3700 MHz Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates | Object | D3700V2 - SN:10 | 004 | | |--|---|--|---| | Calibration procedure(s) | QA CAL-22.v6 | | | | | Calibration Proce | dure for SAR Validation Sources | between 3-10 GHz | | Calibration date: | July 01, 2022 | | | | | | | | | | | onal standards, which realize the physical uni
robability are given on the following pages an | | | The measurements and the uncertainty | amues with confidence pr | obability are given on the following pages and | u are part of the certificate. | | All calibrations have been conducted | ed in the closed laborator | y facility: environment temperature (22 ± 3)°C | and humidity < 70%. | | | | ,, | | | Calibration Equipment used (M&TE | critical for calibration) | | | | | | | | | | 1 | | | | | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter NRP | SN: 104778 | 04-Apr-22 (No. 217-03525/03524) | Apr-23 | | Power meter NRP
Power sensor NRP-Z91 | SN: 104778
SN: 103244 | 04-Apr-22 (No. 217-03525/03524)
04-Apr-22 (No. 217-03524) | Apr-23
Apr-23 | | Power meter NRP
Power sensor NRP-Z91
Power sensor NRP-Z91 | SN: 104778
SN: 103244
SN: 103245 | 04-Apr-22 (No. 217-03525/03524)
04-Apr-22 (No. 217-03524)
04-Apr-22 (No. 217-03525) | Apr-23
Apr-23
Apr-23 | | Power meter NRP
Power sensor NRP-Z91
Power sensor NRP-Z91
Reference 20 dB Attenuator | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k) | 04-Apr-22 (No. 217-03525/03524)
04-Apr-22 (No. 217-03524)
04-Apr-22 (No. 217-03525)
04-Apr-22 (No. 217-03527) | Apr-23
Apr-23
Apr-23
Apr-23 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327 | 04-Apr-22 (No. 217-03525/03524)
04-Apr-22 (No. 217-03524)
04-Apr-22 (No. 217-03525)
04-Apr-22 (No. 217-03527)
04-Apr-22 (No. 217-03528) | Apr-23
Apr-23
Apr-23
Apr-23
Apr-23 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 3503 | 04-Apr-22 (No. 217-03525/03524)
04-Apr-22 (No. 217-03524)
04-Apr-22 (No. 217-03525)
04-Apr-22 (No. 217-03527)
04-Apr-22 (No. 217-03528)
08-Mar-22 (No. EX3-3503_Mar22) | Apr-23
Apr-23
Apr-23
Apr-23
Apr-23
Mar-23 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327 | 04-Apr-22 (No. 217-03525/03524)
04-Apr-22 (No. 217-03524)
04-Apr-22 (No. 217-03525)
04-Apr-22 (No. 217-03527)
04-Apr-22 (No. 217-03528) | Apr-23
Apr-23
Apr-23
Apr-23
Apr-23 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 3503 | 04-Apr-22 (No. 217-03525/03524)
04-Apr-22 (No. 217-03524)
04-Apr-22 (No. 217-03525)
04-Apr-22 (No. 217-03527)
04-Apr-22 (No. 217-03528)
08-Mar-22 (No. EX3-3503_Mar22) | Apr-23
Apr-23
Apr-23
Apr-23
Apr-23
Mar-23 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 3503
SN: 601 | 04-Apr-22 (No. 217-03525/03524)
04-Apr-22 (No. 217-03524)
04-Apr-22 (No. 217-03525)
04-Apr-22 (No. 217-03527)
04-Apr-22 (No. 217-03528)
08-Mar-22 (No. EX3-3503_Mar22)
02-May-22 (No. DAE4-601_May22) | Apr-23
Apr-23
Apr-23
Apr-23
Apr-23
Mar-23
May-23 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 3503
SN: 601 | 04-Apr-22 (No. 217-03525/03524)
04-Apr-22 (No. 217-03524)
04-Apr-22 (No. 217-03525)
04-Apr-22 (No. 217-03527)
04-Apr-22 (No. 217-03528)
08-Mar-22 (No. EX3-3503_Mar22)
02-May-22 (No. DAE4-601_May22)
Check Date (in house) | Apr-23
Apr-23
Apr-23
Apr-23
Apr-23
Mar-23
May-23
Scheduled Check | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 3503
SN: 601 | 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 08-Mar-22 (No. EX3-3503_Mar22) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) | Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Mar-23 May-23 Scheduled Check In house check: Oct-22 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 3503
SN: 601
ID #
SN: GB39512475
SN: US37292783 | 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 08-Mar-22 (No. EX3-3503_Mar22) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) | Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Mar-23 May-23 Scheduled Check In house check: Oct-22 In house check: Oct-22 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 3503
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41093315 | 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 08-Mar-22 (No. EX3-3503_Mar22) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) | Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Mar-23 May-23 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 3503
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41093315
SN: 100972 | 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 08-Mar-22 (No. EX3-3503_Mar22) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) | Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Mar-23 May-23 Scheduled Check In house check: Oct-22 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477 Name | 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 08-Mar-22 (No. EX3-3503_Mar22) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check
Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) | Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Mar-23 May-23 Scheduled Check In house check: Oct-22 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 3503
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41093315
SN: 100972
SN: US41080477 | 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 08-Mar-22 (No. EX3-3503_Mar22) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) | Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Mar-23 May-23 Scheduled Check In house check: Oct-22 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A Calibrated by: | SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477 Name | 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 08-Mar-22 (No. EX3-3503_Mar22) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) | Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Mar-23 May-23 Scheduled Check In house check: Oct-22 | Certificate No: D3700V2-1004_Jul22 Page 1 of 7 # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. | ertificate No: D3700\ | /2-1004_Jul22 | Page 2 of 7 | | |-----------------------|---------------|-------------|--| | ncate No: D37001 | 72-1004_Jui22 | rage 2 of 7 | | #### **Measurement Conditions** system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--------------------------------------|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 3700 MHz ± 1 MHz
3800 MHz ± 1 MHz | | Head TSL parameters at 3700 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.7 | 3.12 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.0 ± 6 % | 3.07 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | # SAR result with Head TSL at 3700 MHz | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.74 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 67.3 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.44 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.4 W/kg ± 19.5 % (k=2) | # Head TSL parameters at 3800 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.6 | 3.22 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 36.8 ± 6 % | 3.15 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | - | #### SAR result with Head TSL at 3800 MHz | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.57 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 65.7 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.40 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.9 W/kg ± 19.5 % (k=2) | Certificate No: D3700V2-1004_Jul22 Page 3 of 7 # Appendix (Additional assessments outside the scope of SCS 0108) # Antenna Parameters with Head TSL at 3700 MHz | Impedance, transformed to feed point | 48.6 Ω - 6.6 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.3 dB | | Neturi Eoss | | # Antenna Parameters with Head TSL at 3800 MHz | Impedance, transformed to feed point | 57.5 Ω - 5.9 jΩ | |--------------------------------------|-----------------| | Return Loss | - 21.0 dB | | Tetalii 2000 | | # General Antenna Parameters and Design | Electrical Delay (one direction) | 1.138 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D3700V2-1004_Jul22 Page 4 of 7 # **DASY5 Validation Report for Head TSL** Date: 01.07.2022 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 3700 MHz; Type: D3700V2; Serial: D3700V2 - SN:1004 Communication System: UID 0 - CW; Frequency: 3700 MHz, Frequency: 3800 MHz Medium parameters used: f=3700 MHz; $\sigma=3.07$ S/m; $\epsilon_r=37$; $\rho=1000$ kg/m 3 , Medium parameters used: f=3800 MHz; $\sigma=3.15$ S/m; $\epsilon_r=36.8$; $\rho=1000$ kg/m 3 Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(7.73, 7.73, 7.73) @ 3700 MHz, ConvF(7.73, 7.73, 7.73) @ 3800 MHz; Calibrated: 08.03.2022 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 02.05.2022 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3700MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.98 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 19.1 W/kg SAR(1 g) = 6.74 W/kg; SAR(10 g) = 2.44 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 73.9% Maximum value of SAR
(measured) = 13.1 W/kg Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3800MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.05 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 18.9 W/kg SAR(1 g) = 6.57 W/kg; SAR(10 g) = 2.40 W/kg Smallest distance from peaks to all points 3 dB below = 8.2 mm Ratio of SAR at M2 to SAR at M1 = 73.1% Maximum value of SAR (measured) = 13.0 W/kg Certificate No: D3700V2-1004_Jul22 0 dB = 13.1 W/kg = 11.17 dBW/kg # Impedance Measurement Plot for Head TSL Certificate No: D3700V2-1004_Jul22 Page 7 of 7 # 3900 MHz Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client CTTL (Auden) Certificate No: D3900V2-1024_Jul22 | alibration procedure(s) | The state of s | 24 | | |---|--|--|------------------------| | | QA CAL-22.v6
Calibration Proces | dure for SAR Validation Sources | between 3-10 GHz | | alibration date: | July 01, 2022 | | | | Il calibrations have been conduct | | y facility: environment temperature $(22\pm3)^{\circ}$ C | | | rimary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | ower meter NRP | SN: 104778 | 04-Apr-22 (No. 217-03525/03524) | Apr-23 | | ower sensor NRP-Z91 | SN: 103244 | 04-Apr-22 (No. 217-03524) | Apr-23 | | ower sensor NRP-Z91 | SN: 103245 | 04-Apr-22 (No. 217-03525) | Apr-23 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 04-Apr-22 (No. 217-03527) | Apr-23 | | ype-N mismatch combination | SN: 310982 / 06327 | 04-Apr-22 (No. 217-03528) | Apr-23 | | Reference Probe EX3DV4 | SN: 3503 | 08-Mar-22 (No. EX3-3503_Mar22) | Mar-23 | | DAE4 | SN: 601 | 02-May-22 (No. DAE4-601_May22) | May-23 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | CONTRACTOR OF THE PARTY | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A
Power sensor HP 8481A | 1 222 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 15 Jun 15 /in house shock Oct 20) | In house check: Oct-22 | | enter entrest in the second | SN: 100972 | 15-Jun-15 (in house check Oct-20) | | | Power sensor HP 8481A | | 31-Mar-14 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A
RF generator R&S SMT-06 | | | | | Power sensor HP 8481A
RF generator R&S SMT-06
Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) Function | In house check: Oct-22 | | Power sensor HP 8481A
RF generator R&S SMT-06 | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-22 | Certificate No: D3900V2-1024_Jul22 Page 1 of 8 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### **Additional Documentation:** c) DASY System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D3900V2-1024_Jul22 Page 2 of 8 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm |
Graded Ratio = 1.4 (Z direction) | | Frequency | 3900 MHz ± 1 MHz
4000 MHz ± 1 MHz
4100 MHz ± 1 MHz | | Head TSL parameters at 3900 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.5 | 3.32 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 36.7 ± 6 % | 3.24 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | 4 | ### SAR result with Head TSL at 3900 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.96 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 69.6 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.42 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.1 W/kg ± 19.5 % (k=2) | Head TSL parameters at 4000 MHz The following parameters and calculations were applied | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.4 | 3.43 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 36.6 ± 6 % | 3.33 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 4000 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.82 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 68.2 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.38 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.6 W/kg ± 19.5 % (k=2) | Certificate No: D3900V2-1024_Jul22 Page 3 of 8 # Head TSL parameters at 4100 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.2 | 3.53 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 36.5 ± 6 % | 3.41 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | # SAR result with Head TSL at 4100 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.82 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 68.3 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.37 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.6 W/kg ± 19.5 % (k=2) | Certificate No: D3900V2-1024_Jul22 # Appendix (Additional assessments outside the scope of SCS 0108) ### Antenna Parameters with Head TSL at 3900 MHz | Impedance, transformed to feed point | 46.3Ω - $6.6 j\Omega$ | |--------------------------------------|-------------------------------| | Return Loss | - 22.1 dB | # Antenna Parameters with Head TSL at 4000 MHz | Impedance, transformed to feed point | 52.1 Ω - 2.7 jΩ | |--------------------------------------|-----------------| | Return Loss | - 29.5 dB | # Antenna Parameters with Head TSL at 4100 MHz | Impedance, transformed to feed point | 59.8 Ω - 1.9 jΩ | |--------------------------------------|-----------------| | Return Loss | - 20.8 dB | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.107 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| | | | #### DASY5 Validation Report for Head TSL Date: 01.07.2022 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 3900 MHz; Type: D3900V2; Serial: D3900V2 - SN:1024 Communication System: UID 0 - CW; Frequency: 3900 MHz, Frequency: 4000 MHz, Frequency: 4100 MHz Medium parameters used: f = 3900 MHz; σ = 3.24 S/m; ϵ_r = 36.7; ρ = 1000 kg/m³ , Medium parameters used: f = 4000 MHz; σ = 3.33 S/m; ϵ_r = 36.6; ρ = 1000 kg/m³ , Medium parameters used: f = 4100 MHz; σ = 3.41 S/m; ϵ_r = 36.5; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(7.39, 7.39, 7.39) @ 3900 MHz, ConvF(7.39, 7.39, 7.39) @ 4000 MHz, ConvF(7.26, 7.26, 7.26) @ 4100 MHz; Calibrated: 08.03.2022 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 02.05.2022 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3900MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 71.06 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 20.0 W/kg SAR(1 g) = 6.96 W/kg; SAR(10 g) = 2.42 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 74.2% Maximum value of SAR (measured) = 13.9 W/kg Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=4000MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 71.32 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 20.0 W/kg SAR(1 g) = 6.82 W/kg; SAR(10 g) = 2.38 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 73.6% Maximum value of SAR (measured) = 13.8 W/kg Certificate No: D3900V2-1024_Jul22 ### Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=4100MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.19 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 19.7 W/kg SAR(1 g) = 6.82 W/kg; SAR(10 g) = 2.37 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 74.2% Maximum value of SAR (measured) = 13.7 W/kg 0 dB = 13.9 W/kg = 11.43 dBW/kg ### Impedance Measurement Plot for Head TSL Certificate No: D3900V2-1024_Jul22 Page 8 of 8 # **5 GHz Dipole Calibration Certificate** Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland CTTL (Auden) S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Certificate No: D5GHzV2-1060_Jul22 | Object | D5GHzV2 - SN:1 | 060 | |
---|---|---|---| | Calibration procedure(s) | QA CAL-22.v6
Calibration Proce | dure for SAR Validation Sources | between 3-10 GHz | | Calibration date: | July 05, 2022 | | | | | | onal standards, which realize the physical unit | | | he measurements and the uncertain | ainties with confidence pr | obability are given on the following pages and | d are part of the certificate. | | All calibrations have been conducted | ed in the closed laborator | y facility: environment temperature (22 ± 3)°C | and humidity < 70%. | | Name of the state | | | | | Calibration Equipment used (M&TE | critical for calibration) | | | | | | | | | rimary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | | ID#
SN: 104778 | Cal Date (Certificate No.)
04-Apr-22 (No. 217-03525/03524) | Scheduled Calibration Apr-23 | | Power meter NRP | | | | | Power meter NRP
Power sensor NRP-Z91 | SN: 104778 | 04-Apr-22 (No. 217-03525/03524) | Apr-23 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator | SN: 104778
SN: 103244 | 04-Apr-22 (No. 217-03525/03524)
04-Apr-22 (No. 217-03524) | Apr-23
Apr-23 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator | SN: 104778
SN: 103244
SN: 103245 | 04-Apr-22 (No. 217-03525/03524)
04-Apr-22 (No. 217-03524)
04-Apr-22 (No. 217-03525) | Apr-23
Apr-23
Apr-23 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k) | 04-Apr-22 (No. 217-03525/03524)
04-Apr-22 (No. 217-03524)
04-Apr-22 (No. 217-03526)
04-Apr-22 (No. 217-03527) | Apr-23
Apr-23
Apr-23
Apr-23 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327 | 04-Apr-22 (No. 217-03525/03524)
04-Apr-22 (No. 217-03524)
04-Apr-22 (No. 217-03525)
04-Apr-22 (No. 217-03527)
04-Apr-22 (No. 217-03528) | Apr-23
Apr-23
Apr-23
Apr-23
Apr-23 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 3503 | 04-Apr-22 (No. 217-03525/03524)
04-Apr-22 (No. 217-03524)
04-Apr-22 (No. 217-03525)
04-Apr-22 (No. 217-03527)
04-Apr-22 (No. 217-03528)
08-Mar-22 (No. EX3-3503_Mar22) | Apr-23
Apr-23
Apr-23
Apr-23
Apr-23
Mar-23 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 3503
SN: 601 | 04-Apr-22 (No. 217-03525/03524)
04-Apr-22 (No. 217-03524)
04-Apr-22 (No. 217-03525)
04-Apr-22 (No. 217-03527)
04-Apr-22 (No. 217-03528)
08-Mar-22 (No. EX3-3503_Mar22)
02-May-22 (No. DAE4-601_May22) | Apr-23
Apr-23
Apr-23
Apr-23
Apr-23
Mar-23
May-23 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 3503
SN: 601
ID #
SN: GB39512475
SN: US37292783 | 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 08-Mar-22 (No. EX3-3503_Mar22) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) | Apr-23
Apr-23
Apr-23
Apr-23
Apr-23
Mar-23
May-23 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 3503
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41093315 | 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 08-Mar-22 (No. EX3-3503_Mar22) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) | Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Mar-23 May-23 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Fype-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06 | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 3503
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41093315
SN: 100972 | 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 08-Mar-22 (No. EX3-3503_Mar22) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) | Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Mar-23 May-23 Scheduled Check In house check: Oct-22 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 3503
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41093315 | 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 08-Mar-22 (No. EX3-3503_Mar22) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) | Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Mar-23 May-23 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Fype-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06 | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 3503
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41093315
SN: 100972 | 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 08-Mar-22 (No. EX3-3503_Mar22) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check
Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) | Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Mar-23 May-23 Scheduled Check In house check: Oct-22 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Fype-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06 | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 3503
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41093315
SN: 100972
SN: US41080477 | 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 08-Mar-22 (No. EX3-3503_Mar22) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) | Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Mar-23 May-23 Scheduled Check In house check: Oct-22 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477 Name | 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 08-Mar-22 (No. EX3-3503_Mar22) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) | Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Mar-23 May-23 Scheduled Check In house check: Oct-22 | Certificate No: D5GHzV2-1060_Jul22 Page 1 of 13 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D5GHzV2-1060_Jul22 Page 2 of 13 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5200 MHz ± 1 MHz
5250 MHz ± 1 MHz
5300 MHz ± 1 MHz
5500 MHz ± 1 MHz
5600 MHz ± 1 MHz
5750 MHz ± 1 MHz
5800 MHz ± 1 MHz | | # Head TSL parameters at 5200 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 36.0 | 4.66 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.9 ± 6 % | 4.50 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5200 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.84 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 77.8 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.26 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.3 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1060_Jul22 # Head TSL parameters at 5250 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.71 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.8 ± 6 % | 4.55 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL at 5250 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.87 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 78.1 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.25 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.3 W/kg ± 19.5 % (k=2) | #### Head TSL parameters at 5300 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.76 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.7 ± 6 % | 4.60 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL at 5300 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.17 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 81.1 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.33 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.1 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1060_Jul22 Page 4 of 13 ### Head TSL parameters at 5500 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.6 | 4.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.4 ± 6 % | 4.80 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | **** | | #### SAR result with Head TSL at 5500 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.60 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 85.3 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.44 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.1 W/kg ± 19.5 % (k=2) | # Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.3 ± 6 % | 4.90 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------
--------------------------| | SAR measured | 100 mW input power | 8.39 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 83.2 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.40 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.7 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1060_Jul22 Page 5 of 13 # Head TSL parameters at 5750 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.4 | 5.22 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.1 ± 6 % | 5.05 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL at 5750 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.12 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 80.4 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.31 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.8 W/kg ± 19.5 % (k=2) | # Head TSL parameters at 5800 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.3 | 5.27 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.0 ± 6 % | 5.10 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | (222) | | #### SAR result with Head TSL at 5800 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.27 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 82.0 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.34 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.1 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1060_Jul22 # Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL at 5200 MHz | Impedance, transformed to feed point | 49.4 Ω - 6.5 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.7 dB | # Antenna Parameters with Head TSL at 5250 MHz | Impedance, transformed to feed point | 47.7 Ω - 5.5 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 24.3 dB | | #### Antenna Parameters with Head TSL at 5300 MHz | Impedance, transformed to feed point | 46.2 Ω - 3.2 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 25.8 dB | | ### Antenna Parameters with Head TSL at 5500 MHz | Impedance, transformed to feed point | 50.0 Ω - 3.1 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 30.1 dB | | ### Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | $53.6 \Omega + 0.5 j\Omega$ | | |--------------------------------------|-----------------------------|--| | Return Loss | - 29.2 dB | | Certificate No: D5GHzV2-1060_Jul22 #### Antenna Parameters with Head TSL at 5750 MHz | Impedance, transformed to feed point | 51.9 Ω - 1.7 jΩ | |--------------------------------------|-----------------| | Return Loss | - 32.1 dB | #### Antenna Parameters with Head TSL at 5800 MHz | Impedance, transformed to feed point | 51.2 Ω - 3.2 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 29.5 dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.202 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| |-----------------|-------| Certificate No: D5GHzV2-1060_Jul22 Page 8 of 13 ### **DASY5 Validation Report for Head TSL** Date: 05.07.2022 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1060 Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5250 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 4.50 \text{ S/m}$; $\varepsilon_r = 34.9$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used: f = 5250 MHz; $\sigma = 4.55 \text{ S/m}$; $\varepsilon_r = 34.8$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used: f = 5300 MHz; $\sigma = 4.60 \text{ S/m}$; $\epsilon_r = 34.7$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used: f = 5500 MHz; $\sigma = 4.80 \text{ S/m}$; $\varepsilon_r = 34.4$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used: f = 5600 MHz; $\sigma = 4.90 \text{ S/m}$; $\epsilon_r = 34.3$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used: f = 5750 MHz; $\sigma = 5.05$ S/m; $\varepsilon_r = 34.1$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 5.10$ S/m; $\epsilon_r = 34.0$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.8, 5.8, 5.8) @ 5200 MHz, ConvF(5.5, 5.5, 5.5) @ 5250 MHz, ConvF(5.49, 5.49, 5.49) @ 5300 MHz, ConvF(5.25, 5.25, 5.25) @ 5500 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.08, 5.08, 5.08) @ 5750 MHz, ConvF(5.01, 5.01, 5.01) @ 5800 MHz; Calibrated: 08.03.2022 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601: Calibrated: 02.05.2022 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 74.40 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 27.9 W/kg SAR(1 g) = 7.84 W/kg; SAR(10 g) = 2.26 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 69.1% Maximum value of SAR (measured) = 17.6 W/kg # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.86 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 27.1 W/kg SAR(1 g) = 7.87 W/kg; SAR(10 g) = 2.25 W/kg Smallest distance from peaks to all points 3 dB below = 6.8 mm Ratio of SAR at M2 to SAR at M1 = 69.8% Maximum value of SAR (measured) = 17.4 W/kg Certificate No: D5GHzV2-1060_Jul22 Page 9 of 13 # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 77.09 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 28.9 W/kg SAR(1 g) = 8.17 W/kg; SAR(10 g) = 2.33 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 68.9% Maximum value of SAR (measured) = 18.3 W/kg # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 76.69 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 32.9 W/kg SAR(1 g) = 8.60 W/kg; SAR(10 g) = 2.44 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 66.4% Maximum value of SAR (measured) = 19.8 W/kg #### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 76.44 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 31.2 W/kg SAR(1 g) = 8.39 W/kg; SAR(10 g) = 2.40 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 67.3% Maximum value of SAR (measured) = 19.3 W/kg # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 73.53 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 31.8 W/kg SAR(1 g) = 8.12 W/kg; SAR(10 g) = 2.31 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 65.4% Maximum value of SAR (measured) = 19.0 W/kg # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 74.35 V/m; Power
Drift = -0.03 dB Peak SAR (extrapolated) = 32.9 W/kg SAR(1 g) = 8.27 W/kg; SAR(10 g) = 2.34 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 65.2% Maximum value of SAR (measured) = 19.4 W/kg Certificate No: D5GHzV2-1060_Jul22 Page 10 of 13 0 dB = 19.8 W/kg = 12.96 dBW/kg ### Impedance Measurement Plot for Head TSL (5200, 5250, 5300, 5500, 5600 MHz) # Impedance Measurement Plot for Head TSL (5300, 5500, 5600, 5750, 5800 MHz) Certificate No: D5GHzV2-1060_Jul22 # **ANNEX I Sensor Triggering Data Summary** #### SAR sensor position The SAR sensor is connected to each antenna through a hardware circuit, so it obtains the antenna induction signal by itself, and the detection position is the sensor position. as the picture shows: #### SAR sensor trigger distance The SAR sensor is connected to each antenna through a hardware circuit, so it obtains the antenna induction signal by itself, and the detection position is the sensor position. as the picture shows: | Distance
test (mm) | СНх | СНО | CH1 | CH2 | СН3 | CH4 | CH5 | |-----------------------|------|------------|------------|------------|------------|------------|------------| | | CSx | U15101_CS0 | U15101_CS2 | U15102_CS3 | U15102_CS2 | U15101_CS3 | U15102_CSC | | | ANTx | ANTO | ANT1 | ANT2 | ANT3 | ANT4 | ANT5 | | Front | | 10 | 10 | 10 | 10 | 10 | 10 | | Back | | 16 | 16 | 16 | 16 | 16 | 16 | | Top | | NA | NA | 16 | NA | NA | 16 | | Bottom | | 16 | NA | NA | NA | NA | NA. | | Left | | NA | NA | 16 | NA | NA | NA | | Right | | 16 | 16 | NA | 21 | 21 | 16 | SAR Sensor Trigger region Trigger area in yellow box Per FCC KDB Publication 616217 D04v01r02, this device was tested by the manufacturer to determine the proximity sensor triggering distances for the rear and bottom edge of the device. The measured output power within ± 5 mm of the triggering points (or until touching the phantom) is included for rear and each applicable edge. To ensure all production units are compliant it is necessary to test SAR at a distance 1mm less than the smallest distance from the device and SAR phantom (determined from these triggering tests according to the KDB 616217 D04v01r02) with the device at maximum output power without power reduction. These SAR tests are included in addition to the SAR tests for the device touching the SAR phantom, with reduced power. # ANT0: #### Rear Moving device toward the phantom: | sensor near or far(KDB 616217 6.2.6) | | | | | | | | | | | | |--------------------------------------|-----|-----|-----|-----|-----|------|------|------|------|------|------| | Distance [mm] | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | | Main antenna | Far | Far | Far | Far | Far | Near | Near | Near | Near | Near | Near | # Moving device away from the phantom: | sensor near or far(KDB 616217 6.2.6) | | | | | | | | | | | | |--|------|------|------|------|------|------|-----|-----|-----|-----|-----| | Distance [mm] 11 12 13 14 15 16 17 18 19 20 21 | | | | | | | | | | 21 | | | Main antenna | Near | Near | Near | Near | Near | Near | Far | Far | Far | Far | Far | # **Bottom Edge** Moving device toward the phantom: | sensor near or far(KDB 616217 6.2.6) | | | | | | | | | | | | |--|-----|-----|-----|-----|-----|------|------|------|------|------|------| | Distance [mm] 21 20 19 18 17 16 15 14 13 12 11 | | | | | | | | | | 11 | | | Main antenna | Far | Far | Far | Far | Far | Near | Near | Near | Near | Near | Near | # Moving device away from the phantom: | sensor near or far(KDB 616217 6.2.6) | | | | | | | | | | | | |--|------|------|------|------|------|------|-----|-----|-----|-----|-----| | Distance [mm] 11 12 13 14 15 16 17 18 19 20 21 | | | | | | | | | | 21 | | | Main antenna | Near | Near | Near | Near | Near | Near | Far | Far | Far | Far | Far | # Right Edge Moving device toward the phantom: | sensor near or far(KDB 616217 6.2.6) | | | | | | | | | | | | |--------------------------------------|-----|-----|-----|-----|-----|------|------|------|------|------|------| | Distance [mm] | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | | Main antenna | Far | Far | Far | Far | Far | Near | Near | Near | Near | Near | Near | | sensor near or far(KDB 616217 6.2.6) | | | | | | | | | | | | |--|------|------|------|------|------|------|-----|-----|-----|-----|-----| | Distance [mm] 11 12 13 14 15 16 17 18 19 20 2: | | | | | | | | | | 21 | | | Main antenna | Near | Near | Near | Near | Near | Near | Far | Far | Far | Far | Far | # ANT1: ### Rear Moving device toward the phantom: | sensor near or far(KDB 616217 6.2.6) | | | | | | | | | | | | |--------------------------------------|-----|-----|-----|-----|-----|------|------|------|------|------|------| | Distance [mm] | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | | Main antenna | Far | Far | Far | Far | Far | Near | Near | Near | Near | Near | Near | # Moving device away from the phantom: | sensor near or far(KDB 616217 6.2.6) | | | | | | | | | | | | |--------------------------------------|------|------|------|------|------|------|-----|-----|-----|-----|-----| | Distance [mm] | | | | | | | | | | 21 | | | Main antenna | Near | Near | Near | Near | Near | Near | Far | Far | Far | Far | Far | # **Right Edge** Moving device toward the phantom: | sensor near or far(KDB 616217 6.2.6) | | | | | | | | | | | | |--|-----|-----|-----|-----|-----|------|------|------|------|------|------| | Distance [mm] 21 20 19 18 17 16 15 14 13 12 11 | | | | | | | | | | 11 | | | Main antenna | Far | Far | Far | Far | Far | Near | Near | Near | Near | Near | Near | | sensor near or far(KDB 616217 6.2.6) | | | | | | | | | | | | |--------------------------------------|------|------|------|------|------|------|-----|-----|-----|-----|-----| | Distance [mm] | | | | | | | | | | 21 | | | Main antenna | Near | Near | Near | Near | Near | Near | Far | Far | Far | Far | Far | # ANT3: ### Rear Moving device toward the phantom: | | | | sensor near or far(KDB 616217 6.2.6) | | | | | | | | | | | | | |---------------|-----|-----|--------------------------------------|-----|-----|------|------|------|------|------|------|--|--|--|--| | Distance [mm] | | | | | | | | | | | | | | | | | Main antenna | Far | Far | Far | Far | Far | Near | Near | Near | Near | Near | Near | | | | | # Moving device away from the phantom: | | sensor near or far(KDB 616217 6.2.6) | | | | | | | | | | | | | |--|--------------------------------------|------|------|------|------|------|-----|-----|-----|-----|-----|--|--| | Distance [mm] 11 12 13 14 15 16 17 18 19 20 21 | | | | | | | | | | | | | | | Main antenna | Near | Near | Near | Near | Near | Near | Far | Far | Far | Far | Far | | | # **Right Edge** Moving device toward the phantom: | | | | senso | r near or | far(KDB 6 | 16217 6.2 | 2.6) | | | | | | |--|--|--|-------|-----------|-----------|-----------|------|--|--|--|--|--| | Distance [mm] 26 25 24 23 22 21 20 19 18 17 16 | | | | | | | | | | | | | | Main antenna | | | | | | | | | | | | | | | | | senso | r near or | far(KDB 6 | 16217 6.2 | 2.6) | | | | | |--|------|------|-------|-----------|-----------|-----------|------|-----|-----|-----|-----| | Distance [mm] 16 17 18 19 20 21 22 23 24 25 26 | | | | | | | | | | | | | Main antenna | Near | Near | Near | Near | Near | Near | Far | Far | Far | Far | Far | # ANT4: ### Rear Moving device toward the phantom: | | sensor near or far(KDB 616217 6.2.6) | | | | | | | | | | | | | |---------------|--|-----|-----|-----|-----|------|------|------|------|------|------|--|--| | Distance [mm] | Distance [mm] 21 20 19 18 17 16 15 14 13 12 11 | | | | | | | | | | | | | | Main antenna | Far | Far | Far | Far | Far | Near | Near | Near | Near | Near | Near | | | # Moving device away from the phantom: | | sensor near or far(KDB 616217 6.2.6) | | | | | | | | | | | | | | |---------------|--|------|------|------|------|------|-----|-----|-----|-----|-----|--|--|--| | Distance [mm] | Distance [mm] 11 12 13 14 15 16 17 18 19 20 21 | | | | | | | | | | | | | | | Main antenna | Near | Near | Near | Near | Near | Near | Far | Far | Far | Far | Far | | | | # **Right Edge** Moving device toward the phantom: | | | | senso | r near or | far(KDB 6 | 16217 6.2 | 2.6) | | | | | | |--|-----|--|-------|-----------|-----------|-----------|------|--|--|--|--|--| | Distance [mm] 26 25 24 23 22 21 20 19 18 17 16 | | | | | | | | | | | | | | Main antenna | Far | | | | | | | | | | | | | | sensor near or far(KDB 616217 6.2.6) | | | | | | | | | | | | | |--|--------------------------------------|--|--|--|--|--|--|--|--|--|--|--|--| | Distance [mm] 16 17 18 19 20 21 22 23 24 25 26 | | | | | | | | | | | | | | | Main antenna | | | | | | | | | | | | | | ### ANT5: #### Rear Moving device toward the phantom: | | | | sensor near or far(KDB 616217 6.2.6) | | | | | | | | | | | | | |---------------|-----|-----|--------------------------------------|-----|-----|------|------|------|------|------|------|--|--|--|--| | Distance [mm] | | | | | | | | | | | | | | | | | Main antenna | Far | Far | Far | Far | Far | Near | Near | Near | Near | Near | Near | | | | | # Moving device away from the phantom: | | | | senso | r near or | far(KDB 6 | 16217 6.2 | 2.6) | | | | | | |---------------|------|------|-------|-----------|-----------|-----------|------|-----|-----|-----|-----|--| | Distance [mm] | | | | | | | | | | | | | | Main antenna | Near | Near | Near | Near | Near | Near | Far |
Far | Far | Far | Far | | # **Bottom Edge** Moving device toward the phantom: | | | | senso | r near or | far(KDB 6 | 16217 6.2 | 2.6) | | | | | | |--|--|--|-------|-----------|-----------|-----------|------|--|--|--|--|--| | Distance [mm] 21 20 19 18 17 16 15 14 13 12 11 | | | | | | | | | | | | | | Main antenna | | | | | | | | | | | | | # Moving device away from the phantom: | | | | senso | r near or | far(KDB 6 | 16217 6.2 | 2.6) | | | | | |--|------|------|-------|-----------|-----------|-----------|------|-----|-----|-----|-----| | Distance [mm] 11 12 13 14 15 16 17 18 19 20 21 | | | | | | | | | | | | | Main antenna | Near | Near | Near | Near | Near | Near | Far | Far | Far | Far | Far | # Right Edge Moving device toward the phantom: | sensor near or far(KDB 616217 6.2.6) | | | | | | | | | | | | |--------------------------------------|-----|-----|-----|-----|-----|------|------|------|------|------|------| | Distance [mm] | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | | Main antenna | Far | Far | Far | Far | Far | Near | Near | Near | Near | Near | Near | | sensor near or far(KDB 616217 6.2.6) | | | | | | | | | | | | |--------------------------------------|------|------|------|------|------|------|-----|-----|-----|-----|-----| | Distance [mm] | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | | Main antenna | Near | Near | Near | Near | Near | Near | Far | Far | Far | Far | Far | Per FCC KDB Publication 616217 D04v01r02, the influence of table tilt angles to proximity sensor triggering is determined by positioning each edge that contains a transmitting antenna, perpendicular to the flat phantom, at the smallest sensor triggering test distance by rotating the device around the edge next to the phantom in $\leq 10^{\circ}$ increments until the tablet is $\pm 45^{\circ}$ or more from the vertical position at 0° . The front/rear evaluation The top/bottom edge evaluation The right edge evaluation Based on the above evaluation, we come to the conclusion that the sensor triggering is not released and normal maximum output power is not restored within the $\pm 45^{\circ}$ range at the smallest sensor triggering test distance declared by manufacturer. # **ANNEX J Accreditation Certificate** United States Department of Commerce National Institute of Standards and Technology # Certificate of Accreditation to ISO/IEC 17025:2017 NVLAP LAB CODE: 600118-0 # Telecommunication Technology Labs, CAICT Beijing China is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for: ### **Electromagnetic Compatibility & Telecommunications** This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated January 2009). 2022-10-01 through 2023-09-30 Effective Dates For the National Voluntary Laboratory Accreditation Program