RF TEST REPORT

Report No.: 17070685-FCC-R

Supersede Report No.: N/A				
Applicant	Southern Telecom Inc.			
Product Name	HD WI-FI Security Camera			
Model No.	SVC562			
	SVC563	SVC563		
Serial No.	(All models	have same circuits diagram,	PCB Layout, construction	
	and rated p	ower,only different was mode	el name and appearance.)	
Test Standard	FCC Part 1	5.247, ANSI C63.10: 2013		
Test Date	July 9 to Ju	July 9 to July 16, 2018		
Issue Date	July 18, 2018			
Test Result	Pass Fail			
Equipment complied with the specification				
Equipment did not comply with the specification				
Aaron Liong David Huang				
Aaron Liang David Huang				
Test Engineer Checked By				
This test report may be reproduced in full only				
Test result presented in this test report is applicable to the tested sample only				
Issued by:				

SIEMIC (SHENZHEN-CHINA) LABORATORIES

Zone A, Floor 1, Building 2 Wan Ye Long Technology Park South Side of Zhoushi Road, Bao' an District, Shenzhen, Guangdong China 518108 Phone: +86 0755 2601 4629801 Email: China@siemic.com.cn

Test Report No. 17070685-FCC-R Page

2 of 48

Laboratories Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to testing and certification, SIEMIC provides initial design reviews and compliance management throughout a project. Our extensive experience with China, Asia Pacific, North America, European, and International compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

-	
Country/Region	Scope
USA	EMC, RF/Wireless, SAR, Telecom
Canada	EMC, RF/Wireless, SAR, Telecom
Taiwan EMC, RF, Telecom, SAR, Safety	
Hong Kong	RF/Wireless, SAR, Telecom
Australia EMC, RF, Telecom, SAR, Safety	
Korea EMI, EMS, RF, SAR, Telecom, Safety	
Japan	EMI, RF/Wireless, SAR, Telecom
Singapore EMC, RF, SAR, Telecom	
Europe EMC, RF, SAR, Telecom, Safety	

Accreditations for Conformity Assessment

Test Report No.	17070685-FCC-R
Page	3 of 48

This page has been left blank intentionally.

 Test Report No.
 17070685-FCC-R

 Page
 4 of 48

CONTENTS

1.	REPORT REVISION HISTORY	5
2.	CUSTOMER INFORMATION	5
3.	TEST SITE INFORMATION	6
4.	EQUIPMENT UNDER TEST (EUT) INFORMATION	7
5.	TEST SUMMARY	8
6.	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	9
6.1	ANTENNA REQUIREMENT	9
6.2	DTS (6 DB&20 DB) CHANNEL BANDWIDTH	10
6.3	MAXIMUM OUTPUT POWER	17
6.4	POWER SPECTRAL DENSITY	21
6.5	BAND-EDGE & UNWANTED EMISSIONS INTO RESTRICTED FREQUENCY BANDS	25
6.6	AC POWER LINE CONDUCTED EMISSIONS	29
6.7	RADIATED SPURIOUS EMISSIONS & RESTRICTED BAND	35
AN	NEX A. TEST INSTRUMENT	43
AN	NEX B. TEST SETUP AND SUPPORTING EQUIPMENT	44
	NEX C. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PARTLIST/ DECLARATION OF	48

Test Report No.	17070685-FCC-R
Page	5 of 48

1. Report Revision History

Report No.	Report Version	Description	Issue Date
17070685-FCC-R	NONE	Original	July 18, 2018

2. Customer information

Applicant Name	Southern Telecom Inc.
Applicant Add	5601 1st Ave, 2nd Floor Brooklyn New York United States
Manufacturer	Southern Telecom Inc.
Manufacturer Add	5601 1st Ave, 2nd Floor Brooklyn New York United States

 Test Report No.
 17070685-FCC-R

 Page
 6 of 48

3. Test site information

Test Lab A:

Lab performing tests	SIEMIC (Shenzhen-China) LABORATORIES		
	Zone A, Floor 1, Building 2 Wan Ye Long Technology Park		
Lab Address	South Side of Zhoushi Road, Bao' an District, Shenzhen, Guangdong China		
	518108		
FCC Test Site No.	535293		
IC Test Site No.	4842E-1		
Test Software	Radiated Emission Program-To Shenzhen v2.0		
Test Lab B:			
Lab performing tests	SIEMIC (Nanjing-China) Laboratories		
Lab Address	2-1 Longcang Avenue Yuhua Economic and		
Lab Address	Technology Development Park, Nanjing, China		
FCC Test Site No.	694825		
IC Test Site No.	4842B-1		
Test Software	EZ_EMC(ver.lcp-03A1)		

Note: We just perform Radiated Spurious Emission above 18GHz in the test Lab. B.

Test Report No. 17070685-FCC-R Page 7 of 48

Description of EUT:	HD WI-FI Security Camera
Main Model:	SVC562
	SVC563
Serial Model:	(All models have same circuits diagram, PCB Layout, construction and rated power,only different was model name and appearance.)
Date EUT received:	July 8, 2018
Test Date(s):	July 9 to July 16, 2018
Equipment Category :	DTS
Antenna Gain:	WIFI: 2.5dBi
Antenna Type:	PCB Antenna
Type of Modulation:	802.11b/g/n: DSSS, OFDM
RF Operating Frequency (ies):	WIFI: 802.11b/g/n(20M): 2412-2462 MHz
	802.11b: 4.385dBm
Max. Output Power:	802.11g: 4.368dBm
	802.11n(20M): 4.797dBm
Number of Channels:	WIFI :802.11b/g/n(20M): 11CH
Port:	Please refer to the user manual
	Adapter:
Input Power:	Model: D31-05050100
	Input: AC100-240V,0.3A Output: DC 5.0V,1000mA
Trade Name :	SHARPER IMAGE
FCC ID:	2ABV4SVC562

Test Report No.	17070685-FCC-R
Page	8 of 48

5. Test Summary

The product was tested in accordance with the following specifications.

All testing has been performed according to below product classification:

FCC Rules	Description of Test	Result
§15.203	Antenna Requirement	Compliance
§15.247 (a)(2)	DTS (6 dB&20 dB) CHANNEL BANDWIDTH	Compliance
§15.247(b)(3)	Conducted Maximum Output Power	Compliance
§15.247(e)	Power Spectral Density	Compliance
§15.247(d)	Band-Edge & Unwanted Emissions into Restricted Frequency Bands	Compliance
§15.207 (a),	AC Power Line Conducted Emissions	Compliance
§15.205, §15.209,	Radiated Emissions & Unwanted Emissions	Compliance
§15.247(d)	into Restricted Frequency Bands	Compliance

Measurement Uncertainty

Emissions			
Test Item	Description	Uncertainty	
Band-Edge & Unwanted			
Emissions into Restricted			
Frequency Bands and	Confidence level of approximately 95% (in the case		
Radiated Emissions &	where distributions are normal), with a coverage	+5.6dB/-4.5dB	
Unwanted Emissions	factor of 2 (for EUTs < 0.5m X 0.5m X 0.5m)		
into Restricted Frequency			
Bands			
-	-	-	

 Test Report No.
 17070685-FCC-R

 Page
 9 of 48

6. Measurements, Examination And Derived Results

6.1 Antenna Requirement

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

a. Antenna must be permanently attached to the unit.

b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT has 1 antenna: A permanently attached PCB antenna for WIFI, the gain is 2.5dBi for WIFI.

The antenna meets up with the ANTENNA REQUIREMENT.

Result: Compliance.

 Test Report No.
 17070685-FCC-R

 Page
 10 of 48

6.2 DTS (6 dB&20 dB) Channel Bandwidth

Temperature	25 °C
Relative Humidity	58%
Atmospheric Pressure	1016mbar
Test date :	July 16, 2018
Tested By :	Aaron Liang

Spec	Item	Requirement Applicable			
§ 15.247(a)(2)	a)	a) 6dB BW≥ 500kHz; ✓			
RSS Gen(4.6.1)	b)	99% BW: For FCC reference only; required by IC.	V		
Test Setup		Spectrum Analyzer			
	55807	4 D01 DTS MEAS Guidance v03r03, 8.1 DTS bandwidth			
		andwidth			
		t RBW = 100 kHz.			
		t the video bandwidth (VBW) $\geq 3 \times RBW$.			
	c) Detector = Peak.				
	d) Trace mode = max hold.				
	e) Sweep = auto couple.				
	f) Allow the trace to stabilize.				
	g) Measure the maximum width of the emission that is constrained by the freq				
	uencies associated with the two outermost amplitude points (upper and lower fr				
Test Procedure	equencies) that are attenuated by 6 dB relative to the maximum level measure				
	d in the fundamental emission.				
	20dB bandwidth				
	C63.10 Occupied Bandwidth (OBW=20dB bandwidth)				
	1. Set RBW = 1%-5% OBW.				
	2. Set the video bandwidth (VBW) \geq 3 x RBW.				
	3. Set the span range between 2 times and 5 times of the OBW.				
	4. Sweep time=Auto, Detector=PK, Trace=Max hold.				
	5. Once the reference level is established, the equipment is conditioned with t				
	ypical modulating signals to produce the worst-				

1	Test Report No.	17070685-FCC-R
	rest report no.	110100001001
	Page	11 of 48

	case (i.e., the widest) bandwidth. Unless otherwise specified for an unlicensed wireless device, measure the bandwidth at the 20 dB levels with respect to the reference level.	
Remark		
Result	Pass Fail	

Test Data Yes

□_{N/A}

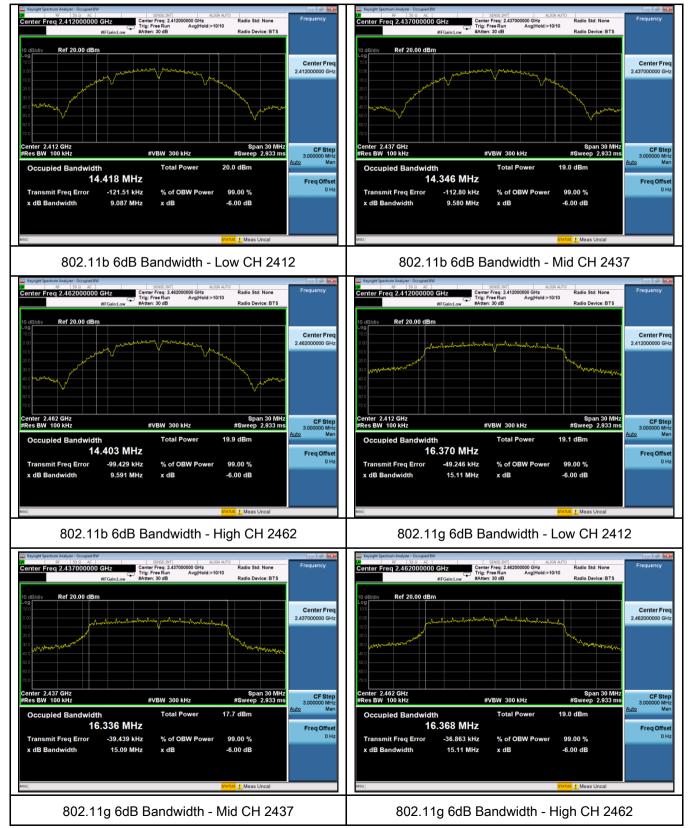
Test Plot Yes (See below)

Measurement result

Test mode	СН	Freq (MHz)	6dB Bandwidth (MHz)	Limit (MHz)
	Low	2412	9.09	≥ 0.5
802.11b	Mid	2437	9.58	≥ 0.5
	High	2462	9.59	≥ 0.5
	Low	2412	15.11	≥ 0.5
802.11g	Mid	2437	15.09	≥ 0.5
	High	2462	15.11	≥ 0.5
802.11n (20M)	Low	2412	15.09	≥ 0.5
	Mid	2437	15.11	≥ 0.5
	High	2462	15.12	≥ 0.5

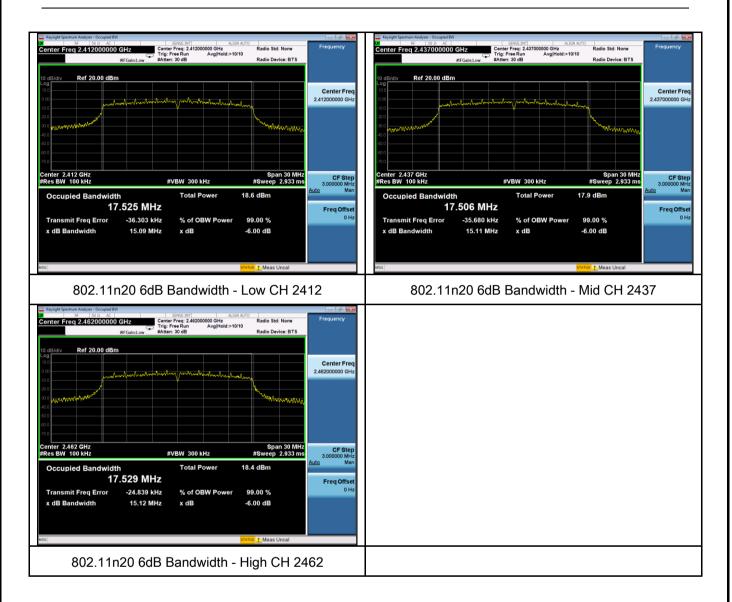
Test Report No.	17070685-FCC-R
Page	12 of 48

Test mode	СН	Freq (MHz)	20dB Bandwidth (MHz)
	Low	2412	16.58
802.11b	Mid	2437	16.33
	High	2462	16.19
	Low	2412	17.32
802.11g	Mid	2437	17.22
	High	2462	17.24
802.11n (20M)	Low	2412	18.39
	Mid	2437	18.32
	High	2462	18.34

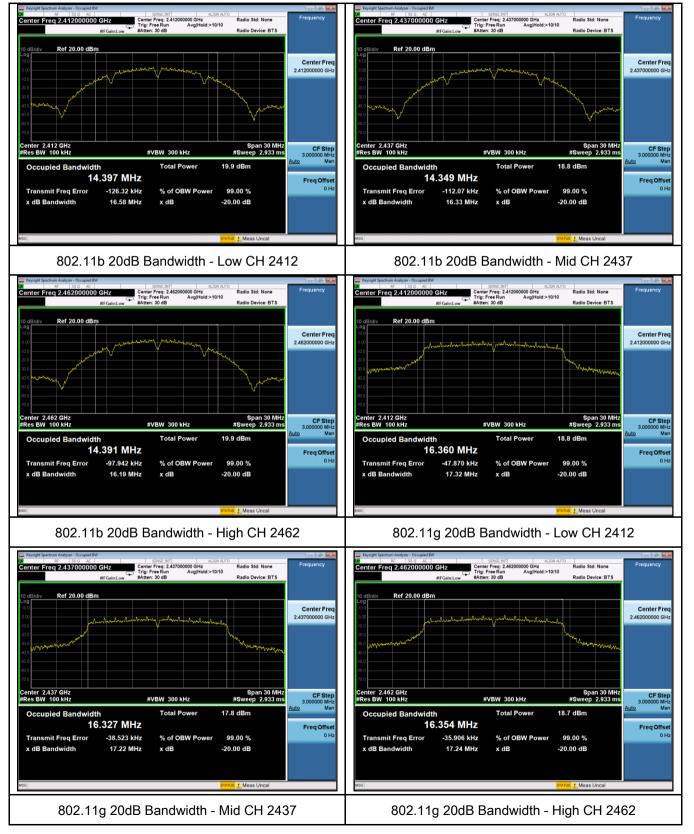


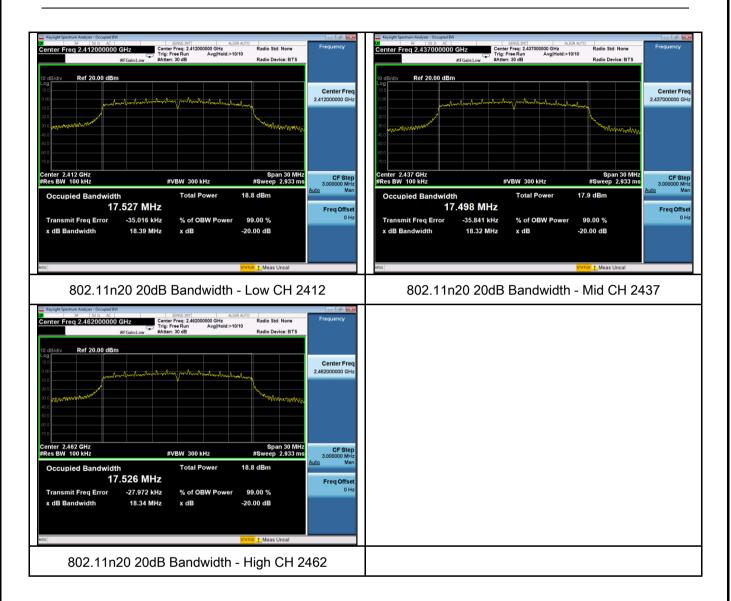
 Test Report No.
 17070685-FCC-R

 Page
 13 of 48


Test Plots

6dB Bandwidth measurement result


Test Report No.	17070685-FCC-R
Page	14 of 48


Test Report No.	17070685-FCC-R
Page	15 of 48

20 dB Bandwidth measurement result

Test Report No.	17070685-FCC-R
Page	16 of 48

 Test Report No.
 17070685-FCC-R

 Page
 17 of 48

6.3 Maximum Output Power

Temperature	25 °C
Relative Humidity	58%
Atmospheric Pressure	1016mbar
Test date :	July 16, 2018
Tested By :	Aaron Liang

Requirement(s):

Spec	Ite	Ite Requirement		
	m			
	a)	FHSS in 2400-2483.5MHz with \geq 75 channels: \leq 1 Watt		
	b)	FHSS in 5725-5850MHz: ≤ 1 Watt		
§15.247(b) (3),RSS210	c)	For all other FHSS in the 2400-2483.5MHz band: ≤ 0.125 Watt.		
(A8.4)	d)	FHSS in 902-928MHz with \geq 50 channels: \leq 1 Watt		
(710.+)	e)	FHSS in 902-928MHz with ≥ 25 & <50 channels: ≤ 0.25		
		Watt		
	f)	DTS in 902-928MHz, 2400-2483.5MHz: ≤ 1 Watt	~	
Test Setup	Spectrum Analyzer EUT			
	558074 D01 DTS MEAS Guidance v03r03, 9.1.2 Integrated band power method			
	Maximum output power measurement procedure			
- a) Set span to at least 1.5 times the OBW.				
	-	b) Set RBW = $1-5\%$ of the OBW, not to exceed 1 MHz.		
Test	 - c) Set VBW ≥ 3 x RBW. - d) Number of points in sweep ≥ 2 × span / RBW. (This gives bin-to-bin spacing ≤ RBW/2, so that narrowband signals are not lost between frequency bins.) 			
Procedure				
Tibbeddie	- e) Sweep time = auto.			
	- f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample			
	detector mode.			
	-	g) If transmit duty cycle < 98 %, use a sweep trigger with the level set to enable		
	triggering only on full power pulses. The transmitter shall operate at maximum			

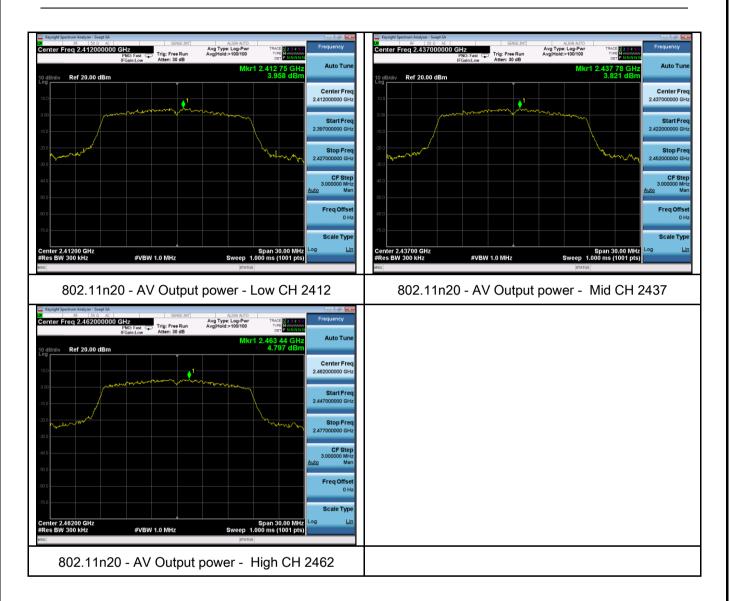
3				
SII	ΕM	IC	Test Report No.	17070685-FCC-R
A Bureau	J Veritas Group (Company	Page	18 of 48
		 continuously (i transmission is be set to "free h) Trace avera i) Compute por using the instruegual to the Ol function, sum to the other than the transmission of transmission of the transmission of transmission	.e., with no off int s entirely at the m e run". ge at least 100 tr wer by integrating ument's band p BW band edges.	e duration of every sweep. If the EUT transmits ervals) or at duty cycle \geq 98 %, and if each maximum power control level, then the trigger shall races in power averaging (i.e., RMS) mode. g the spectrum across the OBW of the signal ower measurement function, with band limits set If the instrument does not have a band power els (in power units) at intervals equal to the RBW W of the spectrum.
Remark				
Result	>	Pass	Fail	
Test Data	▼ Yes	Γ	N/A	

Test Plot

Yes (See below)

Output Powe	Output Power measurement result					
Туре	Test mode	СН	Frequency	Conducted	Limit	Result
турс			(MHz)	Power (dBm)	(dBm)	
		Low	2412	4.385	30	Pass
	802.11b	Mid	2437	4.235	30	Pass
		High	2462	4.377	30	Pass
Output		Low	2412	4.222	30	Pass
Output	802.11g	Mid	2437	3.779	30	Pass
power		High	2462	4.368	30	Pass
	802.11n (20M)	Low	2412	3.958	30	Pass
		Mid	2437	3.821	30	Pass
		High	2462	4.797	30	Pass

Test Report No.	17070685-FCC-R
Page	19 of 48


Test Plots

The Average Power

Test Report No.	17070685-FCC-R
Page	20 of 48

Test Report No.	17070685-FCC-R
Page	21 of 48

6.4 Power Spectral Density

Temperature	25 °C
Relative Humidity	58%
Atmospheric Pressure	1016mbar
Test date :	July 16, 2018
Tested By :	Aaron Liang

Spec	Item	Requirement	Applicable
§15.247(e)	a)	The power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.	Y
Test Setup		Spectrum Analyzer EUT	
Test Procedure		 4 D01 DTS MEAS Guidance v03r03, 10.2 power spectral density measurement procedure a) Set analyzer center frequency to DTS channel center frequeb) Set the span to 1.5 times the DTS bandwidth. c) Set the RBW to: 3 kHz ≤ RBW ≤ 100 kHz. d) Set the VBW ≥ 3 × RBW. e) Detector = peak. f) Sweep time = auto couple. g) Trace mode = max hold. h) Allow trace to fully stabilize. i) Use the peak marker function to determine the maximum and level within the RBW. j) If measured value exceeds limit, reduce RBW (no less than repeat. 	nplitude
Remark			
Result	Pa:	ss Fail	

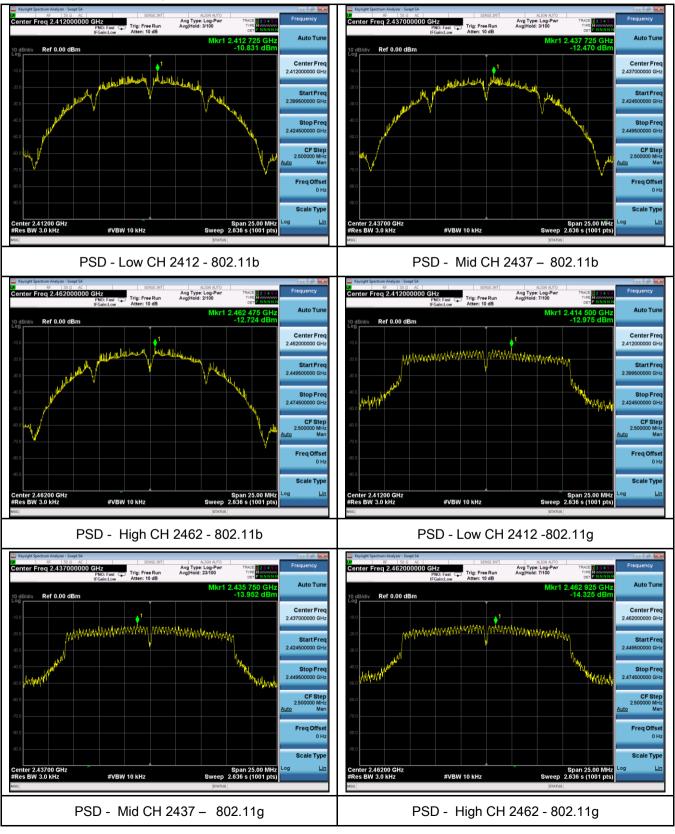
Test Report No.	17070685-FCC-R
Page	22 of 48

Test Data	Yes
Test Plot	Yes (See below)

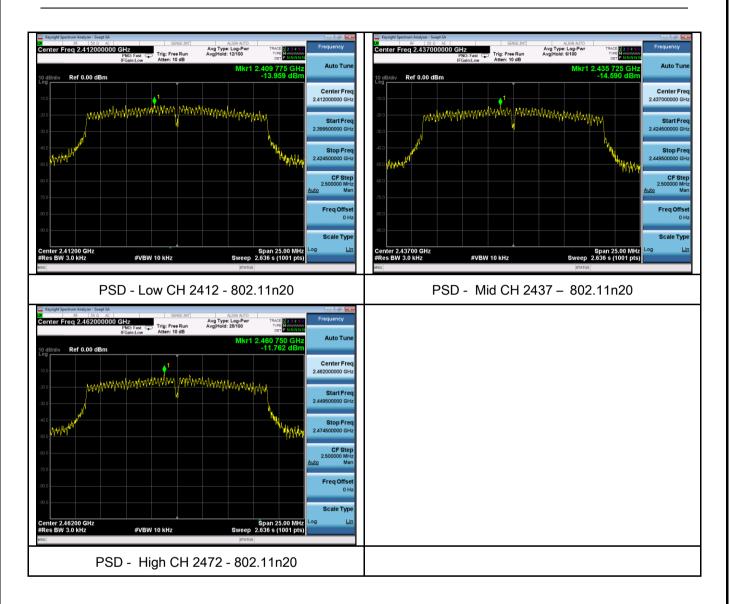
□_{N/A}

□ _{N/A}

Power Spectral Density measurement result


Туре	Test mode	СН	Freq (MHz)	PSD	Limit (dBm)	Result
				(dBm)	(ubiii)	
		Low	2412	-10.831	8	Pass
	802.11b	Mid	2437	-12.470	8	Pass
		High	2462	-12.724	8	Pass
		Low	2412	-12.975	8	Pass
PSD	D 802.11g 802.11n (20M)	Mid	2437	-13.952	8	Pass
		High	2462	-14.325	8	Pass
		Low	2412	-13.959	8	Pass
		Mid	2437	-14.590	8	Pass
		High	2462	-11.762	8	Pass

Test Report No.	17070685-FCC-R
Page	23 of 48


Test Plots

Power Spectral Density measurement result

Test Report No.	17070685-FCC-R
Page	24 of 48

 Test Report No.
 17070685-FCC-R

 Page
 25 of 48

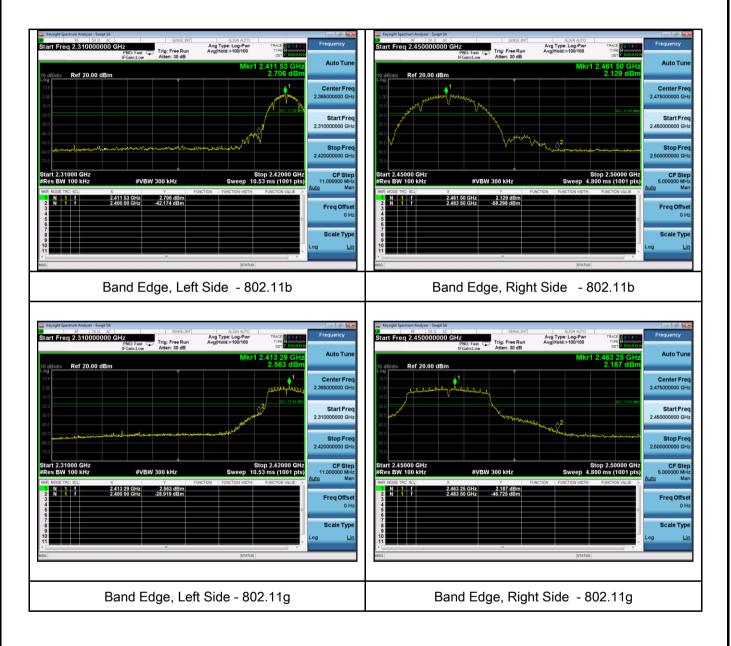
6.5 Band-Edge & Unwanted Emissions into Restricted Frequency Bands

Temperature	25 °C
Relative Humidity	58%
Atmospheric Pressure	1016mbar
Test date :	July 16, 2018
Tested By :	Aaron Liang

Requirement(s):

Spec	Item	Requirement	Applicable				
§15.247(d)	a)	V					
Test Setup	Peak conducted power limits.						
Test Procedure	 Radiated Method Only 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator. 2. Position the EUT without connection to measurement instrument. Put it on the Rotated table and turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range. 						

3			
SIF		Test Report No.	17070685-FCC-R
A Bureau Veritas G		Page	26 of 48
	convenient fr check the en a. The resolu analyzer is 1 b. The resolu video bandw frequency ab c. The resolu video bandw at frequency - 4. Measure t reference lev frequency.	requency span inclunission of EUT, if partition bandwidth and 20 kHz for Quasiy ution bandwidth of the ridth is 3MHz with Proove 1GHz. To bandwidth of the ridth is 10Hz with Proove 1GHz. The highest amplitude rest and the right of the rest amplitude rest ampli	V of spectrum analyzer to 100 kHz with a uding 100kHz bandwidth from band edge, ass then set Spectrum Analyzer as below: d video bandwidth of test receiver/spectrum Peak detection at frequency below 1GHz. test receiver/spectrum analyzer is 1MHz and Peak detection for Peak measurement at est receiver/spectrum analyzer is 1MHz and the eak detection for Average Measurement as below de appearing on spectral display and set it as a with marking the highest point and edge
	- 5. Repeat ab	oove procedures un	til all measured frequencies were complete.
Remark		_	
Result	Pass	🗖 Fail	
Test Data	∕es ∕es (See below)	□ _{N/A} □ _{N/A}	



 Test Report No.
 17070685-FCC-R

 Page
 27 of 48

Test Plots

Band Edge measurement result

Page 28 of 48			
A Bureau Veritas Group Company Page 28 of 48 Weight Sector Start Freq 2.35000000 GHz (Start Freq 2.3500000 GHz (Start Freq 3.3500 GHz (Start Freq 3.3	SIEMIC	Test Report No.	17070685-FCC-R
Bit Hold All of ALTO ALION AUTO Firequency Start Freq 2.310000000 GHz Auto Ture Auto Ture Start Freq 2.45000000 GHz Auto Ture Start Freq 2.310000000 GHz Mkr1 2.463 25 GHz Auto Ture Auto Ture Start Freq 2.45000000 GHz Auto Ture 10 dBddiv Ref 20.00 dBm Center Freq 2.3552 dBm Center Freq Start Freq 2.31000000 GHz Auto Ture Start Freq 2.45000 CHz Auto Ture Center Freq 2.45500000 GHz Center Freq 2.45500000 GHz Start Freq 2.31000000 GHz Start Freq 2.45500000 GHz Start Freq 2.45500000 GHz Start Freq 2.45500000 GHz Start Freq 2.4550000 GHz Start Freq 2.45000000 GHz Start Freq Start Freq 2.4500000 GHz Start Freq 2.45000000 GHz Start Freq Start Freq Start Freq 2.450000 GHz Start Freq 2.45000000 GHz Start Freq 2.45000000 GHz Start Freq Start 2.450000 GHz Start Freq		Page	28 of 48
	Bit Bit Bit Bit Bit Bit Bit Start Alter Auto Start Freq 2.310000000 GHz PR0: Fait Trig: Free Run Avg1 Type: Leg-Pair A	Traduency Frequency Start 13 29 GHz Auto Tune 10 dE 2.552 GHz Center Freq 10 dE 1.000 GHz 2.36500000 GHz 0.00 1.000 GHz 2.36500000 GHz 0.00 1.000 GHz 2.36500000 GHz 0.00 2.3000000 GHz 2.30 0.00 2.42000000 GHz 0.00 0.00 2.42000000 GHz 0.00 0.00 2.42000000 GHz 0.00 0.00 2.42000000 GHz 0.00 0.00 2.5000 GHz 0.00 0.00 2.50000 GHz 0.00 0.00 2.50000 GHz 0.00 0.00 2.5000 GHz 0.00 0.00 2.5000 GHz 0.00 0.00 2.5000 GHz 0.00 0.00 3.500 Freq 0.00 0.00 4.00 0.00 0.00 5.500 GHz 0.00 0.00 6.500 GHz 0.00 0.00 6.500 GHz 0.00 0.00 </th <th>Ref State Ently State Ently Auto Auto Frequency Fit Freq 2.450000000 GHz (Figure Ently) Freq Ently Trig: Free Run Augitodiz-100100 Mkr1 2.463 25 GHz 2.652 GBm Auto Tun 2.652 GBm Rold Ref 20.00 dBm 0.1.028 dB 0.1.028 dB Center Fre 2.45500000 GHz State Fre 2.45500000 GHz State Trig: Solid #VBW 300 kHz Sweep 4.300 ms (1001 pts) 5.00000 CHz Stop Fre 2.453 00 GHz CF State 2.453 00 GHz Freq Offse 0.1 NOCE TR: Solid 2.453 25 GHz 2.453 00 Hz Sweep 4.300 ms (1001 pts) 7 Freq Offse 0.1 NOCE TR: Solid 2.453 26 GHz 2.52 GBm Freq Offse 0.1 Freq Offse 0.1 Freq Offse 0.1</th>	Ref State Ently State Ently Auto Auto Frequency Fit Freq 2.450000000 GHz (Figure Ently) Freq Ently Trig: Free Run Augitodiz-100100 Mkr1 2.463 25 GHz 2.652 GBm Auto Tun 2.652 GBm Rold Ref 20.00 dBm 0.1.028 dB 0.1.028 dB Center Fre 2.45500000 GHz State Fre 2.45500000 GHz State Trig: Solid #VBW 300 kHz Sweep 4.300 ms (1001 pts) 5.00000 CHz Stop Fre 2.453 00 GHz CF State 2.453 00 GHz Freq Offse 0.1 NOCE TR: Solid 2.453 25 GHz 2.453 00 Hz Sweep 4.300 ms (1001 pts) 7 Freq Offse 0.1 NOCE TR: Solid 2.453 26 GHz 2.52 GBm Freq Offse 0.1 Freq Offse 0.1 Freq Offse 0.1

Band Edge, Right Side - 802.11n20

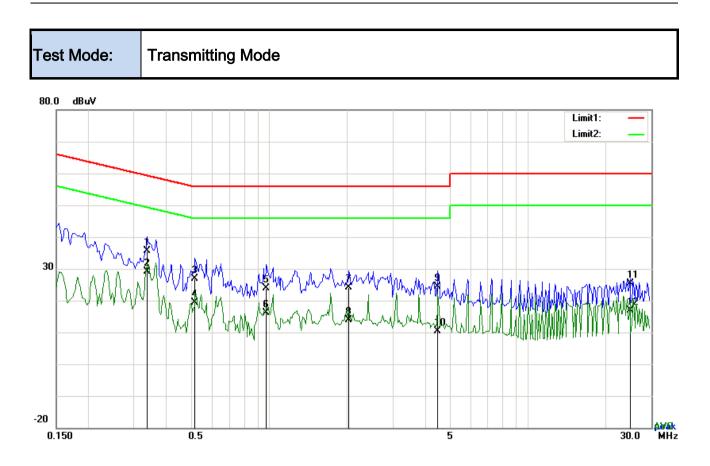
Note: Both Horizontal and vertical polarities were investigated

Band Edge, Left Side - 802.11n20

6.6 AC Power Line Conducted Emissions

Temperature	22 °C
Relative Humidity	51%
Atmospheric Pressure	1009mbar
Test date :	July 09, 2018
Tested By :	Aaron Liang

Requirement(s):


Spec	Item	Requirement		Applicable		
47CFR§15. 207, RSS210 (A8.1)	a)	For Low-power radio-frequency devices that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 [mu] H/50 ohms line impedance stabilization network (LISN). The lower limit applies at the boundary between the frequencies ranges.Frequency rangesLimit (dBµV) (MHz)QPAverage0.15 x 0.566 x 56 x			L	
		0.15 ~ 0.5 0.5 ~ 5	66 – 56 56	56 – 46 46		
	5~30 60 50					
Test Setup	Vertical Ground Reference Plane UT 40cm EUT 80cm Horizontal Ground Reference Plane Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80cm from EUT and at least 80cm					
 The EUT and supporting equipment were set up in accordation the standard on top of a 1.5m x 1m x 0.8m high, non-metal Procedure The power supply for the EUT was fed through a 50W/50m filtered mains. The RF OUT of the EUT LISN was connected to the EMI term 					onnected to	

S Î E A Bureau Verita	Test Report No. 17070685-FCC-R Page 30 of 48	
	 coaxial cable. All other supporting equipment were powered separately from another main supply. The EUT was switched on and allowed to warm up to its normal operating condition A scan was made on the NEUTRAL line (for AC mains) or Earth line (for DC power) over the required frequency range using an EMI test receiver. High peaks, relative to the limit line, The EMI test receiver was then tuned to the selected frequencies and the necessary measurements made with a receiver bandw setting of 10 kHz. Step 7 was then repeated for the LIVE line (for AC mains) or DC line (for DC power) 	vidth
Remark		
Result	Pass Fail	
Test Data	Yes N/A Yes (See below)	

 Test Report No.
 17070685-FCC-R

 Page
 31 of 48

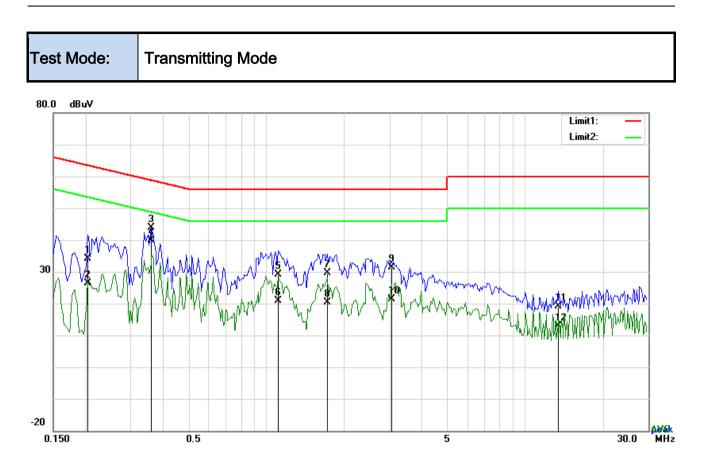

Test Data

Phase Line Plot at 120Vac, 60Hz

No.	P/L	Frequency (MHz)	Reading (dBµV)	Detector	Corrected (dB)	Result (dBµV)	Limit (dBµV)	Margin (dB)
1	L1	0.3372	25.62	QP	10.03	35.65	59.27	-23.62
2	L1	0.3372	19.21	AVG	10.03	29.24	49.27	-20.03
3	L1	0.5166	16.85	QP	10.03	26.88	56.00	-29.12
4	L1	0.5166	9.44	AVG	10.03	19.47	46.00	-26.53
5	L1	0.9768	13.77	QP	10.03	23.80	56.00	-32.20
6	L1	0.9768	6.06	AVG	10.03	16.09	46.00	-29.91
7	L1	2.0259	14.13	QP	10.04	24.17	56.00	-31.83
8	L1	2.0259	3.95	AVG	10.04	13.99	46.00	-32.01
9	L1	4.4820	14.41	QP	10.07	24.48	56.00	-31.52
10	L1	4.4820	0.29	AVG	10.07	10.36	46.00	-35.64
11	L1	24.8673	14.96	QP	10.39	25.35	60.00	-34.65
12	L1	24.8673	6.57	AVG	10.39	16.96	50.00	-33.04

Test Report No.	17070685-FCC-R
Page	32 of 48

Test Data


Phase Neutral Plot at 120Vac, 60Hz

No.	P/L	Frequency (MHz)	Reading (dBµV)	Detector	Corrected (dB)	Result (dBµV)	Limit (dBµV)	Margin (dB)
1	Ν	0.1929	27.72	QP	10.02	37.74	63.91	-26.17
2	Ν	0.1929	7.20	AVG	10.02	17.22	53.91	-36.69
3	Ν	0.3372	26.86	QP	10.02	36.88	59.27	-22.39
4	Ν	0.3372	16.28	AVG	10.02	26.30	49.27	-22.97
5	Ν	0.9729	19.91	QP	10.03	29.94	56.00	-26.06
6	Ν	0.9729	2.10	AVG	10.03	12.13	46.00	-33.87
7	Ν	2.3925	18.17	QP	10.04	28.21	56.00	-27.79
8	Ν	2.3925	-0.45	AVG	10.04	9.59	46.00	-36.41
9	Ν	7.1808	15.65	QP	10.10	25.75	60.00	-34.25
10	Ν	7.1808	-3.26	AVG	10.10	6.84	50.00	-43.16
11	Ν	24.0249	8.28	QP	10.32	18.60	60.00	-41.40
12	Ν	24.0249	-1.10	AVG	10.32	9.22	50.00	-40.78

 Test Report No.
 17070685-FCC-R

 Page
 33 of 48

Test Data


Phase Line Plot at 240Vac, 60Hz

No.	P/L	Frequency (MHz)	Reading (dBµV)	Detector	Corrected (dB)	Result (dBµV)	Limit (dBµV)	Margin (dB)
1	L1	0.2046	24.02	QP	10.03	34.05	63.42	-29.37
2	L1	0.2046	16.31	AVG	10.03	26.34	53.42	-27.08
3	L1	0.3606	33.91	QP	10.03	43.94	58.71	-14.77
4	L1	0.3606	29.78	AVG	10.03	39.81	48.71	-8.90
5	L1	1.1133	19.15	QP	10.03	29.18	56.00	-26.82
6	L1	1.1133	10.73	AVG	10.03	20.76	46.00	-25.24
7	L1	1.7178	19.64	QP	10.04	29.68	56.00	-26.32
8	L1	1.7178	10.23	AVG	10.04	20.27	46.00	-25.73
9	L1	3.0468	21.40	QP	10.06	31.46	56.00	-24.54
10	L1	3.0468	11.37	AVG	10.06	21.43	46.00	-24.57
11	L1	13.5105	8.93	QP	10.20	19.13	60.00	-40.87
12	L1	13.5105	2.63	AVG	10.20	12.83	50.00	-37.17

 Test Report No.
 17070685-FCC-R

 Page
 34 of 48

Test Data

Phase Neutral Plot at 240Vac, 60Hz

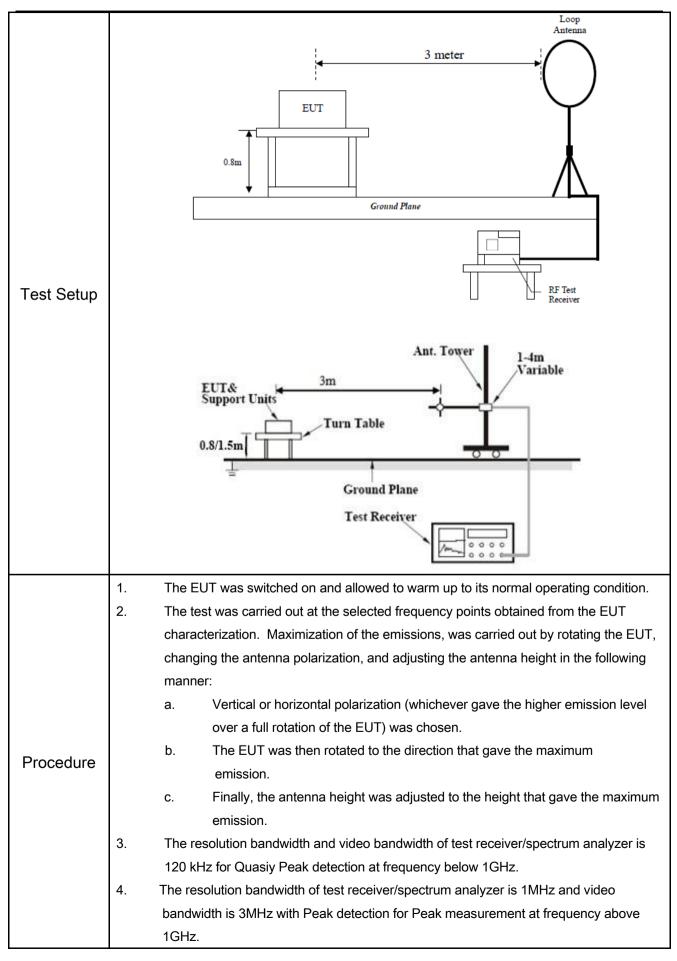
No.	P/L	Frequency (MHz)	Reading (dBµV)	Detector	Corrected (dB)	Result (dBµV)	Limit (dBµV)	Margin (dB)
1	Ν	0.1539	32.60	QP	10.02	42.62	65.79	-23.17
2	Ν	0.1539	21.77	AVG	10.02	31.79	55.79	-24.00
3	Ν	0.3606	32.87	QP	10.02	42.89	58.71	-15.82
4	Ν	0.3606	24.60	AVG	10.02	34.62	48.71	-14.09
5	Ν	0.9651	22.03	QP	10.03	32.06	56.00	-23.94
6	Ν	0.9651	12.16	AVG	10.03	22.19	46.00	-23.81
7	Ν	1.6983	21.87	QP	10.04	31.91	56.00	-24.09
8	Ν	1.6983	7.28	AVG	10.04	17.32	46.00	-28.68
9	Ν	4.5254	16.93	QP	10.07	27.00	56.00	-29.00
10	Ν	4.5254	7.66	AVG	10.07	17.73	46.00	-28.27
11	Ν	24.3018	12.56	QP	10.33	22.89	60.00	-37.11
12	Ν	24.3018	3.36	AVG	10.33	13.69	50.00	-36.31

 Test Report No.
 17070685-FCC-R

 Page
 35 of 48

6.7 Radiated Spurious Emissions & Restricted Band

Temperature	23 °C
Relative Humidity	52%
Atmospheric Pressure	1010mbar
Test date :	July 10, 2018
Tested By :	Aaron Liang


Requirement(s):

Spec	Item	Requirement	Applicable	
47CFR§15. 247(d), RSS210 (A8.5)	a)	Except higher limit as specified elsewhere in other section, the emissions from the low-power radio-frequency devices shall not exceed the field strength levels specified in the following table and the level of any unwanted emissions shall not exceed the level of the fundamental emission. The tighter limit applies at the band edges		
		Frequency range (MHz)	Field Strength (µV/m)	Σ
		0.009~0.490	2400/F(KHz)	
		0.490~1.705	24000/F(KHz)	
		1.705~30.0	30	
		30 - 88	100	
		88 - 216	150	
		216 960	200	
		Above 960	500	
	b)	For non-restricted band, In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB or 30dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, determined by the measurement method on output power to be used. Attenuation below the general limits specified in § 15.209(a) is not required $\boxed{20 \text{ dB down}}$ 30 dB down		V
	c) or restricted band, emission must also comply with the radiated emission limits specified in 15.209		V	

 Test Report No.
 17070685-FCC-R

 Page
 36 of 48

3			
SIF	MIC	Test Report No.	17070685-FCC-R
A Bureau Verit	as Group Company	Page	37 of 48
	bandwidth is frequency a 5. Steps 2 and	s 10Hz with Peak detec bove 1GHz.	ceiver/spectrum analyzer is 1MHz and the video tion for Average Measurement as below at e next frequency point, until all selected frequency
Remark			
Result	Pass	E Fail	
	Yes Yes (See below)	N/A N/A	

Test Report No.	17070685-FCC-R
Page	38 of 48

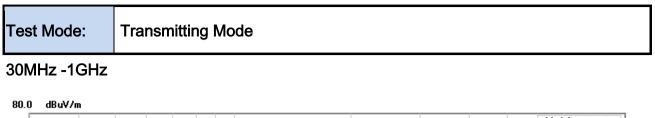
Test Result:

Test Mode	Transmit	Transmitting Mode					
Frequency	Frequency range: 9KHz - 30MHz						
Глая	Detection	Fester	Deeding	Desult	Limit@2m	Monain	

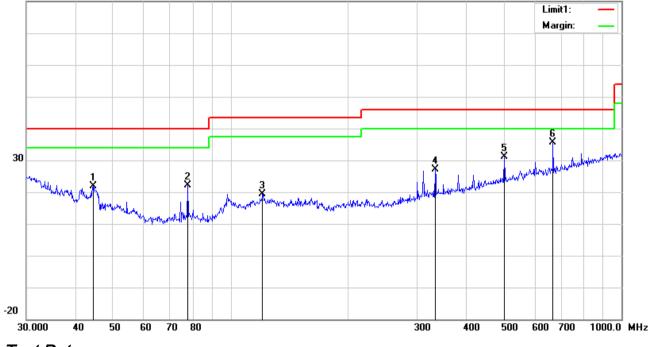
Freq.	Detection	Factor	Reading	Result	Limit@3m	Margin
(MHz)	value	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)
						>20
						>20

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.


Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

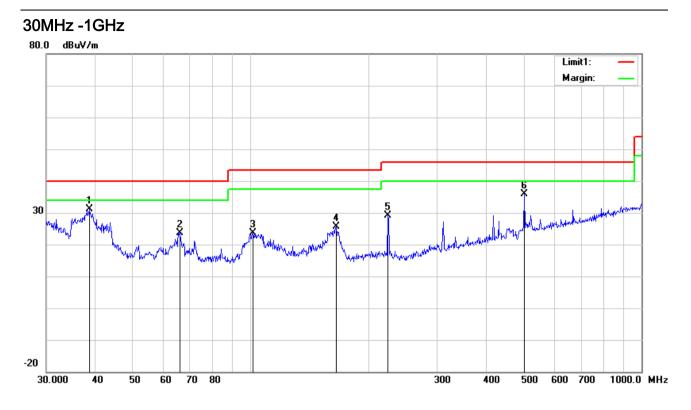


Test Report No. 17070685-FCC-R

39 of 48

Page

Test Data


Horizontal Polarity Plot @3m

No.	P/L	Frequency	Reading	Detect or	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degr ee
		(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	Н	44.5868	32.55	peak	10.87	22.29	0.75	21.88	40.00	-18.12	100	250
2	Н	77.5928	35.88	peak	7.65	22.41	1.01	22.13	40.00	-17.87	100	26
3	Н	120.6991	26.78	peak	13.85	22.36	1.16	19.43	43.50	-24.07	100	80
4	Н	333.6867	33.08	peak	14.31	22.20	1.96	27.15	46.00	-18.85	100	193
5	Н	501.1790	32.72	peak	17.72	21.81	2.42	31.05	46.00	-14.95	100	109
6	Н	668.1423	34.73	peak	19.85	21.43	2.60	35.75	46.00	-10.25	100	278

 Test Report No.
 17070685-FCC-R

 Page
 40 of 48

Test Data

N o.	P/ L	Frequency	Reading	Detect or	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degr ee
		(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	()
1	V	38.6161	37.78	peak	14.91	22.27	0.78	31.20	40.00	-8.80	100	291
2	V	65.8031	37.65	peak	7.59	22.39	0.90	23.75	40.00	-16.25	200	344
3	V	101.2885	34.22	peak	10.63	22.32	1.13	23.66	43.50	-19.84	100	62
4	V	165.4867	34.35	peak	12.16	22.26	1.37	25.62	43.50	-17.88	100	246
5	V	224.5193	38.12	peak	11.76	22.34	1.62	29.16	46.00	-16.84	100	230
6	۷	501.1790	37.61	peak	17.72	21.81	2.42	35.94	46.00	-10.06	100	151

Test Report No.	17070685-FCC-R
Page	41 of 48

Above 1GHz

Frequency	Reading	Antenna Factor	Cable loss	Preamp factor	Emission Level	Limits	Margin	Detector	Polarity
(MHz)	(dBµV)	(dB)	(dB)	(dB)	(dBµV/m)		(dB)	(PK/AV)	(H/V)
			1		OM)(Worst C	,		1	
2391.8	43.25	28.72	3.36	26.32	49.01	74.00	-24.99	peak	Vertical
4823	33.55	32.94	3.98	27.49	42.98	54.00	-11.02	Average	Vertical
4823	42.35	32.94	3.98	27.49	51.78	74.00	-22.22	peak	Vertical
7248	33.66	25.28	5.51	27.94	36.51	54.00	-17.49	Average	Vertical
7248	43.12	25.28	5.51	27.94	45.97	74.00	-28.03	peak	Vertical
2391.8	43.79	28.72	3.36	26.32	49.55	74.00	-24.45	peak	Horizontal
4823	33.52	32.94	3.98	27.49	42.95	54.00	-11.05	Average	Horizontal
4823	44.09	32.94	3.98	27.49	53.52	74.00	-20.48	peak	Horizontal
7248	32.49	25.28	5.51	27.94	35.34	54.00	-18.66	Average	Horizontal
7248	42.58	25.28	5.51	27.94	45.43	74.00	-28.57	peak	Horizontal
		Middle (Channel	:802.11n(2	20M)(Worst	Case)-243	7MHz		
4873	32.33	32.11	4.04	27.53	40.95	54.00	-13.05	Average	Vertical
4873	42.48	32.11	4.04	27.53	51.10	74.00	-22.90	peak	Vertical
7320	33.11	24.33	5.58	27.96	35.06	54.00	-18.94	Average	Vertical
7320	42.75	24.33	5.58	27.96	44.70	74.00	-29.30	peak	Vertical
4873	33.34	32.11	4.04	27.53	41.96	54.00	-12.04	Average	Horizontal
4873	42.58	32.11	4.04	27.53	51.20	74.00	-22.80	peak	Horizontal
7320	32.61	24.33	5.58	27.96	34.56	54.00	-19.44	Average	Horizontal
7320	43.19	24.33	5.58	27.96	45.14	74.00	-28.86	peak	Horizontal
		High C	hannel:8	302.11n(2	0M)(Worst (Case)-2462	MHz		
2484	43.99	28.79	3.48	26.34	49.92	74.00	-24.08	peak	Vertical
4924	33.82	31.32	4.12	27.58	41.68	54.00	-12.32	Average	Vertical
4924	42.13	31.32	4.12	27.58	49.99	74.00	-24.01	peak	Vertical
7392	33.56	24.38	5.68	27.99	35.63	54.00	-18.37	Average	Vertical
7392	42.02	24.38	5.68	27.99	44.09	74.00	-29.91	peak	Vertical
2484	42.03	28.79	3.48	26.34	47.96	74.00	-26.04	peak	Horizontal
4924	33.85	31.32	4.12	27.58	41.71	54.00	-12.29	Average	Horizontal
4924	43.71	31.32	4.12	27.58	51.57	74.00	-22.43	peak	Horizontal
7392	33.81	24.38	5.68	27.99	35.88	54.00	-18.12	Average	Horizontal
7392	42.58	24.38	5.68	27.99	44.65	74.00	-29.35	peak	Horizontal

 Test Report No.
 17070685-FCC-R

 Page
 42 of 48

Note:

1, The testing has been conformed to 10*2462MHz=24,620MHz

2, All other emissions more than 30 dB below the limit

3, X-Axis, Y-Axis and Z-Axis were investigated. The results above show only the worst case.

4, The radiated spurious test above 18GHz is subcontracted to SIEMIC (Nanjing-China) Laboratories. and

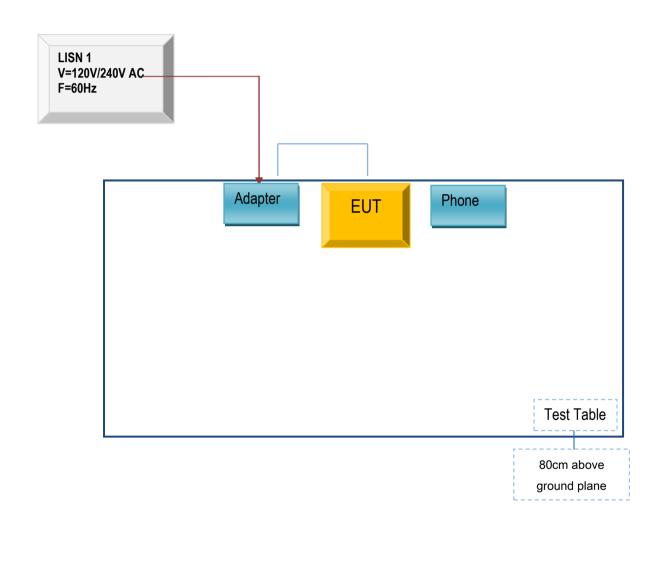
found 30dB below the limit at least.

Test Report No. 17070685-FCC-R Page

43 of 48

Annex A. TEST INSTRUMENT

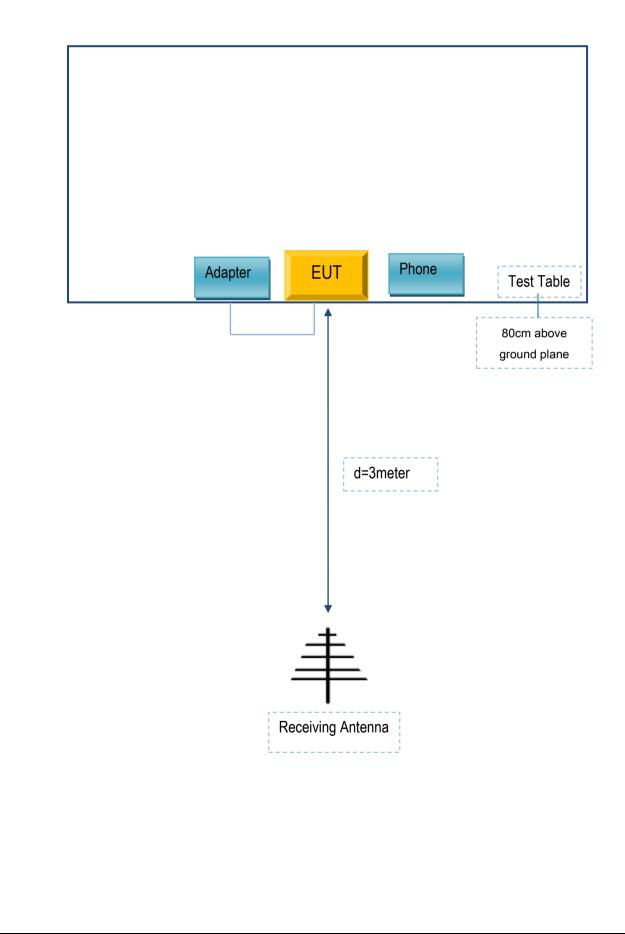
Instrument	Model	Serial #	Cal Date	Cal Due	In use
AC Line Conducted			1		
EMI test receiver	ESCS30	8471241027	09/15/2017	09/14/2018	V
Line Impedance	LI-125A	191106	09/23/2017	09/22/2018	V
Line Impedance	LI-125A	191107	09/23/2017	09/22/2018	V
ISN	ISN T800	34373	09/23/2017	09/22/2018	
Transient Limiter	LIT-153	531118	08/30/2017	08/29/2018	
RF conducted test					
Agilent ESA-E SERIES	E4407B	MY45108319	09/15/2017	09/14/2018	K
Power Splitter	1#	1#	08/30/2017	08/29/2018	V
DC Power Supply	E3640A	MY40004013	09/15/2017	09/14/2018	•
Radiated Emissions					
EMI test receiver	ESL6	100262	09/15/2017	09/14/2018	•
Positioning Controller	UC3000	MF780208282	11/17/2017	11/16/2018	>
OPT 010 AMPLIFIER (0.1-1300MHz)	8447E	2727A02430	08/30/2017	08/29/2018	•
Microwave Preamplifier (1 ~ 26.5GHz)	8449B	3008A02402	03/22/2018	03/21/2019	N
Horn Antenna	BBHA9170	3145226D1	09/27/2017	09/26/2018	K
Active Antenna (9kHz-30MHz)	AL-130	121031	10/12/2017	10/11/2018	V
Bilog Antenna (30MHz~6GHz)	JB6	A110712	09/19/2017	09/18/2018	V
Double Ridge Horn Antenna (1 ~18GHz)	AH-118	71283	09/22/2017	09/21/2018	V
Universal Radio Communication Tester	CMU200	121393	09/23/2017	09/22/2018	X


Test Report No. 17070685-FCC-R Page

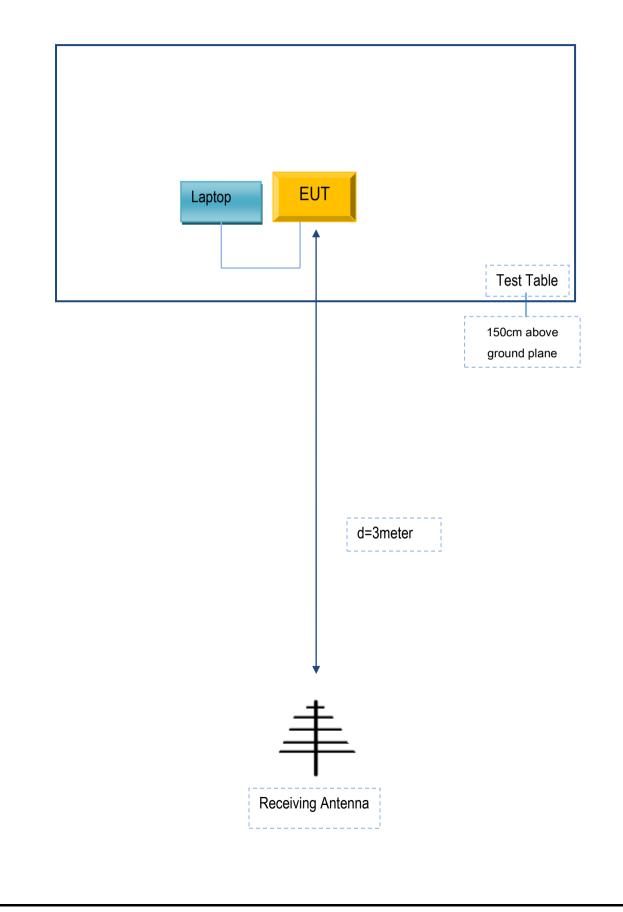
44 of 48

Annex B. TEST SETUP AND SUPPORTING EQUIPMENT

Annex B.i. TEST SET UP BLOCK


Block Configuration Diagram for AC Line Conducted Emissions

Test Report No.	17070685-FCC-R
Page	45 of 48


Block Configuration Diagram for Radiated Emissions (Below 1GHz).

Test Report No.	17070685-FCC-R
Page	46 of 48

Block Configuration Diagram for Radiated Emissions (Above 1GHz).

Test Report No.	17070685-FCC-R
Page	47 of 48

Annex B. ii. SUPPORTING EQUIPMENT DESCRIPTION

The following is a description of supporting equipment and details of cables used with the EUT.

Supporting Equipment:

Manufacturer	Equipment Description	Model	Serial No
Alcidae Inc.	Adapter	TEKA006-0501000UK	N/A
Lenovo	Lenovo Laptop		N/A
HUAWEI	Phone	Honor 9	N/A

Supporting Cable:

Cable type	Shield Type	Ferrite Core	Length	Serial No
USB Cable	Un-shielding	No	0.8m	N/A

 Test Report No.
 17070685-FCC-R

 Page
 48 of 48

Annex C. User Manual / Block Diagram / Schematics / Partlist/ DECLARATION OF SIMILARITY

Please see the attachment