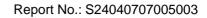


FCC RADIO TEST REPORT FCC ID: 2BFTW-SPDJH1

Product: DataJar

Trade Mark: STATIONPC Model No.: H1 Family Model: N/A Report No.: S24040707005003 Issue Date: May 16, 2024


Prepared for

StationPC Technology Co., LTD Card 2102D, Block 1, Hongyu Building, 57 Zhongshan 4th Road, East District, Zhongshan City, China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website:http://www.ntek.org.cn

TABLE OF CONTENTS

ACCREDITED

Certificate #4298.01

1 7	TEST RESULT CERTIFICATION	3
2 S	SUMMARY OF TEST RESULTS	4
3 F	FACILITIES AND ACCREDITATIONS	5
3.1 3.2 3.3	MEASUREMENT UNCERTAINTY	5
4 (GENERAL DESCRIPTION OF EUT	6
	DESCRIPTION OF TEST MODES	
6 S	SETUP OF EQUIPMENT UNDER TEST	
6.1 6.2 6.3	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM SUPPORT EQUIPMENT EQUIPMENTS LIST FOR ALL TEST ITEMS	
7 1	FEST REQUIREMENTS	
7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9	CONDUCTED EMISSIONS TEST RADIATED SPURIOUS EMISSION 6DB BANDWIDTH DUTY CYCLE MAXIMUM OUTPUT POWER POWER SPECTRAL DENSITY CONDUCTED BAND EDGE MEASUREMENT. SPURIOUS RF CONDUCTED EMISSIONS ANTENNA APPLICATION	14 17 27 29 30 32 34 34 36 37
8 1	TEST RESULTS	
8.1 8.2 8.3 8.4 8.5 8.6 8.7	DUTY CYCLE MAXIMUM CONDUCTED OUTPUT POWER -6DB BANDWIDTH Occupied Channel Bandwidth Maximum Power Spectral Density Level Band Edge Conducted RF Spurious Emission	45 46 53 60 67

NTEK 北测

1 TEST RESULT CERTIFICATION

Applicant's name:	StationPC Technology Co., LTD		
Address:	: Card 2102D, Block 1, Hongyu Building, 57 Zhongshan 4th Road, East District, Zhongshan City, China		
Manufacturer's Name:	StationPC Technology Co., LTD		
Address:	Card 2102D, Block 1, Hongyu Building, 57 Zhongshan 4th Road, East District, Zhongshan City, China		
Product description			
Product name:	DataJar		
Trademark:	STATIONPC		
Model and/or type reference:	H1		
Family Model:	N/A		
Test Sample Number	S240407070005		
Date of tests:	Apr 07, 2024 ~ May 16, 2024		

Measurement Procedure Used:

APPLICABLE STANDARDS				
APPLICABLE STANDARD/ TEST PROCEDURE	TEST RESULT			
FCC 47 CFR Part 2, Subpart J				
FCC 47 CFR Part 15, Subpart C				
ANSI C63.10-2013 Complied				
KDB 558074 D01 15.247 Meas Guidance v05r02				

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Prepared By: Joe. Yan Approved : Alex I Alex Li (Project Engineer) (Supervisor) (Manager)

NTEK LIDI[®]

2 SUMMARY OF TEST RESULTS


SUMMART OF TEST RESULTS							
FCC Part15 (15.247), Subpart C							
Standard Section Test Item Verdict Remark							
15.207	Conducted Emission	PASS					
15.247 (a)(2)	6dB Bandwidth	PASS					
15.247 (b)	Maximum Output Power	PASS					
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS					
15.247 (e)	Power Spectral Density	PASS					
15.247 (d)	Band Edge Emission	PASS					
15.247 (d)	5.247 (d) Spurious RF Conducted Emission P						
15.203 Antenna Requirement PASS							

Remark:

1. "N/A" denotes test is not applicable in this Test Report.

2. All test items were verified and recorded according to the standards and without any deviation during the test.

3. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at 1/F, Building E, Fenda Science Park Sanwei, Xixiang, Bao'an District Shenzhen, Guangdong, China The sites are constructed in confermance with the requirements of ANSI C63.7, ANSI C63.10 and CIS

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	: The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm	: Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	: 1/F, Building E, Fenda Science Park Sanwei, Xixiang, Bao'an District
	Shenzhen, Guangdong, China

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB
10	Occupied bandwidth	±3.7%

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification				
Equipment DataJar				
Trade Mark STATIONPC				
FCC ID	2BFTW-SPDJH1			
Model No.	H1			
Family Model	N/A			
Model Difference	Main configuration 512MB+8GB, with 1/2/4TB drive available for choosing			
Operating Frequency 2412-2462MHz for 802.11b/g/11n(HT20); 2422-2452MHz for 802.11n(HT40);				
Modulation DSSS with DBPSK/DQPSK/CCK for 802.11b; OFDM with BPSK/QPSK/16QAM/64QAM for 802.11g/n;				
Number of Channels11 channels for 802.11b/g/11n(HT20); 7 channels for 802.11n(HT40);				
Antenna Type FPC Antenna				
Antenna Gain 2 dBi				
Adapter	N/A			
Battery DC 3.7V, 8000mAh				
Rating DC 3.7V from battery or DC 5V from Type-C port				
HW Version	V1.1			
SW Version	openwrt-rk3308-datajar-h1-ext4-rkupdate-ab-2.9.23-debug-20240318			

Note: 1.Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Revision History						
Report No. Version Description Issued Date						
S24040707005003	Rev.01	Initial issue of report	May 16, 2024			

5 DESCRIPTION OF TEST MODES

NTEK 北测

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (802.11b: 1 Mbps; 802.11g: 6 Mbps; 802.11n (HT20): MCS0; 802.11n (HT40): MCS0) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The Y-plane results were found as the worst case and were shown in this report.

Frequency and Channel list for 802.11b/g/n (HT20/HT40):

Channel	Frequency(MHz)
1	2412
2	2417
5	2432
6	2437
10	2457
11	2462

Note: fc=2412MHz+(k-1)×5MHz k=1 to 11

Report No.: S24040707005003

Test Items	Mode	Data Rate	Channel	Ant
AC Power Line Conducted Emissions	Normal Link	-	-	-
	11b/CCK	1 Mbps	1/6/11	1
Maximum Conducted Output	11g/BPSK	6 Mbps	1/6/11	1
Power	11n HT20	MCS0	1/6/11	1
	11n HT40	MCS0	3/6/9	1
	11b/CCK	1 Mbps	1/6/11	1
Power Spectral Density	11g/BPSK	6 Mbps	1/6/11	1
	11n HT20	MCS0	1/6/11	1
	11n HT40	MCS0	3/6/9	1
	11b/CCK	1 Mbps	1/6/11	1
6dB Spectrum Bandwidth	11g/BPSK	6 Mbps	1/6/11	1
	11n HT20	MCS0	1/6/11	1
	11n HT40	MCS0	3/6/9	1
Radiated Emissions Below 1GHz	Normal Link	-	-	-
	11b/CCK	1 Mhaa	1/6/11	1
Radiated Emissions Above		1 Mbps		1
1GHz	11g/BPSK	6 Mbps	1/6/11	1
	11n HT20	MCS0	1/6/11	1
	11n HT40	MCS0	3/6/9	1
Dend Edge Emissions	11b/CCK	1 Mbps	1/6/11	1
Band Edge Emissions	11g/BPSK	6 Mbps	1/6/11	1
	11n HT20	MCS0	1/6/11	1
	11n HT40	MCS0	3/6/9	1

SETUP OF EQUIPMENT UNDER TEST 6 6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM For AC Conducted Emission Mode C-1 AC PLUG EUT E-1 Adapter For Radiated Test Cases EUT For Conducted Test Cases C-2 Measurement EUT Instrument Note: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item Equipment		Model/Type No.	Series No.	Note	
AE-1	Adapter	N/A	N/A	Peripherals	

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	Type-C Cable	NO	NO	1.0m
C-2	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

Report No.: S24040707005003

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

adian		eet equipment					
	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4440A	MY41000130	2024.03.12	2025.03.11	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2023.05.29	2024.05.28	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2023.05.29	2024.05.28	1 year
4	Test Receiver	R&S	ESPI7	101318	2024.03.12	2025.03.11	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2024.03.11	2025.03.10	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2023.05.06	2026.05.05	3 year
7	Horn Antenna	SCHWARZBE CK	BBHA 9120 D	2816	2023.01.12	2026.01.11	3 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2022.11.07	2025.11.06	3 year
9	Amplifier	EMC	EMC051835 SE	980246	2023.05.29	2024.05.28	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2023.11.03	2026.11.02	3 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2023.05.29	2024.05.28	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2022.06.17	2025.06.16	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2022.06.17	2025.06.16	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	Filter	TRILTHIC	2400MHz	29	2023.03.26	2026.03.25	3 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Co	AC Conduction Test equipment						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2024.03.12	2025.03.11	1 year
2	LISN	R&S	ENV216	101313	2024.03.12	2025.03.11	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2024.03.12	2025.03.11	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2023.05.06	2026.05.05	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2023.05.06	2026.05.05	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2023.05.06	2026.05.05	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2023.05.06	2026.05.05	3 year

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

7 TEST REQUIREMENTS

NTEK 北视

7.1 CONDUCTED EMISSIONS TEST

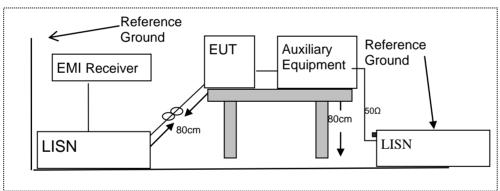
7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 Conformance Limit

Frequency (MHz)	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	

Note: 1. *Decreases with the logarithm of the frequency


2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.1.4 Test Configuration

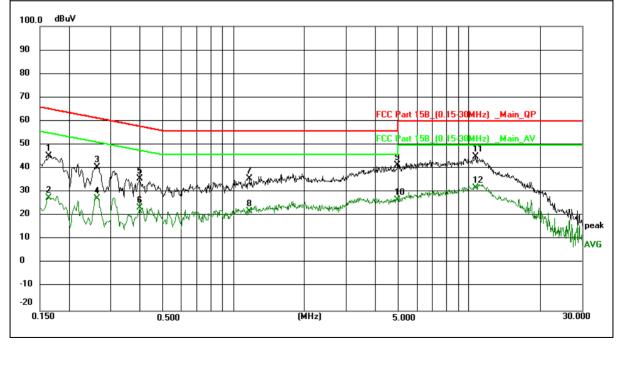
7.1.5 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

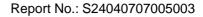
- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item –EUT Test Photos.

7.1.6 Test Results

EUT:	DataJar	Model Name :	H1
Temperature:	22 °C	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 12V from Adapter AC 120V/60Hz	Test Mode:	Normal Link


ACCREDITED

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domork
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1641	35.38	9.95	45.33	65.25	-19.92	QP
0.1641	17.80	9.95	27.75	55.25	-27.50	AVG
0.2630	30.34	10.16	40.50	61.34	-20.84	QP
0.2630	17.35	10.16	27.51	51.34	-23.83	AVG
0.3980	25.28	10.44	35.72	57.90	-22.18	QP
0.3980	13.09	10.44	23.53	47.90	-24.37	AVG
1.1660	23.82	12.00	35.82	56.00	-20.18	QP
1.1660	10.05	12.00	22.05	46.00	-23.95	AVG
4.9660	31.90	9.67	41.57	56.00	-14.43	QP
4.9660	17.24	9.67	26.91	46.00	-19.09	AVG
10.6740	35.49	9.69	45.18	60.00	-14.82	QP
10.6740	22.26	9.69	31.95	50.00	-18.05	AVG

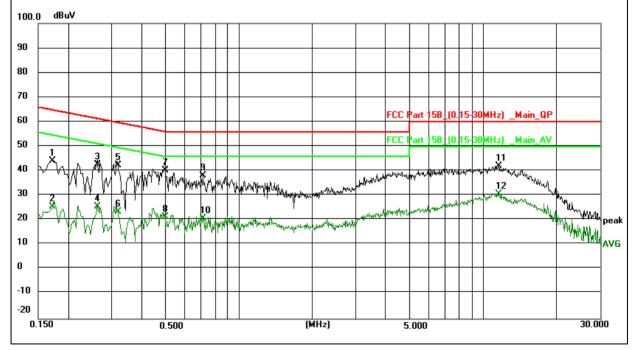

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

EUT:	DataJar	Model Name :	H1
Temperature:	22 ℃	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	Ν
Test Voltage :	DC 12V from Adapter AC 120V/60Hz	Test Mode:	Normal Link

ACCREDITED


Certificate #4298.01

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1712	34.27	9.97	44.24	64.90	-20.66	QP
0.1712	15.61	9.97	25.58	54.90	-29.32	AVG
0.2630	32.51	10.16	42.67	61.34	-18.67	QP
0.2630	15.47	10.16	25.63	51.34	-25.71	AVG
0.3183	32.10	10.28	42.38	59.75	-17.37	QP
0.3183	13.17	10.28	23.45	49.75	-26.30	AVG
0.4980	29.61	10.65	40.26	56.03	-15.77	QP
0.4980	10.85	10.65	21.50	46.03	-24.53	AVG
0.7100	27.00	11.07	38.07	56.00	-17.93	QP
0.7100	9.80	11.07	20.87	46.00	-25.13	AVG
11.5580	32.44	9.69	42.13	60.00	-17.87	QP
11.5580	20.96	9.69	30.65	50.00	-19.35	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

NTEK 北视

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to FCC Part 15.205, Restricted bands				
MHz	MHz	MHz	GHz	
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15	
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46	
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75	
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5	
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2	
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5	
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7	
6.26775-6.26825	123-138	2200-2300	14.47-14.5	
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2	
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4	
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12	
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0	
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8	
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5	
12.57675-12.57725	322-335.4	3600-4400	(2)	
13.36-13.41				

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Frequency(MHz)	Class B (dBuV/m) (at 3M)		
Frequency(MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

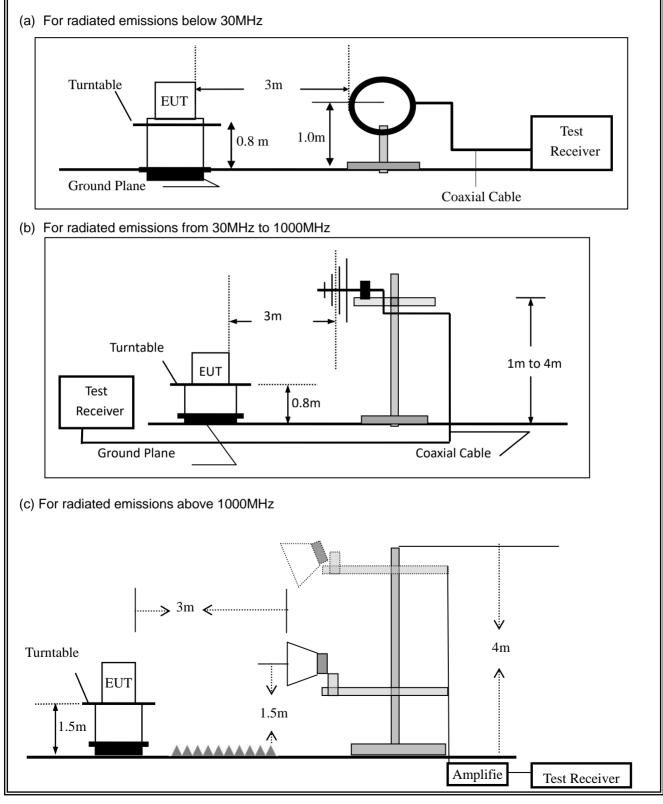
3. For Frequency 9kHz~30MHz:

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);


Limit line=Specific limits(dBuV) + distance extrapolation factor.

7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1MHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz and frequencies above 1GHz,
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g For the actual test configuration, please refer to the related Item -EUT Test Photos.
 - Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations: For peak measurement:

Set RBW=120 kHz for f < 1 GHz; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold; Set RBW = 1 MHz, VBW= 3MHz for f≥1 GHz

For average measurement:

VBW = 10 Hz, when duty cycle is no less than 98 percent.

VBW \geq 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

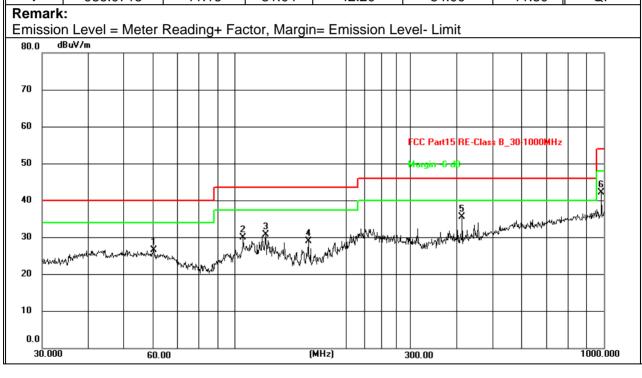
Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

■ Spurious Emission below 30MHz (9KHz to 30MHz)

EUT:	DataJar	Μ	lodel No.:	H1
Temperature:	20 ℃	R	elative Humidity:	48%
Test Mode:	802.11b/g/n(HT20,	HT40) Te	est By:	Joe.Yan

Freq.	Ant.Pol.	Emission Level(dBuV/m)		Limit 3	m(dBuV/m)	Over(dB)		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	


Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was report as below:

EUT:	DataJar	Model Name :	H1
Temperature:	25 ℃	Relative Humidity:	55%
Pressure:	1010hPa	Test Mode:	802.11b CH01
Test Voltage :	DC 12V		

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark					
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)						
V	60.2800	7.97	18.74	26.71	40.00	-13.29	QP					
V	105.2716	12.04	17.92	29.96	43.50	-13.54	QP					
V	121.1230	14.57	16.17	30.74	43.50	-12.76	QP					
V	V 158.1123 14.09 14.97 29.06 43.50 -14.44 QP											
V	V 413.2706 13.27 22.30 35.57 46.00 -10.43 QP											
V	V 986.0715 11.16 31.04 42.20 54.00 -11.80 QP											
Remark	Remark:											
Emissio	n Level = Meter	Reading+ Fa	ctor, Margir	n= Emission Le	evel- Limit							
80.0 d	80.0 dBuV/m											

Polar	Fi	reque	ncy		M Rea	ete adir		Factor	Em L	niss .ev		n		Limit	ts	Ма	argir	•	R	em	ark
(H/V)		(MHz	z)		(dl	3u\	/)	(dB)	(dE	3u\	//m)		(dBuV	/m)	(0	dB)			0111	ant
Н		55.41	47		7	.97		19.72	2	27.6	69			40.0	0	-1	2.31			QF	2
Н	1	18.60)12		18	3.58	3	16.96	(1) (1)	35.5	54			43.5	0	-7	7.96			QF	2
Н	1	35.98	321		18	3.72	2	14.84	3	3.5	56			43.5	0	-9	9.94			QF	2
Н	1	58.11	23		18	3.56	6	14.97	(1) (1)	33.5	53			43.5	0	-9	9.97			QF	2
Н	2	206.39	975		16	5.19	9	17.84	(1)	84.0)3			43.5	0	-9	9.47			QF	2
Н	9	89.53	353		7	.11		31.11	(r)	8.2	22			54.0	0	-1	5.78	,		QF	2
	n Lev Buv/m		Mete	r Re	eadi	ng-	<u>+ F</u> ;	actor, Margir	n= Err	nise	sior	<u>ו L</u>	.ev	el- Limi	t					_	
70																					
70																					
60																			\vdash	_	
50														FCC Part15 Aargin -G-d	HE-Clas)	\$ B_30	1000	AHz		ſ	
40								2 X 3 4		5					L JAWA				1W/W		
30	wheelers	Muningled	1 arina Mulhaj	harlow	Vank		u.du		MUM	Ĩ#	~ ~	ψ η γγ	h, mil	tony valor and a	Mr. aww	V. Altare	dank-card	whether and		_	
20 × × × × ×																					
0.0																					
30.000			6	D.00				1	MHz)	I			3	00.00					10	0.00	INN

Iac-MR

ACCREDITED

Certificate #4298.01

	Spurious Er	mission A	Above 1	GHz (1GH	z to 25GF	łz)				
EU			ataJar			,	el No.:	H1		
Ten	nperature:	20) °C			Rela	tive Humidi	ty: 48%	6	
Tes	t Mode:	80)2.11b/g	g/n(HT20, I	HT40)	Test	By:	Joe	.Yan	
All t	he modulatio	on modes	s have b	een tester	d, and the	worst resu	ult was repo	rt as bel	SW:	
	Frequency	Read Level	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Remark	Comment
	(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
				Low Chanr	nel (2412 M	1Hz)(802.11	b)Above 10	3		
	4824	66.63	5.21	35.59	44.30	63.13	74.00	-10.87	Pk	Vertical
	4824	47.99	5.21	35.59	44.30	44.49	54.00	-9.51	AV	Vertical
	7236	64.03	6.48	36.27	44.60	62.18	74.00	-11.82	Pk	Vertical
	7236	52.32	6.48	36.27	44.60	50.47	54.00	-3.53	AV	Vertical
	4824	68.46	5.21	35.55	44.30	64.92	74.00	-9.08	Pk	Horizontal
	4824	48.82	5.21	35.55	44.30	45.28	54.00	-8.72	AV	Horizontal
	7236	67.65	6.48	36.27	44.52	65.88	74.00	-8.12	Pk	Horizontal
	7236	45.85	6.48	36.27	44.52	44.08	54.00	-9.92	AV	Horizontal
			Ν	<i>l</i> iddle Char	nel (2437	MHz)(802.1	1b)Above 1	G		
	4874	65.98	5.21	35.66	44.20	62.65	74.00	-11.35	Pk	Vertical
	4874	47.84	5.21	35.66	44.20	44.51	54.00	-9.49	AV	Vertical
	7311	65.56	7.10	36.50	44.43	64.73	74.00	-9.27	Pk	Vertical
	7311	47.44	7.10	36.50	44.43	46.61	54.00	-7.39	AV	Vertical
	4874	64.15	5.21	35.66	44.20	60.82	74.00	-13.18	Pk	Horizontal
	4874	49.93	5.21	35.66	44.20	46.60	54.00	-7.40	AV	Horizontal
	7311	65.67	7.10	36.50	44.43	64.84	74.00	-9.16	Pk	Horizontal
	7311	45.33	7.10	36.50	44.43	44.50	54.00	-9.50	AV	Horizontal
				High Chanr	nel (2462 N	/Hz)(802.11	b)Above 10	G		
	4924	66.37	5.21	35.52	44.21	62.89	74.00	-11.11	Pk	Vertical
	4924	46.89	5.21	35.52	44.21	43.41	54.00	-10.59	AV	Vertical
	7386	66.25	7.10	36.53	44.60	65.28	74.00	-8.72	Pk	Vertical
	7386	46.64	7.10	36.53	44.60	45.67	54.00	-8.33	AV	Vertical
	4924	67.96	5.21	35.52	44.21	64.48	74.00	-9.52	Pk	Horizontal
	4924	45.81	5.21	35.52	44.21	42.33	54.00	-11.67	AV	Horizontal
	7386	67.11	7.10	36.53	44.60	66.14	74.00	-7.86	86 Pk Horizontal	
	7386	49.33	7.10	36.53	44.60	48.36	54.00	-5.64	AV	Horizontal

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor
(2) Other emissions are attenuated more than 20dB below the permissible limits, so it does not recorded in the report.

(3)"802.11b" mode is the worst mode. When PK value is lower than the Average value limit, average don't record.

Report No.: S24040707005003

Spurious Emission in Restricted Band 2310MHz -18000MHz All the modulation modes have been tested, and the worst result was report as below:

AII	the modula	tion mode	<u>s have b</u>	peen teste	d, and the	e worst resu	ilt was repo	rt as belo	OW:	
	Frequency	Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector	Comment
	(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
					80	02.11b				
	2310.00	67.49	2.97	27.21	43.80	53.87	74	-20.13	Pk	Horizontal
	2310.00	46.98	2.97	27.21	43.80	33.36	54	-20.64	AV	Horizontal
	2310.00	69.37	2.97	27.21	43.80	55.75	74	-18.25	Pk	Vertical
	2310.00	49.91	2.97	27.21	43.80	36.29	54	-17.71	AV	Vertical
	2390.00	67.31	3.14	27.33	43.80	53.98	74	-20.02	Pk	Vertical
	2390.00	52.93	3.14	27.33	43.80	39.60	54	-14.40	AV	Vertical
	2390.00	72.02	3.14	27.33	43.80	58.69	74	-15.31	Pk	Horizontal
	2390.00	50.80	3.14	27.33	43.80	37.47	54	-16.53	AV	Horizontal
	2483.50	72.38	3.58	27.70	44.00	59.66	74	-14.34	Pk	Vertical
	2483.50	50.58	3.58	27.70	44.00	37.86	54	-16.14	AV	Vertical
	2483.50	73.93	3.58	27.70	44.00	61.21	74	-12.79	Pk	Horizontal
	2483.50	52.89	3.58	27.70	44.00	40.17	54	-13.83	AV	Horizontal
					80)2.11g				
	2310.00	72.31	2.97	27.21	43.80	58.69	74	-15.31	Pk	Horizontal
Ī	2310.00	50.82	2.97	27.21	43.80	37.20	54	-16.80	AV	Horizontal
Ī	2310.00	74.38	2.97	27.21	43.80	60.76	74	-13.24	Pk	Vertical
	2310.00	50.53	2.97	27.21	43.80	36.91	54	-17.09	AV	Vertical
Ī	2390.00	73.40	3.14	27.33	43.80	60.07	74	-13.93	Pk	Vertical
Ī	2390.00	48.57	3.14	27.33	43.80	35.24	54	-18.76	AV	Vertical
Ī	2390.00	69.12	3.14	27.33	43.80	55.79	74	-18.21	Pk	Horizontal
	2390.00	48.98	3.14	27.33	43.80	35.65	54	-18.35	AV	Horizontal
Ī	2483.50	69.38	3.58	27.70	44.00	56.66	74	-17.34	Pk	Vertical
Ī	2483.50	49.31	3.58	27.70	44.00	36.59	54	-17.41	AV	Vertical
Ī	2483.50	66.89	3.58	27.70	44.00	54.17	74	-19.83	Pk	Horizontal
Ī	2483.50	49.92	3.58	27.70	44.00	37.20	54	-16.80	AV	Horizontal
					802	2.11n20				
Ī	2310.00	74.04	2.97	27.21	43.80	60.42	74	-13.58	Pk	Horizontal
	2310.00	53.04	2.97	27.21	43.80	39.42	54	-14.58	AV	Horizontal
Ī	2310.00	69.11	2.97	27.21	43.80	55.49	74	-18.51	Pk	Vertical
	2310.00	50.47	2.97	27.21	43.80	36.85	54	-17.15	AV	Vertical
ļ	2390.00	64.32	3.14	27.33	43.80	50.99	74	-23.01	Pk	Vertical
ŀ	2390.00	45.90	3.14	27.33	43.80	32.57	54	-21.43	AV	Vertical
ŀ	2390.00	63.06	3.14	27.33	43.80	49.73	74	-24.27	Pk	Horizontal
ŀ	2390.00	50.91	3.14	27.33	43.80	37.58	54	-16.42	AV	Horizontal
Ī	2483.50	71.10	3.58	27.70	44.00	58.38	74	-15.62	Pk	Vertical
ľ	2483.50	49.21	3.58	27.70	44.00	36.49	54	-17.51	AV	Vertical
Ī	2483.50	64.97	3.58	27.70	44.00	52.25	74	-21.75	Pk	Horizontal
ŀ	2483.50	50.17	3.58	27.70	44.00	37.45	54	-16.55	AV	Horizontal

Report No.: S24040707005003

				802	2.11n40				
2310.00	70.09	2.97	27.21	43.80	56.47	74	-17.53	Pk	Horizontal
2310.00	55.21	2.97	27.21	43.80	41.59	54	-12.41	AV	Horizontal
2310.00	71.30	2.97	27.21	43.80	57.68	74	-16.32	Pk	Vertical
2310.00	59.28	2.97	27.21	43.80	45.66	54	-8.34	AV	Vertical
2390.00	69.93	3.14	27.33	43.80	56.60	74	-17.40	Pk	Vertical
2390.00	49.08	3.14	27.33	43.80	35.75	54	-18.25	AV	Vertical
2390.00	70.09	3.14	27.33	43.80	56.76	74	-17.24	Pk	Horizontal
2390.00	50.40	3.14	27.33	43.80	37.07	54	-16.93	AV	Horizontal
2483.50	74.11	3.58	27.70	44.00	61.39	74	-12.61	Pk	Vertical
2483.50	52.25	3.58	27.70	44.00	39.53	54	-14.47	AV	Vertical
2483.50	69.36	3.58	27.70	44.00	56.64	74	-17.36	Pk	Horizontal
2483.50	48.64	3.58	27.70	44.00	35.92	54	-18.08	AV	Horizontal

Spurious Emission in Restricted Bands 3260MHz- 18000MHz

All the modulation modes have been tested, the worst result was report as below:

Frequency	Reading Level	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
3260	65.33	4.04	29.57	44.70	54.24	74	-19.76	Pk	Vertical
3260	49.09	4.04	29.57	44.70	38.00	54	-16.00	AV	Vertical
3260	71.30	4.04	29.57	44.70	60.21	74	-13.79	Pk	Horizontal
3260	49.74	4.04	29.57	44.70	38.65	54	-15.35	AV	Horizontal
3332	64.69	4.26	29.87	44.40	54.42	74	-19.58	Pk	Vertical
3332	48.32	4.26	29.87	44.40	38.05	54	-15.95	AV	Vertical
3332	67.03	4.26	29.87	44.40	56.76	74	-17.24	Pk	Horizontal
3332	48.36	4.26	29.87	44.40	38.09	54	-15.91	AV	Horizontal
17797	50.94	10.99	43.95	43.50	62.38	74	-11.62	Pk	Vertical
17797	37.53	10.99	43.95	43.50	48.97	54	-5.03	AV	Vertical
17788	47.43	11.81	43.69	44.60	58.33	74	-15.67	Pk	Horizontal
17788	35.46	11.81	43.69	44.60	46.36	54	-7.64	AV	Horizontal

"802.11b" mode is the worst mode. When PK value is lower than the Average value limit, average don't record.

Other emissions are attenuated more than 20dB below the permissible limits, so it does not recorded in the report.

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.2.

7.3.2 Conformance Limit

The minimum permissible 6dB bandwidth is 500 kHz.

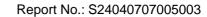
7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure


The testing follows Subclause 11.8 of ANSI C63.10. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = the frequency band of operation RBW = 100KHz VBW \ge 3*RBW Sweep = auto Detector function = peak Trace = max hold

7.3.6 Test Results

EUT:	DataJar	Model No.:	H1
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	802.11b/g/n20/n40	Test By:	Joe.Yan

Test data reference attachment.

7.4 DUTY CYCLE

7.4.1 Applicable Standard

According to KDB 558074 D01 15.247 Meas Guidance v05r02 Section 6.

7.4.2 Conformance Limit

No limit requirement.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

a) A diode detector and an oscilloscope that together have a sufficiently short response time to permit accurate measurements of the ON and OFF times of the transmitted signal.

b) The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the ON and OFF times of the transmitted signal:

1) Set the center frequency of the instrument to the center frequency of the transmission.

2) Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value.

3) Set VBW \geq RBW. Set detector = peak or average.

4) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring the duty cycle shall not be used if T \leq 16.7 µs.)

Measure T_{total} and T_{on}

Calculate Duty Cycle = T_{on} / T_{total}

7.4.6 Test Results

EUT:	DataJar	Model No.:	H1
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	802.11b/g/n20/n40	Test By:	Joe.Yan

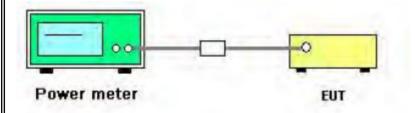
Note: Not applicable.

7.5 MAXIMUM OUTPUT POWER

7.5.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.3.2.3.

7.5.2 Conformance Limit


The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

7.5.3 Measuring Instruments

The following table is the setting of the power meter.

Power meter parameter	Setting
Detector	PK

7.5.4 Test Setup

7.5.5 Test Procedure

The testing follows Measurement Procedure Subclause 11.9.1.3 of ANSI C63.10

7.5.6 EUT operation during Test

The EUT was programmed to be in continuously transmitting mode.

7.5.7 Test Results

EUT:	DataJar	Model No.:	H1
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	802.11b/g/n20/n40	Test By:	Joe.Yan

Test data reference attachment.

7.6 POWER SPECTRAL DENSITY

7.6.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.4.

7.6.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows Measurement Procedure Subclause 11.10.2 of ANSI C63.10

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

a) Set analyzer center frequency to DTS channel center frequency.

b) Set the span to 1.5 times the DTS bandwidth.

c) Set the RBW to: 3 kHz \leq RBW \leq 100 kHz.

d) Set the VBW \geq 3 *RBW.

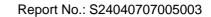
e) Detector = peak.

f) Sweep time = auto couple.

g) Trace mode = max hold.

h) Allow trace to fully stabilize.

i) Use the peak marker function to determine the maximum amplitude level within the RBW.


j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.6.6 Test Results

EUT:	DataJar	Model No.:	H1
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	802.11b/g/n20/n40	Test By:	Joe.Yan

Test data reference attachment.

7.7 CONDUCTED BAND EDGE MEASUREMENT

7.7.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

7.7.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows FCC KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.7.6 Test Results

EUT:	DataJar	Model No.:	H1
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	802.11b/g/n20/n40	Test By:	Joe.Yan

Test data reference attachment.

7.8 SPURIOUS RF CONDUCTED EMISSIONS

7.8.1 Conformance Limit

1. Below -20dB of the highest emission level in operating band.

2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

7.8.2 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.3 Test Setup

Please refer to Section 6.1 of this test report.

7.8.4 Test Procedure

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength, and measure frequency range from 30MHz to 26.5GHz.

7.8.5 Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

Test data reference attachment.

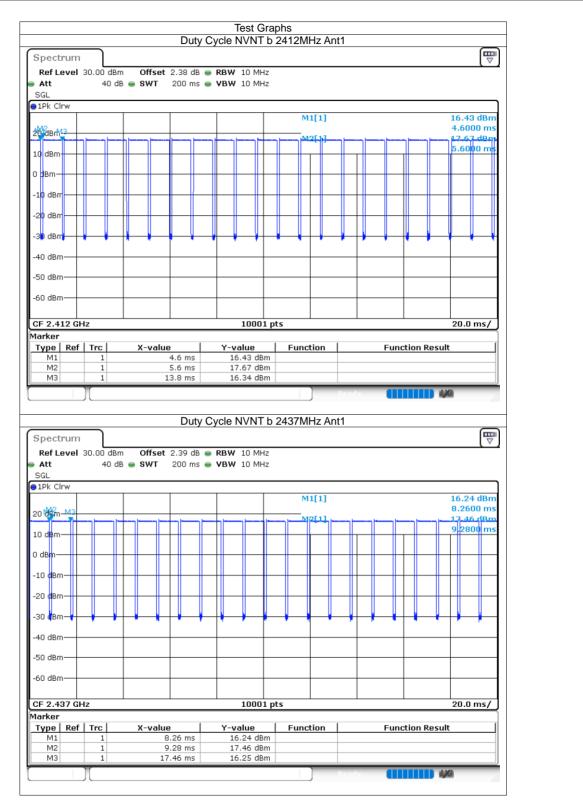
7.9 ANTENNA APPLICATION

7.9.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

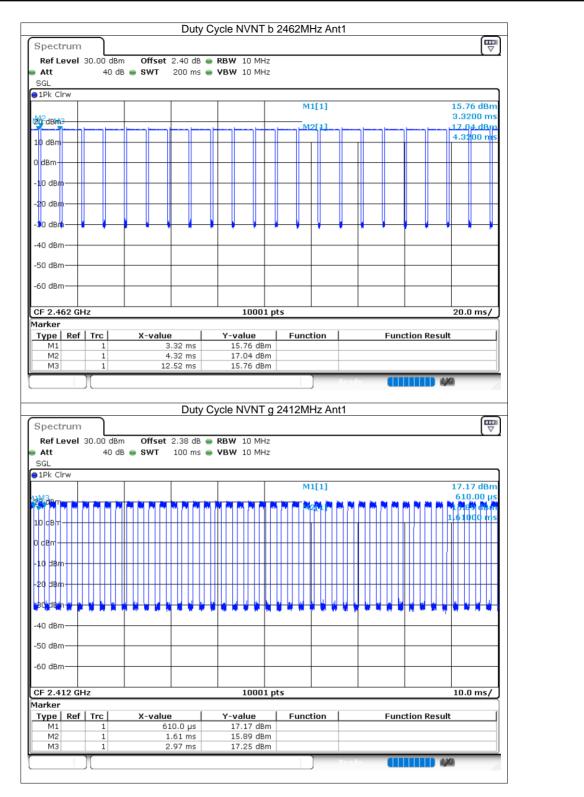
7.9.2 Result

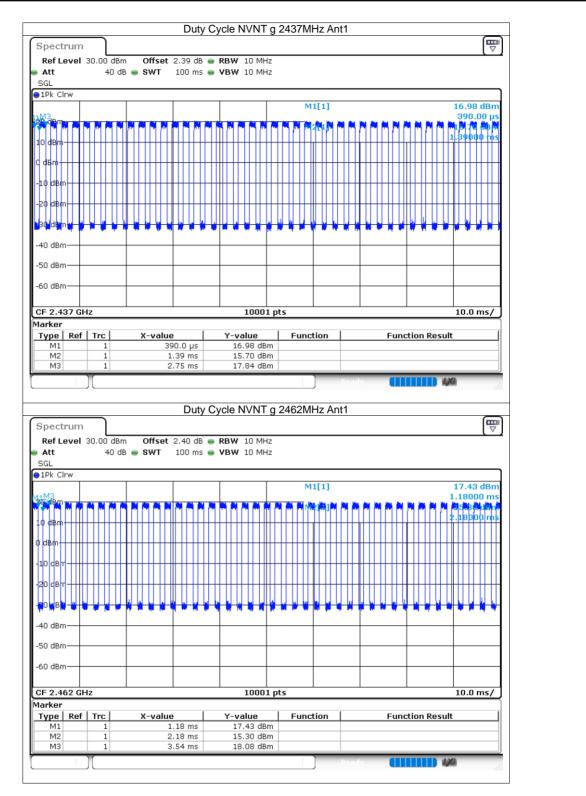
The EUT antenna is FPC Antenna (Gain: 2 dBi) It comply with the standard requirement.

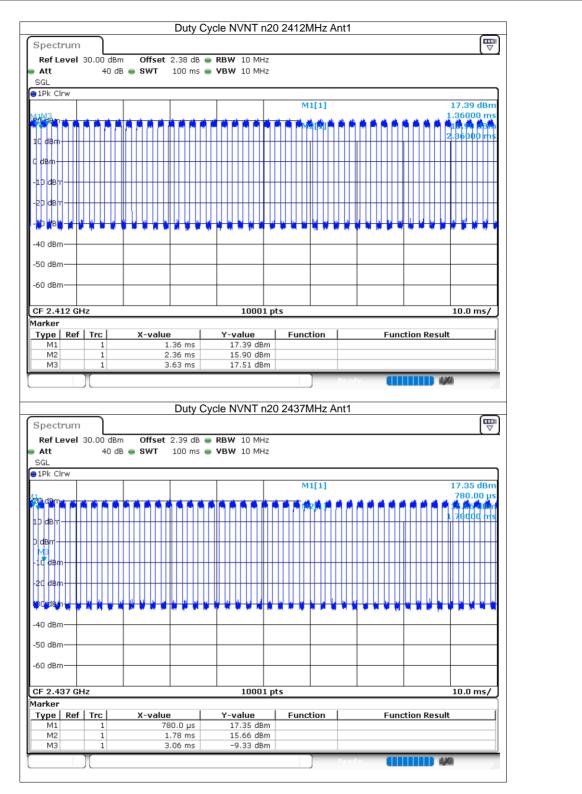


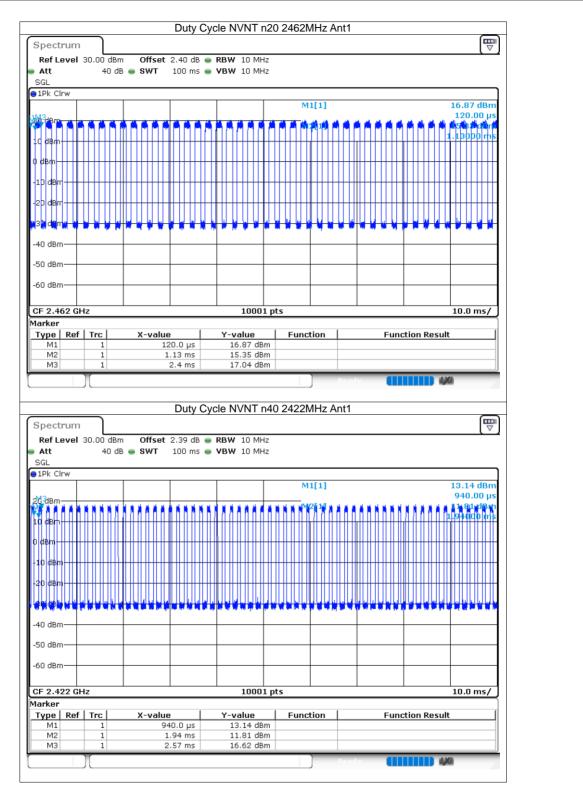
8 TEST RESULTS

8.1 **DUTY CYCLE**


Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	b	2412	Ant1	89.16	0.5	0.12
NVNT	b	2437	Ant1	89.62	0.48	0.12
NVNT	b	2462	Ant1	89.16	0.5	0.12
NVNT	g	2412	Ant1	58.19	2.35	0.74
NVNT	g	2437	Ant1	58	2.37	0.74
NVNT	g	2462	Ant1	58.33	2.34	0.74
NVNT	n20	2412	Ant1	56.47	2.48	0.79
NVNT	n20	2437	Ant1	56.36	2.49	0.78
NVNT	n20	2462	Ant1	56.34	2.49	0.79
NVNT	n40	2422	Ant1	39.24	4.06	1.59
NVNT	n40	2437	Ant1	39.23	4.06	1.56
NVNT	n40	2452	Ant1	39.49	4.04	1.59


ACCREDITED


ACCREDITED


ACCREDITED

ACCREDITED

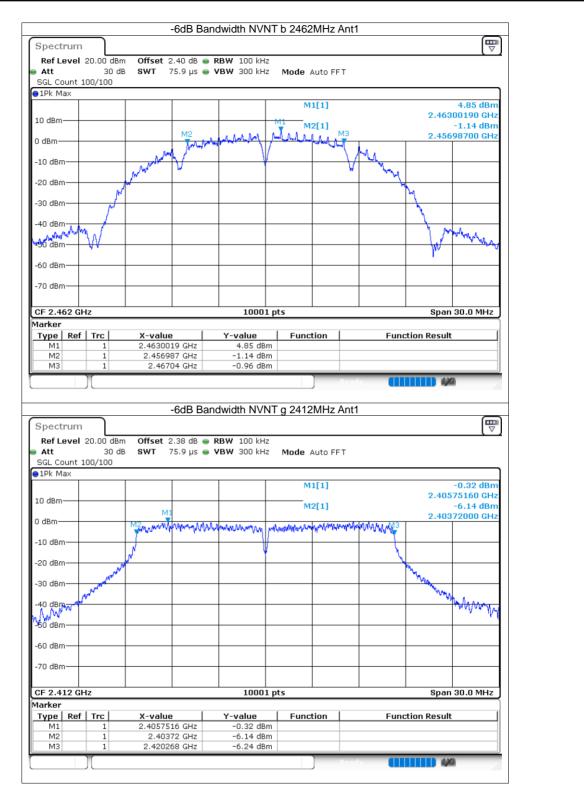
ACCREDITED

ACCREDITED

8.2 MAXIMUM CONDUCTED OUTPUT POWER

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	b	2412	Ant1	15.48	30	Pass
NVNT	b	2437	Ant1	15.21	30	Pass
NVNT	b	2462	Ant1	14.79	30	Pass
NVNT	g	2412	Ant1	14.65	30	Pass
NVNT	g	2437	Ant1	14.44	30	Pass
NVNT	g	2462	Ant1	14.04	30	Pass
NVNT	n20	2412	Ant1	14.68	30	Pass
NVNT	n20	2437	Ant1	14.41	30	Pass
NVNT	n20	2462	Ant1	14	30	Pass
NVNT	n40	2422	Ant1	14.8	30	Pass
NVNT	n40	2437	Ant1	14.76	30	Pass
NVNT	n40	2452	Ant1	14.34	30	Pass

ACCREDITED


8.3 -6DB BANDWIDTH

Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	b	2412	Ant1	9.6	0.5	Pass
NVNT	b	2437	Ant1	10.08	0.5	Pass
NVNT	b	2462	Ant1	10.053	0.5	Pass
NVNT	g	2412	Ant1	16.548	0.5	Pass
NVNT	g	2437	Ant1	16.401	0.5	Pass
NVNT	g	2462	Ant1	16.314	0.5	Pass
NVNT	n20	2412	Ant1	17.301	0.5	Pass
NVNT	n20	2437	Ant1	17.652	0.5	Pass
NVNT	n20	2462	Ant1	17.679	0.5	Pass
NVNT	n40	2422	Ant1	35.112	0.5	Pass
NVNT	n40	2437	Ant1	35.268	0.5	Pass
NVNT	n40	2452	Ant1	35.124	0.5	Pass

ACCREDITED

Snoote	1102						width N		3 - 101								₿	
Spectro				-			nu 100 '										∇	
Ref Les	vei 20	00 dBı. 30 d					BW 100 k BW 300 k		Mode		т							
SGL Cou	int 100		_ 561		212 P3		500 K		oue .	ato n								
1Pk Ma	×																	
									М	1[1]						0.20		
.0 dBm—	_			_				-	м	2[1]				2.4		3950 6.16		
dD ar										2[1] _N				2.4		9500		
I dBm—			Manut Manut	and V	Mysalant	LMM V	internet and	n m	MANNA	nan han	hanna	MANNAN	3					
10 dBm-			+					₩.,							-+			
			1					ľ					١.					
20 dBm-			1					\top					M	۸.	-			
30 dBm-		- Martin		_				_					_	MANA.	_			
	man	× .												nn nn	m.			
40 dBm-	at the							-					+		FCM	white the		
50 dBm-																	V"WM	
60 dBm-			1					+		-			+		+			
70 dBm-			1															
, 5 abril-																		
F 2.43	7 GHz						100	 01 m	ts	I				Sn	an S	30.0 N	1HZ	
arker	. GITE						100	P							2.1 0		<u> </u>	
Type	Ref T	rc	X-v				Y-value		Func	tion		Fu	nct	ion Res	ult			
M1		1			95 GHz		-0.20 d											
M2 M3		1			95 GHz 96 GHz		-6.16 c											
mo							-5 88 6											
							-5.88 d		g 2462) 2MHz	Read Ant1	/			L)A			_
-				-	-6dB I	Band	lwidth N\	/NT	g 2462) 2MHz	Pood Ant1	· (1)(1)			
Ref Le			m Offs	- et 2	-6dB [Band	lwidth N BW 100 k	/NT _{Hz}				Y (490			
Spectro Ref Les Att SGL Cou	vel 20	30 d	m Offs	- et 2	-6dB [Band	lwidth N\	/NT _{Hz}				y (4,401			
Ref Lev Att	vel 20 int 100	30 d	m Offs	- et 2	-6dB [Band	lwidth N BW 100 k	/NT _{Hz}				× (1,761			
Ref Les Att SGL Cou	vel 20 int 100	30 d	m Offs	- et 2	-6dB [Band	lwidth N BW 100 k	/NT _{Hz}	Mode .			× •				2.40	dBm	
Ref Les Att SGL Cou 1Pk Max	vel 20 int 100	30 d	m Offs	et 2	-6dB [Band	lwidth N BW 100 k	/NT _{Hz}	Mode .	Auto Ff 1[1]		v (2.4	557	4560	dBm GHz	
Ref Lev Att GGL Cou 1Pk Max 0 dBm—	vel 20 int 100	30 d	m Offs B SWT	et 2 7	-6dB [40 dB 5.9 µs	Band R V	lwidth N BW 100 k BW 300 k	/NT Hz Hz	Mode .	Auto Ff		· • •			557		dBm GHz dBm	
Ref Les Att SGL Cou	vel 20 int 100	30 d	m Offs B SWT	et 2 7	-6dB [40 dB 5.9 µs	Band R V	lwidth N BW 100 k	/NT Hz Hz	Mode . M	Auto Ff 1[1] 2[1]	Ŧ				557	4560 3.53	dBm GHz dBm	
Ref Lev Att GGL Cou 1Pk Max 0 dBm— dBm—	vel 20 int 100	30 d	m Offs B SWT	et 2 7	-6dB [40 dB 5.9 µs	Band R V	lwidth N BW 100 k BW 300 k	/NT Hz Hz	Mode . M	Auto Ff 1[1] 2[1]	Ŧ	Mark Mark			557	4560 3.53	dBm GHz dBm	
Ref Lev Att SGL Cou 1Pk Max 0 dBm- 1 dBm- 10 dBm-	vel 20 int 100	30 d	m Offs B SWT	et 2 7	-6dB [40 dB 5.9 µs	Band R V	lwidth N BW 100 k BW 300 k	/NT Hz Hz	Mode . M	Auto Ff 1[1] 2[1]	Ŧ				557	4560 3.53	dBm GHz dBm	
Ref Lev Att SGL Cou IPk Max O dBm—	vel 20 int 100	30 d	m Offs B SWT	et 2 7	-6dB [40 dB 5.9 µs	Band R V	lwidth N BW 100 k BW 300 k	/NT Hz Hz	Mode . M	Auto Ff 1[1] 2[1]	Ŧ		7	2.4	557	4560 3.53	dBm GHz dBm	
Ref Lev Att SGL Cou 1Pk Max 0 dBm- 10 dBm- 10 dBm- 20 dBm-	vel 20 unt 100 x	30 d /100	m Offs B SWT	et 2 7	-6dB [40 dB 5.9 µs	Band R V	lwidth N BW 100 k BW 300 k	/NT Hz Hz	Mode . M	Auto Ff 1[1] 2[1]	Ŧ		7	2.4	-557	4560 3.53 4000	dBm GHz dBm	
Ref Lev Att <u>SGL Cou</u> 1Pk Max 0 dBm 1 dBm 10 dBm 20 dBm- 30 dBm-	vel 20 unt 100 ×	30 d /100	m Offs B SWT	et 2 7	-6dB [40 dB 5.9 µs	Band R V	lwidth N BW 100 k BW 300 k	/NT Hz Hz	Mode . M	Auto Ff 1[1] 2[1]	Ŧ		7	2.4	-557 -538	4560 3.53 4000	dBm GHz dBm GHz	
Ref Lev Att <u>SGL Cou</u> 1Pk Max 0 dBm 1 dBm 10 dBm 20 dBm- 30 dBm-	vel 20 unt 100 ×	30 d /100	m Offs B SWT	et 2 7	-6dB [40 dB 5.9 µs	Band R V	lwidth N BW 100 k BW 300 k	/NT Hz Hz	Mode . M	Auto Ff 1[1] 2[1]	Ŧ		7	2.4	-557 -538	4560 3.53 4000	dBm GHz dBm GHz	
Ref Lev Att <u>SGL Cou</u> 1Pk Max 0 dBm 1 dBm 10 dBm 20 dBm- 30 dBm-	vel 20 unt 100 ×	30 d /100	m Offs B SWT	et 2 7	-6dB [40 dB 5.9 µs	Band R V	lwidth N BW 100 k BW 300 k	/NT Hz Hz	Mode . M	Auto Ff 1[1] 2[1]	Ŧ		7	2.4	-557 -538	4560 3.53 4000	dBm GHz dBm GHz	
Ref Lev Att 5GL Cou 1Pk Max 1Pk Max 0 dBm- 1 dBm- 10 dBm- 20 dBm- 30 dBm- 40 dBm-	vel 20 unt 100 ×	30 d /100	m Offs B SWT	et 2 7	-6dB [40 dB 5.9 µs	Band R V	lwidth N BW 100 k BW 300 k	/NT Hz Hz	Mode . M	Auto Ff 1[1] 2[1]	Ŧ		7	2.4	-557 -538	4560 3.53 4000	dBm GHz dBm GHz	
Ref Lev Att <u>SGL Cou</u> 1Pk Max 0 dBm 1 dBm 10 dBm 20 dBm- 30 dBm-	vel 20 unt 100 ×	30 d /100	m Offs B SWT	et 2 7	-6dB [40 dB 5.9 µs	Band R V	lwidth N BW 100 k BW 300 k	/NT Hz Hz	Mode . M	Auto Ff 1[1] 2[1]	Ŧ		7	2.4	-557 -538	4560 3.53 4000	dBm GHz dBm GHz	
Ref Lev Att <u>SGL Cou</u> 1Pk Max 0 dBm- dBm- 10 dBm- 20 dBm- 30 dBm- 40 dBm- 50 dBm-	vel 20 unt 100 ×	30 d /100	m Offs B SWT	et 2 7	-6dB [40 dB 5.9 µs	Band R V	lwidth N BW 100 k BW 300 k	/NT Hz Hz	Mode . M	Auto Ff 1[1] 2[1]	Ŧ		7	2.4	-557 -538	4560 3.53 4000	dBm GHz dBm GHz	
Ref Lev Att <u>SGL Cou</u> 1Pk Max 0 dBm- dBm- 10 dBm- 20 dBm- 30 dBm- 40 dBm- 50 dBm-	vel 20 unt 100 ×	30 d /100	m Offs B SWT	et 2 7	-6dB [40 dB 5.9 µs	Band R V	lwidth N BW 100 k BW 300 k	/NT Hz Hz	Mode . M	Auto Ff 1[1] 2[1]	Ŧ		7	2.4	-557 -538	4560 3.53 4000	dBm GHz dBm GHz	
Ref Lev Att <u>SGL Cou</u> 1Pk Mai 0 dBm dBm 10 dBm 20 dBm- 30 dBm- 50 dBm- 50 dBm- 50 dBm- 50 dBm-	vel 20 vint 100 ×	30 d /100	m Offs B SWT	et 2 7	-6dB [40 dB 5.9 µs	Band R V	width N BW 100 k BW 300 k		Mode . M M	Auto Ff 1[1] 2[1]	Ŧ		7	2.4	-538 -538 	4560 3.53 4000	dBm GHz dBm GHz	
Ref Lev Att <u>SGL Cou</u> 1Pk Mai 0 dBm dBm 10 dBm 20 dBm 30 dBm 30 dBm 50 dBm 50 dBm 50 dBm 50 dBm 50 dBm	vel 20 vint 100 ×	30 d /100	m Offs B SWT	et 2 7	-6dB [40 dB 5.9 µs	Band R V	width N BW 100 k BW 300 k	/NT Hz Hz	Mode . M M	Auto Ff 1[1] 2[1]	Ŧ		7	2.4	-538 -538 	4560 3.53 4000	dBm GHz dBm GHz	
Ref Lev Att 5GL Cou 1Pk Max 1Pk Max 0 dBm- 1 dBm- 10 dBm- 20 dBm- 30 dBm- 40 dBm-	vel 20 ×	30 d /100 //100	m Offs B SWT		6dB I	Band R V	width N BW 100 k BW 300 k		Mode . M M	Auto Ff 1[1] 2[1] (////////////////////////////////////	Ŧ	NW WW		2.4	-557 -538 	4560 3.53 4000	dBm GHz dBm GHz	
Ref Lev Att SGL Cou IPk Maxi- I dBm I dBm I dBm 20 dBm 20 dBm 30 dBm 40 dBm 60 dBm 70 dBm 70 dBm 70 dBm 70 dBm 71 dB	vel 20 ×	30 d /100	m Offs B SWT	et 2 7	-6dB Ι .40 dB 	Band	100 Y-value 2.40 c	/NT	Mode . M M M ts	Auto Ff 1[1] 2[1] (////////////////////////////////////	Ŧ	NW WW		2.4 MMMMMMM Sp	-557 -538 	4560 3.53 4000	dBm GHz dBm GHz	
Ref Lev Att SGL Cou SGL Cou IPk Max 0 dBm	vel 20 ×	30 d /100 //100	m Offs. B SWT	et 2 7	6dB I	Band	100 k BW 100 k BW 300 k	Hz Hz	Mode . M M M ts	Auto Ff 1[1] 2[1] (////////////////////////////////////	Ŧ	NW WW		2.4 MMMMMMM Sp	-557 -538 	4560 3.53 4000	dBm GHz dBm GHz	

ACCREDITED

Spectrum	\square			lwidth NVN					E	1
Ref Level		m Offset 3	28 dB 👄	RBW 100 kHz	7				(v)	
Att	20.00 GD 30 c			VBW 300 kHz		uto FFT				
SGL Count 1	100/100									
1Pk Max										
					M	1[1]		2 405	2.19 dBm 73660 GHz	
.0 dBm		MI			M	2[1]		2.400	-3.77 dBm	
I dBm		The T					МЗ.	2.403	23700 GHz	
		XAM MANY	and manyaraha	unununun	nonwork	ILINNI PHIMINI PAULA	M Walanty			
10 dBm										
20 dBm		vî						1		
	NAMAN							Mr.		
30 dBm —	MARCH							- N		
191.981n->4	pu							N	Mohana	
AMAN.									""YMW	
50 dBm		+								
60 dBm										
70 dBm		+		+ +						
CF 2.412 GF	lz			10001	L pts			Span	30.0 MHz	
arker Type Ref		X-value		Y-value	Funct	tion	Func	tion Result	1	
M1	1	2.40573		2.19 dBr			runc	cion Result		
M2	1	2.4032		-3.77 dBr	m					
M3				0.00.1-						
			38 GHz	-3.82 dBi		Read	· (11		2	
Gpectrum				-3.82 dBi) 7MHz Ant	× (11)			-
Ref Level	20.00 dB	- (m Offset 2	6dB Band	width NVN	T n20 243		× (111			-
Ref Level Att	20.00 dB	- (m Offset 2	6dB Band	lwidth NVN	T n20 243	7MHz Ant	× 1			-
Ref Level Att SGL Count 1	20.00 dB	- (m Offset 2	6dB Band	width NVN	T n20 243		× 1			-
Spectrum Ref Level Att SGL Count 1 1Pk Max	20.00 dB	- (m Offset 2	6dB Band	width NVN	T n20 243 ^z Mode 4		× (11) 1		-0.88 dBm	-
Ref Level Att SGL Count 1	20.00 dB	- (m Offset 2	6dB Band	width NVN	T n20 243 z Mode #	Auto FFT 1[1]	× (11) 1	2.441	-0.88 dBm 63450 GHz	-
Ref Level Att SGL Count 1 1Pk Max 0 dBm	20.00 dB	- (m Offset 2	6dB Band	RBW 100 KH2 VBW 300 KH2	T n20 243 ² Mode 4 M:	Auto FFT			-0.88 dBm	-
Ref Level Att SGL Count 1 1Pk Max	20.00 dB	-6 m Offset 2 IB SWT 7	6dB Band 2.39 dB ● 75.9 μs ●	RBW 100 KH2 VBW 300 KH2	T n20 243 z Mode #	Auto FFT			-0.88 dBm 63450 GHz -6.73 dBm	-
Ref Level Att SGL Count 1 1Pk Max 0 dBm	20.00 dB	-6 m Offset 2 IB SWT 7	6dB Band 2.39 dB ● 75.9 μs ●	RBW 100 kH VBW 300 kH	T n20 243 ² Mode 4 M:	Auto FFT			-0.88 dBm 63450 GHz -6.73 dBm	-
Ref Level Att SGL Count 1 1Pk Max 0 dBm 10 dBm	20.00 dB	-6 m Offset 2 IB SWT 7	6dB Band 2.39 dB ● 75.9 μs ●	RBW 100 kH VBW 300 kH	T n20 243 ² Mode 4 M:	Auto FFT			-0.88 dBm 63450 GHz -6.73 dBm	
Ref Level Att GGL Count 1 1Pk Max 0 dBm	20.00 dB	-6 m Offset 2 IB SWT 7	6dB Band 2.39 dB ● 75.9 μs ●	RBW 100 kH VBW 300 kH	T n20 243 ² Mode 4 M:	Auto FFT			-0.88 dBm 63450 GHz -6.73 dBm	
Ref Level Att SGL Count 1 1Pk Max 0 dBm 10 dBm 20 dBm	20.00 dB 30 c 100/100	-6 m Offset 2 IB SWT 7	6dB Band 2.39 dB ● 75.9 μs ●	RBW 100 kH VBW 300 kH	T n20 243 ² Mode 4 M:	Auto FFT			-0.88 dBm 63450 GHz -6.73 dBm	-
Ref Level Att SGL Count 1 1Pk Max 0 dBm 10 dBm 20 dBm 30 dBm	20.00 dB	-6 m Offset 2 IB SWT 7	6dB Band 2.39 dB ● 75.9 μs ●	RBW 100 kH VBW 300 kH	T n20 243 ² Mode 4 M:	Auto FFT			-0.88 dBm 63450 GHz -6.73 dBm 18300 GHz	
Ref Level Att SGL Count 1 1Pk Max 0 dBm 10 dBm 20 dBm 30 dBm	20.00 dB 30 c 100/100	-6 m Offset 2 IB SWT 7	6dB Band 2.39 dB ● 75.9 μs ●	RBW 100 kH VBW 300 kH	T n20 243 ² Mode 4 M:	Auto FFT			-0.88 dBm 63450 GHz -6.73 dBm 18300 GHz	
Ref Level Att SGL Count 1 1Pk Max 0 dBm 10 dBm 20 dBm	20.00 dB 30 c 100/100	-6 m Offset 2 IB SWT 7	6dB Band 2.39 dB ● 75.9 μs ●	RBW 100 kH VBW 300 kH	T n20 243 ² Mode 4 M:	Auto FFT			-0.88 dBm 63450 GHz -6.73 dBm	
Ref Level Att SGL Count 1 1Pk Max 0 dBm 10 dBm 20 dBm 30 dBm 40 dBm	20.00 dB 30 c 100/100	-6 m Offset 2 IB SWT 7	6dB Band 2.39 dB ● 75.9 μs ●	RBW 100 kH VBW 300 kH	T n20 243 ² Mode 4 M:	Auto FFT			-0.88 dBm 63450 GHz -6.73 dBm 18300 GHz	
Ref Level Att SGL Count 1 1Pk Max 0 dBm 10 dBm 20 dBm 30 dBm 40 dBm 50 dBm 60 dBm	20.00 dB 30 c 100/100	-6 m Offset 2 IB SWT 7	6dB Band 2.39 dB ● 75.9 μs ●	RBW 100 kH VBW 300 kH	T n20 243 ² Mode 4 M:	Auto FFT			-0.88 dBm 63450 GHz -6.73 dBm 18300 GHz	
Ref Level Att SGL Count 1 1Pk Max 0 dBm 10 dBm 20 dBm 30 dBm 40 dBm 50 dBm 60 dBm	20.00 dB 30 c 100/100	-6 m Offset 2 IB SWT 7	6dB Band 2.39 dB ● 75.9 μs ●	RBW 100 kH VBW 300 kH	T n20 243 ² Mode 4 M:	Auto FFT			-0.88 dBm 63450 GHz -6.73 dBm 18300 GHz	
Ref Level Att SGL Count 1 1Pk Max 0 dBm 10 dBm 20 dBm 30 dBm 40 dBm 50 dBm 50 dBm 60 dBm	20.00 dB 30 c 100/100	-6 m Offset 2 IB SWT 7	6dB Band 2.39 dB ● 75.9 μs ●	RBW 100 kH VBW 300 kH 300 kH	T n20 243	Auto FFT		2.428	-0.88 dBm 63450 GHz -6.73 dBm 18300 GHz	
Ref Level Att SGL Count 1 1Pk Max 0 dBm 1 dBm 10 dBm 20 dBm 30 dBm 40 dBm 50 dBm 50 dBm 60 dBm 70 dBm 70 dBm 70 dBm 70 dBm 70 dBm	20.00 dB 30 c 100/100	-6 m Offset 2 IB SWT 7	6dB Band 2.39 dB ● 75.9 μs ●	RBW 100 kH VBW 300 kH	T n20 243	Auto FFT		2.428	-0.88 dBm 63450 GHz -6.73 dBm 18300 GHz	
Ref Level Att SGL Count 1 SGL Count 1 1Pk Max 0 dBm 0 dBm 10 dBm 20 dBm 30 dBm 40 dBm 50 dBm 60 dBm 70 dBm 70 dBm 70 dBm 77 dBm 78 cHart	20.00 dB 30 c 100/100	-6	39 dB e 2.39 dB e 75.9 μs e γμγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγ	Iwidth NVN RBW 100 kHz VBW 300 kHz Image: State S	T n20 243	کیرین FFT ا[1] 2[1] ۲۰۰۰ ۲۰۰ ۲۰۰ ۲۰۰ ۲۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰		2.428	-0.88 dBm 63450 GHz -6.73 dBm 18300 GHz 30.0 MHz	
Ref Level Att SGL Count 1 1Pk Max 0 dBm 1 dBm 10 dBm 20 dBm 30 dBm 40 dBm 50 dBm 50 dBm 60 dBm 70 dBm 70 dBm 70 dBm 70 dBm 70 dBm	20.00 dB 30 c 100/100	-6 m Offset 2 IB SWT 7	SdB Band 2.39 dB 75.9 μs	RBW 100 kH VBW 300 kH 300 kH	T n20 243	کیرین FFT ا[1] 2[1] ۲۰۰۰ ۲۰۰ ۲۰۰ ۲۰۰ ۲۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰		2.428	-0.88 dBm 63450 GHz -6.73 dBm 18300 GHz 30.0 MHz	
Ref Level Att SGL Count 1 SGL Count 1 1Pk Max 0 dBm 1 dBm 10 dBm 20 dBm 30 dBm 40 dBm 50 dBm 60 dBm 60 dBm 70 dBm 52 F 2.437 GH arker Type	20.00 dB 30 c 100/100	-(m Offset 2 B SWT 7	6 6 6 6 6 6 6 6 6 6 6 6 6 6	Iwidth NVN RBW 100 kHz VBW 300 kHz Image: State of the s	T n20 243	کیرین FFT ا[1] 2[1] ۲۰۰۰ ۲۰۰ ۲۰۰ ۲۰۰ ۲۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰		2.428	-0.88 dBm 63450 GHz -6.73 dBm 18300 GHz 30.0 MHz	

ACCREDITED