APPENDIX C: RELEVANT PAGES FROM PROBE CALIBRATION REPORT(S) Report No.: WT228002560 Page 1 of 27 | | SMQ | Certificate No: Z21-60511 | | | | | |--|---------------------|--|--|--|--|--| | CALIBRATIO | N CERTIFIC | ATE | | | | | | Object | DAF | E4 - SN: 1636 | | | | | | Calibration Procedure | FF-2
Cali | FF-Z11-002-01 Calibration Procedure for the Data Acquisition Electronics (DAEx) | | | | | | Calibration date: | Dec | ember 30, 2021 | | | | | | This calibration Certificon measurements(SI). The pages and are part of the pages are pages and are part of the pages are pages and are pages are pages and are pages pa | o mododicinento al | ne traceability to national standards, which realize the physical units of
nd the uncertainties with confidence probability are given on the followin | | | | | | All calibrations have the humidity<70%. | been conducted in | n the closed laboratory facility: environment temperature(22±3)°C and | | | | | | Calibration Equipment (| used (M&TE critica | l for calibration) | | | | | | Primary Standards | 1 | Cal Date(Calibrated by, Certificate No.) Scheduled Calibration | | | | | | | | | | | | | | Process Calibrator 753 | 1971018 | 15-Jun-21 (CTTL, No.J21X04465) Jun-22 | | | | | | Process Calibrator 753 | 1971018
Name | Filheties | | | | | | Process Calibrator 753 | | Function Signature SAR Test Engineer | | | | | | | Name | Function Signature | | | | | | alibrated by: | Name
Yu Zongying | Function Signature SAR Test Engineer | | | | | Certificate No: Z21-60511 Page 1 of 3 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn Glossary: DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. Methods Applied and Interpretation of Parameters: - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The report provide only calibration results for DAE, it does not contain other performance test results. Certificate No: Z21-60511 Page 2 of 3 -100...+300 mV DC Voltage Measurement A/D - Converter Resolution nominal High Range: 1LSB = 6.1μV, full range = -100...+300 m³ Low Range: 1LSB = 61nV, full range = -1......+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | X | Υ | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 405.072 ± 0.15% (k=2) | 405.102 ± 0.15% (k=2) | 405.099 ± 0.15% (k=2) | | Low Range | 4.00155 ± 0.7% (k=2) | 3.98844 ± 0.7% (k=2) | 3.98975 ± 0.7% (k=2) | ### **Connector Angle** | Connector Angle to be used in DASY system | 168° ± 1 ° | |---|------------| | | 100 _ 1 | Certificate No: Z21-60511 Page 3 of 3 SMQ Client Certificate No: Z21-60449 CALIBRATION ### **CALIBRATION CERTIFICATE** Object EX3DV4 - SN: 7623 Calibration Procedure(s) FF-Z11-004-02 Calibration Procedures for Dosimetric E-field Probes Calibration date: January 24, 2022 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-----------------------|------------------|--|-----------------------| | Power Meter NRP2 | 101919 | 15-Jun-21(CTTL, No.J21X04466) | Jun-22 | | Power sensor NRP-Z91 | 101547 | 15-Jun-21(CTTL, No.J21X04466) | Jun-22 | | Power sensor NRP-Z91 | 101548 | 15-Jun-21(CTTL, No.J21X04466) | Jun-22 | | Reference 10dBAttenua | itor 18N50W-10dB | 10-Feb-20(CTTL, No.J20X00525) | Feb-22 | | Reference 20dBAttenua | tor 18N50W-20dB | 10-Feb-20(CTTL, No.J20X00526) | Feb-22 | | Reference Probe EX3D | V4 SN 3617 | 27-Jan-21(SPEAG, No.EX3-3617_Jan21) |) Jan-22 | | DAE4 | SN 1555 | 20-Aug-21(SPEAG, No.DAE4-1555_Aug | 21/2) Aug-22 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | SignalGenerator MG370 | 00A 6201052605 | 16-Jun-21(CTTL, No.J21X04467) | Jun-22 | | Network Analyzer E507 | 1C MY46110673 | 14-Jan-22(CTTL, No.J22X00406) | Jan-23 | | | Name | Function | Signature | | Calibrated by: | Yu Zongying | SAR Test Engineer | 200 | | Reviewed by: | Lin Hao | SAR Test Engineer | # 36 | | Approved by: | Qi Dianyuan | SAR Project Leader | 200 | | | | | 10 3 E T 1 E E | Issued: January 26, 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z21-60449 Page 1 of 22 Glossary: TSL tissue simulating liquid NORMx,y,z tissue simulating liquid sensitivity in free space convF sensitivity in TSL / NOR sensitivity in TSL / NORMx,y,z diode compression point CF A,B,C,D DCP crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters Polarization Φ Φ rotation around probe axis Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i θ =0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Measurement Techniques", June 2013 b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z* frequency response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics. Ax, y, z; Bx, y, z; Cx, y, z; VRx, y, z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NQRMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No:Z21-60449 Page 2 of 22 Report No.: WT228002560 Page 6 of 27 ### DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7623 ### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |-------------------------|----------|----------|----------|-----------| | $Norm(\mu V/(V/m)^2)^A$ | 0.62 | 0.55 | 0.55 | ±10.0% | | DCP(mV) ^B | 110.1 | 111.9 | 112.5 | | Calibration Results for Modulation Response | UID | Communication System Name | | A
dB | B
dBõV | С | D
dB | VR
mV | Max
Dev. | Max
Unc ^E
(k=2) | |-----------|-----------------------------|---|---------|-----------|-------|---------------|----------|---|--| | 0 | CW | Х | 0.0 | 0.0 | 1.0 | 0.00 | 194.5 | ±2.3% | ±4.7% | | | | Y | 0.0 | 0.0 | 1.0 | | 180.5 | | 201001200 3460 | | | | Z | 0.0 | 0.0 | 1.0 | 1 | 183.8 | | | | 10352-AAA | Pulse Waveform (200Hz, 10%) | X | 1.42 | 60.00 | 5.69 | | 60 | ±2.5% | ±9.6% | | | | Υ | 1.42 | 60.00 | 5.91 | 10.00 | 60 | | | | II. | | Z | 1.45 | 60.00 | 5.69 | | 60 | | | | 10353-AAA | Pulse Waveform (200Hz, 20%) | Х | 6.00 | 68.00 | 7.00 | | 80 | ±3.1% | ±9.6% | | | 320 | Υ | 0.84 | 60.00 | 4.64 | 6.99 | 80 | 0.0000000000000000000000000000000000000 | | | | | Z | 20.00 | 70.00 | 7.00 | | 80 | | | | 10354-AAA | Pulse Waveform (200Hz, 40%) | X | 0.00 | 131.72 | 1.16 | | 95 | ±2.3% | ±9.6% | | | | Υ | 0.10 | 134.18 | 0.31 | 3.98 | 95
95 | | | | | | Z | 0.04 | 136.08 | 0.20 | | | | | | 10355-AAA | Pulse Waveform (200Hz, 60%) | X | 0.43 | 159.55 | 2.06 | | 120 | ±1.7% | ±9.6% | | | | Υ | 6.07 | 160.00 | 16.65 | 2.22 | 120 | | and the state of t | | | | Z | 0.93 | 159.99 | 2.25 | | 120 | - | | | 10387-AAA | QPSK Waveform, 1 MHz | X | 0.56 | 63.82 | 11.55 | | 150 | ±4.8% | ±9.6% | | | A 1 | Υ | 0.58 | 64.69 | 12.65 | 1.00 | 150 | | | | | | Z | 0.51 | 63.65 | 11.46 | 888588 | 150 | | | | 10388-AAA | QPSK Waveform, 10 MHz | Х | 1.35 | 65.96 | 13.74 | | 150 | ±1.8% | ±9.6% | | | | Y | 1.46 | 67.26 | 14.63 | 0.00 | 150 | | | | | | Z | 1.39 | 66.73 | 14.16 | | 150 | | | | 10396-AAA | 64-QAM Waveform, 100 kHz | X | 1.75 | 66.21 | 18.15 | | 150 | ±2.2% | ±9.6% | | | | Y | 1.81 | 66.80 | 18.69 | 3.01 | 150 | | | | | | Z | 1.55 | 64.47 | 16.54 | properties () | 150 | | | | 10414-AAA | WLAN CCDF, 64-QAM, 40MHz | X | 4.07 | 66.96 | 15.68 | | 150 | ±3.5% | ±9.6% | | | | Y | 4.10 | 67.16 | 15.86 | 0.00 | 150 | | | | | | Z | 4.07 | 67.08 | 15.78 | | 150 | | | Note: For details on UID parameters see Appendix The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No:Z21-60449 Page 3 of 22 Report No.: WT228002560 Page 7 of 27 A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 5). ^{Numerical linearization parameter: uncertainty not required. Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for} ### DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7623 ### **Sensor Model Parameters** | | C1
fF | C2
fF | α
V ⁻¹ | T1
ms.V ⁻² | T2
ms.V ⁻¹ | T3
ms | T4
V ⁻² | T5
V ⁻¹ | T6 | |---|----------|----------|----------------------|--------------------------|--------------------------|----------|-----------------------|-----------------------|------| | Х | 10.76 | 76.44 | 32.38 | 1.13 | 0.00 | 4.90 | 0.00 | 0.00 | 1.02 | | Υ | 10.63 | 75.31 | 32.31 | 3.62 | 0.00 | 4.90 | 0.00 | 0.00 | 1.02 | | Z | 10.82 | 77.02 | 32.54 | 3.62 | 0.00 | 4.90 | 0.00 | 0.00 | 1.01 | ### **Other Probe Parameters** | and Frode Farameters | | |---|------------| | Sensor Arrangement | Triangular | | Connector Angle (°) | 160.7 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disable | | Probe Overall Length | 337mm | | Probe Body Diameter | 10mm | | Tip Length | 9mm | | Tip Diameter | 2.5mm | | Probe Tip to Sensor X Calibration Point | 1mm | | Probe Tip to Sensor Y Calibration Point | 1mm | | Probe Tip to Sensor Z Calibration Point | 1mm | | Recommended Measurement Distance from Surface | 1.4mm | Certificate No:Z21-60449 Page 4 of 22 Report No.: WT228002560 Page 8 of 27 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:7623 ### Calibration Parameter Determined in Head Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 41.9 | 0.89 | 10.28 | 10.28 | 10.28 | 0.40 | 0.80 | ±12.1% | | 835 | 41.5 | 0.90 | 9.90 | 9.90 | 9.90 | 0.36 | 0.87 | ±12.1% | | 1750 | 40.1 | 1.37 | 8.50 | 8.50 | 8.50 | 0.21 | 1.10 | ±12.1% | | 1900 | 40.0 | 1.40 | 8.28 | 8.28 | 8.28 | 0.25 | 1.05 | ±12.19 | | 2100 | 39.8 | 1.49 | 8.16 | 8.16 | 8.16 | 0.25 | 1.09 | ±12.19 | | 2300 | 39.5 | 1.67 | 8.01 | 8.01 | 8.01 | 0.56 | 0.70 | ±12.1% | | 2450 | 39.2 | 1.80 | 7.75 | 7.75 | 7.75 | 0.55 | 0.71 | ±12.1% | | 2600 | 39.0 | 1.96 | 7.55 | 7.55 | 7.55 | 0.52 | 0.76 | ±12.1% | | 3300 | 38.2 | 2.71 | 7.22 | 7.22 | 7.22 | 0.45 | 0.92 | ±13.3% | | 3500 | 37.9 | 2.91 | 6.93 | 6.93 | 6.93 | 0.40 | 1.01 | ±13.3% | | 3700 | 37.7 | 3.12 | 6.73 | 6.73 | 6.73 | 0.35 | 1.20 | ±13.3% | | 3900 | 37.5 | 3.32 | 6.60 | 6.60 | 6.60 | 0.40 | 1.25 | ±13.3% | | 4100 | 37.2 | 3.53 | 6.57 | 6.57 | 6.57 | 0.35 | 1.25 | ±13.3% | | 4200 | 37.1 | 3.63 | 6.45 | 6.45 | 6.45 | 0.35 | 1.35 | ±13.3% | | 4400 | 36.9 | 3.84 | 6.35 | 6.35 | 6.35 | 0.35 | 1.35 | ±13.3% | | 4600 | 36.7 | 4.04 | 6.25 | 6.25 | 6.25 | 0.45 | 1.20 | ±13.3% | | 4800 | 36.4 | 4.25 | 6.15 | 6.15 | 6.15 | 0.40 | 1.30 | ±13.3% | | 4950 | 36.3 | 4.40 | 5.92 | 5.92 | 5.92 | 0.40 | 1.35 | ±13.3% | | 5250 | 35.9 | 4.71 | 5.45 | 5.45 | 5.45 | 0.40 | 1.45 | ±13.3% | | 5600 | 35.5 | 5.07 | 4.90 | 4.90 | 4.90 | 0.50 | 1.30 | ±13.3% | | 5750 | 35.4 | 5.22 | 4.99 | 4.99 | 4.99 | 0.50 | 1.30 | ±13.3% | ^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Certificate No:Z21-60449 Page 5 of 22 Report No.: WT228002560 Page 9 of 27 F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary # Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ±7.4% (k=2) Certificate No:Z21-60449 Page 6 of 22 Report No.: WT228002560 Page 10 of 27 # Receiving Pattern (Φ), θ=0° # f=600 MHz, TEM ### f=1800 MHz, R22 Uncertainty of Axial Isotropy Assessment: ±1.2% (k=2) Certificate No:Z21-60449 Page 7 of 22 Report No.: WT228002560 Page 11 of 27 Add: No.52 HuaYuanBei Road, Haidian District, Bejjing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn ## Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz) Certificate No:Z21-60449 Page 8 of 22 Report No.: WT228002560 Page 12 of 27 ### **Conversion Factor Assessment** ### f=750 MHz,WGLS R9(H_convF) ### f=1750 MHz,WGLS R22(H_convF) # **Deviation from Isotropy in Liquid** Uncertainty of Spherical Isotropy Assessment: ±3.2% (k=2) Certificate No:Z21-60449 Page 9 of 22 Report No.: WT228002560 Page 13 of 27 ### **Appendix: Modulation Calibration Parameters** | UID | Rev | Communication System Name | Group | PAR
(dB) | Uncl
(k=2 | |-------|-----|--|------------------|-------------|--------------| | 0 | | CW | CW | 0.00 | ± 4.7 | | 10010 | CAA | SAR Validation (Square, 100ms, 10ms) | Test | 10.00 | ± 9.6 | | 10011 | CAB | UMTS-FDD (WCDMA) | WCDMA | 2.91 | ± 9.6 | | 10012 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps) | WLAN | 1.87 | ± 9.6 | | 10013 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps) | WLAN | 9.46 | ± 9.6 | | 10021 | DAC | GSM-FDD (TDMA, GMSK) | GSM | 9.39 | ± 9.6 | | 10023 | DAC | GPRS-FDD (TDMA, GMSK, TN 0) | GSM | 9.57 | ± 9.6 | | 10024 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1) | GSM | 6.56 | ± 9.6 | | 10025 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0) | GSM | 12.62 | ± 9.6 | | 10026 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1) | GSM | 9.55 | ± 9.6 | | 10027 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1-2) | GSM | 4.80 | ± 9.6 | | 10028 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1-2-3) | GSM | 3.55 | ± 9.6 | | 10029 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1-2) | GSM | 7.78 | ± 9.6 | | 10030 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH1) | Bluetooth | 5.30 | ± 9.6 | | 10031 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH3) | Bluetooth | 1.87 | ± 9.6 | | 10032 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH5) | Bluetooth | 1.16 | ± 9.6 | | 10033 | CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1) | Bluetooth | 7.74 | ± 9.6 | | 10034 | CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3) | Bluetooth | 4.53 | ± 9.6 | | 10035 | CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5) | Bluetooth | 3.83 | ± 9.6 | | 10036 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH1) | Bluetooth | 8.01 | ± 9.6 | | 10037 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH3) | Bluetooth | 4.77 | ± 9.6 | | 10038 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH5) | Bluetooth | 4.17 | | | 10039 | CAB | CDMA2000 (1xRTT, RC1) | | | ± 9.6 | | 0042 | CAB | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate) | CDMA2000
AMPS | 4.57 | ± 9.6 | | 0042 | CAA | IS-91/EIA/TIA-553 FDD (FDMA, FM) | | 7.78 | ± 9.6 | | 10048 | CAA | DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24) | AMPS | 0.00 | ± 9.6 | | 10049 | CAA | | DECT | 13.80 | ± 9.6 | | 10056 | CAA | DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12) UMTS-TDD (TD-SCDMA, 1.28 Mcps) | DECT | 10.79 | ± 9.6 | | 10058 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3) | TD-SCDMA | 11.01 | ± 9.6 | | 10059 | CAB | | GSM | 6.52 | ± 9.6 | | 10060 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps) | WLAN | 2.12 | ± 9.6 | | 10061 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps) | WLAN | 2.83 | ± 9.6 | | 10062 | CAD | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps) | WLAN | 3.60 | ± 9.6 | | 0063 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps) | WLAN | 8.68 | ± 9.6 | | 0064 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps) | WLAN | 8.63 | ± 9.6 | | 0065 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps) | WLAN | 9.09 | ± 9.6 | | 0066 | | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps) | WLAN | 9.00 | ± 9.6 | | | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps) | WLAN | 9.38 | ± 9.6 | | 0067 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps) | WLAN | 10.12 | ± 9.6 | | 8800 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps) | WLAN | 10.24 | ± 9.6 | | 0069 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps) | WLAN | 10.56 | ± 9.6 | | 0071 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps) | WLAN | 9.83 | ± 9.6 | | 0072 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps) | WLAN | 9.62 | ± 9.6 | | 0073 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps) | WLAN | 9.94 | ± 9.6 ° | | 0074 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps) | WLAN | 10.30 | ± 9.6 | | 0075 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps) | WLAN | 10.77 | ± 9.6 | | 0076 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps) | WLAN | 10.94 | ± 9.6 | | 0077 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps) | WLAN | 11.00 | ± 9.6 | | 0081 | CAB | CDMA2000 (1xRTT, RC3) | CDMA2000 | 3.97 | ± 9.6 | | 0082 | CAB | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate) | AMPS | 4.77 | ± 9.6 | | 0090 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-4) | GSM | 6.56 | ± 9.6 | | 0097 | CAC | UMTS-FDD (HSDPA) | WCDMA | 3.98 | ± 9.6 | | 0098 | DAC | UMTS-FDD (HSUPA, Subtest 2) | WCDMA | 3.98 | ± 9.6 | | 0099 | CAC | EDGE-FDD (TDMA, 8PSK, TN 0-4) | GSM | 9.55 | ± 9.6 | | 0100 | CAC | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK) | LTE-FDD | 5.67 | ± 9.6 | | 0101 | CAB | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM) | LTE-FDD | 6.42 | ± 9.6 | Certificate No:Z21-60449 Page 10 of 22 Report No.: WT228002560 Page 14 of 27 | 40400 | CAR | LTE 500 (00 500) | | | | |-------|-------------------|---|---------|--------------|--------------------| | 10102 | CAB | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM) | LTE-FDD | 6.60 | ± 9.6 % | | 10103 | DAC | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK) | LTE-TDD | 9.29 | ± 9.6 % | | 10104 | CAE | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM) | LTE-TDD | 9.97 | ± 9.6 % | | 10105 | CAE | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM) | LTE-TDD | 10.01 | ± 9.6 % | | 10108 | CAE | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK) | LTE-FDD | 5.80 | ± 9.6 % | | 10109 | CAG | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM) | LTE-FDD | 6.43 | ± 9.6 % | | 10110 | CAG | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK) | LTE-FDD | 5.75 | ± 9.6 % | | 10111 | CAG | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM) | LTE-FDD | 6.44 | ± 9.6 % | | 10112 | CAG | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM) | LTE-FDD | 6.59 | ± 9.6 % | | 10113 | CAG | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM) | LTE-FDD | 6.62 | ± 9.6 % | | 10114 | CAG | IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK) | WLAN | 8.10 | ± 9.6 % | | 10115 | CAG | IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM) | WLAN | 8.46 | ± 9.6 % | | 10116 | CAG | IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM) | WLAN | 8.15 | ± 9.6 % | | 10117 | CAG | IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK) | WLAN | 8.07 | ± 9.6 % | | 10118 | CAD | IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM) | WLAN | 8.59 | ± 9.6 % | | 10119 | CAD | IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM) | WLAN | 8.13 | ± 9.6 % | | 10140 | CAD | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM) | LTE-FDD | 6.49 | ± 9.6 % | | 10141 | CAD | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM) | LTE-FDD | 6.53 | ± 9.6 % | | 10142 | CAD | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK) | LTE-FDD | 5.73 | ± 9.6 % | | 10143 | CAD | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM) | LTE-FDD | 6.35 | ± 9.6 % | | 10144 | CAC | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM) | LTE-FDD | 6.65 | ± 9.6 % | | 10145 | CAC | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK) | LTE-FDD | 5.76 | ± 9.6 % | | 10146 | CAC | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM) | LTE-FDD | 6.41 | ± 9.6 % | | 10147 | CAC | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM) | LTE-FDD | 6.72 | ± 9.6 % | | 10149 | CAE | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM) | LTE-FDD | 6.42 | ± 9.6 % | | 10150 | CAE | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM) | LTE-FDD | 6.60 | ± 9.6 % | | 10151 | CAE | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK) | LTE-TDD | 9.28 | ± 9.6 % | | 10152 | CAE | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM) | LTE-TDD | 9.92 | ± 9.6 % | | 10153 | CAE | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM) | LTE-TDD | 10.05 | ± 9.6 % | | 10154 | CAF | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK) | LTE-FDD | 5.75 | ± 9.6 % | | 10155 | CAF | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM) | LTE-FDD | 6.43 | ± 9.6 % | | 10156 | CAF | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK) | LTE-FDD | 5.79 | ± 9.6 % | | 10157 | CAE | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM) | LTE-FDD | 6.49 | ± 9.6 % | | 10158 | CAE | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM) | LTE-FDD | 6.62 | ± 9.6 % | | 10159 | CAG | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM) | LTE-FDD | 6.56 | ± 9.6 % | | 10160 | CAG | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK) | LTE-FDD | 5.82 | ± 9.6 % | | 10161 | CAG | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM) | LTE-FDD | 6.43 | ± 9.6 % | | 10162 | CAG | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM) | LTE-FDD | 6.58 | ± 9.6 % | | 10166 | CAG | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK) | LTE-FDD | 5.46 | ± 9.6 % | | 10167 | CAG | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM) | LTE-FDD | 6.21 | ± 9.6 % | | 10168 | CAG | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM) | LTE-FDD | 6.79 | ± 9.6 % | | 10169 | CAG | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK) | LTE-FDD | 5.73 | ± 9.6 % | | 10170 | CAG | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM) | LTE-FDD | 6.52 | ± 9.6 % | | 10171 | CAE | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM) | LTE-FDD | 6.49 | ± 9.6 % | | 10172 | CAE | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK) | LTE-TDD | 9.21 | ± 9.6 % | | 10173 | CAE | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM) | LTE-TDD | 9.48 | ± 9.6 % | | 10174 | CAF | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM) | LTE-TDD | 10.25 | ± 9.6 % | | 10175 | CAF | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK) | LTE-FDD | 5.72 | ± 9.6 % | | 10176 | CAF | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) | LTE-FDD | 6.52 | ± 9.6 % | | 10177 | CAE | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK) | LTE-FDD | 5.73 | ± 9.6 % | | 10178 | CAE | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM) | LTE-FDD | 6.52 | ± 9.6 % | | 10179 | AAE | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM) | LTE-FDD | 6.50 | ± 9.6 % | | 10180 | CAG | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM) | LTE-FDD | 6.50 | ± 9.6 % | | 10181 | CAG | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK) | LTE-FDD | 5.72 | ± 9.6 % | | 10182 | CAG | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM) | LTE-FDD | 6.52 | ± 9.6 % | | 10183 | CAG | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) | LTE-FDD | 6.50 | ± 9.6 % | | | 0.0 | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK) | LTE-FDD | | | | 10184 | CAG | ZIZIBB (GG I BIVIN, I IND, S WI IZ, QI SIN) | | | | | | CAG
CAI
CAG | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM) LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM) | LTE-FDD | 5.73
6.51 | ± 9.6 %
± 9.6 % | Certificate No:Z21-60449 Page 11 of 22 | 10187 | CAG | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK) | LTE-FDD | 5.73 | 1000 | |-------|-----|---|-----------------|--------------|---------| | 10188 | CAG | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM) | LTE-FDD | _ | ± 9.6 % | | 10189 | CAE | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM) | | 6.52 | ± 9.6 % | | 10193 | CAE | IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK) | LTE-FDD
WLAN | 6.50 | ± 9.6 % | | 10194 | AAD | IEEE 802.11n (HT Greenfield, 3.9 Mbps, 16-QAM) | WLAN | 8.09 | ± 9.6 % | | 10195 | CAE | IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM) | WLAN | 8.12 | ± 9.6 % | | 10196 | CAE | IEEE 802.11n (HT Mixed, 6.5 Mbps, 8PSK) | WLAN | 8.21 | ± 9.6 % | | 10197 | AAE | IEEE 802.11n (HT Mixed, 0.3 Mbps, BF3K) | WLAN | 8.10
8.13 | ± 9.6 % | | 10198 | CAF | IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM) | WLAN | 8.27 | ± 9.6 % | | 10219 | CAF | IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK) | WLAN | 8.03 | ± 9.6 % | | 10220 | AAF | IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM) | WLAN | | ± 9.6 % | | 10221 | CAC | IEEE 802.11n (HT Mixed, 40.3 Mbps, 10-QAM) | WLAN | 8.13 | ± 9.6 % | | 10222 | CAC | IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-6/AM) | WLAN | 8.27 | ± 9.6 % | | 10223 | CAD | IEEE 802.11n (HT Mixed, 10 Mbps, 16-QAM) | WLAN | 8.06 | ± 9.6 % | | 10224 | CAD | IEEE 802.11n (HT Mixed, 30 Mbps, 64-QAM) | WLAN | 8.48 | ± 9.6 % | | 10225 | CAD | UMTS-FDD (HSPA+) | | 8.08 | ± 9.6 % | | 10226 | CAD | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM) | WCDMA | 5.97 | ± 9.6 % | | 10227 | CAD | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM) | LTE-TDD | 9.49 | ± 9.6 % | | 10228 | CAD | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK) | LTE-TDD | 10.26 | ± 9.6 % | | 10229 | DAC | | LTE-TDD | 9.22 | ± 9.6 % | | 10230 | CAC | | LTE-TDD | 9.48 | ± 9.6 % | | 10231 | CAC | | LTE-TDD | 10.25 | ± 9.6 % | | 10231 | CAD | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK) | LTE-TDD | 9.19 | ± 9.6 % | | 10232 | CAD | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM) | LTE-TDD | 9.48 | ± 9.6 % | | 10233 | CAD | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM) | LTE-TDD | 10.25 | ± 9.6 % | | 10234 | CAD | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK) | LTE-TDD | 9.21 | ± 9.6 % | | 10236 | CAD | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) | LTE-TDD | 9.48 | ± 9.6 % | | 10237 | CAD | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM) LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK) | LTE-TDD | 10.25 | ± 9.6 % | | 10237 | CAB | | LTE-TDD | 9.21 | ± 9.6 % | | 10239 | CAB | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM) LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) | LTE-TDD | 9.48 | ± 9.6 % | | 10239 | CAB | | LTE-TDD | 10.25 | ± 9.6 % | | 10240 | CAB | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK) | LTE-TDD | 9.21 | ± 9.6 % | | 10241 | CAD | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM) | LTE-TDD | 9.82 | ± 9.6 % | | 10242 | CAD | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM) | LTE-TDD | 9.86 | ± 9.6 % | | 10244 | CAD | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK) LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM) | LTE-TDD | 9.46 | ± 9.6 % | | 10245 | CAG | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM) | LTE-TDD | 10.06 | ± 9.6 % | | 10246 | CAG | | LTE-TDD | 10.06 | ± 9.6 % | | 10247 | CAG | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK) | LTE-TDD | 9.30 | ± 9.6 % | | 10248 | CAG | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM) | LTE-TDD | 9.91 | ± 9.6 % | | 10249 | CAG | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM) LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK) | LTE-TDD | 10.09 | ± 9.6 % | | 10250 | CAG | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM) | LTE-TDD | 9.29 | ± 9.6 % | | 10251 | CAF | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM) | LTE-TDD | 9.81 | ± 9.6 % | | 10251 | CAF | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM) | LTE-TDD | 10.17 | ± 9.6 % | | 10252 | CAF | | LTE-TDD | 9.24 | ± 9.6 % | | 10253 | CAB | | LTE-TDD | 9.90 | ± 9.6 % | | 10255 | CAB | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM) LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK) | LTE-TDD | 10.14 | ± 9.6 % | | 10256 | CAB | | LTE-TDD | 9.20 | ± 9.6 % | | 10257 | CAD | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM) LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM) | LTE-TDD | 9.96 | ± 9.6 % | | 10257 | CAD | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM) LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK) | LTE-TDD | 10.08 | ± 9.6 % | | 10259 | CAD | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK) LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM) | LTE-TDD | 9.34 | ± 9.6 % | | 10260 | CAG | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 10-QAM) | LTE-TDD | 9.98 | ± 9.6 % | | 10261 | CAG | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM) LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK) | LTE-TDD | 9.97 | ± 9.6 % | | 10262 | CAG | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM) | LTE-TDD | 9.24 | ± 9.6 % | | 10263 | CAG | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM) | LTE-TDD | 9.83 | ± 9.6 % | | 10264 | CAG | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 04-QAM) | LTE-TDD | 10.16 | ± 9.6 % | | 10265 | CAG | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK) LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM) | LTE-TDD | 9.23 | ± 9.6 % | | 10266 | CAF | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM) | LTE-TDD | 9.92 | ± 9.6 % | | 10267 | CAF | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK) | LTE-TDD | 10.07 | ± 9.6 % | | 10268 | CAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK) LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM) | LTE-TDD | 9.30 | ± 9.6 % | | | J | 1.1 10 (00 1 DIVIA, 100 /0 IND, 10 IVII 12, 10-QAIVI) | LTE-TDD | 10.06 | ± 9.6 % | Certificate No:Z21-60449 Page 12 of 22 | 10269 | CAB | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM) | LTE TOD | 10.40 | 1000 | |-------|-----|--|----------------------|--------------|---------| | 10209 | CAB | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM) LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK) | LTE-TDD | 10.13 | ± 9.6 % | | 10274 | CAB | UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10) | LTE-TDD | 9.58 | ± 9.6 % | | 10275 | CAD | UMTS-FDD (HSUPA, Subtest 5, 3GPP Rei8.10) | WCDMA | 4.87 | ± 9.6 % | | 10277 | CAD | PHS (QPSK) | WCDMA | 3.96 | ± 9.6 % | | 10277 | CAD | | PHS | 11.81 | ± 9.6 % | | 10278 | CAG | PHS (QPSK, BW 884MHz, Rolloff 0.5) | PHS | 11.81 | ± 9.6 % | | 10279 | CAG | PHS (QPSK, BW 884MHz, Rolloff 0.38) | PHS | 12.18 | ± 9.6 % | | 10290 | | CDMA2000, RC1, SO55, Full Rate | CDMA2000 | 3.91 | ± 9.6 % | | 10291 | CAG | CDMA2000, RC3, SO55, Full Rate | CDMA2000 | 3.46 | ± 9.6 % | | | CAG | CDMA2000, RC3, SO32, Full Rate | CDMA2000 | 3.39 | ± 9.6 % | | 10293 | CAG | CDMA2000, RC3, SO3, Full Rate | CDMA2000 | 3.50 | ± 9.6 % | | 10295 | CAG | CDMA2000, RC1, SO3, 1/8th Rate 25 fr. | CDMA2000 | 12.49 | ± 9.6 % | | 10297 | CAF | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK) | LTE-FDD | 5.81 | ± 9.6 % | | 10298 | CAF | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK) | LTE-FDD | 5.72 | ± 9.6 % | | 10299 | CAF | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM) | LTE-FDD | 6.39 | ± 9.6 % | | 10300 | CAC | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM) | LTE-FDD | 6.60 | ± 9.6 % | | 10301 | CAC | IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC) | WiMAX | 12.03 | ± 9.6 % | | 10302 | CAB | IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3CTRL) | WiMAX | 12.57 | ± 9.6 % | | 10303 | CAB | IEEE 802.16e WiMAX (31:15, 5ms, 10MHz, 64QAM, PUSC) | WiMAX | 12.52 | ± 9.6 % | | 10304 | CAA | IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, 64QAM, PUSC) | WiMAX | 11.86 | ± 9.6 % | | 10305 | CAA | IEEE 802.16e WiMAX (31:15, 10ms, 10MHz, 64QAM, PUSC) | WiMAX | 15.24 | ± 9.6 % | | 10306 | CAA | IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 64QAM, PUSC) | WiMAX | 14.67 | ± 9.6 % | | 10307 | AAB | IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, PUSC) | WiMAX | 14.49 | ± 9.6 % | | 10308 | AAB | IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, PUSC) | WiMAX | 14.46 | ± 9.6 % | | 10309 | AAB | IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM,AMC 2x3) | WiMAX | 14.58 | ± 9.6 % | | 10310 | AAB | IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3 | WiMAX | 14.57 | ± 9.6 % | | 10311 | AAB | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK) | LTE-FDD | 6.06 | ± 9.6 % | | 10313 | AAD | IDEN 1:3 | iDEN | 10.51 | ± 9.6 % | | 10314 | AAD | IDEN 1:6 | iDEN | 13.48 | ± 9.6 % | | 10315 | AAD | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc dc) | WLAN | 1.71 | ± 9.6 % | | 10316 | AAD | IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc dc) | WLAN | 8.36 | ± 9.6 % | | 10317 | AAA | IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc dc) | WLAN | 8.36 | ± 9.6 % | | 10352 | AAA | Pulse Waveform (200Hz, 10%) | Generic | 10.00 | ± 9.6 % | | 10353 | AAA | Pulse Waveform (200Hz, 20%) | Generic | 6.99 | ± 9.6 % | | 10354 | AAA | Pulse Waveform (200Hz, 40%) | Generic | 3.98 | ± 9.6 % | | 10355 | AAA | Pulse Waveform (200Hz, 60%) | Generic | 2.22 | ± 9.6 % | | 10356 | AAA | Pulse Waveform (200Hz, 80%) | Generic | 0.97 | ± 9.6 % | | 10387 | AAA | QPSK Waveform, 1 MHz | Generic | 5.10 | ± 9.6 % | | 10388 | AAA | QPSK Waveform, 10 MHz | Generic | 5.22 | ± 9.6 % | | 10396 | AAA | 64-QAM Waveform, 100 kHz | Generic | 6.27 | ± 9.6 % | | 10399 | AAA | 64-QAM Waveform, 40 MHz | Generic | 6.27 | ± 9.6 % | | 10400 | AAD | IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc dc) | WLAN | 8.37 | ± 9.6 % | | 10401 | AAA | IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc dc) | WLAN | 8.60 | ± 9.6 % | | 10402 | AAA | IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc dc) | WLAN | 8.53 | ± 9.6 % | | 10403 | AAB | CDMA2000 (1xEV-DO, Rev. 0) | CDMA2000 | 3.76 | | | 10404 | AAB | CDMA2000 (1xEV-DO, Rev. A) | CDMA2000 | 3.76 | ± 9.6 % | | 10406 | AAD | CDMA2000, RC3, SO32, SCH0, Full Rate | CDMA2000
CDMA2000 | | | | 10410 | AAA | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Sub=2.3.4.7.8.9) | LTE-TDD | 5.22 | ± 9.6 % | | 10414 | AAA | WLAN CCDF, 64-QAM, 40MHz | Generic | 7.82 | ± 9.6 % | | 10415 | AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc dc) | WLAN | 8.54
1.54 | ± 9.6 % | | 10416 | AAA | IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc dc) | WLAN | | ± 9.6 % | | 10417 | AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc dc) | WLAN | 8.23 | ± 9.6 % | | 10418 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long) | WLAN | 8.23 | ± 9.6 % | | 10419 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long) | | 8.14 | ± 9.6 % | | 10422 | AAA | IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) | WLAN | 8.19 | ± 9.6 % | | 10423 | AAA | IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) | WLAN | 8.32 | ± 9.6 % | | 10424 | AAE | IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) | WLAN | 8.47 | ± 9.6 % | | 10425 | AAE | IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) | WLAN | 8.40 | ± 9.6 % | | 10426 | AAE | IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) | WLAN | 8.41 | ± 9.6 % | | | | Soc. i iii (i ii Greeniieid, 30 waps, 10-QAW) | WLAN | 8.45 | ± 9.6 % | Certificate No:Z21-60449 Page 13 of 22