The University of Michigan Radiation Laboratory 3228 EECS Building Ann Arbor, MI 48109-2122 Tel: (734) 764-0500

From Measured Radio Frequency Emissions

Lear Daimler-Chrysler WCM HB and LX Series Receiver (w/o Immobilizer)

Report No. 415031-206 April 12, 2004

Copyright © 2004

For: Lear Corporation 5200 Auto Club Drive Dearborn, Michigan 48126-9982

Contact:
Mat Honkanen
e-mail: mhonkanen@lear.com
Tel: 313-240-3178

Fax: 313-240-9306 PO: 158141

Measurements made by: Valdis Liepa

Tests supervised by: Report approved by:

> Valdis V. Liepa Research Scientist

Summary

Tests for compliance with FCC Regulations, Part 15, Subpart C, and for compliance with Industry Canada RSS-210, were performed on Lear WCM Receiver. The device is subject to the Rules and Regulations as a Receiver. As a Digital Device it is exempt, but such measurements were made to assess the receiver's overall emissions.

In testing performed on February 26 and March 1, 2004, the device tested in the worst case met the specifications for radiated emissions by 21.2 dB (see p. 6). Since the device is powered from an automotive 12-volt system, the line conductive emission tests do not apply.

1. Introduction

Lear WCM Receiver was tested for compliance with FCC Regulations, Part 15, adopted under Docket 87-389, April 18, 1989, and with Industry Canada RSS-210, Issue 5, dated November 1, 2001. The tests were performed at the University of Michigan Radiation Laboratory Willow Run Test Range following the procedures described in ANSI C63.4-1992 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz". The Site description and attenuation characteristics of the Open Site facility are on file with FCC Laboratory, Columbia, Maryland (FCC Reg. No: 91050) and with Industry Canada, Ottawa, ON (File Ref. No: IC 2057).

2. Test Procedure and Equipment Used

The pertinent test equipment commonly used in our facility for measurements is listed in Table 2.1 below. The middle column identifies the specific equipment used in these tests.

Table 2.1. Test equipment.

Test Instrument	Eqpt Used	Manufacturer/Model
Spectrum Analyzer (0.1-1500 MHz)		Hewlett-Packard, 182T/8558B
Spectrum Analyzer (9kHz-22GHz)	X	Hewlett-Packard 8593A SN: 3107A01358
Spectrum Analyzer (9kHz-26GHz)	X	Hewlett-Packard 8593E, SN: 3412A01131
Spectrum Analyzer (9kHz-26GHz)		Hewlett-Packard 8563E, SN: 3310A01174
Spectrum Analyzer (9kHz-40GHz)		Hewlett-Packard 8564E, SN: 3745A01031
Power Meter		Hewlett-Packard, 432A
Power Meter		Anritsu, ML4803A/MP
Harmonic Mixer (26-40 GHz)		Hewlett-Packard 11970A, SN: 3003A08327
Harmonic Mixer (40-60 GHz)		Hewlett-Packard 11970U, SN: 2332A00500
Harmonic Mixer (75-110 GHz)		Hewlett-Packard 11970W, SN: 2521A00179
Harmonic Mixer (140-220 GHz)		Pacific Millimeter Products, GMA, SN: 26
S-Band Std. Gain Horn		S/A, Model SGH-2.6
C-Band Std. Gain Horn		University of Michigan, NRL design
XN-Band Std. Gain Horn		University of Michigan, NRL design
X-Band Std. Gain Horn		S/A, Model 12-8.2
X-band horn (8.2- 12.4 GHz)		Narda 640
X-band horn (8.2- 12.4 GHz)		Scientific Atlanta, 12-8.2, SN: 730
K-band horn (18-26.5 GHz)		FXR, Inc., K638KF
Ka-band horn (26.5-40 GHz)		FXR, Inc., U638A
U-band horn (40-60 GHz)		Custom Microwave, HO19
W-band horn(75-110 GHz)		Custom Microwave, HO10
G-band horn (140-220 GHz)		Custom Microwave, HO5R
Bicone Antenna (30-250 MHz)	X	University of Michigan, RLBC-1
Bicone Antenna (200-1000 MHz)	X	University of Michigan, RLBC-2
Dipole Antenna Set (30-1000 MHz)		University of Michigan, RLDP-1,-2,-3
Dipole Antenna Set (30-1000 MHz)		EMCO 2131C, SN: 992
Active Rod Antenna (30 Hz-50 MHz)		EMCO 3301B, SN: 3223
Active Loop Antenna (30 Hz-50 MH		EMCO 6502, SN: 2855
Ridge-horn Antenna (300-5000 MHz		University of Michigan
Amplifier (5-1000 MHz)	X	Avantak, A11-1, A25-1S
Amplifier (5-4500 MHz)	X	Avantak
Amplifier (4.5-13 GHz)		Avantek, AFT-12665
Amplifier (6-16 GHz)		Trek
Amplifier (16-26 GHz)		Avantek
LISN (50µH)	37	University of Michigan
Signal Generator (0.1-2060 MHz)	X	Hewlett-Packard, 8657B
Signal Generator (0.01-20 GHz)		Hewlett-Packard

3. Configuration and Identification of Device Under Test

The DUT is a WCM (Wireless Control Module) 315 MHz ASK/FSK receiver in an Immobilizer style case. It is intended to receive RKE and TPM signals. When testing for radiated emissions, a 3-meter long bundle of wires was used, containing power and control/signal lines. The receiver is IC based, having synthesized VCO with the reference crystal frequency of 10.178 MHz., the VCO frequency of 651.4 MHz, and the LO frequency at 325.7 MHz. It was powered by a 12-volt laboratory power supply.

The DUT was designed and manufactured by Lear Corporation, 5200 Auto Club Drive,

Dearborn, MI 48126. It is identified as:

Lear WCM Receiver

Lear P/N: L0020364 AB (HB), L0020363 AB (LX)

S/N: TGPCH283300270, TGÚCH280300018, respectively

FCC ID: KOBDR05B IC: 3521A-R05C

The HB and LX versions use the same PCB and electronics. Differences are only in plastics. The HB version was tested completely. Since there were no significant emissions measured from the HB version, there was no need to test the same board in LX plastic.

3.1 Modifications Made

There were no modifications made to the DUT by this laboratory.

4. Emission Limits

For FCC the DUT falls under Part 15, Subpart B, "Unintentional Radiators". For Industry Canada the DUT falls under Receiver category and is subject to technical requirement of sections 7.1 to 7.4 in RSS-210. The pertinent test frequencies, with corresponding emission limits, are given in below.

4.1 Radiated Emission Limits

Table 4.1. Radiated Emission Limits (FCC: 15.33, 15.35, 15.109; IC: RSS-210, 7.3).

Freq. (MHz)	E _{lim} (3m) μV/m	$E_{lim} dB(\mu V/m)$		
30-88	100	40.0		
88-216	150	43.5		
216-960	200	46.0		
960-2000	500	54.0		

Notes: Quasi-Peak readings apply to 1000 MHz (120 kHz BW) Average readings apply above 1000 MHz (1 MHz BW)

4.2 Antenna Power Conduction Limits

Pmax = 2 nW; for frequency range see Table 4.1. (FCC: 15.111(a); IC: RSS-210, 7.2).

4.3 Conducted Emission Limits

Table 4.2. Conducted Emission Limits (FCC:15.107 (CISPR)).

Frequency	Class A	(dBµV)	Class B (dBμV)		
MHz	Quasi-peak	Average	Quasi-peak	Average	
.150 - 0.50	79	66	66 - 56*	56 - 46*	
0.50 - 5	73	60	56	46	
5 - 30	5 - 30 73		60	50	

Notes:

- 1. The lower limit shall apply at the transition frequency
- 2. The limit decreases linearly with the logarithm of the frequency in the range 0.15-0.50 MHz
- 3. 9 kHz RBW

5. Emission Tests and Results

5.1 Anechoic Chamber Radiated Emission Tests

To familiarize with the radiated emission behavior of the DUT, it was studied and measured in the shielded anechoic chamber. In the chamber there is a set-up similar to that of an outdoor 3-meter site, with turntable, antenna mast, and a ground plane. Instrumentation includes spectrum analyzers and other equipment as needed.

To study and test for radiated emissions, the DUT was powered by a laboratory power supply. A 315 MHz CW signal was injected (radiated) from a nearby signal generator using a short wire antenna. The DUT was placed on the test table on each of its three axis. For each placement, the table was rotated to obtain maximum signal for vertical and horizontal emission polarizations. This sequence was repeated throughout the required frequency range.

In the chamber we studied and recorded all the emissions using a ridge-horn antenna, which covers 200 MHz to 5000 MHz, up to 2 GHz. In scanning from 30 MHz to 2.0 GHz, there were no spurious emissions observed other than the LO, the injection signal, and the LO harmonics. Figures 5.1 and 5.2 show emissions measured 0-1000 MHz and 1000-2000 MHz, respectively. These measurements are made with a ridge-horn antenna at 3m, with spectrum analyzer in peak hold mode and the receiver rotated in all orientations. The measurements up to 1000 MHz (Fig. 5.1) are used for initial evaluation only, but those above 1000 MHz (Fig. 5.2) are used in final assessment for the compliance.

5.2 Open Site Radiated Emission Tests

The DUT was then moved to the 3-meter Open Field Test Site where measurements were repeated up to 1000 MHz using a small bicone, or dipoles when the measurement is near the limit. The DUT was exercised as described in Sec. 5.1 above. The measurements were made with a spectrum analyzer using 120 kHz IF bandwidth and peak detection mode, and, when appropriate, using Quasi-Peak or average detection. When emissions are narrow band, as in a case of an LO, measurements may be made with a reduced RBW to help discriminate the emissions from ambient signals and noise. Test set-up photographs are in the Appendix (i.e., at end of this report).

The emissions from digital circuitry were measured using a standard bicone. These results are noted in Table 5.1.

5.3 Computations and Results for Radiated Emissions

To convert the dBm's measured on the spectrum analyzer to dB(μV/m), we use expression

$$E_3(dB\mu V/m) = 107 + P_R + K_A - K_G$$

where P_R = power recorded on spectrum analyzer, dB, measured at 3m

 K_A = antenna factor, dB/m K_G = pre-amplifier gain, including cable loss, dB

When presenting the data, at each frequency the highest measured emission under all of the possible orientations is given. Computations and results are given in Table 5.1. There we see that the DUT meets the limit by more than 21.2 dB.

5.4 Conducted Emission Tests

These tests do not apply, since the DUT is powered from a 12-volt automotive system.

6. Other Measurements

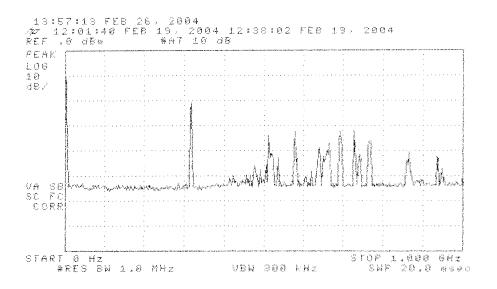
6.1 Emission Spectrum Near Fundamental

The LO emissions are measured typically over 1 MHz span and usually with without injection signal. Here data were taken with the DUT placed in an aperture of ridge-horn antenna with LNA amp before the spectrum analyzer. A plot is shown in Figure 6.1.

6.2 Effect of Supply Voltage Variation

The DUT has been designed to operate from 12 VDC power. Using a spectrum analyzer, relative emissions were recorded at the VCO frequency (651.4 MHz) as voltage was varied from 6.0 to 18.0 VDC. Figure 6.2 shows the emission variation.

6.3 Operating Voltage and Current


V = 12.3VDC I = 35.0 mADC

The University of Michigan Radiation Laboratory 3228 EECS Building Ann Arbor, Michigan 48109-2122 (734) 764-0500

Table 5.1 Highest Emissions Measured

Radiated Emission - RF Lear WCM Rx w/o Imm.; FCC								ear WCM Rx w/o Imm.; FCC/IC			
	Freq.	Ant.	Ant.	Pr	Det.	Ka	Kg	E3	E3lim	Pass	
#	MHz	Used	Pol.	dBm	Used	dB/m	dB	dBµV/m	dΒμV/m	dB	Comments
1	325.7	SBic	Н	-79.7	Pk	19.2	21.7	24.8	46.0	21.2	max. of all, noise floor
2	325.7	SBic	V	-80.3	Pk	19.2	21.7	24.2	46.0	21.8	max. of all, noise floor
3	651.4	SBic	Н	-95.0	Pk	25.5	18.3	19.2	46.0	26.8	max. of all, noise; 10 kHz BW
4	651.4	SBic	V	-93.0	Pk	25.5	18.3	21.2	46.0	24.8	max. of all, noise; 10 kHz BW
_5	977.1	SBic	Н	-93.1	Pk	29.2	15.7	27.4	54.0	26.6	max. of all, noise; 10 kHz BW
6	977.1	SBic	V	-92.6	Pk	29.2	15.7	27.9	54.0	26.1	max. of all, noise; 10 kHz BW
7	1302.8	Horn	Н	-72.0	Pk	20.4	28.0	27.4	54.0	26.6	max. of all, noise floor
8	1628.5	Horn	Н	-72.0	Pk	20.6	28.0	27.6	54.0	26.4	max. of all, noise floor
9	1954.2	Horn	Н	-70.0	Pk	20.8	28.2	29.6	54.0	24.4	max. of all, noise floor
10											
11											
12											
13											
14						marin succession					
15											
16											
17										*****	The second secon
18								<u> </u>			<u></u>
		,	-		Radi	iated E	Cmissior	ı - Digita	al (Clas	s B)	T
1	\ <u></u>										
2											
3			ı	Digit	al Emis	sions mo	ore than 2	0 dB belov	w FCC C	lass B li	mits
4											
5											
6											
7	•										
8											The Carlo Million Control of the Control of the Carlo of
9											
10									ļ		
11					<u> </u>	and characters are the same					N
12											
	Conducted Emissions										
	Freq.	Line	Det.	Vtest	Vlim	Pass			Co		
#	MHz	Side	Used	dBμV	dΒμV	dB	-		Comme	nts	
1		N. P. H.									
2		Not applicable									
3		<u> </u>	I	<u> </u>	1	<u> </u>	I				Mans 03/01/04: II of Mich

Meas. 03/01/04; U of Mich.

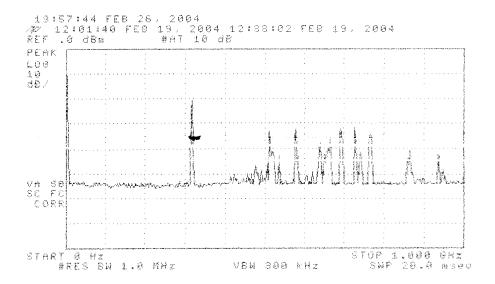
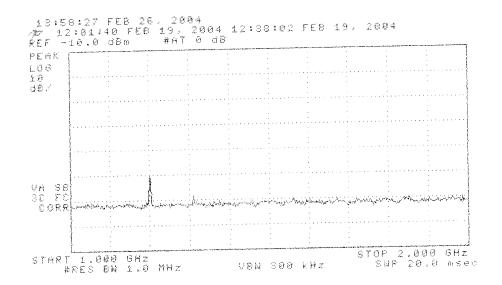



Figure 5.1. Emissions measured at 3 meters in anechoic chamber, 0-1000 MHz. (top) Receiver plus ambient (bottom) Ambient

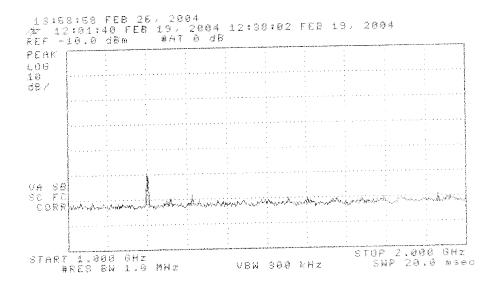


Figure 5.2. Emissions measured at 3 meters in anechoic chamber, 1000-2000 MHz. (top) Receiver plus ambient (bottom) Ambient

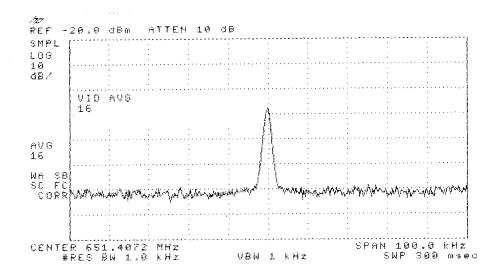


Figure 6.1. Receiver emission at 651.4 MHz.

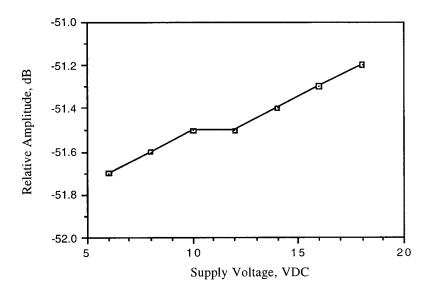
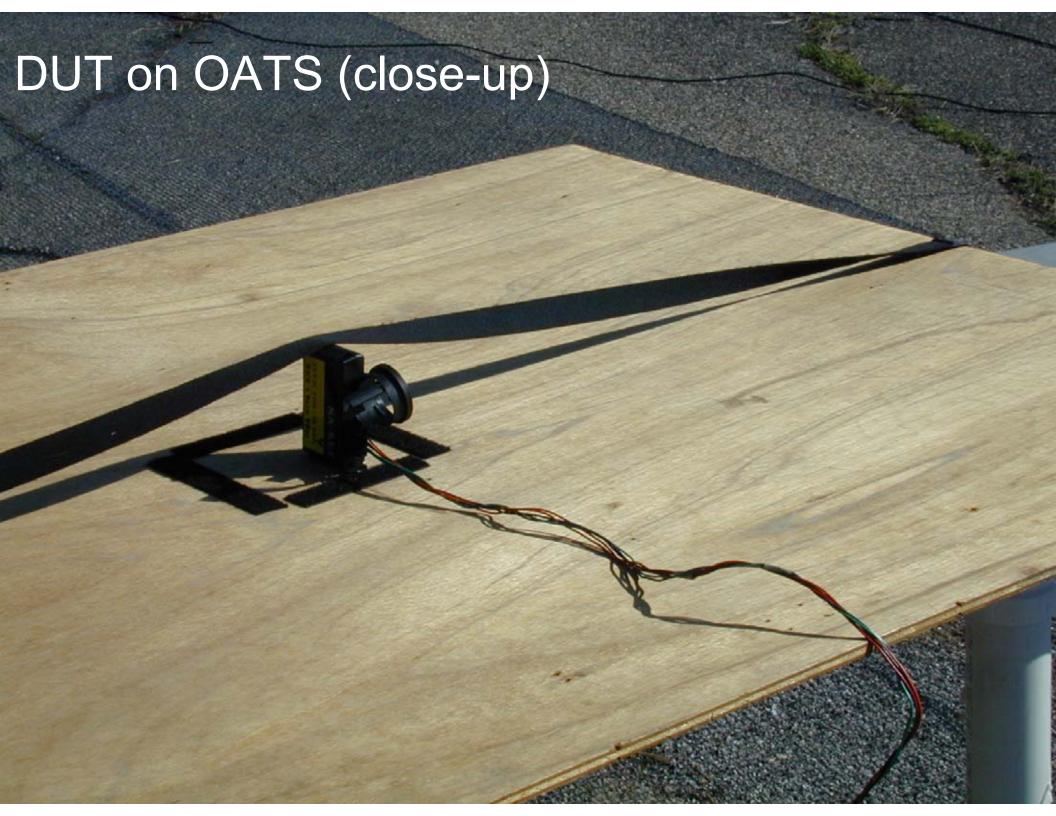



Figure 6.2. Relative emission at 651.4 MHz vs. supply voltage.

