

Page 1 of 29

Report No.: KS2203S1107E03

TEST REPORT

Report No:	KS2203S1107E03
FCC ID:	2AHYV-GCMOUSE
Applicant	PEAG, LLC dba JLab Audio
Address:	5927 Landau Ct, Carlsbad, CA 92008, USA
Manufacturer	GuangDong Simpreal Intelligent Technology Co., Ltd
Address	Room 2408, JiaHong ZhenXing DaSha, DongGuan Avenue #13, DongCheng District, DongGuan City, GuangDong Province, P.R. China
Product Name:	Mouse
Trade Mark:	JLAB
Model/Type reference:	GO CHARGE MOUSE
Standard:	FCC CFR Title 47 Part 15 Subpart C Section 15.249
Date of Receipt	March 23, 2022
Date of Test Date:	March 23, 2021~August 9, 2022
Date of issue	August 9, 2022
Test result:	Pass
Prepared by: (Printed name+ signature)	Pai Zheng Sky Dong
Approved by: (Printed name + Signature)	Sky Dong Shy day
Testing Laboratory Name:	KSIGN Testing Co., Ltd.
Address:	Building 5, No. 316, Jianghong South Road Binjiang District, Hangzhou 310052, China
This test report may be duplicated com	pletely for legal use with the approval of the applicant. It should not be
reproduced except in full, without the v	written approval of our laboratory. The client should not use it to claim
	est results in the report only apply to the tested sample. The test report
-	s of testing engineers, reviewer and approver. Any objections must be
raised to KSIGN within 15 days sind	ce the date when the report is received. It will not be taken into

consideration beyond this limit. The test report merely correspond to the test sample.

TABLE OF CONTENTS

Page

1. TEST SUMMARY	3
1.1. Test Standards 1.2. Report version 1.3. Test Description 1.4. Measurement Uncertainty 1.5. Test Facility 1.6. Environmental conditions	3 3 4 5 6
2. GENERAL INFORMATION	7
 2.1. General Description of EUT 2.2. Table of Carrier Frequency 2.3. Description of Test Modes 2.4. Measurement Instruments List 	8 8
3. TEST ITEM AND RESULTS	10
 3.1. ANTENNA REQUIREMENT	11 14 17 25
4. EUT TEST PHOTOS	27
5. PHOTOGRAPHS OF EUT CONSTRUCTIONAL	29

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.249: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, 5725-5875 MHz, and 24.0-24.25 GHz.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.

1.2. Report version

Revised No.	Date of issue	Description
01	August 9, 2022	Original

1.3. Test Description

	FCC Rules Part 15.249		
Test How	Section in CFR 47	Decult	Test
Test Item	FCC	Result	Engineer
Antenna requirement	15.203	Pass	Tom Chen
AC Power Line Conducted Emissions	15.207	Pass	Tom Chen
20dB Bandwidth	Section 15.215(c)	Pass	Tom Chen
Band edge Emissions	Section 15.249(d)	Pass	Tom Chen
Radiated Spurious Emissions	Section 15.205(a),Section 15.209(a), Section 15.249	Pass	Tom Chen

Note:

1. Pass: The EUT complies with the essential requirements in the standard

Fail: The EUT does not comply with the essential requirements in the standard

All indications of Pass/Fail in this report are opinions expressed by KSIGN(Guangdong) Testing Co., Ltd. based on interpretations and/or observations of test results Measurement Uncertainties were not taken into account and are published for informational purposes only.

2. N/A: means this test item is not applicable for this device according to the technology characteristic of device.

1.4. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the KSIGN(Guangdong) Testing Co., Ltd. system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Below is the best measurement capability for KSIGN(Guangdong) Testing Co., Ltd.

Test Items	Measurement Uncertainty	Notes
Transmitter power conducted	0.42 dB	(1)
Transmitter power Radiated	2.14 dB	(1)
Conducted spurious emissions 9kHz~40GHz	1.60 dB	(1)
Radiated spurious emissions 9kHz~40GHz	2.20 dB	(1)
Conducted Emissions 9kHz~30MHz	3.20 dB	(1)
Radiated Emissions 30~1000MHz	4.70 dB	(1)
Radiated Emissions 1~18GHz	5.00 dB	(1)
Radiated Emissions 18~40GHz	5.54 dB	(1)
Occupied Bandwidth	2.80 dB	(1)

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Address of the report laboratory

KSIGN(Guangdong) Testing Co., Ltd.

West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, People's Republic of China

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L13261

KSIGN(Guangdong) Testing Co., Ltd. has been assessed and proved to be in Compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2017 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 5457.01

KSIGN(Guangdong) Testing Co., Ltd. EMC Laboratory has been accredited by A2LA for technical Competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

ISED#: 25693 CAB identifier.: CN0096

KSIGN(Guangdong) Testing Co., Ltd. has been listed by Innovation, Science and Economic Development Canada to perform electromagnetic emission measurement.

FCC-Registration No.: 294912 Designation Number: CN1328

KSIGN(Guangdong) Testing Co., Ltd. EMC Laboratory has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

1.6. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C
Relative Humidity:	30~60 %
Air Pressure:	950~1050mba

2. GENERAL INFORMATION

2.1. General Description of EUT

Product Name:	Mouse
Trade Mark:	JLAB
Model/Type reference:	GO CHARGE MOUSE
Model Different:	N/A
Power supply(Adapter):	DC 5V
Power supply(Battery):	DC 3.7V
Hardware version:	Lithium battery V3.1 Dry cell batteries V3.1
Software version:	Lithium battery: V3.2, Dry cell batteries: V3.1
Specification	
Modulation:	GFSK
Operation frequency:	2402MHz-2480MHz
Channel number:	12
Antenna type:	PCB Antenna
Antenna gain:	2.97 dBi
Note:	

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

2. The antenna gain is provided by the manufacturer.

2.2. Table of Carrier Frequency

Frequency Band	Channel Number	Frequency	Channel Number	Frequency
	1	2402MHz	7	2439MHz
	2	2405MHz	8	2441MHz
	3	2408MHz	9	2480MHz
2400~2483.5MHZ	4	2411MHz	10	2468MHz
	5	2432MHz	11	2478MHz
	6	2437MHz	12	2462MHz

2.3. Description of Test Modes

Operation Frequency List: The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing.

Operation Frequency: 2402MHz/2441MHz/2480MHz

Test mode

For RF test items:

The engineering test program was provided and enabled to make EUT continuous transmit.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

2.4. Measurement Instruments List

		Tonscend JS	0806-2 Test system		
ltem	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Until
1	Spectrum Analyzer	R&S	FSV40-N	101798	03/04/2023
2	Vector Signal Generator	Agilent	N5182A	MY50142520	03/04/2023
3	Analog Signal Generator	HP	83752A	3344A00337	03/04/2023
4	Power Sensor	Agilent	E9304A	MY50390009	03/04/2023
5	Power Sensor	Agilent	E9300A	MY41498315	03/04/2023
6	Wideband Radio Communication Tester	R&S	CMW500	157282	03/04/2023
7	Climate Chamber	Angul	AGNH80L	1903042120	03/04/2023
8	Dual Output DC Power Supply	Agilent	E3646A	MY40009992	03/04/2023
9	RF Control Unit	Tonscend	JS0806-2	/	03/04/2023

Page 9 of 29

	Transmitte	er spurious emissio	ons & Receiver spurio	us emissions	
ltem	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Until
1	EMI Test Receiver	R&S	ESR	102525	03/04/2023
2	High Pass Filter	Chengdu E-Microwave	OHF-3-18-S	0E01901038	03/04/2023
3	High Pass Filter	Chengdu E-Microwave	OHF-6.5-18-S	0E01901039	03/04/2023
4	Spectrum Analyzer	HP	8593E	3831U02087	03/04/2023
5	Ultra-Broadband logarithmic period Antenna	Schwarzbeck	VULB 9163	01230	12/04/2023
6	Loop Antenna	Beijin ZHINAN	ZN30900C	18050	03/04/2023
7	Spectrum Analyzer	R&S	FSV40-N	101798	03/04/2023
8	Horn Antenna	Schwarzbeck	BBHA 9120 D	2023	03/29/2023
9	Pre-Amplifier	Schwarzbeck	BBV 9745	9745#129	03/04/2023
10	Pre-Amplifier	EMCI	EMC051835SE	980662	03/04/2023
11	Horn Antenna	Schwarzbeck	BBHA 9170	00943	03/04/2023

Note:

1)The Cal. Interval was one year.

2)The cable loss has calculated in test result which connection between each test instruments.

3. TEST ITEM AND RESULTS

3.1. Antenna requirement

Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

(i) Systems operating in the 2400~2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

<u>Test Result</u>

The directional gain of the antenna less than 6dBi, please refer to the EUT internal photographs antenna photo.

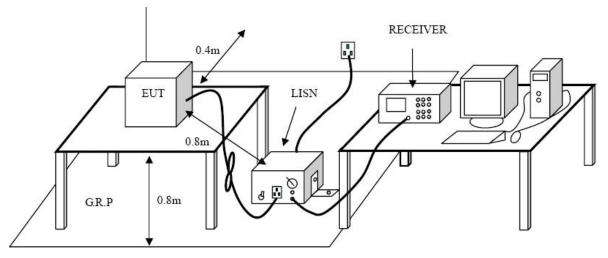
Note: The antenna is permanently fixed to the EUT.

3.2. Conducted Emission

<u>Limit</u>

Conducted Emission Test Limit

Eroquency	Maximum RF Line Voltage (dBμV)		
Frequency	Quasi-peak Level	Average Level	
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *	
500kHz~5MHz	56	46	
5MHz~30MHz	60	50	


Notes:

(1) *Decreasing linearly with logarithm of the frequency.

(2) The lower limit shall apply at the transition frequencies.

(3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

Test Configuration

Test Procedure

- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 4. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 5. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 6. Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 7. During the above scans, the emissions were maximized by cable manipulation.

Test Voltage: AC 120V/60Hz Line Terminal: Test Mode: GFSK 80.0 dBuV 70 FCC Part 15 C (QP) 60 FCC Part 15 C (AVG) 50 40 30 20 10 AVG 0.0 0.150 (MHz) 30.000 Reading Correct Measure-No. Mk. Freq. Limit Over Level Factor ment MHz dBuV dB dBuV dBuV dB Detector 0.2140 20.32 10.94 31.26 63.05 -31.79QP 1 2 0.2140 9.18 10.94 20.12 53.05 -32.93AVG 3 0.3540 23.15 10.97 34.12 -24.75 QP 58.87 0.3540 29.84 -19.034 18.87 10.97 48.87 AVG 25.78 11.06 36.84 -19.16 QP 5 0.9060 56.00 0.9060 2.83 11.06 13.89 46.00 -32.11 AVG 6 7 1.9213 23.03 11.10 34.13 56.00 -21.87 QP

Remarks:

1.Measurement = Reading Level+ Correct Factor

1.9213

6.0137

6.0137

12,4219

12.4219

8.14

22.68

8.16

24.12

8.86

2.Over = Measurement -Limit

8

9

10

11

12

TRF No. FCC Part 15.249_R1

11.10

11.16

11.16

11.12

11.12

19.24

33.84

19.32

35.24

19.98

-26.76

-26.16

-30.68

-24.76

-30.02

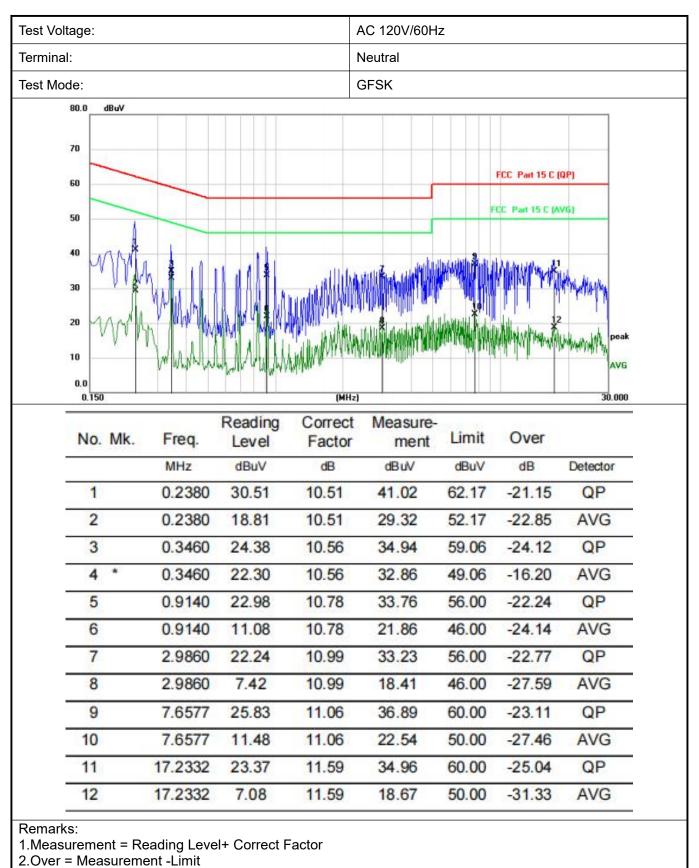
46.00

60.00

50.00

60.00

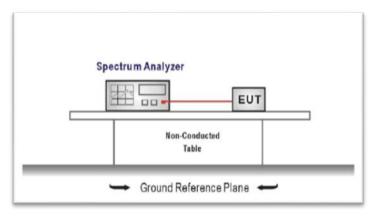
50.00


AVG

QP

AVG QP

AVG



3.3. 20dB Bandwidth

<u>Limit</u>

Operation frequency range 2400MHz~2483.5MHz.

Test Configuration

Test Procedure

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- 3. Use the following spectrum analyzer settings:

Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel

RBW \geq 1% of the 20 dB bandwidth, VBW \geq RBW

Sweep = auto, Detector function = peak, Trace = max hold

4. Measure and record the results in the test report.

<u>Test Mode</u>

Please refer to the clause 2.3..

<u>Test Results</u>

Test Mode:	GFSK 20dB Bandwidth [MHz] Verdict			
nel frequency (MHz)				
2402	1.028 PASS		1.028	
2441	1.028	3	PASS	
2480	1.042	2	PASS	
	2402M	Hz		
	2.02.00			
Spectrum Ref Level 20.00 dBm Att 30 dB SW	e RBW 30 kHz Γ 63.1 μs e VBW 100 kHz Γ	Mode Auto FFT		
1Pk Max]	
10 dBm		M1[1] Occ Bw	-33.44 dBm 2.40148190 GHz 946.454413893 kHz	
0 dBm		D1[1]	0.03 dB 1.02750 MHz	
-10 dBm				
-20 dBm		Mar I		
-30 dBm D1 -33.510 dBm		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
-40 dBm				
~50 dBm				
-60 dBm				
-70 dBm				
CF 2.402 GHz	691 pt:	s	Span 2.0 MHz	
Marker				
	alue Y-value	Function	Function Result	
	014819 GHz -33.44 dBm L51954 GHz -33.15 dBm	Occ Bw	946.454413893 kHz	
T2 1 2.40	246599 GHz -30.59 dBm		STOLIG TIEGOSO KILE	
D1 M1 1	1.0275 MHz 0.03 dB			
		Manaurina	09.08.2022	

Page 16 of 29

					2441N			
Spectr	um							
Ref Lev Att	el 20	.00 dBm 35 dB			BW 30 kHz BW 100 kHz r	Mode Auto FFT		(2
●1Pk Vie	W		1	1		D1[1]		0.00 di
10 dBm-						Design of the second		1.02750 MH
						Occ Bw M1[1]		946.454413893 kH -33.32 dBn
0 dBm—				-		milil		2.44048190 GH
-10 dBm-		D1 1	3.460 dBm-					
-20 dBm-		DI -1				m		
			мп1_	~~~		m	∧ T2	
-30 dBm-	-D2	-33.460) dBm				NO1	
-40 dBm-		~	~					m -
50 dem		V						\rightarrow
-60 dBm-								
-70 dBm-								
o upili								
CF 2.44	1 GHz				691 p	ts		Span 2.0 MHz
Marker Type	Ref	Trc	X-valu	e	Y-value	Function	Functi	ion Result
M1		1	2.4404	319 GHz	-33.32 dBm			
T1 T2		1		531 GHz	-33.03 dBm -30.86 dBm			946.454413893 kHz
D1	M1	1	1.02	75 MHz	-0.00 dB			
	TIME)		00.00.0000
		(Measuring		09.08.2022 15.0525
((Measuring		09.08.2022
((2480N	Measuring		09.08.2022
Date: 9.1	AUG.2	(2480N	Measuring		00.08.2022
Date: 9 Spectru Ref Lev	LUG.2	022 10	5:05:26		BW 30 kHz			
Date: 9.1	urg. 2	022 16	5:05:26		BW 30 kHz	Measuring. MHZ Mode Auto FFT		
Date: 9 Spectru Ref Lev Att	urg. 2	022 10	5:05:26		BW 30 kHz			(∭ ∆ -0.01 di
Date: 9 Spectru Ref Lev Att	urg. 2	022 10	5:05:26		BW 30 kHz	Mode Auto FFT		
Date: 9., Spectri Ref Lev Att IPk Vie	urg. 2	022 10	5:05:26		BW 30 kHz	Mode Auto FFT		-0.01 dl 1.04200 MH 952.243125905 kH -34.52 dBn -34.52 dBn
Date: 9.1 Spectru Ref Lev Att 10 dBm- 0 dBm-	urg. 2	022 10	5:05:26		BW 30 kHz	Mode Auto FFT D1[1] Occ Bw		-0.01 di 1.04200 MH 952.243125905 kH
Date: 9 Spectr Ref Lev Att 10 dBm- 0 dBm- -10 dBm-		022 10	SWT 63		BW 30 kHz	Mode Auto FFT D1[1] Occ Bw M1[1]		-0.01 dl 1.04200 MH 952.243125905 kH -34.52 dBn -34.52 dBn
Date: 9.1 Spectru Ref Lev Att 10 dBm- 0 dBm-		022 16	SWT 63		BW 30 kHz BW 100 kHz	Mode Auto FFT D1[1] Occ Bw M1[1]		-0.01 dl 1.04200 MH 952.243125905 kH -34.52 dBn -34.52 dBn
Date: 9.1 Spectri Ref Lev Att 10 dBm- 0 dBm- -10 dBm-		.00 dBm 35 dB	SWT 63	.1 μs • V	BW 30 kHz BW 100 kHz	Mode Auto FFT D1[1] Occ Bw M1[1]		-0.01 dl 1.04200 MH 952.243125905 kH -34.52 dBn -34.52 dBn
Date: 9.1 Spectru Ref Lev Att ID dBm- 0 dBm- -10 dBm- -20 dBm-		.00 dBm 35 dB	SWT 63	.1 μs • V	BW 30 kHz BW 100 kHz	Mode Auto FFT D1[1] Occ Bw M1[1]		-0.01 dl 1.04200 MH 952.243125905 kH -34.52 dBn -34.52 dBn
Date: 9 Spectru Ref Lev Att ID dBm- 0 dBm- -10 dBm- -20 dBm- -20 dBm- -40 dBm-		.00 dBm 35 dB	SWT 63	.1 μs • V	BW 30 kHz BW 100 kHz	Mode Auto FFT D1[1] Occ Bw M1[1]		-0.01 dl 1.04200 MH 952.243125905 kH -34.52 dBn -34.52 dBn
Date: 9 Spectri Ref Lev Att 10 dBm- 0 dBm- -10 dBm- -20 dBm- -30 dBm- -30 dBm- -30 dBm-		.00 dBm 35 dB	SWT 63	.1 μs • V	BW 30 kHz BW 100 kHz	Mode Auto FFT D1[1] Occ Bw M1[1]		-0.01 dl 1.04200 MH 952.243125905 kH -34.52 dBn -34.52 dBn
Date: 9 Spectru Ref Lev Att ID dBm- 0 dBm- -10 dBm- -20 dBm- -20 dBm- -40 dBm-		.00 dBm 35 dB	SWT 63	.1 μs • V	BW 30 kHz BW 100 kHz	Mode Auto FFT D1[1] Occ Bw M1[1]		-0.01 dl 1.04200 MH 952.243125905 kH -34.52 dBn -34.52 dBn
Date: 9 Spectri Ref Lev Att 10 dBm- 0 dBm- -10 dBm- -20 dBm- -30 dBm- -30 dBm- -30 dBm-		.00 dBm 35 dB	SWT 63	.1 μs • V	BW 30 kHz BW 100 kHz	Mode Auto FFT D1[1] Occ Bw M1[1]		-0.01 dl 1.04200 MH 952.243125905 kH -34.52 dBn -34.52 dBn
Date: 9 Spectri Ref Lev Att ● 1Pk Vie 10 dBm- 0 dBm- -20 dBm- -20 dBm- -20 dBm- -40 dBm- -50 dBm- -60 dBm- -70 dBm-		.00 dBm 35 dB	SWT 63	.1 μs • V	BW 30 kHz BW 100 kHz	Mode Auto FFT D1[1] Occ Bw M1[1]		-0.01 di 1.04200 MH 952.243125905 kH -34.52 dBn 2.47945300 GH
Date: 9 Spectri Ref Lev Att PIPk Vie 10 dBm- 0 dBm- -10 dBm- -20 dBm- -30 dBm- -30 dBm- -30 dBm- -70 dBm- CF 2.48 Marker	UUG.2	-14.74(SWT 63		BW 30 kHz BW 100 kHz r	Mode Auto FFT D1[1] Occ Bw M1[1]		-0.01 dl 1.04200 MH 952.243125905 kH -34.52 dBn 2.47945300 GH
Date: 9 Date: 9 Spectri Ref Lev Att 10 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm- -30 dBm- -70 dBm- -70 dBm- CF 2.48 Marker Type		-14.740	SWT 63	e [BW 30 kHz BW 100 kHz r	Mode Auto FFT D1[1] Occ Bw M1[1]		-0.01 di 1.04200 MH 952.243125905 kH -34.52 dBn 2.47945300 GH
Date: 9 Spectri Ref Lev Att 10 dBm- 0 dBm- -20 dBm- -10 dBm- -10 dBm- -20 dBm- -10 dBm- -10 dBm- -10 dBm- -10 dBm- -10 dBm- -20 dBm- -10	UUG.2	-14.74(-D2 -3	SWT 63	e [1 μs • V 1 μs • V	BW 30 kHz BW 100 kHz r	Mode Auto FFT D1[1] Occ Bw M1[1]		-0.01 dl 1.04200 MH 952.243125905 kH -34.52 dBn 2.47945300 GH
Date: 9 Date: 9 Spectri Ref Lev Att 10 dBm- 0 dBm- -10 dBm- -20 dBm- -20 dBm- -30 dBm- -30 dBm- -60 dBm- -70 dBm- CF 2.48 Marker Type M1	UUG.2	-14.74(-12 -3	SWT 63	1 μs • V	BW 30 kHz BW 100 kHz r	Mode Auto FFT D1[1] Occ Bw M1[1]		-0.01 dt 1.04200 MH 952.24325905 kH -34.52 dbn 2.47945300 GH

3.4. Radiated Spurious Emissions

<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.209(a) and 15.205(a)

Standard FCC15.249

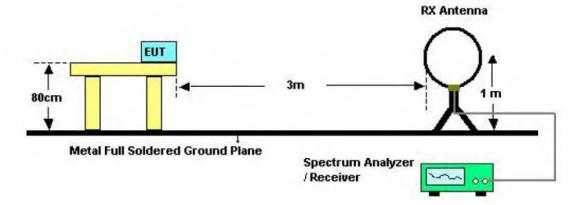
Fundamental Frequency	Field Strength of Fundamental	Field Strength of Harmonics
	(millivolts/meter)	(microvolts/meter)
900-928MHz	50	500
2400-2483.5MHz	50	500
5725-5875MHz	50	500
24.0-24.25GHz	250	2500

Standard FCC 15.209

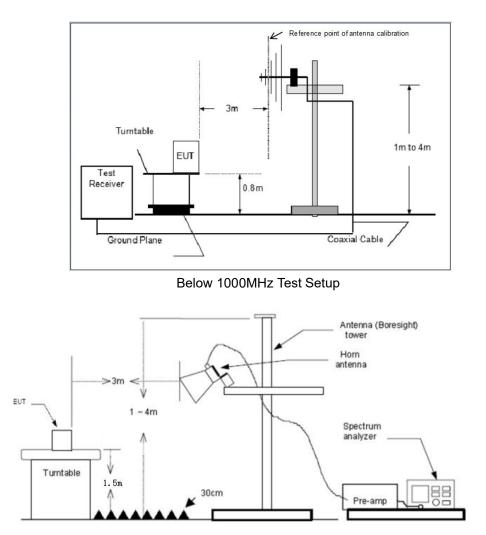
uency Distance Field Strengths Limit		Limit
Meters	μ V/m	dB(µV)/m
300	2400/F(kHz)	
30	24000/F(kHz)	
30	30	
3	100	40.0
3	150	43.5
3	200	46.0
3	500	54.0
3	Other:74.0dB(µV)/m(Peak) 54.0dB	(μV)/m (Average)
n level dB µ V = 20 l	og Emission level μV/m	
,	· · ·	5
	-	ument, antenna and the
	Meters 300 30 30 30 30 3 4 <	Meters µ V/m 300 2400/F(kHz) 30 24000/F(kHz) 300 30 300 30 300 30 300 30 300 300 300 300 300 300 30

FREQUENCY RANGE OF RADIATED MEASUREMENT

Spectrum Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP
	1GHz~26.5GHz
Start ~Stop Frequency	RBW 1MHz/ VBW 1MHz for Peak,
	RBW 1MHz/ VBW 10Hz for Average


Receiver Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP

TRF No. FCC Part 15.249_R1


Add:Building 5, No. 316, Jianghong South Road Binjiang District, Hangzhou 310052, China Tel:+(86) 0571-8836 6861 Fax: +(86) 0571-8836 6821 E-mail:server@ksign.cn Web: www.ksign.cn

Test Configuration

Below 30MHz Test Setup

Above 1GHz Test Setup

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(3) From 1 GHz to 10th harmonic:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW=10Hz RMS detector for Average value.

TEST MODE:

Please refer to the clause 2.3

TEST RESULTS

☑ Passed □ Not Applicable

9 KHz~30 MHz and 18GHz~25GHz

From 9 KHz~30 MHz and 18GHz~25GHz: Conclusion: PASS

Note:

1) Final level = Reading level + Correct Factor

Correct Factor=Antenna Factor + Cable Loss -Preamplifier Factor

- 2) The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3) The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
- 4) Pre-scan 2402MHz, 2437MHz and 2479MHz mode, and found the 2408MHz which it is worse case for 30MHz-1GHz, so only show the test data for worse case.
- 5) Pre-scan 2402MHz, 2437MHz and 2479MHz mode, and found the 2408MHz mode it is worse case for above 1GHz, so only show the test data for worse case.
- 6) 18GHz ~ 25GHz

The EUT was pre-scanned the frequency band (18GHz~25GHz), found the radiated level(Background noise) lower than the limit, so don't show on the report. 3

Radiated field strength of the fundamental signal

Frequency (MHz)	Read Level (dBuV)	Correct Factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dBuV/m)	Polarization	Test value
2402	92.92	-10.91	82.01	114	31.99	Horizontal	Peak
2441	93.94	-10.91	83.03	114	30.97	Horizontal	Peak
2480	92.55	-10.91	81.64	114	32.36	Horizontal	Peak
2402	75.32	-10.91	64.41	94	29.59	Horizontal	AVG
2441	76.58	-10.91	65.67	94	28.33	Horizontal	AVG
2480	77.31	-10.91	66.40	94	27.60	Horizontal	AVG

Frequency (MHz)	Read Level (dBuV)	Correct Factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dBuV/m)	Polarization	Test value
2402	93.05	-10.91	82.14	114	31.86	Vertical	Peak
2441	92.61	-10.91	81.70	114	32.30	Vertical	Peak
2480	94.52	-10.91	83.61	114	30.39	Vertical	Peak
2402	75.06	-10.91	64.15	94	29.85	Vertical	AVG
2441	74.13	-10.91	63.22	94	30.78	Vertical	AVG
2480	72.38	-10.91	61.47	94	32.53	Vertical	AVG

Note:

Correct Factor=Antenna Factor + Cable Loss -Preamplifier Factor

RADIATED EMISSION BELOW 30MHZ

No emission found between lowest internal used/generated frequencies to 30MHz.

30MHz-1GHz

Test Voltage	e:	DC 3.7V							
Ant. Pol.		Horizontal							
Test Mode:		тх 2	2402M	lHz					
80.0 dBuV/m		-						1	
70									
60		-					FCC Part 15C	(30MHz-1GHz)	
50								Margin -6	dB
40									
30						2 UM	A		e www.wy
9485					2	JE JAN M	N Yun MI	NOW MONTH SHOW	MANAN AL
20 10 0.0 30.000	Mindean		hund	100	(MHz)	waterwith	500	A na	1000.0
10 0.0	Fre	60	Read	100		Measure- ment		A na	
10 0.0 30.000	Fre	60 60		100 ding evel	(MHz) Correct	Measure-	- BOAK TAX		1000.0
10	10463468	60 7-	Le	100 ding evel	(MHz) Correct Factor	Measure- ment	Limit	Over	1000.0
10 0.0 30.000 No. Mk.	MH	60 q. 63	(dBi	100 ding evel uV) 53	(MHz) Correct Factor (dB/m)	Measure- ment (dBuV/m)	Limit (dBuV/m)	Over (dB)	Detecto
10 0.0 30.000 No. Mk. 1 2	мна 67.74	63 32	(dBi 38.	100 ding evel uV) 53 29	(MHz) Correct Factor (dB/m) -19.24	Measure- ment (dBuV/m) 19.29	Limit (dBuV/m) 40.00	Over (dB) -20.71	Detecto
10 0.0 30.000 No. Mk. 1 2 3	мн: 67.74 139.26	60 9- 63 32 83	Le (dB) 38. 41.	100 ding evel uV) 53 29 99	(MHz) Correct Factor (dB/m) -19.24 -21.28	Measure- ment (dBuV/m) 19.29 20.01	Limit (dBuV/m) 40.00 43.50	Over (dB) -20.71 -23.49	Detecto QP QP
10 0.0 30.000 No. Mk. 1 2 3 3 4	мн 67.74 139.26 221.85	60 60 63 332 83 75	Le (dB) 38. 41. 38.	100 ding evel uV) 53 29 99 75	(MHz) Correct Factor (dB/m) -19.24 -21.28 -17.02	Measure- ment (dBuV/m) 19.29 20.01 21.97	Limit (dBuV/m) 40.00 43.50 46.00	Over (dB) -20.71 -23.49 -24.03	Detecto QP QP

Test \	Voltag	ge:	DC	3.7V					
Ant. I	Pol.		Vertical						
Test I	Mode	:	TX 2	2402MHz					
80.0	dBuV/	n							
70			_						
60			_				FCC Part 15C	(30MHz-1GHz)	
50			_					Margin -6 r	•
40			-						-
30		1			2				
	- Andrews	The last	2		*	3317		5	Man
20	How had a solar	The second	which while	mul haven a	when he have	Winter Martin	en Munandar	1 th and the	Karihtan
10	Source and the second	M	which while	multimet	-marky years	Wanter Mill Million	en Alexandre	1 milled	Royan
10 0.0	000	M	60 E0	Mul	(MHz)	Urrobowy Anthrough	970 Marine 500	And muld	Kura ^{na} W 1000.0
10 0.0 30.0	000 Mk.	Fr		Murgaling	. Yum	Measure- ment	un du nordene 500 Limit	Over	
10 0.0 30.0	E EXA	i - 888	60	100 Reading	(MHz)	Measure-	in the set		1000.0
10 0.0 30.0	E EXA	i - 888	60 eq. Hz	100 Reading Level	(MHz) Correct Factor	Measure- ment	Limit	Over	1000.0
10 0.0 30.0	E EXA	м	60 eq. Hz 689	Too Reading Level (dBuV)	(dB/m)	Measure- ment (dBuV/m)	Limit (dBuV/m)	Over (dB)	1000.0 Detector
10 0.0 30.0 NO.	E EXA	M 42.1	60 eq. Hz 689 988	100 Reading Level (dBuV) 44.28	(MHz) Correct Factor (dB/m) -16.67	Measure- ment (dBuV/m) 27.61	Limit (dBuV/m) 40.00	Over (dB) -12.39	Detector QP
10 0.0 30.0 NO.	E EXA	M 42.1 67.6	60 eq. Hz 689 988 120	100 Reading Level (dBuV) 44.28 41.86	(MHz) Correct Factor (dB/m) -16.67 -19.23	Measure- ment (dBuV/m) 27.61 22.63	Limit (dBuV/m) 40.00 40.00	Over (dB) -12.39 -17.37	Detector QP QP
10 30.0 NO.	E EXA	M 42.1 67.6 139.3	eq. Hz 689 988 120 528	100 Reading Level (dBuV) 44.28 41.86 46.21	(MHz) Correct Factor (dB/m) -16.67 -19.23 -21.28	Measure- ment (dBuV/m) 27.61 22.63 24.93	Limit (dBuV/m) 40.00 40.00 43.50	Over (dB) -12.39 -17.37 -18.57	Detector QP QP

Above 1GHz

Frequency(MHz):		2	402	Polarit	HORIZONTAL	
Frequency (MHz)	Reading Level (dBuV/m)	Correc Factor (dB/m)	Measurement (dBuV/m)	Limit (dBuV/m)	Over (dB)	Detector
4804.00	60.73	-5.92	54.81	74	19.19	PK
4804.00	44.34	-5.92	38.42	54	15.58	AV
7206.00	53.13	-1.81	51.32	74	22.68	PK
7206.00	42.87	-1.81	41.06	54	12.94	AV

Page 23 of 29

Frequency(MHz):		2	402	Polarity:		VERTICAL
Frequency (MHz)	Reading Level (dBuV/m)	Correc Factor (dB/m)	Measurement (dBuV/m)	Limit (dBuV/m)	Over (dB)	Detector
4804.00	54.11	-5.92	48.19	74	25.81	PK
4804.00	44.35	-5.92	38.43	54	15.57	AV
7206.00	52.86	-1.81	51.05	74	22.95	PK
7206.00	40.40	-1.81	38.59	54	15.41	AV

Freque	Frequency(MHz):		441	Polarit	HORIZONTAL	
Frequency (MHz)	Reading Level (dBuV/m)	Correc Factor (dB/m)	Measurement (dBuV/m)	Limit (dBuV/m)	Over (dB)	Detector
4882.00	54.24	-5.71	48.53	74	25.47	PK
4882.00	44.18	-5.71	38.47	54	15.53	AV
7323.00	52.59	-0.36	52.23	74	21.77	PK
7323.00	39.06	-0.36	38.70	54	15.30	AV

Frequency(MHz):		2441		Polarity:		VERTICAL
Frequency (MHz)	Reading Level (dBuV/m)	Correc Factor (dB/m)	Measurement (dBuV/m)	Limit (dBuV/m)	Over (dB)	Detector
4882.00	54.51	-5.71	48.80	74	25.20	PK
4882.00	44.78	-5.71	39.07	54	14.93	AV
7323.00	53.25	-0.36	52.89	74	21.11	PK
7323.00	39.33	-0.36	38.97	54	15.03	AV

Frequency(MHz):		2480		Polarity:		HORIZONTAL
Frequency (MHz)	Reading Level (dBuV/m)	Correc Factor (dB/m)	Measurement (dBuV/m)	Limit (dBuV/m)	Over (dB)	Detector
4960.00	52.31	-5.51	46.80	74	27.20	PK
4960.00	43.52	-5.51	38.01	54	15.99	AV
7440.00	51.83	0.99	52.82	74	21.18	PK
7440.00	38.46	0.99	39.45	54	14.55	AV

Frequency(MHz):		2480		Polarity:		VERTICAL
Frequency (MHz)	Reading Level (dBuV/m)	Correc Factor (dB/m)	Measurement (dBuV/m)	Limit (dBuV/m)	Over (dB)	Detector
4960.00	53.27	-5.51	47.76	74	26.24	PK
4960.00	43.32	-5.51	37.81	54	16.19	AV
7440.00	52.05	0.99	53.04	74	20.96	PK
7440.00	39.58	0.99	40.57	54	13.43	AV

Note:

1.18GHz-26.5GHz is the background of the site, there is no radiated spurious.

3.5. Band Edge Emissions(Radiated)

EUT 1 ~ 4m Turntable 1.5m 30cm 4ntenna (Boresight) Horn antenna Spectrum analyzer Pre-amp

Test Configuration

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings

(1) Span shall wide enough to fully capture the emission being measured;

RBW=1MHz, VBW=3MHz PEAK detector for Peak value.

RBW=1MHz, VBW=10Hz with Average Detector for Average Value.

Test Mode

Please refer to the clause 2.3.

Test Results

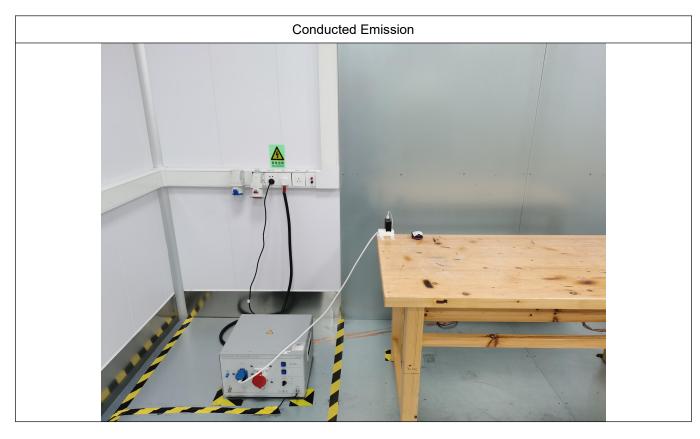
Frequency(MHz):		2402		Polarity:		HORIZONTAL
Frequency (MHz)	Reading Level (dBuV/m)	Correc Factor (dB/m)	Measurement (dBuV/m)	Limit (dBuV/m)	Over (dB)	Detector
2390.00	57.65	-10.92	46.73	74	27.27	PK
2390.00	42.25	-10.92	31.33	54	22.67	AV

Frequency(MHz):		2402		Polarity:		HORIZONTAL
Frequen (MHz)	y Reading Level (dBuV/m)	Correc Factor (dB/m)	Measurement (dBuV/m)	Limit (dBuV/m)	Over (dB)	Detector
2390.00	52.11	-10.92	41.19	74	32.81	PK
2390.00	41.48	-10.92	30.56	54	23.44	AV

Frequency(MHz):		2480		Polarity:		HORIZONTAL
Frequency (MHz)	Reading Level (dBuV/m)	Correc Factor (dB/m)	Measurement (dBuV/m)	Limit (dBuV/m)	Over (dB)	Detector
2483.50	61.40	-10.88	50.52	74	23.48	PK
2483.50	41.34	-10.88	30.46	54	23.54	AV

Frequency(MHz):		2480		Polarity:		HORIZONTAL
Frequency (MHz)	Reading Level (dBuV/m)	Correc Factor (dB/m)	Measurement (dBuV/m)	Limit (dBuV/m)	Over (dB)	Detector
2483.50	60.37	-10.88	49.49	74	24.51	PK
2483.50	40.70	-10.88	29.82	54	24.18	AV

Note:


1) Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

Radiated Measurement (Below 1GHz)	
Radiated Measurement (Above 1GHz)	

5. PHOTOGRAPHS OF EUT CONSTRUCTIONAL

Please refer to the report Report No.: KS2203S1107E02

--THE END--