table 12-7 Simultaneous Transmission Scenario with 5 GHz WLAN MIMO (Body-Worn at 1.0 cm)

Simultaneou	s Transmission Scenar	io with 5 GH	Z WLAN WIIW	io (Body-wo	rn at 1.0 cm)
Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	5 GHz WLAN MIMO SAR (W/kg)	Σ SAR (W/kg)	SPLSR
		1	2	1+2	1+2
	CDMA BC10 (§90S)	0.459	1.146	See Note 1	0.02
	CDMA BC0 (§22H)	0.360	1.146	1.506	N/A
	PCS CDMA	0.530	1.146	See Note 1	0.02
	GSM/GPRS 850	0.373	1.146	1.519	N/A
	GSM/GPRS 1900	0.336	1.146	1.482	N/A
	UMTS 850	0.393	1.146	1.539	N/A
	UMTS 1750	0.479	1.146	See Note 1	0.02
	UMTS 1900	0.569	1.146	See Note 1	0.02
Body-Worn	LTE Band 12	0.430	1.146	1.576	N/A
	LTE Band 13	0.440	1.146	1.586	N/A
	LTE Band 5 (Cell)	0.364	1.146	1.510	N/A
	LTE Band 26 (Cell)	0.428	1.146	1.574	N/A
	LTE Band 66 (AWS)	0.457	1.146	See Note 1	0.02
	LTE Band 25 (PCS)	0.598	1.146	See Note 1	0.02
	LTE Band 30	0.505	1.146	See Note 1	0.02
	LTE Band 7	1.186	1.146	See Note 1	0.03
	LTE Band 41	0.514	1.146	See Note 1	0.02

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dogo 112 of 120	
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 113 of 138	

Table 12-8
Simultaneous Transmission Scenario with 2.4 GHz WLAN Ant 1 and 5 GHz WLAN Ant 2 (Body-Worn at 1.0 cm)

	CIII)								
Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN Ant 1 SAR (W/kg)	5 GHz WLAN Ant 2 at 14 dBm SAR (W/kg)	` 0,		SPLSR		
		1	2	3	1+2+3	1+2	1+3	2+3	
	CDMA BC10 (§90S)	0.459	0.230	0.537	1.226	N/A	N/A	N/A	
	CDMA BC0 (§22H)	0.360	0.230	0.537	1.127	N/A	N/A	N/A	
	PCS CDMA	0.530	0.230	0.537	1.297	N/A	N/A	N/A	
	GSM/GPRS 850	0.373	0.230	0.537	1.140	N/A	N/A	N/A	
	GSM/GPRS 1900	0.336	0.230	0.537	1.103	N/A	N/A	N/A	
	UMTS 850	0.393	0.230	0.537	1.160	N/A	N/A	N/A	
	UMTS 1750	0.479	0.230	0.537	1.246	N/A	N/A	N/A	
	UMTS 1900	0.569	0.230	0.537	1.336	N/A	N/A	N/A	
Body-Worn	LTE Band 12	0.430	0.230	0.537	1.197	N/A	N/A	N/A	
	LTE Band 13	0.440	0.230	0.537	1.207	N/A	N/A	N/A	
	LTE Band 5 (Cell)	0.364	0.230	0.537	1.131	N/A	N/A	N/A	
	LTE Band 26 (Cell)	0.428	0.230	0.537	1.195	N/A	N/A	N/A	
	LTE Band 66 (AWS)	0.457	0.230	0.537	1.224	N/A	N/A	N/A	
	LTE Band 25 (PCS)	0.598	0.230	0.537	1.365	N/A	N/A	N/A	
	LTE Band 30	0.505	0.230	0.537	1.272	N/A	N/A	N/A	
	LTE Band 7	1.186	0.230	0.537	See Note 1	0.01	0.02	0.02	
	LTE Band 41	0.514	0.230	0.537	1.281	N/A	N/A	N/A	

Note: For some simultaneous transmission scenarios with 2.4 GHz WLAN and 5 GHz WLAN, SAR values at the maximum output power level were used since they were conservative.

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	D 444 -f 400	
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 114 of 138	

© 2018 PCTEST Engineering Laboratory, Inc.

Table 12-9
Simultaneous Transmission Scenario with Bluetooth (Body-Worn at 1.0 cm)

Exposure Condition	Mode	2G/3G/4G	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	CDMA BC10 (§90S)	0.459	0.021	0.480
	CDMA BC0 (§22H)	0.360	0.021	0.381
	PCS CDMA	0.530	0.021	0.551
	GSM/GPRS 850	0.373	0.021	0.394
	GSM/GPRS 1900	0.336	0.021	0.357
	UMTS 850	0.393	0.021	0.414
	UMTS 1750	0.479	0.021	0.500
	UMTS 1900	0.569	0.021	0.590
Body-Worn	LTE Band 12	0.430	0.021	0.451
	LTE Band 13	0.440	0.021	0.461
	LTE Band 5 (Cell)	0.364	0.021	0.385
	LTE Band 26 (Cell)	0.428	0.021	0.449
	LTE Band 66 (AWS)	0.457	0.021	0.478
	LTE Band 25 (PCS)	0.598	0.021	0.619
	LTE Band 30	0.505	0.021	0.526
	LTE Band 7	1.186	0.021	1.207
	LTE Band 41	0.514	0.021	0.535

Notes:

1. No evaluation was performed to determine the aggregate 1g SAR for these configurations as the SPLS ratio between the antenna pairs was not greater than 0.04 per FCC KDB 447498 D01v06. See Section 12.7 for detailed SPLS ratio analysis.

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Danie 445 of 400
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset		Page 115 of 138

12.5 Hotspot SAR Simultaneous Transmission Analysis

Per FCC KDB Publication 941225 D06v02r01, the devices edges with antennas more than 2.5 cm from edge are not required to be evaluated for SAR ("-").

(*) For test positions that were not required to be evaluated for WLAN SAR per FCC KDB publication 248227, the worst case WLAN SAR result for applicable exposure conditions was used for simultaneous transmission analysis.

Table 12-10 Simultaneous Transmission Scenario with 2.4 GHz WLAN (Hotspot at 1.0 cm)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN Ant 1 SAR (W/kg)	2.4 GHz WLAN Ant 2 SAR (W/kg)		Σ SAR (W/kg)	
		1	2	3	1+2	1+2+3	
	EVDO BC10 (§90S)	0.552	0.329	0.335	0.881	0.887	1.216
	EVDO BC0 (§22H)	0.417	0.329	0.335	0.746	0.752	1.081
	PCS EVDO	0.915	0.329	0.335	1.244	1.250	1.579
	GPRS 850	0.373	0.329	0.335	0.702	0.708	1.037
	GPRS 1900	0.696	0.329	0.335	1.025	1.031	1.360
	UMTS 850	0.393	0.329	0.335	0.722	0.728	1.057
	UMTS 1750	0.884	0.329	0.335	1.213	1.219	1.548
Llotopot	UMTS 1900	1.103	0.329	0.335	1.432	1.438	See Table Below
Hotspot SAR	LTE Band 12	0.430	0.329	0.335	0.759	0.765	1.094
SAIN	LTE Band 13	0.440	0.329	0.335	0.769	0.775	1.104
	LTE Band 5 (Cell)	0.364	0.329	0.335	0.693	0.699	1.028
	LTE Band 26 (Cell)	0.428	0.329	0.335	0.757	0.763	1.092
	LTE Band 66 (AWS)	0.699	0.329	0.335	1.028	1.034	1.363
	LTE Band 25 (PCS)	0.930	0.329	0.335	1.259	1.265	1.594
	LTE Band 30	0.642	0.329	0.335	0.971	0.977	1.306
	LTE Band 7	1.197	0.329	0.335	1.526	1.532	See Table Below
	LTE Band 41	0.514	0.329	0.335	0.843	0.849	1.178

-								_
Simult Tx	ult Tx Configuration		5 1900 (W/kg)	2.4 GHz WLAN Ant 1 SAR (W/kg)	2.4 GHz WLAN Ant 2 SAR (W/kg)		ΣSAR (W/kg))
			1	2	3	1+2	1+3	1+2+3
	Back	0.5	569	0.230	0.335	0.799	0.904	1.134
	Front	0.4	192	0.329*	0.335*	0.821	0.827	1.156
Hotspot SAR	Top		-	0.329	0.335*	0.329	0.335	0.664
Hotspot SAK	Bottom	1.1	103	1	-	1.103	1.103	1.103
	Right		-	1	-	0.000	0.000	0.000
	Left	0.3	238	0.329*	0.335*	0.567	0.573	0.902

Simult Tx Configuration		LTE Band 7 SAR (W/kg)	2.4 GHz WLAN Ant 1 SAR (W/kg)	2.4 GHz WLAN Ant 2 SAR (W/kg)	:	ΣSAR (W/kg)		SPLSR	
		1	2	3	1+2	1+3	1+2+3	1+2	1+3	2+3
	Back	1.186	0.230	0.335	1.416	1.521	See Note 1	0.01	0.01	0.02
	Front	0.514	0.329*	0.335*	0.843	0.849	1.178	N/A	N/A	N/A
Hotspot SAR	Top	-	0.329	0.335*	0.329	0.335	0.664	N/A	N/A	N/A
Hotspot SAK	Bottom	1.197	1		1.197	1.197	1.197	N/A	N/A	N/A
	Right	0.067	-	-	0.067	0.067	0.067	N/A	N/A	N/A
	Left	0.076	0.329*	0.335*	0.405	0.411	0.740	N/A	N/A	N/A

FCC ID: ZNFQ910QM	PCTEST INSIDERAL INC.	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Domo 116 of 120
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 116 of 138

© 2018 PCTEST Engineering Laboratory, Inc.

Table 12-11 Simultaneous Transmission Scenario with 5 GHz WI AN (Hotsnot at 1.0 cm)

	Simultaneous Transmission Scenario with 5 GHz WLAN (Hotspot at 1.0 cm)											
Exposure Condition		Mode		2G/3G/4 SAR (W/	kg)	5 GHz /LAN Ant 1 SAR (W/kg)	5 GHz WLAN A 2 SAR (W/kg)	Ant l	ΣS	SAR (W	V/kg)	
				1		2	3		1+2		1+3	
	EVDC	BC10 (§	§90S)	0.552		0.100	0.823		0.652		1.375	
	EVDO	O BC0 (§	22H)	0.417		0.100	0.823		0.517		1.240	
	Р	CS EVD)	0.915		0.100	0.823		1.015	S	ee Table Below	
	GPRS 850)	0.373		0.100	0.823		0.473		1.196	
	GPRS 1900		0	0.696		0.100	0.823		0.796		1.519	
	UMTS 850)	0.393		0.100	0.823		0.493		1.216	
	U	MTS 175	0	0.884		0.100	0.823		0.984	S	ee Table Below	
Hatanat	U	MTS 190	0	1.103		0.100	0.823		1.203	S	ee Table Below	
Hotspot SAR	LT	E Band 1	12	0.430		0.100	0.823		0.530		1.253	
SAR	LT	E Band 1	13	0.440		0.100	0.823		0.540		1.263	
	LTE	Band 5 (Cell)	0.364		0.100	0.823		0.464		1.187	
	LTE E	3and 26 ((Cell)	0.428		0.100	0.823		0.528		1.251	
	LTE B	and 66 (AWS)	0.699		0.100	0.823		0.799		1.522	
	LTE B	Band 25 (PCS)	0.930		0.100	0.823		1.030		ee Table Below	
	LT	E Band 3	30	0.642		0.100	0.823		0.742		1.465	
	L ⁻	TE Band	7	1.197		0.100	0.823		1.297	S	ee Table Below	
	LT	E Band 4	11	0.514		0.100	0.823		0.614		1.337	
	Simult Tx	Configuration	PCS EVDO SAR (W/kg)	5 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg)		Configuration	UMTS 175 SAR (W/k		Σ SAR (W/kg)		
			1	2	1+2			1	2	1+2		
		Back Front	0.487 0.442	0.823 0.006	1.310 0.448		Back Front	0.479 0.393	0.823 0.006	1.302 0.399		
	Hotspot SAR	Bottom	0.915	0.823*	0.823 0.915	Hotspot SAF	Bottom	0.884	0.823*	0.823 0.884		
		Right Left	0.246	0.190	0.000 0.436		Right Left	0.329	0.190	0.000 0.519		
	Simult Tx	Configuration	UMTS 1900 SAR (W/kg)	5 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg)		Configuration	LTE Band (PCS) SA (W/kg)		Σ SAR (W/kg)		
			1	2	1+2			1	2	1+2		
		Back Front	0.569 0.492	0.823 0.006	1.392 0.498		Back Front	0.598 0.400	0.823 0.006	1.421 0.406		
	Hotspot SAR	Top Bottom	1.103	0.823*	0.823 1.103	Hotspot SAF	Ton	0.930	0.823*	0.823 0.930		
		Right Left	0.238	0.190	0.000		Right Left	0.263	0.190	0.000 0.453		
		LGIL	Simult Tx	Configuration	LTE Band SAR (W/I			SPLSR		9.700		
					1	2	1+2	1+2				
				Back Front	1.186 0.514	0.823 0.006	See Note 1 0.520	0.03 N/A	=			
			Hotspot SAR	Top Bottom	1.197	0.823*	0.823 1.197	N/A N/A	7			
				Right Left	0.067 0.076	0.190	0.067 0.266	N/A N/A				
				Leit	0.076	0.190	0.200	IWA	_			

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 447 of 420
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 117 of 138

Table 12-12 Simultaneous Transmission Scenario with 5 GHz WLAN MIMO (Hotspot at 1.0 cm)

1			<u>ransmissi</u>						_		
	Expo Cond		N	⁄lode		2G/3G/4G SAR (W/kg		AN SAR	ΣSAR (V	V/kg)	
						1	2	2	1+2		
			EVDO E	C10 (§9	0S)	0.552	0.8	59	1.41	1	
			EVDO E	3C0 (§22	2H)	0.417	0.8	59	1.276	3	
			PCS	S EVDO		0.915	0.8	59	See Table	Below	
			GP	RS 850		0.373	0.8	59	1.232	2	
			GPF	RS 1900		0.696	0.8	59	1.555	5	
			UM	TS 850		0.393	0.8	59	1.252	2	
Ì			UM	ΓS 1750		0.884	0.8	59	See Table	Below	
	11-4-		UM	ΓS 1900		1.103	0.8	59	See Table	Below	
	Hots SA	-	LTE	Band 12		0.430	0.8	59	1.289	9	
	SP	NIX.	LTE	Band 13		0.440	0.8	59	1.299)	
			LTE Ba	nd 5 (Ce	ell)	0.364	0.8	59	1.223	3	
			LTE Ba	nd 26 (C	ell)	0.428	0.8	59	1.287	7	
			LTE Ban	d 66 (AV	VS)	0.699	0.8	59	1.558		
			LTE Bar	nd 25 (PC	CS)	0.930	0.859		See Table	Below	
			LTE	Band 30	·	0.642	0.8	59	1.501	1	
			LTE	Band 7		1.197	0.8	59	See Table	Below	
			LTE	Band 41		0.514	0.8	59	1.373	3	
Simul	ılt Tx	Configurat	PCS EVDO SAR (W/kg)	5 GHz WLAN MIMO SAR (W/kg)	Σ SAR (W/kg)		Configuration	UMTS 17 SAR (W/F		Σ SAR (W/kg)	
			1	2	1+2			1	2	1+2	
		Back Front	0.487 0.442	0.859 0.015	1.346 0.457		Back Front	0.479	0.859 0.015	1.338 0.408	
Hotspot	ot SAR	Top	-	0.859*	0.859	Hotspot SAR	Top	-	0.859*	0.859	
		Bottom Right	0.915	-	0.915	-	Bottom Right	0.884	-	0.884	
		Left	0.246	0.197	0.443		Left	0.329	0.197	0.526	
Simul	ılt Tx	Configurat	UMTS 1900 SAR (W/kg)	5 GHz WLAN MIMO SAR (W/kg)	Σ SAR (W/kg)		Configuration	LTE Band (PCS) SA (W/kg)	AR MIMO SAR	Σ SAR (W/kg)	
			1	2	1+2			1	2	1+2	
		Back Front	0.569 0.492	0.859 0.015	1.428 0.507		Back Front	0.598 0.400	0.859 0.015	1.457 0.415	
Hotspo	of SAP	Top	0.492	0.859*	0.859	Hotspot SAR	Top	-	0.859*	0.415	
Посоро), O/ (()	Bottom Right	1.103	-	1.103 0.000	Поторог отп	Bottom Right	0.930	-	0.930 0.000	
	•	Left	0.238	0.197	0.435		Left	0.263	0.197	0.460	
				Configuration	LTE Band		Σ SAR (W/kg)	SPLSR	2		
			Simult Tx	Configuration							
			Simult Tx		1	2	1+2	1+2			
			Simult Tx	Back	1.186	0.859	See Note 1	0.03			
					1.186 0.514		See Note 1 0.529 0.859	0.03 N/A N/A			
			Simult Tx Hotspot SAR	Back Front	1.186	0.859 0.015	See Note 1 0.529	0.03 N/A			

FCC ID: ZNFQ910QM	PCTEST.	SAR EVALUATION REPORT	<mark>]</mark> LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 440 400
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset		Page 118 of 138

Table 12-13 Simultaneous Transmission Scenario with 2.4 GHz WLAN Ant 1 and 5 GHz WLAN Ant 2 (Hotspot at 1.0 cm)

_									,									_
	Exposur Condition		Mode			/3G/4 R (W/	_	WLA	GHz AN Ant SAR //kg)	WI 2 at	GHz LAN Ar : 14 dB R (W/k	m	Σ SAI					
								1			2		3		1-	+2+3	3	
			EVD	O BC	210	(§90S)	().552	<u>-</u>	0.	329	(0.465		1	.346		
			EVE	00 B	C0 (§22H)	().417	,	0.	329	(0.465		1	.211		_
				PCS	EVE	00	().915	;	0.	329	(0.465	5	See Ta	able E	Below	<u>'</u>
		L		GPR).373	_		329		0.465		1	.167		
				GPR).696	_		329	(0.465			.490		_
				UMT).393			329		0.465			.187		_
		<u> </u>		UMTS).884			329	0.465		-	See Ta			-
	Hotspot	. _		UMTS			_	.103	_		329		0.465	5	See Ta		Below	<u>'</u>
	SAR	`		TE B).430	_		329		0.465			.224		4
				TE B			_).440	_		329		0.465			.234		4
		_				(Cell)).364	_		329		0.465			.158		4
		<u> </u>				(Cell)).428	\rightarrow		329		0.465			.222		4
		L				(AWS)		0.699			329		0.465			.493		4
		-				(PCS)		0.930			329		0.465	۲	See Table Belov		Below	4
		-		TE B).642	_		329		0.465		1.436 See Table Belov		2-1	-
		\vdash		LTE E				.197	_		329		0.465	٤			selow	4
				TE B	sand	41 5 GHz WLA).514		0.	329	(0.465		1	.308	A/L A NI	
Simult Tx	Configuration	CVD	EVDO (W/kg)	2.4 (WLAN SAR (\	Ant 1	Ant 2 at 1 dBm SAR (W/kg)	4 Σ S	SAR /kg)	Sim	ult Tx	Configurati	0.0	MTS 1750 AR (W/kg)	WLA	4 GHz N Ant 1 (W/kg)	5 GHz N Ant 2 dBm (W/I	at 14 SAR	Σ SAR (W/kg)
	<u> </u>		1	2		3		2+3					1		2	3		1+2+3
	Back Front		.487 .442	0.2	29*	0.465* 0.465*	1.3	182 2 36			Back Front		0.479 0.393	0.	.329*	0.4	65*	1.174 1.187
Hotspot SA	Bottom	0.	.915	0.3	29	0.465*	0.9	794 915	Hotsp	ot SAR	Top Bottom		0.884	0	.329	0.46	55*	0.794
	Right Left	0.:	246	0.32	29*	0.107	0.0	000 682			Right Left		0.329	0.	.329*	0.1		0.000 0.765
Simult Tx	Configuration	CVD	S 1900 (W/kg)	2.4 (WLAN SAR (\	Ant 1	5 GHz WLA Ant 2 at 1 dBm SAR (W/kg)	4 Σ S	SAR /kg)	Sim	ult Tx	Configuration	(P	E Band 25 CS) SAR (W/kg)	WLA	4 GHz N Ant 1 (W/kg)	5 GHz V Ant 2 dBm (W/I	at 14 SAR	Σ SAR (W/kg)
			1	2		3		2+3					1		2	3		1+2+3
	Back Front		569 492	0.2		0.465 0.465*		264 2 86	l		Back Front		0.598 0.400		.329*	0.4		1.293 1.194
Hotspot SA	Bottom	1.	103	0.3		0.465*	1.1	794 103	Hotsp	ot SAR	Top Bottom		0.930	0	.329	0.46		0.794
	Right Left	0.:	238	0.32		0.107		000 674			Right Left		0.263	0.	.329*	0.1		0.000 0.699
	Sim	nult Tx	Configu	uration		WL	.4 GHz AN Ant 1 R (W/kg)	Ant 2 dBm	WLAN 2 at 14 SAR /kg)	Σ S (W.			SPL	.SR				
			_	-1.		1	2		3		2+3	1+2	1+		2+			
			Ba Fro	ont		514	0.230	0.4	465 165*	See N	808	0.01 N/A	0.0 N/	'A	0.0 N/	Ά		
	Hotsp	oot SAR	Bot	tom		197	0.329		165* -	1.1	97	N/A N/A	N/ N/	/A	N/ N/	Ά		
_			Le		0.0		0.329*	0.	107	0.0	512	N/A N/A	N/	'A	N/ N/	Ά		_
or som	a simulta	aneo	nie tr	aner	nico	ion sca	nario	N 20	ith 2	4 G	H> \//	ΔNI	and 5	GH	17 \V/I	ΔN	$S\Delta I$	2 values

Note: For some simultaneous transmission scenarios with 2.4 GHz WLAN and 5 GHz WLAN, SAR values at the maximum output power level were used since they were conservative.

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 440 of 420
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 119 of 138

© 2018 PCTEST Engineering Laboratory, Inc.

Table 12-14 Simultaneous Transmission Scenario with Bluetooth (Hotspot at 1.0 cm)

Exposure Condition	Mode	2G/3G/4G	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
		1) S	1+2
	EVDO BC10 (§90S)	0.552	0.031	0.583
	EVDO BC0 (§22H)	0.417	0.031	0.448
	PCS EVDO	0.915	0.031	0.946
	GPRS 850	0.373	0.031	0.404
	GPRS 1900	0.696	0.031	0.727
	UMTS 850	0.393	0.031	0.424
	UMTS 1750	0.884	0.031	0.915
Hotopot	UMTS 1900	1.103	0.031	1.134
Hotspot SAR	LTE Band 12	0.430	0.031	0.461
OAK	LTE Band 13	0.440	0.031	0.471
	LTE Band 5 (Cell)	0.364	0.031	0.395
	LTE Band 26 (Cell)	0.428	0.031	0.459
	LTE Band 66 (AWS)	0.699	0.031	0.730
	LTE Band 25 (PCS)	0.930	0.031	0.961
	LTE Band 30	0.642	0.031	0.673
	LTE Band 7	1.197	0.031	1.228
	LTE Band 41	0.514	0.031	0.545

Notes:

1. No evaluation was performed to determine the aggregate 1g SAR for these configurations as the SPLS ratio between the antenna pairs was not greater than 0.04 per FCC KDB 447498 D01v06. See Section 12.7 for detailed SPLS ratio analysis.

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 420 of 420
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 120 of 138

12.6 Phablet Simultaneous Transmission Analysis

Per FCC KDB Publication 941225 D06v02r01, the devices edges with antennas more than 2.5 cm from edge are not required to be evaluated for SAR ("-").

(*) For test positions that were not required to be evaluated for WLAN SAR per FCC KDB publication 248227, the worst case WLAN SAR result for applicable exposure conditions was used for simultaneous transmission analysis.

For SAR summation, the highest reported SAR across all test distances was used as the most conservative evaluation for simultaneous transmission analysis for each device edge.

Per FCC KDB Publication 648474 D04, Phablet SAR tests were not required if wireless router 1g SAR (scaled to the maximum output power, including tolerance) < 1.2 W/kg. Therefore, no further analysis beyond the tables included in this section was required to determine that possible simultaneous transmission scenarios would not exceed the SAR limit.

Table 12-15
Simultaneous Transmission Scenario with 5 GHz WLAN (Phablet)

		31	multane	ous II	alisi	11153	SIOII	JUE	Haric	, vv	ilii J	GIIZ	VVLAIV	(Filable	= ()	
Exposu Conditi			Mode	e		G/3G, IR (W	/4G	Ant	z WLA 1 SAR V/kg)		GHz Ant 2 (W/	SAR	1	ΣSAR	(W/kg)	
						1			2		3		1	+2	1+3	
			PCS EV	/DO		2.93	8	0	.354		2.5	43	3.	292	See Table	e Below
			UMTS 1	750		3.19	3	0	.354	1	2.5	43	3.	547	See Table	e Below
Phablet \$	SAR		UMTS 1			2.50			.354	+	2.5			862	See Table	e Below
	, ·	- 1-	TE Band 66			2.98			.354	+	2.5			337	See Table	
t	F					2.68				+	2.5					
			TE Band 2	0 (100)		2.08	U	U	.354		2.5	43	3.	034	See Table	e below
Simult Tx	Configu	ration	PCS EVDO SAR (W/kg)	5 GHz WLAN Ant 2 SAR (W/kg)	ΣS (W/		SPL	SR	Simu	lt Tx	Config	uration	UMTS 1750 SAR (W/kg)	5 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg)	SPLSR
			1	2	1+	-2	1+	2					1	2	1+2	1+2
	Bac		1.862	2.543	See N		0.0					ack	1.591	2.543	See Note 1	0.07
	Fro		1.315	0.081 2.543*	1.3 2.5		N/		ŀ			ont op	1.403	0.081 2.543*	1.484 2.543	N/A N/A
Phablet SAR	Botto		2.938	2.543	2.5		N/		Phable	Phablet SAR		tom	3.193	2.543	2.543 3.193	N/A N/A
	Rigi		-	-	0.0		N/					ght	-	-	-	N/A
	Lef	ft	0.556	0.444	1.0	00	N/	A			L	eft	0.882	0.444	1.326	N/A
Simult Tx	Configu	ration	UMTS 1900 SAR (W/kg)	5 GHz WLAN Ant 2 SAR (W/kg)	ΣS (W/		SPL	SR	Simu	lt Tx	Config	uration	LTE Band 66 (AWS) SAR (W/kg)	5 GHz WLAN Ant 2 SAR (W/kg)	Σ SAR (W/kg)	SPLSR
			1	2	1+	-2	1+	2					1	2	1+2	1+2
	Bac	ck	1.944	2.543	See N	lote 1	0.0)8			Ва	ack	1.751	2.543	See Note 1	0.07
	Fro		1.526	0.081	1.6		N/		1			ont	1.365	0.081	1.446	N/A
Phablet SAR	Top Botto		2.508	2.543*	2.5 2.5		N/		Phable	t SAR		op tom	2.983	2.543*	2.543 2.983	N/A N/A
	Rig		2.506		0.0		N/		ŀ			ght	2.903	-	2.903	N/A
	Lef		0.765	0.444	1.2		N/					eft	0.647	0.444	1.091	N/A
				Sir	nult Tx	Confi	guration	(PCS	and 25) SAR /kg)	Ant 2 (W	WLAN SAR /kg)	Σ SA (W/k	sg)			
							ack		343		543	3.88				
							ront	1.4	491	0.0		1.57				
	Phab			olet SAR		Top ottom	21	680	2.5	43*	2.54					
							ight		-		-	0.00				
							.eft	0.	730	0.4	144	1.17				

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 424 of 429
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 121 of 138

Table 12-16
Simultaneous Transmission Scenario with 5 GHz WLAN MIMO (Phablet)

Simult Tx	Configuration	PCS EVDO SAR (W/kg)	5 GHz WLAN MIMO SAR (W/kg)	Σ SAR (W/kg)	SPLSR	Simult Tx	Configuration	UMTS 1750 SAR (W/kg)	5 GHz WLAN MIMO SAR (W/kg)	Σ SAR (W/kg)	SPLSR
		1	2	1+2	1+2			1	2	1+2	1+2
	Back	1.862	2.752	See Note 1	0.09		Back	1.591	2.752	See Note 1	0.08
	Front	1.315	0.285	1.600	N/A		Front	1.403	0.285	1.688	N/A
Phablet SAR	Тор		2.752*	2.752	N/A	Phablet SAR	Тор	-	2.752*	2.752	N/A
Priablet SAR	Bottom	2.938	-	2.938	N/A	Phablet SAR	Bottom	3.193	-	3.193	N/A
	Right		-	0.000	N/A		Right	-	-	-	N/A
	Left	0.556	0.453	1.009	N/A		Left	0.882	0.453	1.335	N/A
Simult Tx	Configuration	UMTS 1900 SAR (W/kg)	5 GHz WLAN MIMO SAR (W/kg)	Σ SAR (W/kg)	SPLSR	Simult Tx	Configuration	LTE Band 66 (AWS) SAR (W/kg)	5 GHz WLAN MIMO SAR (W/kg)	Σ SAR (W/kg)	SPLSR
		1	2	1+2	1+2			1	2	1+2	1+2
	Back	1.944	2.752	See Note 1	0.09		Back	1.751	2.752	See Note 1	0.08
	Front	1.526	0.285	1.811	N/A		Front	1.365	0.285	1.650	N/A
Phablet SAR	Top	ı	2.752*	2.752	N/A	Phablet SAR	Top	-	2.752*	2.752	N/A
Fliablet SAN	Bottom	2.508	-	2.508	N/A	FIIADIEL SAN	Bottom	2.983	-	2.983	N/A
	Right	-	-	-	N/A		Right	-	-	-	N/A
	Left	0.765	0.453	1.218	N/A		Left	0.647	0.453	1.100	N/A
			Simult Tx	Configuration	LTE Band 25 (PCS) SAR (W/kg)	5 GHz WLAN MIMO SAR (W/kg)	Σ SAR (W/kg)	SPLSR			
					1	2	1+2	1+2			
				Back	1.343	2.752	See Note 1	0.07			
				Front	1.491	0.285	1.776	N/A			
			Phablet SAR	Top	-	2.752*	2.752	N/A			
			I Habiet SAR	Bottom	2.680	-	2.680	N/A			
			ĺ	Right	-	-	0.000	N/A			
				Left	0.730	0.453	1.183	N/A			

Notes:

1. No evaluation was performed to determine the aggregate 10g SAR for these configurations as the SPLS ratio between the antenna pairs was not greater than 0.10 per FCC KDB 447498 D01v06. See Section 12.7 for detailed SPLS ratio analysis.

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 400 -f 400
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset		Page 122 of 138

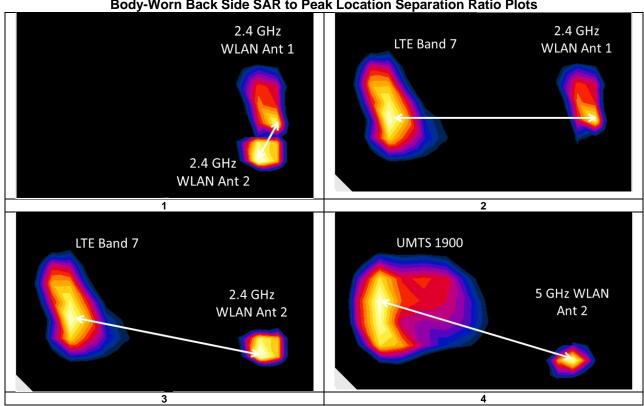
12.7 SPLSR Evaluation and Analysis

Per FCC KDB Publication 447498 D01v06, when the sum of the standalone transmitters is more than 1.6 W/kg for 1g and 4 W/kg for 10g, the SAR sum to peak locations can be analyzed to determine SAR distribution overlaps. When the SAR peak to location ratio (shown below) for each pair of antennas is ≤ 0.04 for 1g and ≤ 0.10 for 10g, simultaneous SAR evaluation is not required. The distance between the transmitters was calculated using the following formula.

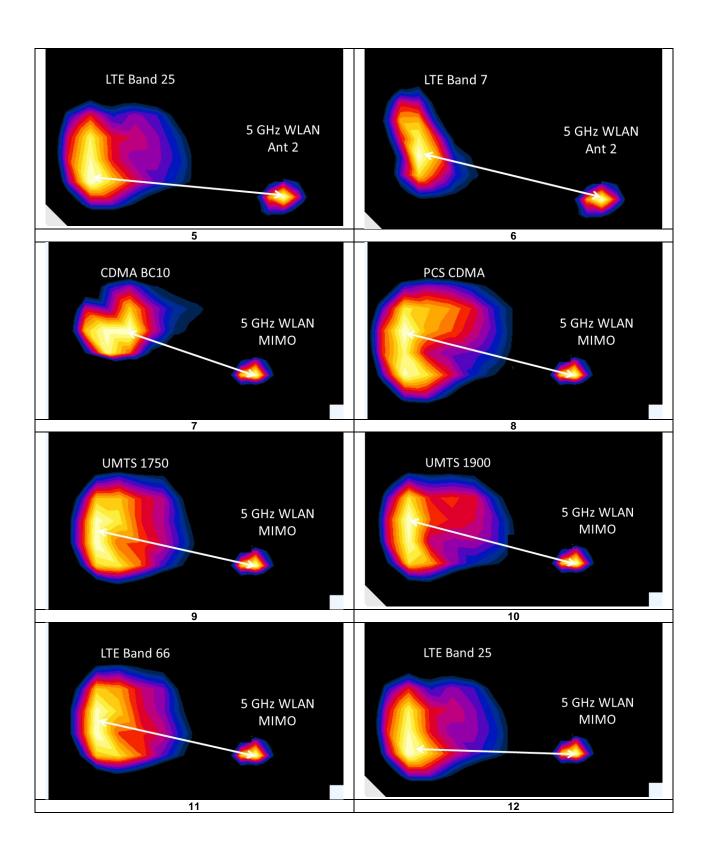
$$\label{eq:DistanceTx1-Tx2} \begin{split} \text{DistanceTx1-Tx2} &= \text{Ri} = \sqrt{\left(x_1 - x_2\right)^2 + \left(y_1 - y_2\right)^2} \\ \text{SPLS Ratio} &= \frac{\left(SAR_1 + SAR_2\right)^{1.5}}{R_i} \end{split}$$

12.7.1 Body-Worn Back Side SPLSR Evaluation and Analysis

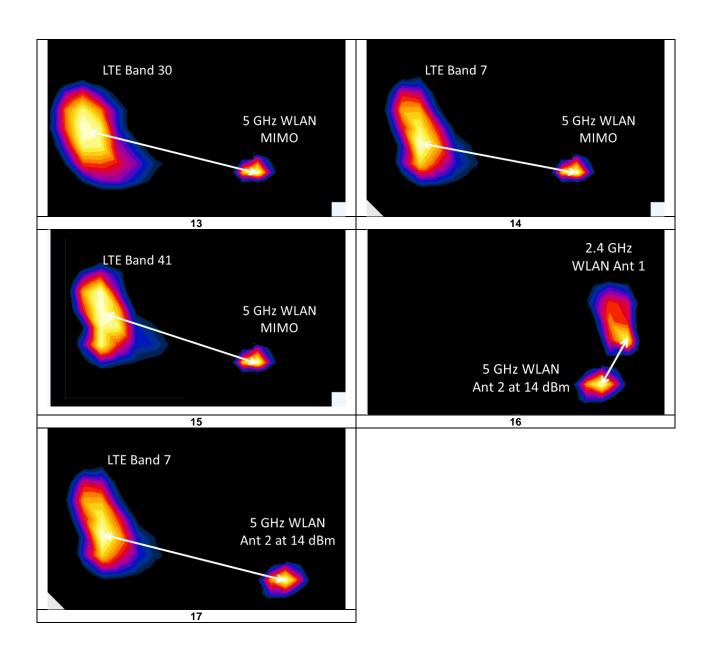
Table 12-17
Peak SAR Locations for Body-Worn Back Side


reak SAN Locations for Body-Worll Back Side				
Mode/Band	x (mm)	y (mm)		
2.4 GHz WLAN Ant 1	-14.20	69.60		
2.4 GHz WLAN Ant 2	6.20	63.60		
5 GHz WLAN Ant 2	11.00	43.00		
5 GHz WLAN Ant 2 at 14 dBm	12.00	48.00		
5 GHz WLAN MIMO	12.00	42.00		
CDMA BC10	-17.50	-67.50		
PCS CDMA	-15.50	-72.00		
UMTS 1750	-19.50	-72.00		
UMTS 1900	-23.50	-73.50		
LTE Band 66 (AWS)	-5.00	-73.50		
LTE Band 25 (PCS)	0.50	-73.50		
LTE Band 30	-20.20	-73.20		
LTE Band 7	-14.20	-66.60		
LTE Band 41	-9.70	-62.20		

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 400 -f 400
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 123 of 138


Table 12-18
Body-Worn Back Side SAR to Peak Location Separation Ratio Calculations

Body-World Back Olde OAK to I cak Education departation Ratio Galediations							
Anten	na Pair		one SAR /kg)	Standalone SAR Sum (W/kg)	Peak SAR Separation Distance (mm)	SPLS Ratio	Plot Number
Ant "a"	Ant "b"	а	b	a+b	D _{a-b}	(a+b) ^{1.5} /D _{a-b}	
2.4 GHz WLAN Ant 1	2.4 GHz WLAN Ant 2	0.23	0.335	0.565	21.26	0.02	1
2.4 GHz WLAN Ant 1	LTE Band 7	0.23	1.186	1.416	136.20	0.01	2
2.4 GHz WLAN Ant 2	LTE Band 7	0.335	1.186	1.521	131.79	0.01	3
5 GHz WLAN Ant 2	UMTS 1900	1.058	0.569	1.627	121.50	0.02	4
5 GHz WLAN Ant 2	LTE Band 25 (PCS)	1.058	0.598	1.656	116.97	0.02	5
5 GHz WLAN Ant 2	LTE Band 7	1.058	1.186	2.244	112.46	0.03	6
5 GHz WLAN MIMO	CDMA BC10	1.146	0.459	1.605	113.40	0.02	7
5 GHz WLAN MIMO	PCS CDMA	1.146	0.53	1.676	117.27	0.02	8
5 GHz WLAN MIMO	UMTS 1750	1.146	0.479	1.625	118.27	0.02	9
5 GHz WLAN MIMO	UMTS 1900	1.146	0.569	1.715	120.83	0.02	10
5 GHz WLAN MIMO	LTE Band 66 (AWS)	1.146	0.457	1.603	116.74	0.02	11
5 GHz WLAN MIMO	LTE Band 25 (PCS)	1.146	0.598	1.744	116.07	0.02	12
5 GHz WLAN MIMO	LTE Band 30	1.146	0.505	1.651	119.62	0.02	13
5 GHz WLAN MIMO	LTE Band 7	1.146	1.186	2.332	111.72	0.03	14
5 GHz WLAN MIMO	LTE Band 41	1.146	0.514	1.660	106.44	0.02	15
2.4 GHz WLAN Ant 1	5 GHz WLAN Ant 2 at 14 dBm	0.23	0.537	0.767	33.96	0.02	16
5 GHz WLAN Ant 2 at 14 dBm	LTE Band 7	0.537	1.186	1.723	117.56	0.02	17


Table 12-19
Body-Worn Back Side SAR to Peak Location Separation Ratio Plots

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT (b)	LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 404 -f 400
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset		Page 124 of 138

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	L G	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 405 400
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset		Page 125 of 138

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT] LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 400 400
1M1806290137-01-R3.ZNF	NF 07/08/18 - 07/23/18 Portable Handset			Page 126 of 138

12.7.1 Hotspot Back Side SPLSR Evaluation and Analysis

Table 12-20
Peak SAR Locations for Hotspot Back Side

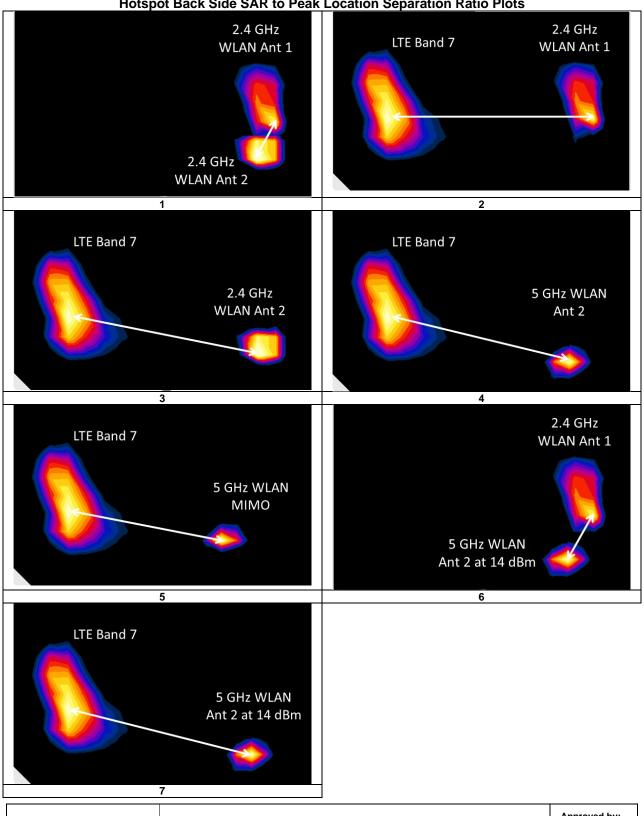

T CUIT OATT ECOULIONS FOI TIO	topot Baoi	Olac
Mode/Band	x (mm)	y (mm)
2.4 GHz WLAN Ant 1	-14.20	69.60
2.4 GHz WLAN Ant 2	6.20	63.60
5 GHz WLAN Ant 2	11.00	41.00
5 GHz WLAN Ant 2 at 14 dBm	13.00	51.50
5 GHz WLAN MIMO	12.00	42.00
LTE Band 7	-14.20	-66.60

Table 12-21
Hotspot Back Side SAR to Peak Location Separation Ratio Calculations

Antenna Pair			one SAR /kg)	Standalone SAR Sum (W/kg)	Peak SAR Separation Distance (mm)	SPLS Ratio	Plot Number
Ant "a"	Ant "b"	a	b	a+b	D _{a-b}	(a+b) ^{1.5} /D _{a-b}	
2.4 GHz WLAN Ant 1	2.4 GHz WLAN Ant 2	0.23	0.335	0.565	21.26	0.02	1
2.4 GHz WLAN Ant 1	LTE Band 7	0.23	1.186	1.416	136.20	0.01	2
2.4 GHz WLAN Ant 2	LTE Band 7	0.335	1.186	1.521	131.79	0.01	3
5 GHz WLAN Ant 2	LTE Band 7	0.823	1.186	2.009	110.51	0.03	4
5 GHz WLAN MIMO	LTE Band 7	0.859	1.186	2.045	111.72	0.03	5
2.4 GHz WLAN Ant 1	5 GHz WLAN Ant 2 at 14 dBm	0.23 0.465		0.695	32.67	0.02	6
5 GHz WLAN Ant 2 at 14 dBm	LTE Band 7	0.465	1.186	1.651	121.19	0.02	7

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	ument S/N: Test Dates: DUT Type:		Dono 127 of 120
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 127 of 138

Table 12-22 Hotspot Back Side SAR to Peak Location Separation Ratio Plots

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 120 of 120
1M1806290137-01-R3.ZNF	806290137-01-R3.ZNF 07/08/18 - 07/23/18 Portable Handset		Page 128 of 138

12.7.1 Phablet Back Side SPLSR Evaluation and Analysis

Table 12-23
Phablet Peak SAR Locations for Body Back Side

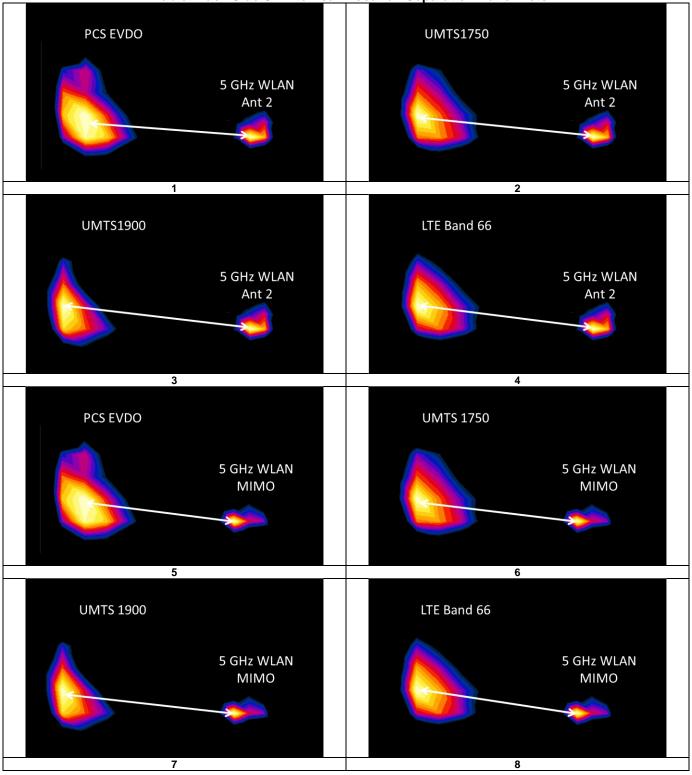
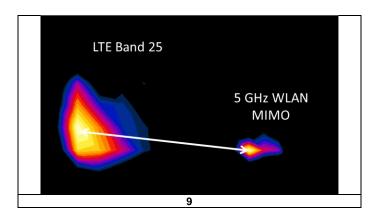

Mode/Band	x (mm)	y (mm)
5 GHz WLAN Ant 2	12.00	49.00
5 GHz WLAN MIMO	13.00	41.00
PCS EVDO	-9.00	-66.50
UMTS 1750	-8.50	-70.50
UMTS 1900	-5.50	-72.00
LTE Band 66 (AWS)	-10.00	-70.50
LTE Band 25 (PCS)	-2.50	-70.50

Table 12-24
Phablet Back Side SAR to Peak Location Separation Ratio Calculations


Antenna Pair			one SAR ′kg)	Standalone SAR Sum (W/kg)	Peak SAR Separation Distance (mm)	SPLS Ratio	Plot Number
Ant "a"	Ant "b"	a	b	a+b	D_{a-b}	$(a+b)^{1.5}/D_{a-b}$	
5 GHz WLAN Ant 2	PCS EVDO	2.543	1.862	4.405	117.39	0.08	1
5 GHz WLAN Ant 2	UMTS 1750	2.543	1.591	4.134	121.25	0.07	2
5 GHz WLAN Ant 2	UMTS 1900	2.543	1.944	4.487	122.26	0.08	3
5 GHz WLAN Ant 2	LTE Band 66 (AWS)	2.543	1.751	4.294	121.51	0.07	4
5 GHz WLAN MIMO	PCS EVDO	2.752	1.862	4.614	109.73	0.09	5
5 GHz WLAN MIMO	UMTS 1750	2.752	1.591	4.343	113.55	0.08	6
5 GHz WLAN MIMO	UMTS 1900	2.752	1.944	4.696	114.50	0.09	7
5 GHz WLAN MIMO	LTE Band 66 (AWS)	2.752 1.751		4.503	113.85	0.08	8
5 GHz WLAN MIMO	LTE Band 25 (PCS)	2.752	1.343	4.095	112.57	0.07	9

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 400 -f 400
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 129 of 138

Table 12-25 Phablet Back Side SAR to Peak Location Separation Ratio Plots

FCC ID: ZNFQ910QM	ID: ZNFQ910QM		(1) LG	Approved by: Quality Manager	
Document S/N:	nent S/N: Test Dates: DUT Type:			D 400 -f 400	
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset		Page 130 of 138	

12.8 Simultaneous Transmission Conclusion

The above numerical summed SAR results and SPLSR analysis are sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v06 and IEEE 1528- 2013 Section 6.3.4.1.

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 424 of 420
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 131 of 138

13 SAR MEASUREMENT VARIABILITY

13.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01r04, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.
- 2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg
- 5) When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

Table 13-1
Body SAR Measurement Variability Results

	Body SAK Measurement Variability Kesuits													
	BODY VARIABILITY RESULTS													
Band	FREQUENCY		Mode	Service	Data Rate (Mbps)	Side S		Measured SAR (1g)	1st Repeated SAR (1g)	Ratio	2nd Repeated Ratio SAR (1g)	Ratio	3rd Repeated SAR (1g)	Ratio
	MHz				(W/kg)	(W/kg)		(W/kg)		(W/kg)	<u> </u>			
1750	1752.60	1513	UMTS 1750	RMC	N/A	bottom	10 mm	0.868	0.847	1.02	N/A	N/A	N/A	N/A
1900	1907.60	9538	UMTS 1900	RMC	N/A	bottom	10 mm	1.080	1.030	1.05	N/A	N/A	N/A	N/A
2450	2510.00	20850	LTE Band 7, 20 MHz Bandwidth	QPSK, 1 RB, 0 RB Offset	N/A	bottom	10 mm	1.100	1.090	1.01	N/A	N/A	N/A	N/A
2600	2535.00	21100	LTE Band 7, 20 MHz Bandwidth	QPSK, 1 RB, 0 RB Offset	N/A	Bottom	10 mm	1.170	1.160	1.01	N/A	N/A	N/A	N/A
5250	5280.00	56	802.11n, 20 MHz Bandwidth	OFDM , MIMO	13	back	10 mm	1.120	1.120	1.00	N/A	N/A	N/A	N/A
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT						Body							
	Spatial Peak									1.6 W/kg	(mW/g)			
		U	ncontrolled Exposure/General Pop	oulation					а	veraged o	ver 1 gram			

FCC ID: ZNFQ910QM	PCTEST.	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 400 -f 400
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 132 of 138

Table 13-2 Phablet SAR Measurement Variability Results

	Thablet OAK measurement variability Kesuits													
	PHABLET VARIABILITY RESULTS													
Band		NCY	Mode	Service Data Rate (Mbps)	Side	Spacing	Measured SAR (10g)	1st Repeated SAR (10g)	Ratio	2nd Repeated SAR (10g)	Ratio	3rd Repeated SAR (10g)	Ratio	
		Ch.			(,,			(W/kg)	(W/kg)		(W/kg)		(W/kg)	
1750	1752.60	1513	UMTS 1750	RMC	N/A	bottom	0 mm	3.130	3.070	1.02	N/A	N/A	N/A	N/A
1900	1908.75	1175	PCS CDMA	EVDO Rev. 0	N/A	bottom	0 mm	2.780	2.730	1.02	N/A	N/A	N/A	N/A
5250	5280.00	56	802.11n, 20 MHz Bandwidth	OFDM, MIMO	13	back	0 mm	2.690	2.530	1.06	N/A	N/A	N/A	N/A
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT									Pha	blet			
	Spatial Peak									4.0 W/kg	(mW/g)			
		U	ncontrolled Exposure/General Pop	oulation					ave	eraged over	er 10 grams			

13.2 Measurement Uncertainty

The measured SAR was <1.5 W/kg for 1g and <3.75 W/kg for 10g for all frequency bands. Therefore, per KDB Publication 865664 D01v01r04, the extended measurement uncertainty analysis per IEEE 1528-2013 was not required.

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dogg 422 of 420	
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 133 of 138	

14 EQUIPMENT LIST

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8594A	(9kHz-2.9GHz) Spectrum Analyzer	N/A	N/A	N/A	3051A00187
Agilent	8753ES	S-Parameter Vector Network Analyzer	8/17/2017	Annual	8/17/2018	MY40003841
Agilent	8753ES	S-Parameter Network Analyzer	2/8/2018	Annual	2/8/2019	US39170122
Agilent	E4438C	ESG Vector Signal Generator	4/19/2018	Annual	4/19/2019	MY47270002
Agilent	E5515C	8960 Series 10 Wireless Communications Test Set	11/15/2017	Annual	11/15/2018	GB42230325
Agilent	E5515C	Wireless Communications Test Set	1/24/2018	Annual	1/24/2019	GB44400860
Agilent	N4010A	Wireless Connectivity Test Set	N/A	N/A	N/A	GB44450273
Agilent	N5182A	MXG Vector Signal Generator	4/18/2018	Annual	4/18/2019	MY47420800
Agilent	N9020A	MXA Signal Analyzer	1/24/2018	Annual	1/24/2019	US46470561
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433978
Anritsu	MA24106A	USB Power Sensor	6/5/2018	Annual	6/5/2019	1244515
Anritsu	MA24106A	USB Power Sensor	6/5/2018	Annual	6/5/2019	1248508
Anritsu	MA2411B	Pulse Power Sensor	3/2/2018	Annual	3/2/2019	1207364
Anritsu	MA2411B	Pulse Power Sensor	3/2/2018	Annual	3/2/2019	1339018
Anritsu	ML2496A	Power Meter	6/19/2018	Annual	6/19/2019	1306009
Anritsu	MT8820C	Radio Communication Analyzer	1/5/2018	Annual	1/5/2019	6201144418
Control Company	4040	Therm./ Clock/ Humidity Monitor	1/8/2018	Annual	1/8/2019	160473909
Control Company	4352	Ultra Long Stem Thermometer	5/2/2017	Biennial	5/2/2019	170330156
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
MCL	BW-N6W5+	6dB Attenuator	CBT	N/A	CBT	1139
MiniCircuits	SLP-2400+	Low Pass Filter	CBT	N/A	CBT	R8979500903
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-1200+	Low Pass Filter DC to 1000 MHz	CBT	N/A	CBT	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
Mitutoyo	CD-6"CSX	Digital Caliper	4/18/2018	Biennial	4/18/2020	13264165
Narda	4014C-6	4 - 8 GHz SMA 6 dB Directional Coupler	CBT	N/A	CBT	N/A
Narda	BW-S3W2	Attenuator (3dB)	CBT	N/A	CBT	120
Pastemack	NC-100 PE2209-10	Torque Wrench	4/18/2018 CBT	Annual N/A	4/18/2019 CBT	N/A N/A
Pasternack Rohde & Schwarz	CMU200	Bidirectional Coupler Base Station Simulator	5/18/2018	Annual	5/18/2019	109892
	CMW500	Radio Communication Tester	8/2/2017	Annual	8/2/2018	116743
Rohde & Schwarz	CMW500		4/5/2018		4/5/2019	
Rohde & Schwarz SPEAG	DAK-3.5	Radio Communication Tester Dielectric Assessment Kit	9/12/2017	Annual Annual	9/12/2018	128633 1091
	DAK-3.5 D750V3					
SPEAG		750 MHz SAR Dipole	7/13/2016	Triennial	7/13/2019	1161
SPEAG	D835V2	835 MHz SAR Dipole	7/13/2016	Triennial	7/13/2019	4d047
SPEAG	D1750V2	1750 MHz SAR Dipole	7/14/2016	Triennial	7/14/2019	1150
SPEAG	D1900V2	1900 MHz SAR Dipole	2/7/2018	Annual	2/7/2019	5d148
SPEAG	D1900V2	1900 MHz SAR Dipole	7/8/2016	Triennial	7/8/2019	5d080
SPEAG	D2300V2	2300 MHz SAR Dipole	2/7/2018	Annual	2/7/2019	1008
SPEAG	D2450V2	2450 MHz SAR Dipole	9/11/2017	Annual	9/11/2018	797
SPEAG	D2450V2	2450 MHz SAR Dipole	8/17/2017	Biennial	8/17/2019	719
SPEAG	D2600V2	2600 MHz SAR Dipole	4/11/2018	Annual	4/11/2019	1004
SPEAG	D5GHzV2	5 GHz SAR Dipole	9/21/2016	Biennial	9/21/2018	1191
SPEAG	D750V3	750 MHz SAR Dipole	1/15/2018	Annual	1/15/2019	1003
SPEAG	D835V2	835 MHz SAR Dipole	7/11/2017	Biennial	7/11/2019	4d133
SPEAG	D1765V2	1765 MHz SAR Dipole	5/23/2018	Annual	5/23/2019	1008
SPEAG	D1900V2	1900 MHz SAR Dipole	7/11/2017	Biennial	7/11/2019	5d149
SPEAG	D2300V2	2300 MHz SAR Dipole	7/25/2016	Biennial	7/25/2018	1073
SPEAG	D2600V2	2600 MHz SAR Dipole	9/13/2016	Biennial	9/13/2018	1071
SPEAG	D5GHzV2	5 GHz SAR Dipole	8/15/2017	Annual	8/15/2018	1237
SPEAG	ES3DV3	SAR Probe	2/13/2018	Annual	2/13/2019	3213
SPEAG	EX3DV4	SAR Probe	6/25/2018	Annual	6/25/2019	7409
SPEAG	ES3DV3	SAR Probe	8/14/2017	Annual	8/14/2018	3332
SPEAG	EX3DV4	SAR Probe	5/22/2018	Annual	5/22/2019	7406
SPEAG	ES3DV3	SAR Probe	3/27/2018	Annual	3/27/2019	3347
SPEAG	ES3DV3	SAR Probe	3/13/2018	Annual	3/13/2019	3319
SPEAG	EX3DV4	SAR Probe	4/18/2018	Annual	4/18/2019	7357
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/9/2018	Annual	2/9/2019	1272
SPEAG	DAE4	Dasy Data Acquisition Electronics	6/18/2018	Annual	6/18/2019	1334
SPEAG	DAE4	Dasy Data Acquisition Electronics	8/9/2017	Annual	8/9/2018	1323
SPEAG	DAE4	Dasy Data Acquisition Electronics	5/22/2018	Annual	5/22/2019	859
SPEAG	DAE4	Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics	11/9/2017	Annual	11/9/2018	1450
SPEAG						
CDEAC	DAE4	Dacy Data Acquisition Floatronics	2/7/2010	Annual	2/7/2010	1200
SPEAG SPEAG	DAE4 DAE4	Dasy Data Acquisition Electronics Dasy Data Acquisition Electronics	3/7/2018 4/11/2018	Annual Annual	3/7/2019 4/11/2019	1368 1407

Note:

- 1. Each equipment was used solely within each calibration period.
- 2. CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dogg 124 of 120	
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 134 of 138	

© 2018 PCTEST Engineering Laboratory, Inc.

a	С	d	e=	f	g	h =	i =	k
-			f(d,k)		0			
			I(a,k)			c x f/e	c x g/e	
Unacoda trata Carria a rest	Tol.	Prob.		Ci	Ci	1gm	10gms	
Uncertainty Component	(± %)	Dist.	Div.	1gm	10 gms	ui	ui	Vi
Managurom ant System		<u> </u>				(± %)	(± %)	
Measurement System	ı		ı	ı			ı	
Probe Calibration	6.55	N	1	1.0	1.0	6.6	6.6	× ×
Axial Isotropy	0.25	N	1	0.7	0.7	0.2	0.2	×
Hemishperical Isotropy	1.3	N	1	0.7	0.7	0.9	0.9	× ×
Boundary Effect	2.0	R	1.73	1.0	1.0	1.2	1.2	œ
Linearity	0.3	N	1	1.0	1.0	0.3	0.3	œ
System Detection Limits	0.25	R	1.73	1.0	1.0	0.1	0.1	œ
Readout Electronics	0.3	N	1	1.0	1.0	0.3	0.3	œ
Response Time	0.8	R	1.73	1.0	1.0	0.5	0.5	×
Integration Time	2.6	R	1.73	1.0	1.0	1.5	1.5	×
RF Ambient Conditions - Noise	3.0	R	1.73	1.0	1.0	1.7	1.7	×
RF Ambient Conditions - Reflections	3.0	R	1.73	1.0	1.0	1.7	1.7	×
Probe Positioner Mechanical Tolerance	0.4	R	1.73	1.0	1.0	0.2	0.2	× ×
Probe Positioning w/ respect to Phantom	6.7	R	1.73	1.0	1.0	3.9	3.9	×
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	4.0	R	1.73	1.0	1.0	2.3	2.3	œ
Test Sample Related								
Test Sample Positioning	2.7	Ν	1	1.0	1.0	2.7	2.7	35
Device Holder Uncertainty	1.67	Ν	1	1.0	1.0	1.7	1.7	5
Output Power Variation - SAR drift measurement	5.0	R	1.73	1.0	1.0	2.9	2.9	8
SAR Scaling	0.0	R	1.73	1.0	1.0	0.0	0.0	∞
Phantom & Tissue Parameters								
Phantom Uncertainty (Shape & Thickness tolerances)	7.6	R	1.73	1.0	1.0	4.4	4.4	8
Liquid Conductivity - measurement uncertainty	4.2	N	1	0.78	0.71	3.3	3.0	10
Liquid Permittivity - measurement uncertainty	4.1	Ν	1	0.23	0.26	1.0	1.1	10
Liquid Conductivity - Temperature Uncertainty	3.4	R	1.73	0.78	0.71	1.5	1.4	× ×
Liquid Permittivity - Temperature Unceritainty	0.6	R	1.73	0.23	0.26	0.1	0.1	× ×
Liquid Conductivity - deviation from target values	5.0	R	1.73	0.64	0.43	1.8	1.2	×
Liquid Permittivity - deviation from target values	5.0	R	1.73	0.60	0.49	1.7	1.4	×
Combined Standard Uncertainty (k=1)		RSS				11.5	11.3	60
Expanded Uncertainty		k=2				23.0	22.6	
(95% CONFIDENCE LEVEL)		-						

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	⊕ LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D 405 400
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset		Page 135 of 138

16 CONCLUSION

16.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Innovation, Science, and Economic Development Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dono 126 of 120	
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 136 of 138	

© 2018 PCTEST Engineering Laboratory, Inc.

17 REFERENCES

- Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, December 2002.
- [5] IEEE Standards Coordinating Committee 39 Standards Coordinating Committee 34 IEEE Std. 1528-2013, IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
- [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1 -124.
- [9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D 407 400
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 137 of 138

© 2018 PCTEST Engineering Laboratory, Inc.

- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [20] IEC 62209-1, Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Part 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz), July 2016.
- [21] Innovation, Science, Economic Development Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 5, March 2015.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz 300 GHz, 2015
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [24] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication 248227 D01
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [29] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

FCC ID: ZNFQ910QM	PCTEST*	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 420 of 420
1M1806290137-01-R3.ZNF	07/08/18 - 07/23/18	Portable Handset	Page 138 of 138

APPENDIX A: SAR TEST DATA

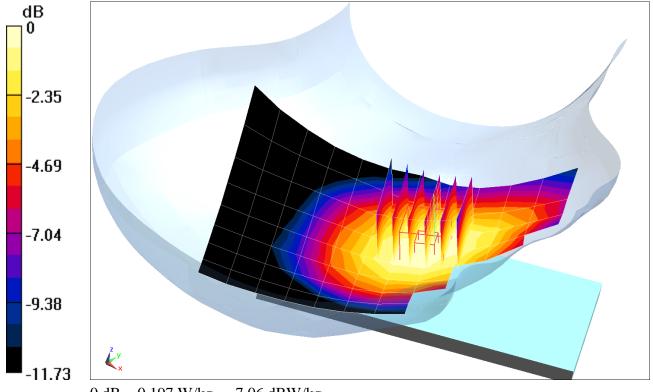
DUT: ZNFQ910QM; Type: Portable Handset; Serial: 04118

Communication System: UID 0, Cellular CDMA; Frequency: 820.1 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used (interpolated): $f = 820.1 \text{ MHz}; \ \sigma = 0.922 \text{ S/m}; \ \epsilon_r = 41.578; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 07-16-2018; Ambient Temp: 21.9°C; Tissue Temp: 21.2°C

Probe: ES3DV3 - SN3213; ConvF(6.42, 6.42, 6.42); Calibrated: 2/13/2018; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1272; Calibrated: 2/9/2018
Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647
Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

Mode: Cell. CDMA, Rule Part 90S, Right Head, Cheek, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.48 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.232 W/kg

SAR(1 g) = 0.182 W/kg

0 dB = 0.197 W/kg = -7.06 dBW/kg

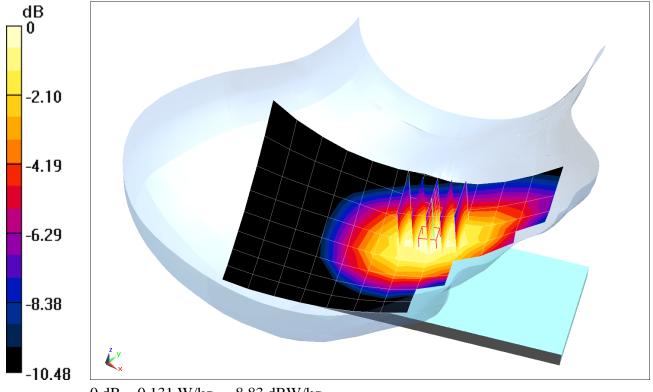
DUT: ZNFQ910QM; Type: Portable Handset; Serial: 04118

Communication System: UID 0, CDMA; Frequency: 836.52 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used (interpolated): $f = 836.52 \text{ MHz}; \ \sigma = 0.928 \text{ S/m}; \ \epsilon_r = 41.536; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 07-16-2018; Ambient Temp: 21.9°C; Tissue Temp: 21.2°C

Probe: ES3DV3 - SN3213; ConvF(6.42, 6.42, 6.42); Calibrated: 2/13/2018; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1272; Calibrated: 2/9/2018
Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647
Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

Mode: Cell. EVDO Rev. A, Rule Part 22H, Right Head, Cheek, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.63 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.160 W/kg

SAR(1 g) = 0.119 W/kg

0 dB = 0.131 W/kg = -8.83 dBW/kg

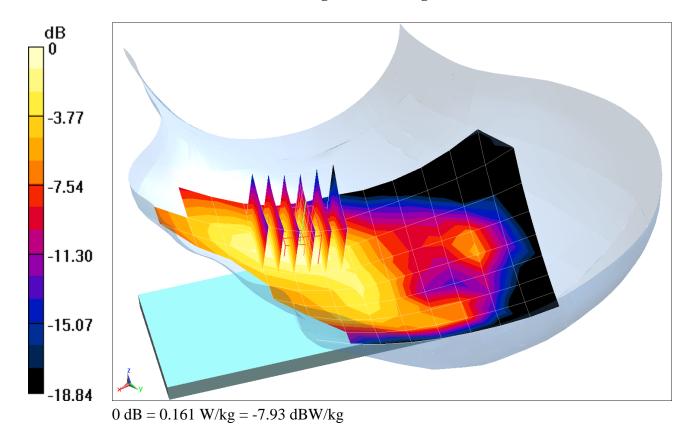
DUT: ZNFQ910QM; Type: Portable Handset; Serial: 04118

Communication System: UID 0, PCS CDMA; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.411 \text{ S/m}; \ \epsilon_r = 40.995; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 07-16-2018; Ambient Temp: 23.5°C; Tissue Temp: 20.8°C

Probe: EX3DV4 - SN7409; ConvF(8.05, 8.05, 8.05); Calibrated: 6/25/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1334; Calibrated: 6/18/2018
Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715
Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

Mode: PCS EVDO Rev. A, Left Head, Cheek, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.069 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 0.196 W/kg

SAR(1 g) = 0.118 W/kg

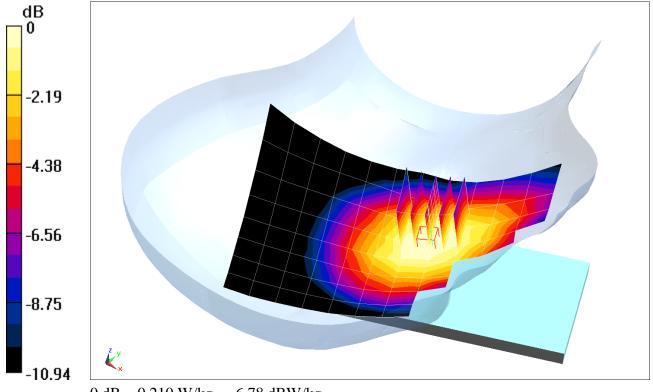
DUT: ZNFQ910QM; Type: Portable Handset; Serial: 04126

Communication System: UID 0, GSM GPRS; 3 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:2.76 Medium: 835 Head Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.928 \text{ S/m}; \ \epsilon_r = 41.535; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 07-16-2018; Ambient Temp: 21.9°C; Tissue Temp: 21.2°C

Probe: ES3DV3 - SN3213; ConvF(6.42, 6.42, 6.42); Calibrated: 2/13/2018; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1272; Calibrated: 2/9/2018
Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647
Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

Mode: GPRS 850, Right Head, Cheek, Mid.ch, 3 Tx slots


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.72 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.256 W/kg

SAR(1 g) = 0.193 W/kg

0 dB = 0.210 W/kg = -6.78 dBW/kg

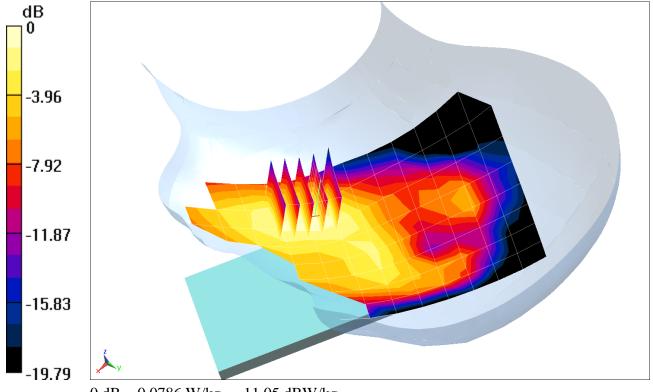
DUT: ZNFQ910QM; Type: Portable Handset; Serial: 04118

Communication System: UID 0, GSM GPRS; 3 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:2.76 Medium: 1900 Head Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.446 \text{ S/m}; \ \epsilon_r = 40.05; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 07-12-2018; Ambient Temp: 24.0°C; Tissue Temp: 22.8°C

Probe: ES3DV3 - SN3213; ConvF(5.3, 5.3, 5.3); Calibrated: 2/13/2018; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1272; Calibrated: 2/9/2018
Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647
Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

Mode: GPRS 1900, Left Head, Cheek, Mid.ch, 3 Tx slots


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.933 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.108 W/kg

SAR(1 g) = 0.064 W/kg

DUT: ZNFQ910QM; Type: Portable Handset; Serial: 04126


Communication System: UID 0, UMTS; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \sigma = 0.928 \text{ S/m}; \epsilon_r = 41.535; \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 07-16-2018; Ambient Temp: 21.9°C; Tissue Temp: 21.2°C

Probe: ES3DV3 - SN3213; ConvF(6.42, 6.42, 6.42); Calibrated: 2/13/2018; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/9/2018 Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

Mode: UMTS 850, Right Head, Cheek, Mid.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm **Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 13.90 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.222 W/kgSAR(1 g) = 0.171 W/kg

0 dB = 0.188 W/kg = -7.26 dBW/kg

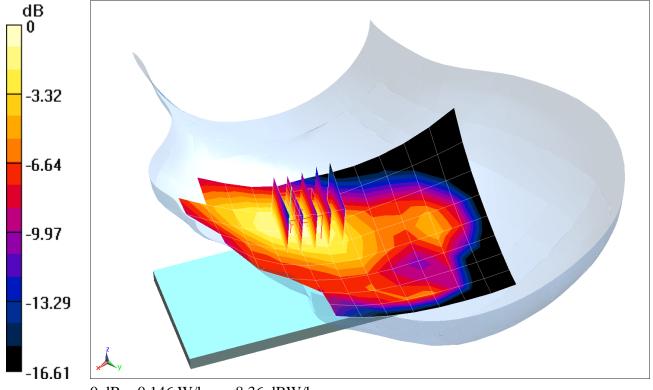
DUT: ZNFQ910QM; Type: Portable Handset; Serial: 04118

Communication System: UID 0, UMTS; Frequency: 1732.4 MHz; Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used (interpolated): $f = 1732.4 \text{ MHz}; \ \sigma = 1.343 \text{ S/m}; \ \epsilon_r = 39.868; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 07-10-2018; Ambient Temp: 23.3°C; Tissue Temp: 21.1°C

Probe: ES3DV3 - SN3213; ConvF(5.45, 5.45, 5.45); Calibrated: 2/13/2018; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1272; Calibrated: 2/9/2018
Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647
Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

Mode: UMTS 1750, Left Head, Cheek, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

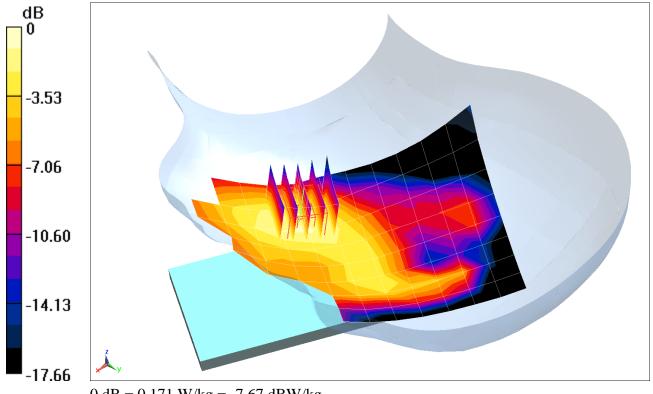
Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.711 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.196 W/kg

SAR(1 g) = 0.122 W/kg

DUT: ZNFQ910QM; Type: Portable Handset; Serial: 04126


Communication System: UID 0, UMTS; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used: $f = 1880 \text{ MHz}; \sigma = 1.411 \text{ S/m}; \epsilon_r = 40.995; \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 07-16-2018; Ambient Temp: 23.5°C; Tissue Temp: 20.8°C

Probe: EX3DV4 - SN7409; ConvF(8.05, 8.05, 8.05); Calibrated: 6/25/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/18/2018 Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

Mode: UMTS 1900, Left Head, Cheek, Mid.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm **Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.749 V/m; Power Drift = -0.19 dB Peak SAR (extrapolated) = 0.197 W/kgSAR(1 g) = 0.119 W/kg

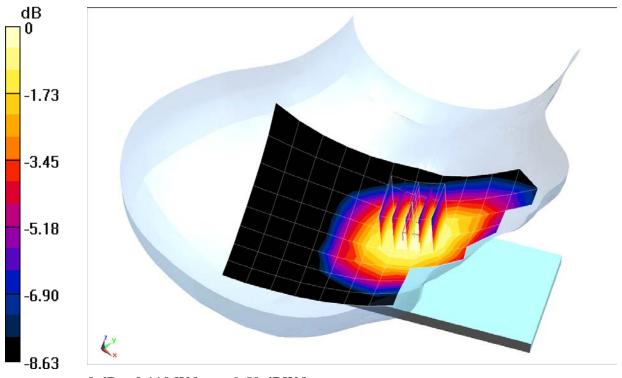
DUT: ZNFQ910QM; Type: Portable Handset; Serial: 04134

Communication System: UID 0, LTE Band 12; Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: 750 Head Medium parameters used (interpolated): $f = 707.5 \text{ MHz}; \ \sigma = 0.876 \text{ S/m}; \ \epsilon_r = 40.607; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 07-19-2018; Ambient Temp: 22.0°C; Tissue Temp: 21.8°C

Probe: ES3DV3 - SN3213; ConvF(6.75, 6.75, 6.75); Calibrated: 2/13/2018; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1272; Calibrated: 2/9/2018
Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647
Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 12, Right Head, Cheek, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 49 RB Offset


Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

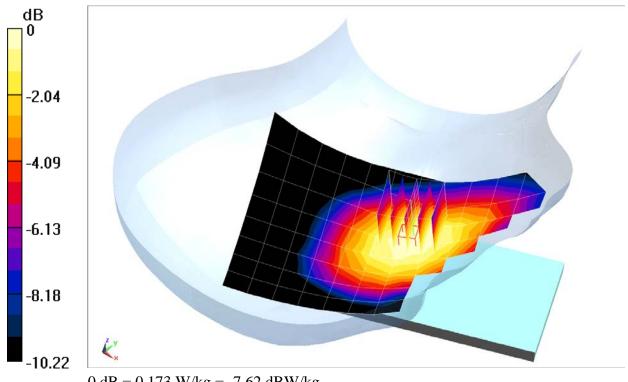
Reference Value = 11.59 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.129 W/kg

SAR(1 g) = 0.101 W/kg

0 dB = 0.110 W/kg = -9.59 dBW/kg

DUT: ZNFQ910QM; Type: Portable Handset; Serial: 04134


Communication System: UID 0, LTE Band 13; Frequency: 782 MHz; Duty Cycle: 1:1 Medium: 750 Head Medium parameters used (interpolated): $f = 782 \text{ MHz}; \ \sigma = 0.903 \text{ S/m}; \ \varepsilon_r = 40.341; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 07-19-2018; Ambient Temp: 22.0°C; Tissue Temp: 21.8°C

Probe: ES3DV3 - SN3213; ConvF(6.75, 6.75, 6.75); Calibrated: 2/13/2018; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/9/2018 Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 13, Right Head, Cheek, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset

Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm **Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 14.46 V/m: Power Drift = -0.09 dBPeak SAR (extrapolated) = 0.206 W/kgSAR(1 g) = 0.159 W/kg

0 dB = 0.173 W/kg = -7.62 dBW/kg

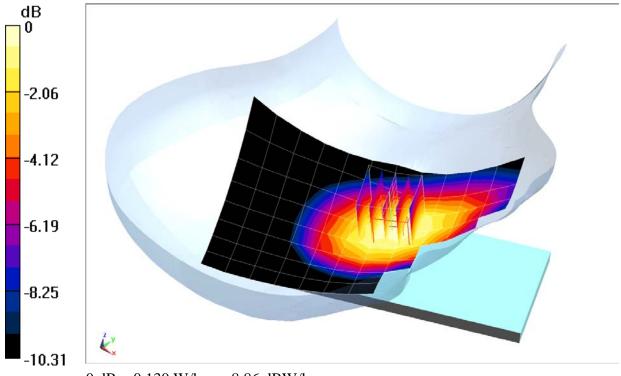
DUT: ZNFQ910QM; Type: Portable Handset; Serial: 04167

Communication System: UID 0, LTE Band 5 (Cell.); Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used (interpolated): $f = 836.5 \text{ MHz}; \ \sigma = 0.927 \text{ S/m}; \ \epsilon_r = 41.536; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 07-16-2018; Ambient Temp: 21.9°C; Tissue Temp: 21.2°C

Probe: ES3DV3 - SN3213; ConvF(6.42, 6.42, 6.42); Calibrated: 2/13/2018; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1272; Calibrated: 2/9/2018
Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647
Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 5 (Cell.), Right Head, Cheek, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 25 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.23 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.154 W/kg

SAR(1 g) = 0.119 W/kg

0 dB = 0.130 W/kg = -8.86 dBW/kg

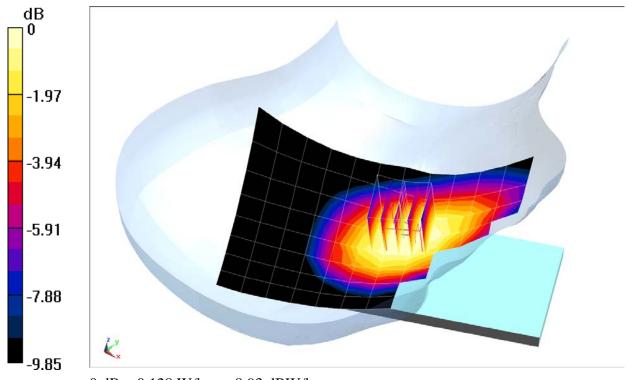
DUT: ZNFQ910QM; Type: Portable Handset; Serial: 04167

Communication System: UID 0, LTE Band 26; Frequency: 831.5 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used (interpolated): $f = 831.5 \text{ MHz}; \ \sigma = 0.926 \text{ S/m}; \ \epsilon_r = 41.549; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 07-16-2018; Ambient Temp: 21.9°C; Tissue Temp: 21.2°C

Probe: ES3DV3 - SN3213; ConvF(6.42, 6.42, 6.42); Calibrated: 2/13/2018; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1272; Calibrated: 2/9/2018
Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647
Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 26 (Cell.), Right Head, Cheek, Mid.ch, 15 MHz Bandwidth, QPSK, 1 RB, 36 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.20 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.150 W/kg

SAR(1 g) = 0.117 W/kg

0 dB = 0.128 W/kg = -8.93 dBW/kg

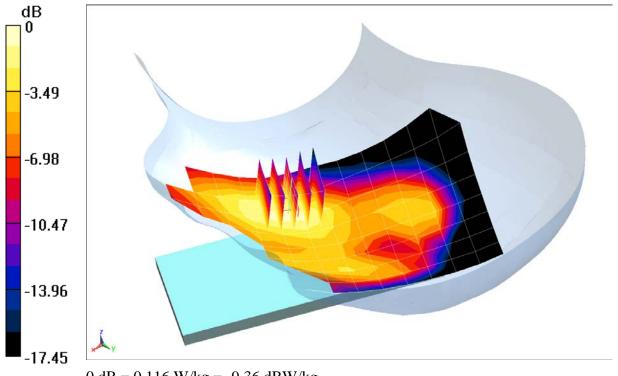
DUT: ZNFQ910QM; Type: Portable Handset; Serial: 04159

Communication System: UID 0, LTE Band 66 (AWS); Frequency: 1745 MHz; Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used (interpolated): $f = 1745 \text{ MHz}; \ \sigma = 1.35 \text{ S/m}; \ \epsilon_r = 39.848; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 07-10-2018; Ambient Temp: 23.3°C; Tissue Temp: 21.1°C

Probe: ES3DV3 - SN3213; ConvF(5.45, 5.45, 5.45); Calibrated: 2/13/2018; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1272; Calibrated: 2/9/2018
Phantom: SAM V5.0 Right; Type: QD000P40CD; Serial: 1647
Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 66 (AWS), Left Head, Cheek, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

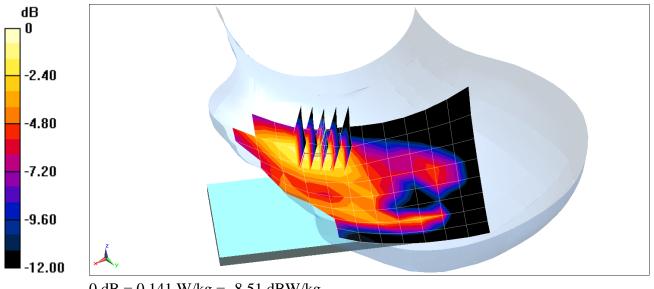
Reference Value = 9.618 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.154 W/kg

SAR(1 g) = 0.096 W/kg

0 dB = 0.116 W/kg = -9.36 dBW/kg

DUT: ZNFQ910QM; Type: Portable Handset; Serial: 04159


Communication System: UID 0, LTE Band 25 (PCS); Frequency: 1882.5 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used (interpolated): $f = 1882.5 \text{ MHz}; \sigma = 1.413 \text{ S/m}; \epsilon_r = 40.987; \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 07-16-2018; Ambient Temp: 23.5°C; Tissue Temp: 20.8°C

Probe: EX3DV4 - SN7409; ConvF(8.05, 8.05, 8.05); Calibrated: 6/25/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/18/2018 Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715 Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 25 (PCS), Left Head, Cheek, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm **Zoom Scan (6x6x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.986 V/m: Power Drift = 0.18 dB Peak SAR (extrapolated) = 0.216 W/kgSAR(1 g) = 0.132 W/kg

0 dB = 0.141 W/kg = -8.51 dBW/kg

DUT: ZNFQ910QM; Type: Portable Handset; Serial: 04134

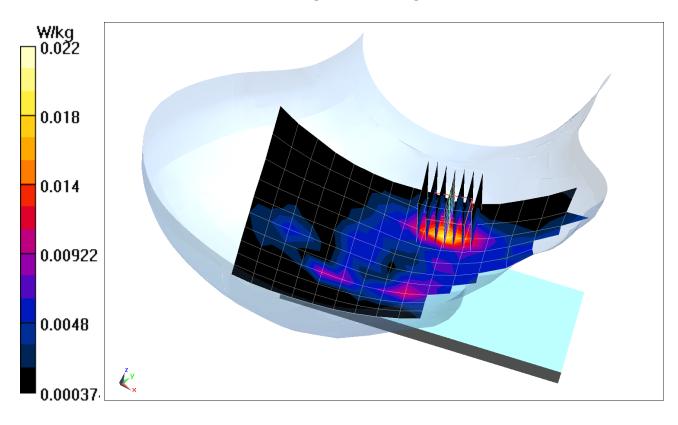
Communication System: UID 0, LTE Band 30; Frequency: 2310 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used: $f = 2310 \text{ MHz}; \ \sigma = 1.693 \text{ S/m}; \ \epsilon_r = 38.5; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 07-11-2018; Ambient Temp: 21.9°C; Tissue Temp: 21.4°C

Probe: ES3DV3 - SN3332; ConvF(4.99, 4.99, 4.99); Calibrated: 8/14/2017; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1323; Calibrated: 8/9/2017
Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 30, Right Head, Cheek, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 25 RB Offset


Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.919 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.0400 W/kg

SAR(1 g) = 0.018 W/kg

DUT: ZNFQ910QM; Type: Portable Handset; Serial: 04134

Communication System: UID 0, _LTE Band 7; Frequency: 2535 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used (interpolated): $f = 2535 \text{ MHz}; \ \sigma = 1.95 \text{ S/m}; \ \epsilon_r = 38.694; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

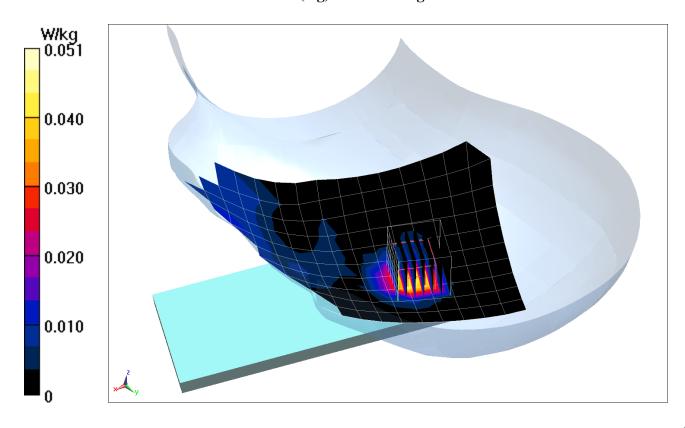
Test Date: 07-16-2018; Ambient Temp: 22.4°C; Tissue Temp: 21.5°C

Probe: ES3DV3 - SN3332; ConvF(4.56, 4.56, 4.56); Calibrated: 8/14/2017; Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1323; Calibrated: 8/9/2017 Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 7, Left Head, Tilt, Mid.ch, QPSK, 20 MHz Bandwidth, 1 RB, 0 RB Offset


Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.249 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 0.0920 W/kg

SAR(1 g) = 0.040 W/kg

DUT: ZNFQ910QM; Type: Portable Handset; Serial: 04134

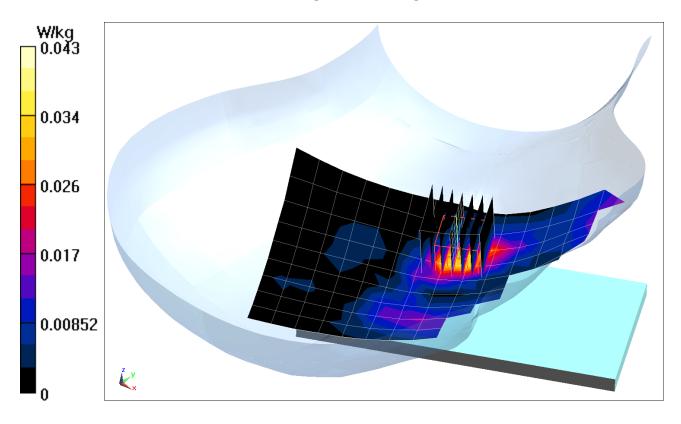
Communication System: UID 0, LTE Band 41; Frequency: 2680 MHz; Duty Cycle: 1:1.58 Medium: 2450 Head Medium parameters used (interpolated): $f = 2680 \text{ MHz}; \ \sigma = 2.117 \text{ S/m}; \ \epsilon_r = 38.119; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 07-16-2018; Ambient Temp: 22.4°C; Tissue Temp: 21.5°C

Probe: ES3DV3 - SN3332; ConvF(4.56, 4.56, 4.56); Calibrated: 8/14/2017; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1323; Calibrated: 8/9/2017
Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

Mode: LTE Band 41, Right Head, Cheek, High.ch, 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset


Area Scan (10x17x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.603 V/m; Power Drift = 0.19 dB

Peak SAR (extrapolated) = 0.104 W/kg

SAR(1 g) = 0.033 W/kg

DUT: ZNFQ910QM; Type: Portable Handset; Serial: 04175

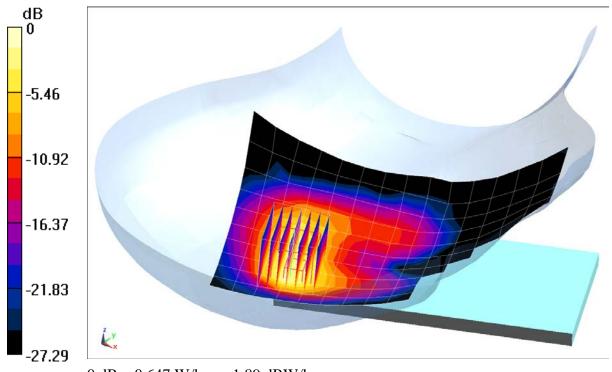
Communication System: UID 0, _IEEE 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used (interpolated): $f = 2437 \text{ MHz}; \ \sigma = 1.837 \text{ S/m}; \ \epsilon_r = 39.075; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 07-16-2018; Ambient Temp: 22.4°C; Tissue Temp: 21.5°C

Probe: ES3DV3 - SN3332; ConvF(4.68, 4.68, 4.68); Calibrated: 8/14/2017; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1323; Calibrated: 8/9/2017
Phantom: SAM Front; Type: SAM; Serial: 1686

Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

Mode: IEEE 802.11b, 22 MHz Bandwidth, Antenna 1, Right Head, Cheek, Ch 6, 1 Mbps


Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (8x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.95 V/m; Power Drift = 0.20 dB

Peak SAR (extrapolated) = 1.15 W/kg

SAR(1 g) = 0.484 W/kg

0 dB = 0.647 W/kg = -1.89 dBW/kg

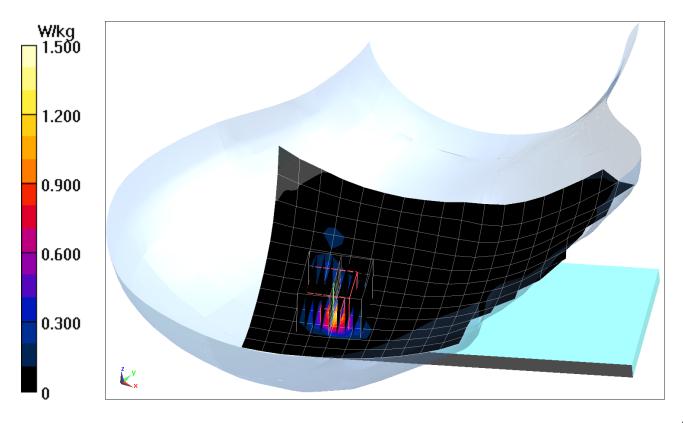
DUT: ZNFQ910QM; Type: Portable Handset; Serial: 04175

Communication System: UID 0, 802.11a 5.2-5.8 GHz Band; Frequency: 5280 MHz; Duty Cycle: 1:1 Medium: 5GHz Head Medium parameters used: $f = 5280 \text{ MHz}; \ \sigma = 4.655 \text{ S/m}; \ \epsilon_r = 35.637; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 07-09-2018; Ambient Temp: 20.3°C; Tissue Temp: 20.3°C

Probe: EX3DV4 - SN7409; ConvF(5.2, 5.2, 5.2); Calibrated: 6/25/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1334; Calibrated: 6/18/2018
Phantom: SAM with CRP (Left); Type: SAM; Serial: 1715
Measurement SW: DASY52, Version 52.10; SEMCAD X Version 14.6.10 (7417)

Mode: IEEE 802.11a, U-NII-2A, Antenna 1, 20 MHz Bandwidth, Right Head, Cheek, Ch 56, 6 Mbps


Area scan (13x22x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 4.814 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 2.62 W/kg

SAR(1 g) = 0.579 W/kg

