

Report No. : EED32O80248601 Page 1 of 34

TEST REPORT

Product : Vgate vLinker BM+
Trade mark : Vgate vLinker
Model/Type reference : CV298, CV297

Serial Number : N/A

Report Number : EED32O80248601

FCC ID : 2A45F-CV298

Date of Issue : Mar. 07, 2022

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

Shenzhen Chebotong Technology Co., Ltd.
Room5c 5th Building2,BanDao Chengbang Garden 2th, Shekou Street,
Nanshan District shenzhen 518000 China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:	mark. chen.	Reviewed by:	Laron Ma	
Approved by	David Wang	Date:	Mar. 07, 2022	CI
	/ David Wang			

Check No.:4723240222

Content

1 COVER PAGE	•••••	1
2 CONTENT2		2
3 VERSION		3
4 TEST SUMMARY		4
5 GENERAL INFORMATION		
5.1 CLIENT INFORMATION		
6 EQUIPMENT LIST		
7 TEST RESULTS AND MEASUREMENT DATA		11
7.1 ANTENNA REQUIREMENT 7.2 MAXIMUM CONDUCTED OUTPUT POWER 7.3 DTS BANDWIDTH 7.4 MAXIMUM POWER SPECTRAL DENSITY 7.5 BAND EDGE MEASUREMENTS AND CONDUCTED SPURIOUS EMISSION 7.6 RADIATED SPURIOUS EMISSION & RESTRICTED BANDS		12 13 14
8 APPENDIX A		27
9 PHOTOGRAPHS OF TEST SETUP		28
10 PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS		29

3 Version

Version No.	Date	6	Description	
00	Mar. 07, 2022		Original	
		10	Contract of the contract of th	
((2)	(9/2)	(62)	(61)

Page 4 of 34

4 Test Summary

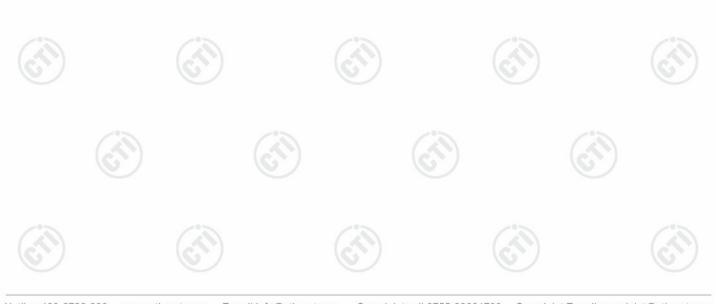
Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	N/A
DTS Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	PASS
Maximum Conducted Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	PASS
Maximum Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	PASS
Band Edge Measurements	47 CFR Part 15 Subpart C Section 15.247(d)	PASS
Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	PASS
Radiated Spurious Emission & Restricted bands	47 CFR Part 15 Subpart C Section 15.205/15.209	PASS

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

Model No.: CV298, CV297

Only the model CV298 was tested, Their electrical circuit design, layout, components used and internal wiring are identical, Only the shell is different.


5 General Information

5.1 Client Information

Applicant:	Shenzhen Chebotong Technology Co., Ltd.		
Address of Applicant:	Room5c 5th Building2, BanDao Chengbang Garden 2th, Shekou Street, Nanshan District shenzhen 518000 China		
Manufacturer:	Shenzhen Chebotong Technology Co., Ltd.		
Address of Manufacturer:	Room5c 5th Building2, BanDao Chengbang Garden 2th, Shekou Street, Nanshan District shenzhen 518000 China		
Factory:	Shenzhen Chebotong Technology Co., Ltd.		
Address of Factory:	Room5c 5th Building2, BanDao Chengbang Garden 2th, Shekou Street, Nanshan District shenzhen 518000 China		

5.2 General Description of EUT

Vgate vLinker BM+			
CV298, CV297			
CV298			
Vgate、vLinker	(6)		6
☐ Mobile ☐ Portable ☐	☐ Fix Location		
Realtek RTLBTAPP	485		
2402MHz~2480MHz	The state of the s	(3)	
GFSK	37)	(0,)	
⊠1Mbps □2Mbps			
40			
PCB Antenna	Ci)		(3)
3.5 dBi	(6,2)		(6)
DC 12V			
DC 12V			
Feb. 25, 2022	120	(:5)	
Feb. 25, 2022 to Mar. 03, 2022	2	(C)	
	CV298, CV297 CV298 Vgate、vLinker Mobile Portable Realtek RTLBTAPP 2402MHz~2480MHz GFSK Multiple Market Mark	CV298, CV297 CV298 Vgate、vLinker Mobile Portable Fix Location Realtek RTLBTAPP 2402MHz~2480MHz GFSK Multiple Mobile Multiple Multip	CV298, CV297 CV298 Vgate、vLinker Mobile Portable Fix Location Realtek RTLBTAPP 2402MHz~2480MHz GFSK Multipub Mbps 40 PCB Antenna 3.5 dBi DC 12V DC 12V Feb. 25, 2022

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel (CH0)	2402MHz
The middle channel (CH19)	2440MHz
The highest channel (CH39)	2480MHz

5.3 Test Configuration

EUT Test Software Settings:						
Test Software of EU	T: Realtek RT	Realtek RTLBTAPP				
EUT Power Grade:	Class2 (Posselected)	Class2 (Power level is built-in set parameters and cannot be changed and selected)				
Use test software to transmitting of the E	set the lowest frequency UT.	/, the middle freque	ncy and the highest f	frequency keep		
Test Mode	Modulation	Rate	Channel	Frequency(MHz)		
Mode a	GFSK	1Mbps	CH0	2402		
Mode b	GFSK	1Mbps	CH19	2440		
Mode c	GFSK	1Mbps	CH39	2480		

Report No. :EED32O80248601 Page 7 of 34

5.4 Test Environment

Operating Environment	:		
Radiated Spurious Emis	ssions:		
Temperature:	22~25.0 °C	(40)	(20)
Humidity:	50~55 % RH	(0)	
Atmospheric Pressure:	1010mbar		
RF Conducted:			
Temperature:	22~25.0 °C		9
Humidity:	50~55 % RH	0,)
Atmospheric Pressure:	1010mbar		

5.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Netbook	DELL	Latitude 3490	FCC&CE	СТІ

5.6 Test Location

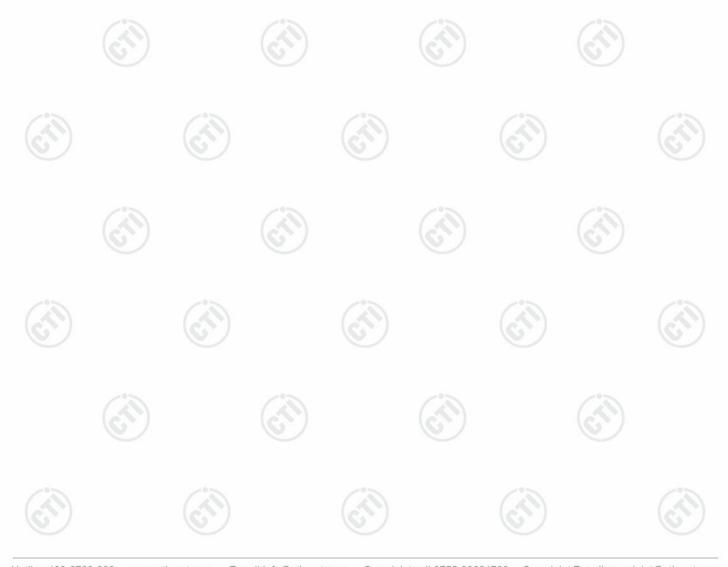
All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164



5.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	ltem	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE newer conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-40GHz)
	6	3.3dB (9kHz-30MHz)
3 Rad	Dedicted Spurious emission test	4.3dB (30MHz-1GHz)
	Radiated Spurious emission test	4.5dB (1GHz-18GHz)
(P)		3.4dB (18GHz-40GHz)
	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Report No. :EED32O80248601 Page 9 of 34

6 Equipment List

		RF test s	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-24-2021	12-23-2022
Signal Generator	Keysight	N5182B	MY53051549	12-24-2021	12-23-2022
Signal Generator	Agilent	N5181A	MY46240094	12-24-2021	12-23-2022
DC Power	Keysight	E3642A	MY56376072	12-24-2021	12-23-2022
Power unit	R&S	OSP120	101374	12-24-2021	12-23-2022
RF control unit	JS Tonscend	JS0806-2	158060006	12-24-2021	12-23-2022
Communication test set	R&S	CMW500	120765	08-04-2021	08-03-2022
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-24-2021	12-23-2022
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-24-2021	06-23-2022
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	2.6.77.0518	6.	

	3M Semi-anechoic Chamber (2)- Radiated disturbance Test									
Equipment	Manufacturer	Model	Serial No.	Cal. Date	Due Date					
3M Chamber & Accessory Equipment	Accessory TDK			05/24/2019						
Receiver	R&S	ESCI7	100938-003	10/14/2021	10/13/2022					
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/23/2019	05/22/2022					
Multi device Controller	maturo	NCD/070/10711112								
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04/15/2021	04/14/2024					
Spectrum Analyzer	R&S	FSP40	100416	04/29/2021	04/28/2022					
Microwave Preamplifier	Agilent	8449B	3008A02425	06/23/2021	06/22/2022					

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Page 10 of 34

		3M full-anechoi	c Chamber			
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
RSE Automatic test software	JS Tonscend	JS36-RSE	10166			
Receiver	Keysight	N9038A	MY57290136	03-04-2021 03-01-2022	03-03-2022 02-28-2023	
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-04-2021 03-01-2022	03-03-2022 02-28-2023	
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-04-2021 03-01-2022	03-03-2022 02-28-2023	
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024	
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024	
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024	
Preamplifier	EMCI	EMC184055SE	980597	05-20-2021	05-19-2022	
Preamplifier	EMCI	EMC001330	980563	04-15-2021	04-14-2022	
Preamplifier	JS Tonscend	980380	EMC051845SE	12-24-2021	12-23-2022	
Communication test set	R&S	CMW500	102898	12-24-2021	12-23-2022	
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-16-2021	04-15-2022	
Fully Anechoic Chamber	TDK	FAC-3		01-09-2021	01-08-2024	
Cable line	Times	SFT205-NMSM-2.50M	394812-0001		/	
Cable line	Times	SFT205-NMSM-2.50M	394812-0002	(C)	(6)	
Cable line	Times	SFT205-NMSM-2.50M	394812-0003			
Cable line	Times	SFT205-NMSM-2.50M	393495-0001	/	:n	
Cable line	Times	EMC104-NMNM-1000	SN160710	(<u> </u>	
Cable line	Times	SFT205-NMSM-3.00M	394813-0001			
Cable line	Times	SFT205-NMNM-1.50M	381964-0001	Cil.	- 0	
Cable line	Times	SFT205-NMSM-7.00M	394815-0001	(6.)	6	
Cable line	Times	HF160-KMKM-3.00M	393493-0001			

7 Test results and Measurement Data

7.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna: Please see Internal photos

The antenna is PCB antenna. The best case gain of the antenna is 3.5 dBi.

7.2 Maximum Conducted Output Power

Test Requirement:	47 CFR Part 15C Section 15.247 (b)	(3)	
Test Method:	ANSI C63.10 2013	-0-	
Test Setup:		(27)	
	Control Computer Power Supply Power Pot Temperature Cabnet Table	RF test System Instrument	
	Remark: Offset=Cable loss+ attenua	tion factor.	(0,
Test Procedure:	 a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 × RBW. c) Set span ≥ 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to deter 	rmine the peak amplitude level.	
Limit:	30dBm	(25)	(2)
Test Mode:	Refer to clause 5.3		
Test Results:	Refer to Appendix A		

Report No. :EED32O80248601 Page 13 of 34

7.3 DTS Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)
Test Method:	ANSI C63.10 2013
Test Setup:	
	Control Control Control Power Power Supply Attenuator Table RF test System System Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 a) Set RBW = 100 kHz. b) Set the VBW ≥[3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.
Limit:	≥ 500 kHz
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix A

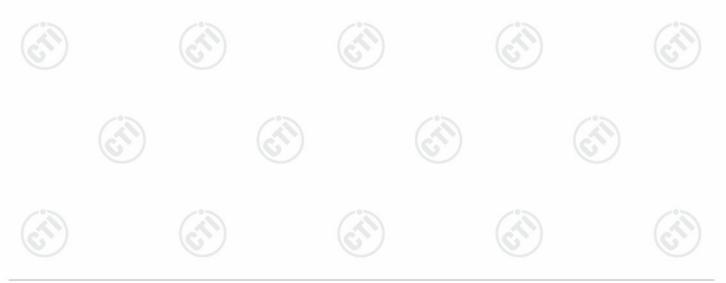
7.4 Maximum Power Spectral Density

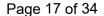
	(0)	
	Test Requirement:	47 CFR Part 15C Section 15.247 (e)
	Test Method:	ANSI C63.10 2013
	Test Setup:	
		Control Computer Computer Computer Computer Computer Computer Control Computer Control Computer Power Power Supply Power Supply Table RF test System System Instrument Instrument
4		Remark: Offset=Cable loss+ attenuation factor.
	Test Procedure:	a) Set analyzer center frequency to DTS channel center frequency. b) Set the span to 1.5 times the DTS bandwidth. c) Set the RBW to 3 kHz < RBW < 100 kHz. d) Set the VBW > [3 × RBW]. e) Detector = peak. f) Sweep time = auto couple. g) Trace mode = max hold. h) Allow trace to fully stabilize. i) Use the peak marker function to determine the maximum amplitude level within the RBW. j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.
	Limit:	≤8.00dBm/3kHz
	Test Mode:	Refer to clause 5.3
	Test Results:	Refer to Appendix A

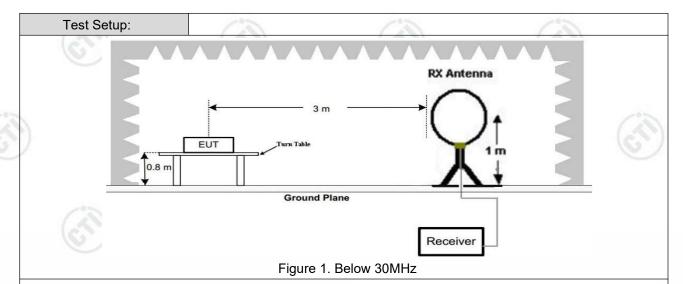


7.5 Band Edge measurements and Conducted Spurious Emission

Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10 2013
Test Setup:	Control Control Confed Actenna porte) Power Supply Table RF test System Instrument Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	a) Set RBW =100KHz. b) Set VBW = 300KHz. c) Sweep time = auto couple. d) Detector = peak. e) Trace mode = max hold. f) Allow trace to fully stabilize. g) Use peak marker function to determine the peak amplitude level.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix A
	Test Method: Test Setup: Test Procedure: Limit: Test Mode:


Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com




7.6 Radiated Spurious Emission & Restricted bands

Test Requirement:	47 CFR Part 15C Secti	on 1	5.209 and 15	.205	6						
Test Method:	ANSI C63.10 2013										
Test Site:	Measurement Distance	asurement Distance: 3m (Semi-Anechoic Chamber)									
Receiver Setup:	Frequency	11	Detector	RBW	VBW	Remark					
	0.009MHz-0.090MH	z	Peak	10kHz	30kHz	Peak					
	0.009MHz-0.090MH	z	Average	10kHz	30kHz	Average					
	0.090MHz-0.110MH	z	Quasi-peak	10kHz	30kHz	Quasi-peak					
	0.110MHz-0.490MH	z	Peak	10kHz	30kHz	Peak					
	0.110MHz-0.490MH	z	Average	10kHz	30kHz	Average					
	0.490MHz -30MHz		Quasi-peak	10kHz	30kHz	Quasi-peak					
	30MHz-1GHz		Quasi-peak	100 kH	z 300kHz	Quasi-peak					
	Above 4011		Peak	1MHz	3MHz	Peak					
	Above 1GHz	Peak	1MHz	10kHz	Average						
Limit:	Frequency	l	eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measuremen distance (m)					
	0.009MHz-0.490MHz	2	400/F(kHz)	-	-/0>	300					
	0.490MHz-1.705MHz	24	1000/F(kHz)	-	(A)	30					
	1.705MHz-30MHz		30	-	-	30					
	30MHz-88MHz		100	40.0	Quasi-peak	3					
	88MHz-216MHz		150	43.5	Quasi-peak	3					
	216MHz-960MHz	9	200	46.0	Quasi-peak	3					
	960MHz-1GHz	1	500	54.0	Quasi-peak	3					
	Above 1GHz		500	54.0	Average	3					
	Note: 15.35(b), frequency emissions is limit applicable to the epeak emission level rad	20c quip	dB above the oment under t	maximum est. This p	permitted ave	erage emission					

Antenna Tower

Antenna Tower

Ground Reference Plane

Test Receiver

Test Receiver

Test Receiver

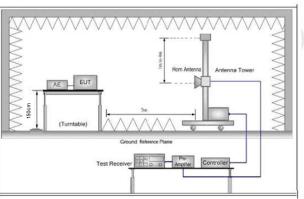


Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

Test Procedure:

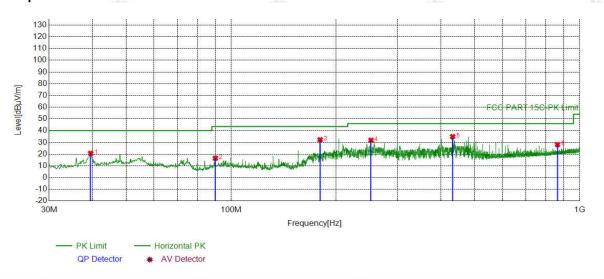
- a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Note: For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both

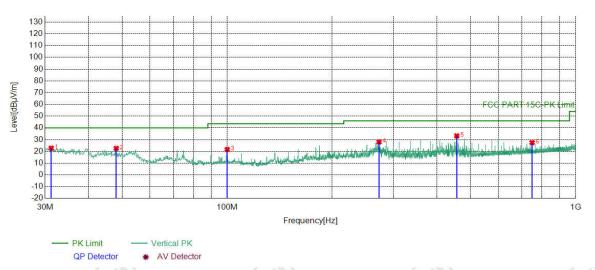
Tool Noodito.	1 400
Test Results:	Pass
Test Mode:	Refer to clause 5.3
	i. Repeat above procedures until all frequencies measured was complete.
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	g. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	horizontal and vertical polarizations of the antenna are set to make the measurement.



Report No. :EED32O80248601 Page 19 of 34

Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case mode a was recorded in the report.

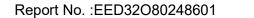

	Suspected List									
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	39.5070	-18.19	38.93	20.74	40.00	19.26	PASS	Horizontal	PK
9	2	90.0490	-20.12	36.61	16.49	43.50	27.01	PASS	Horizontal	PK
6	3	179.9770	-19.82	52.17	32.35	43.50	11.15	PASS	Horizontal	PK
	4	251.9582	-16.52	48.41	31.89	46.00	14.11	PASS	Horizontal	PK
	5	432.0082	-12.22	47.14	34.92	46.00	11.08	PASS	Horizontal	PK
	6	863.9924	-5.34	33.42	28.08	46.00	17.92	PASS	Horizontal	PK

	Suspected List									
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	31.2611	-19.74	42.54	22.80	40.00	17.20	PASS	Vertical	PK
	2	48.0438	-17.17	39.80	22.63	40.00	17.37	PASS	Vertical	PK
	3	100.0410	-18.40	40.05	21.65	43.50	21.85	PASS	Vertical	PK
	4	272.8153	-16.09	44.15	28.06	46.00	17.94	PASS	Vertical	PK
	5	455.9696	-11.61	44.83	33.22	46.00	12.78	PASS	Vertical	PK
9	6	750.1030	-7.00	34.49	27.49	46.00	18.51	PASS	Vertical	PK

Radiated Spurious Emission above 1GHz:

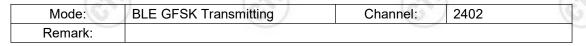
Mode	:	E	BLE GFSK Transmitting			Channel:		2402 MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1148.0148	0.83	42.15	42.98	74.00	31.02	Pass	Н	PK
2	1737.2737	3.07	40.48	43.55	74.00	30.45	Pass	Н	PK
3	3348.0232	-19.99	57.24	37.25	74.00	36.75	Pass	Н	PK
4	4803.1202	-16.23	70.14	53.91	74.00	20.09	Pass	Н	PK
5	8213.3476	-10.98	52.21	41.23	74.00	32.77	Pass	Н	PK
6	13743.7162	-1.71	49.74	48.03	74.00	25.97	Pass	Н	PK
7	1248.0248	0.92	42.07	42.99	74.00	31.01	Pass	Н	PK
8	1666.0666	2.72	41.49	44.21	74.00	29.79	Pass	V	PK
9	3296.0197	-19.82	59.61	39.79	74.00	34.21	Pass	V	PK
10	4804.1203	-16.23	65.34	49.11	74.00	24.89	Pass	V	PK
11	8983.3989	-8.59	52.00	43.41	74.00	30.59	Pass	V	PK
12	14335.7557	0.15	49.20	49.35	74.00	24.65	Pass	V	PK

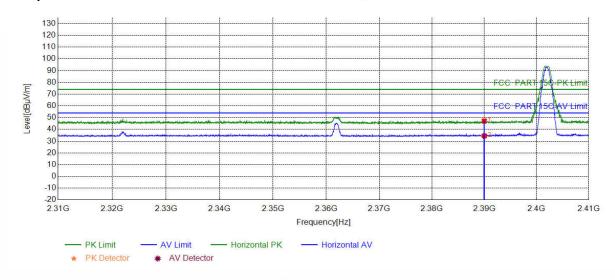
Mode) :	В	LE GFSK Trai	nsmitting		Channel:		2440 MHz	<u> </u>
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1196.2196	0.80	42.08	42.88	74.00	31.12	Pass	Н	PK
2	1766.2766	3.17	40.56	43.73	74.00	30.27	Pass	Н	PK
3	4879.1253	-16.21	68.80	52.59	74.00	21.41	Pass	Н	PK
4	7744.3163	-11.19	52.99	41.80	74.00	32.20	Pass	Н	PK
5	10878.5252	-6.34	51.30	44.96	74.00	29.04	Pass	Н	PK
6	14384.7590	0.97	47.83	48.80	74.00	25.20	Pass	Н	PK
7	1223.2223	0.86	42.49	43.35	74.00	30.65	Pass	Н	PK
8	1749.6750	3.11	40.51	43.62	74.00	30.38	Pass	V	PK
9	3191.0127	-20.37	61.98	41.61	74.00	32.39	Pass	V	PK
10	4880.1253	-16.21	65.60	49.39	74.00	24.61	Pass	V	PK
11	7799.3200	-11.38	53.57	42.19	74.00	31.81	Pass	V	PK
12	13819.7213	-1.70	50.90	49.20	74.00	24.80	Pass	V	PK


								100	6.5	
	Mode	:		BLE GFSK Tra	insmitting		Channel:		2480 MHz	<u>z</u>
	NO	Freq. [MHz]	Facto [dB]	Do a disa a	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1250.2250	0.93	41.57	42.50	74.00	31.50	Pass	Н	PK
Ì	2	1787.8788	3.24	40.94	44.18	74.00	29.82	Pass	Н	PK
	3	3422.0281	-20.1	6 57.22	37.06	74.00	36.94	Pass	Н	PK
	4	4959.1306	-15.9	8 68.14	52.16	74.00	21.84	Pass	Н	PK
	5	9274.4183	-7.93	52.11	44.18	74.00	29.82	Pass	Н	PK
	6	13768.7179	-1.67	7 49.54	47.87	74.00	26.13	Pass	Н	PK
	7	1297.6298	1.05	41.66	42.71	74.00	31.29	Pass	Н	PK
	8	1828.4828	3.49	40.85	44.34	74.00	29.66	Pass	V	PK
	9	3188.0125	-20.3	8 60.28	39.90	74.00	34.10	Pass	V	PK
	10	4960.1307	-15.9	7 62.99	47.02	74.00	26.98	Pass	V	PK
٩	11	7421.2948	-11.4	2 52.92	41.50	74.00	32.50	Pass	V	PK
b	12	13767.7178	-1.68	3 49.39	47.71	74.00	26.29	Pass	V	PK

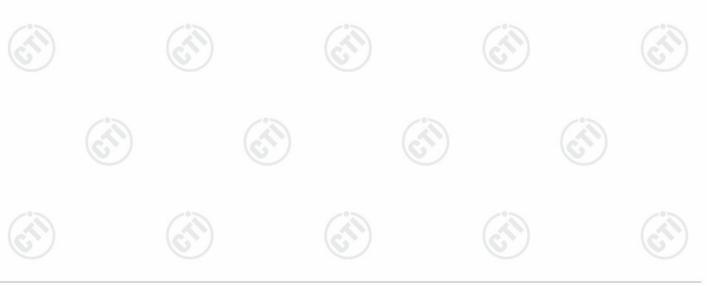
Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.



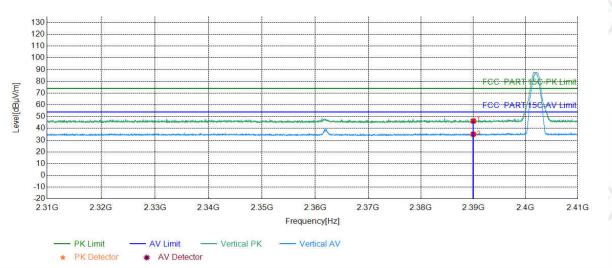


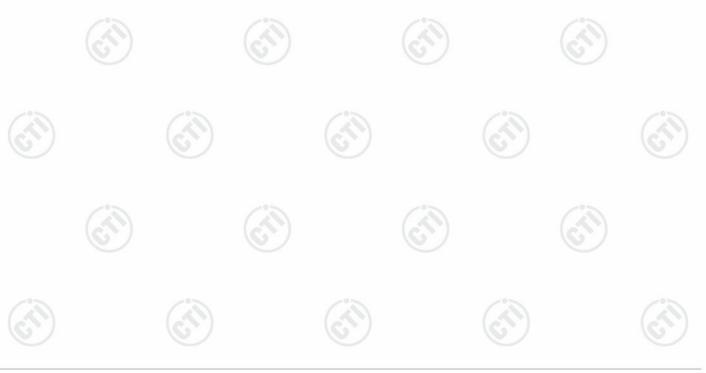
Page 23 of 34


Restricted bands:

Test plot as follows:

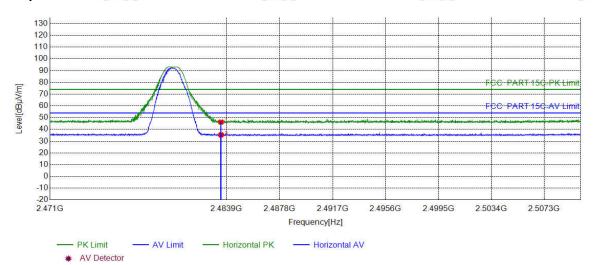
3	Suspected List									
-	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2390.0000	5.77	41.36	47.13	74.00	26.87	PASS	Horizontal	PK
	2	2390.0000	5.77	28.74	34.51	54.00	19.49	PASS	Horizontal	AV





Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:		·	

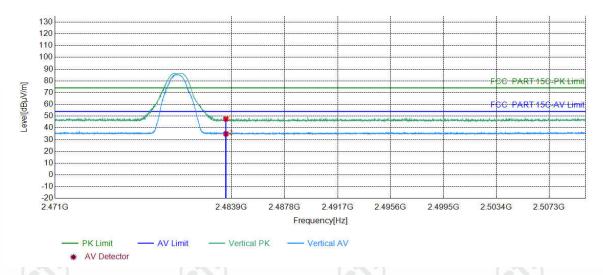
Suspe	cted List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	5.77	40.47	46.24	74.00	27.76	PASS	Vertical	PK
2	2390.0000	5.77	29.28	35.05	54.00	18.95	PASS	Vertical	AV



Page 25 of 34

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:			

	Suspe	cted List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
Ī	1	2483.5000	6.57	39.68	46.25	74.00	27.75	PASS	Horizontal	PK
	2	2483.5000	6.57	28.78	35.35	54.00	18.65	PASS	Horizontal	AV



Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	794		

Test Graph

	Suspe	cted List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
3	1	2483.5000	6.57	41.02	47.59	74.00	26.41	PASS	Vertical	PK
	2	2483.5000	6.57	28.38	34.95	54.00	19.05	PASS	Vertical	AV

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix A

Refer to Appendix: Bluetooth LE of EED32O80248601

