Certificate of Test

September 2006

Sunrex Technology Corp.

Product Type	: Power Presenter
Model Number	: ML521A, A400, A500
Test Report Number	: 0608049 Rev. 1
Date of Test	: August 08, 2006- August 23, 2006

This Product was tested to the following standards at the laboratory of Global EMC Standard Tech. Corp., and found Compliance.

Standards: FCC Part 15 Subpart C Paragraph 15.249 ANSI C63.4: 2003

http://www.gestek.com.tw

then

Sharon Chang, President

Date: September 05, 2006

(N) NEMKO

R

200085-0

GesTek EMC Lab

N0. 3, Pau-Tou-Tsuo Valley, Chia-Pau Tsuen, Lin Kou Hsiang, Taipei County, Taiwan, R.O.C. TEL:886-2-2603-5321 FAX:886-2-2603-5325 Test Report Application for Certification On Behalf Of

Sunrex Technology Corp.

EUT: Power Presenter

Model Number: ML521A, A400, A500

FCC ID: J75521A

Prepared for: Sunrex Technology Corp.

No. 188-1, Chung Cheng Rd., Ta Ya Shiang, Taichung Hsien, Taiwan, R.O.C.

> Report By :Global EMC Standard Tech. Corp. No.3 Pau-Tou-Tsuo Valley, Chia-Pau Tsuen, Lin Kou Hsiang, Taipei County, Taiwan, R.O.C. Tel : 886-2- 2603-5321 Fax : 886-2- 2603-5325

1.Test results given in this report only relate to the specimen(s) tested, measured.

2. This report is the property of GesTek, and shall not be reproduced, other than in full, without the written consent of GesTek.3. The report must not be used by the client to claim product certification, approval, or endorsement by any agency of the federal government.

4.All data in this report are traceable to national standard or international standard.

TABLE OF CONTENTS

DESC	CRIPTION	PAGE
1.	CERTIFICATION	3
2.	GENERAL INFORMATION	4
2.1	PRODUCTION DESCRIPTION	
2.2	OPERATIONAL DESCRIPTION	
2.3	TEST MODES & EUT COMPONENTS DESCRIPTION	
2.4	SUMMARY OF TEST PROCEDURE AND TEST RESULTS	
2.5	CONFIGURATION OF THE TESTED SYSTEM	
2.6 2.7	TEST FACILITY TEST SETUP	
2.7	EUT OPERATING CONDITIONS	
3.	RADIATION EMISSION DATA	
3 .1	TEST EQUIPMENT	
3.2	OPEN TEST SITE SETUP DIAGRAM	
3.3	RADIATED EMISSION LIMIT	
3.4	EUT CONFIGURATION	
3.5	OPERATING CONDITION OF EUT	
3.6	RADIATED EMISSION DATA	
3.7	RADIATED EMISSIONS MEASUREMENT RESULTS	
4.	BAND EDGE	
4.1	TEST EQUIPMENT	
4.2	BLOCK DIAGRAM OF TEST SETUP	
4.3	BAND EDGE LIMIT	
4.4 4.5	EUT CONFIGURATION OPERATING CONDITION OF EUT	
4.6	TEST RELULT.	
5.		
5.1	TEST EQUIPMENT	
5.2	BLOCK DIAGRAM OF TEST SETUP	
5.3	TEST RESULT	
6.	PHOTOGRAPHS FOR TEST	
6.1	TEST PHOTOGRAPHS FOR RADIATION	
7.	PHOTOGRAPHS FOR PRODUCT	29
8.	EMI REDUCTION METHOD DURING COMPLIANCE TESTING	

1. CERTIFICATION

Applicant

: Sunrex Technology Corp.

Applicant Address	: No. 188-1, Chung Cheng Rd., Ta Ya Shiang, Taichung Hsien, Taiwan, R.O.C.
EUT Description	: Power Presenter
Model Number	: ML521A, A400, A500
Serial Number	: N/A
Brand Name	: Sunrex
FCC ID	: J75521A
Tested Power Supply	: Battery DC 3.0V
Manufacturer	: Sunrex Technology Corp.
Manufacturer Address	: No. 188-1, Chung Cheng Rd., Ta Ya Shiang, Taichung Hsien,
	Taiwan, R.O.C.

MEASUREMENT PROCEDURES USED:

☑ CFR 47, Part 15 Radio Frequency Device Subpart C Intentional Radiators :2005

Image: ANSI C63.4Methods of Measurements of Radio-Noise Emissions from Low- Voltage
Electrical and Electronic Equipment in the range of 9kHz To 40GHz.
2003

THE MEASUREMENT SHOWN IN THE ATTACHMENT WAS MADE IN ACCORDANCE WITH THE PROCEDURES INDICATED, AND THE MAXIMUM ENERGY EMITTED BY THE EQUIPMENT WAS FOUND TO BE WITHIN THE ABOVE LIMITS APPLICABLE.

Sample Received Date	: <u>August 08, 2006</u>	
Final Test Date	: <u>August 23, 2006</u>	
In order to ensure the quality and by the following qualified perso		ument, the contents have been thoroughly reviewed
Documented By :		Tested By :
Rivi chen		Jerry Lin
Rini Chen / adm. Dept. Supervi	isor	Perry Lin / eng. Dept. Engineer
Technical Reviewed By	:	Approved By :
-Shine Chang	/	Jonny Lo
Shine Chang / eng. Dept. Supe	ervisor	Tonny Lin ⁴ General Manager

This test data shown below is traceable to National or international standard such as NIST/USA, etc. The laboratory's NVLAP accreditation in no way constitutes or implies product certification, approval, or endorsement by NVLAP or the United States government.

2. GENERAL INFORMATION

2.1 PRODUCTION DESCRIPTION

: Power Presenter
: ML521A, A400, A500
: N/A
: Sunrex
: J75521A
: GFSK
: Printed on PCB
: 2.420GHz
: 1 Channel
: N/A
: Battery DC 3.0V

Frequency of Each Channel:

Channel	Frequency (GHz)
1	2.420

Note:

- 1. This device is a 2.4GHz Power Presenter included wireless transmition of presenter and receiver. The test report is for transmitter.
- 2. This device is one channel and perform the test, then record on this report.
- 3. The antenna of EUT is printer on PCB and conform to FCC 15.203.
- 4. These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 15 Subpart C Paragraph 15.249.
- 5. A400 and A500 are multiple listing model number.
- The device of receiver to accordance with Part 15 regulations and under Declaration of Conformity and record of measurment in test report that the report number is 0608049FCC DOC.

2.2 OPERATIONAL DESCRIPTION

This device is a 2.4GHz Power Presenter included wireless transmitter of keyboard and receiver. It is powered by Battery DC 3.0V.

This device is only one channel and it is operated in 2.420GHz with GFSK modulation.

The Receiver is usb interface and it is capable to receive signal from transmitter to control PC or notebook.

Another information please refer to users manual.

2.3 TEST MODES & EUT COMPONENTS DESCRIPTION

EUT: Power Presenter, M/N: ML521A, A400, A500

Test Mode	Mode 1-Continue Transmit	
Frequency	2.420 GHz	

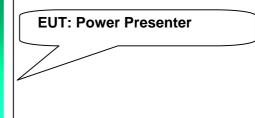
2.4 SUMMARY OF TEST PROCEDURE AND TEST RESULTS

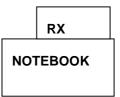
Test Item	Applied Standard Section	Test Resut	
Radistion Emission	15.209, ANSI C63.4 Section 8	Pass (refer to section 3.7)	
Peak Power Output 15.249(a), ANSI C63.4 Section 13 & Annex I		Pass (refer to section 3.7)	
Band Edge 15.249(d) , ANSI C63.4 Section 13 & Annex I		Pass (refer to section 4.6)	

2.5 CONFIGURATION OF THE TESTED SYSTEM

The FCC IDs/Types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards, which have grants) are:

Device	No.	Configuration		
		Model Number	: Latitude D600 PPO5L	
		BSMI ID	: R33002	
		Serial Number	: 11444680576	
		C.P.U	: Intel Pentium M 1.4G HZ	
		DDR	: PC2100 256MB	
		F.D.D	: N/A	
		H.D.D.	: Manufacturer : HITACHI 20.G	
			M/N: IC25N020ATMR04-0,	
			S/N:MRG157K1GJP9JH	
ΝΟΤΕΒΟΟΚ	DELL NB 2		BSMI ID:D33082	
NOTEBOOK		CD-ROM	: Manufacturer :DELL	
			M/N:6T980-A01	
		BATTERY	: Manufacturer :DELL Li-ion	
		MODULE	M/N:6Y270	
			RATING:14.8V 220mAh	
		AC ADAPTOR	: Manufacturer :DELL	
			M/N: PA-1650-05D	
			S/N:CN-05U092-71615-41K-58C3	
			INPUT:AC 100-240 V~1.5A 50-60HZ	
			Shielded, Undetachable, 2.5m	
Power Presenter		Manufacturer	: Sunrex	
(RX)		Model Number	: RX505A	


2.6 TEST FACILITY


Ambient conditions in the laboratory:

ITEMS	REQIORED			
TEMPERATURE (°C)	15-35			
HUMIDITY (%RH)	30-60			
BAROMETRIC PRESSURE (mbar)	860-1060			
FCC SITE DESCRIPTION	Aug. 10, 1995 /Aug. 25, 1998 File on			
	FCC Engineering Laboratory			
	Federal Communication Commission			
	7435 Oakland Mills Road			
	Columbia, MD 21046			
	Reference 31040/SIT1300F2			
NVLAP LAB. CODE	200085-0			
	United Stated Department of commerce			
	National Institute of Standards and Technology			
	National Voluntary Laboratory Accreditation Program			
	Accreditation on NVLAP effective through Sep. 30,2006			
	For CISPR 22, FCC Method and AS/NZS CISPR 22			
	Measurement.			
Chinese National Laboratory	Recognized by the Council of Chinese National			
Accreditation Certificate	Laboratory Accreditation and confirmed to meet the			
R.O.C.	requirements of ISO/IEC 17025 also has been			
	registered for fifteen items, and meet the requirements			
	of the Article 4 of Measures Governing the Recognition			
	both Approval of Designated Laboratory for			
	Commodities Inspection and has been registered for			
	four items within the field of Electrical Testing.			
	Registration No.: 1082			
	Registration on CNLA effective through April 30, 2006.			

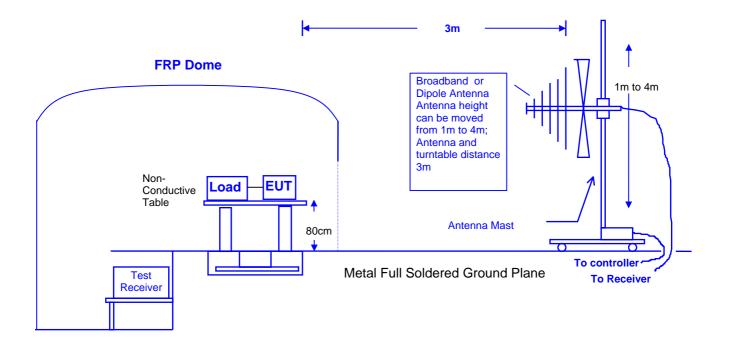
2.7 TEST SETUP

2.8 EUT OPERATING CONDITIONS

The EUT exercise program used during conducted testing was designed to exercise the EUT in a manner similar to a typical use. The exercise sequence is listed as below:

- 1. Setup the EUT and simulators as shown on 2.7.
- 2. Turn on the power of all equipments.
- 3. The transmitter will transmit the signal continue.
- 4. Confirm the receiver is receive signal and start test.
- 5. Repeat the above steps.

3. RADIATION EMISSION DATA


3.1 TEST EQUIPMENT

The following test equipments are used during the radiated emission tests: Radiated test was performed on: Site #1 Site #2 Site #3 Site #4

Item	Instrument	Manufacturer	Model	Serial No.	Last Cal.
1	Test Receiver	R & S	ESCS30	825022/003	06/08/06
2	Spectrum Analyzer	Rohde & Schwarz	FSP40	100061	04/03/06
	Spectrum Analyzer	HP	E4407B	39240339	07/26/06
3	Power Meter	Rohde & Schwarz	NRVS	100666	04/07/06
4	Peak Power Sensor	Rohde & Schwarz	NRV-Z32	8360191058	04/07/06
5	Pre-Amplifier	HP	8447D	2944A08610	09/13/05
6	Pre-Amplifier	HP	8449B	3008A01263	04/06/06
7	BILOG ANTENNA	SCHAFFNER	CBL6112B	2833	11/26/05
8	Horn Antenna	Schwarzbeck	BBHA 9120	D243	04/06/06
9	RF Cable	GesTek	N/A	GTK-E-A152-01	12/20/05
10	Open Site	GesTek	N/A	B1	11/22/05
11	Test Program Software	GesTek	N/A	GTK-E-S001-01	N/A

Note: All measurement critical items of test instrumentation were within their calibration period of 1 year.

3.2 OPEN TEST SITE SETUP DIAGRAM

3.3 RADIATED EMISSION LIMIT

General Radiated Emission Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

Frequency	Distance	Field Strength	
MHz	Meter	μV/M	dBµV/M
30 to 88	3	100	40.0
88 to 216	3	150	43.5
216 to 960	3	200	46.0
Above 960	3	500	54.0

Remarks :

1. RF Voltage (dBuV/m) = 20 log RF Voltage (uV/m)

- 2. In the Above Table, the tighter limit applies at the band edges.
- 3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

Frequency	Distance	Field Strength of Fundamental		Distance Field Strength of Fundamental Field Strength of Har		h of Harmonics
MHz	Meter	μV/M	dBµV/M	μV/M	dBµV/M	
902-928	3	50	94	500	54	
2400-2483.5	3	50	94	500	54	
5725-5875	3	50	94	500	54	

Fundamental and Harmonics Emission Limits

Remarks :

1. RF Voltage (dBuV/m) = 20 log RF Voltage (uV/m)

2. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

3.4 EUT CONFIGURATION

The equipment which is listed 2.6 are installed on Radiated Emission Test to meet the Commission requirement and operating in a manner which tends to maximize its emission characteristics in a normal application.

The device under test, installed in a representative system as described in section 3.2, was placed on a non-conductive table whose total height equaled 80 cm. This table can be rotated 360 degree. The measurement antenna was mounted to a non-conductive mast capable of moving the antenna vertically. Antenna height was varied from 1 meter to 4 meters and the system under test was rotated from 0 degree through 360 degrees relative to the antenna position and polarization (Horizontal and Vertical). Also the I/O cable position was investigated to find the maximum emission condition.

3.5 OPERATING CONDITION OF EUT

Same as section 2.7.

3.6 RADIATED EMISSION DATA

The measurement range of radiated emission, which is from <u>30 MHz to 10 Harminics</u>, was investigated. All readings below 1GHz are quasi-peak values with a resolution bandwidth of 120 KHz. Above 1GHz are peak and avg. values with a resolution bandwidth of 1MHz. The initial step in collecting radiated emission data is a spectrum analyzer peak scans of the measurement range for all the test modes and then use test receiver for final measurement. Then the worst modes were reported the following data pages.

3.7 RADIATED EMISSIONS MEASUREMENT RESULTS 3.7.1 HARMONIC RADIATED EMISSIONS

Date of Test	August 15, 2006	Temperature	26 deg/C
EUT	Power Presenter	Humidity	55 %RH
Working Cond.	TX Mode		
Antenna distance	3m at Horizontal	Frequency Range	30-1000MHz

No.	Frequency	Reading Level	Factor	Measurement	Limit	Over Limit	Detector
INO.	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	305.4900	30.20	-7.73	22.47	46.00	-23.53	QP
2	384.1100	36.40	-6.53	29.87	46.00	-16.13	QP
3	472.7600	28.91	-4.72	24.19	46.00	-21.81	QP
4	572.7100	29.68	-2.81	26.87	46.00	-19.13	QP
5	615.2400	29.40	-2.16	27.24	46.00	-18.76	QP
6	724.9900	27.38	-0.92	26.46	46.00	-19.54	QP

Remarks:

1. All Readings below 1GHz are Quasi-Peak.

2. Measurement = Reading + Factor (Could have ±0.01 tolerance due to computer automatically round off calculation).

3. Over Limit (Margin Value)=Measurement level-Limit value.

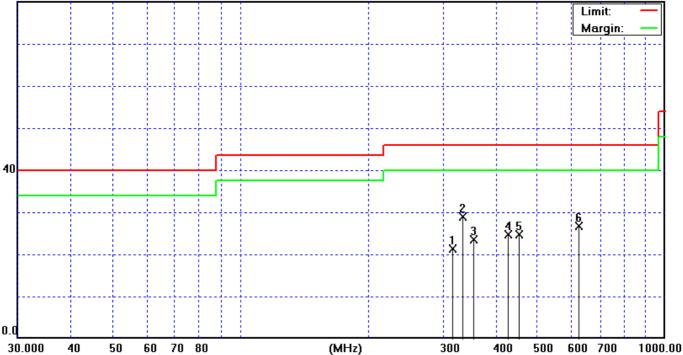
4. The " " means this data is worst-case Measurement level.

80.0 dBuV/m

Date of Test	August 15, 2006	Temperature	26 deg/C
EUT	Power Presenter	Humidity	55 %RH
Working Cond.	TX Mode		
Antenna distance	3m at Vertical	Frequency Range	30-1000MHz

Na	Frequency	Reading Level	Factor	Measurement	Limit	Over Limit	Detector
No.	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	315.0500	28.80	-7.58	21.22	46.00	-24.78	QP
2	331.8300	36.20	-7.32	28.88	46.00	-17.12	QP
3	352.8300	30.60	-7.00	23.60	46.00	-22.40	QP
4	425.6800	30.40	-5.73	24.67	46.00	-21.33	QP
5	453.3000	29.90	-5.14	24.76	46.00	-21.24	QP
6	625.1300	28.80	-2.07	26.73	46.00	-19.27	QP

Remarks:


1. All Readings below 1GHz are Quasi-Peak.

2. Measurement = Reading + Factor (Could have ±0.01 tolerance due to computer automatically round off calculation).

3. Over Limit (Margin Value)=Measurement level-Limit value.

4. The " " means this data is worst-case Measurement level.

80.0 dBuV/m

Date of Test	August 08, 2006	Temperature	25.6 deg/C
EUT	Power Presenter	Humidity	63 %RH
Working Cond.	TX Mode		
Antenna distance	3m at Horizontal	Frequency Range	Above 1GHz

Peak

No.	Frequency	Reading Level	Factor	Measurement	Limit	Over Limit	Detector
NO.	MHz	dBµV	dB	dBµV/m	dBµV/m	dB	Delector
1	4839.9300	56.35	1.45	57.80	74.00	-16.20	peak
2	7260.4800	60.18	9.50	69.68	74.00	-4.32	peak
3	9679.3000	45.20	6.82	52.02	74.00	-21.98	peak
4	12099.2500	42.65	13.34	55.99	74.00	-18.01	peak
5	14519.2500	41.11	8.63	< 49.74	74.00	-24.26	peak
6	16940.2500	41.73	6.34	< 48.07	74.00	-25.93	peak

Average

No.	Frequency [MHz]	Peak Emission Level [dB(uV/m)]	Duty Cycle [dB]	Emission Level [dB(uV/m)]	Limit [dB(uV/m)]	Margin [dB]
1	4839.93	57.80	-20	37.80	54.00	16.20
2	7260.48	69.68	-20	49.68	54.00	4.32
3	12099.25	55.99	-20	35.99	54.00	18.01

Remark

- 1. All Readings below 1GHz are Quasi-Peak and above 1GHz are peak or average.
- 2. Spectrum Analizyer Setting(Peak Detector): RBW=1MHz, VBW=1MHZ, Span=100MHz.
- 3. AVG Emission=Peak Emission + Duty Cycle(Log Scale).
- 4. Emission Level= Reading + Correction Factor (Could have ±0.01 tolerance due to computer automatically round off calculation).
- 5. Correction Factor= Antenna Factor + Cable Loss Amplifier Factor
- 6. Margin Value=Emission level-Limit value.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection. If the average value is measured, peak measurement should also be supplied.
- 8. The Duty Cycle is refer to section 5.
- 9. If Duty Cycle is smaller than -20dB, based on FCC part15 the duty cycle correction factor is -20dB for calculating average emission.

Date of Test	August 08, 2006	Temperature	25.6 deg/C
EUT	Power Presenter	Humidity	63 %RH
Working Cond.	TX Mode		
Antenna distance	3m at Vertical	Frequency Range	Above 1GHz

Peak

No.	Frequency	Reading Level	Factor	Measurement	Limit	Over Limit	Detector
NO.	MHz	dBµV	dB	dBµV/m	dBµV/m	dB	Detector
1	4839.7000	57.92	1.74	59.66	74.00	-14.34	peak
2	7259.7500	52.45	8.68	61.13	74.00	-12.87	peak
3	9679.7500	42.21	9.95	52.16	74.00	-21.84	peak
4	12099.7500	41.72	15.78	57.50	74.00	-16.50	peak
5	14520.6200	41.64	6.93	< 48.57	74.00	-25.43	peak
6	16940.3500	40.14	5.91	< 46.05	74.00	-27.95	peak

Average

No.	Frequency [MHz]	Peak Emission Level [dB(uV/m)]	Duty Cycle [dB]	Emission Level [dB(uV/m)]	Limit [dB(uV/m)]	Margin [dB]
1	4839.70	59.66	-20	39.66	54.00	14.34
2	7259.75	61.13	-20	41.13	54.00	12.87
3	12099.75	57.50	-20	37.50	54.00	16.50

Remark

- 1. All Readings below 1GHz are Quasi-Peak and above 1GHz are peak or average.
- 2. Spectrum Analizyer Setting(Peak Detector): RBW=1MHz, VBW=1MHZ, Span=100MHz.
- 3. AVG Emission=Peak Emission + Duty Cycle(Log Scale).
- 4. Emission Level= Reading + Correction Factor (Could have ±0.01 tolerance due to computer automatically round off calculation).
- 5. Correction Factor= Antenna Factor + Cable Loss Amplifier Factor
- 6. Margin Value=Emission level-Limit value.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection. If the average value is measured, peak measurement should also be supplied.
- 8. The Duty Cycle is refer to section 5.
- 9. If Duty Cycle is smaller than -20dB, based on FCC part15 the duty cycle correction factor is -20dB for calculating average emission.

3.7.2 FUNDAMEDTAL RADIATED EMISSIONS

Date of Test	August 10, 2006	Temperature	25.6 deg/C
EUT	Power Presenter	Humidity	63 %RH
Working Cond.	TX Mode: 2420MHz		
Antenna distance	3m		

Horizontal

No.	Frequency MHz	Reading Level dBuV	Factor dB/m	Measurement dBuV/m	Limit dBuV/m	Over Limit dB	Detector
1	2420.000	57.52	31.45	88.97	114	-25.03	peak

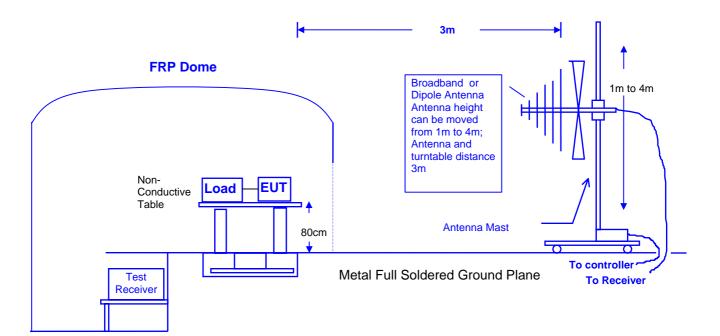
Vertical

No	Frequency MHz	Reading Level dBuV	Factor dB/m	Measurement dBuV/m	Limit dBuV/m	Over Limit dB	Detector
1	2420.2000	51.42	24.30	75.72	114	-38.28	peak

Remark

- 1. All Readings below 1GHz are Quasi-Peak and above 1GHz are peak or average.
- 2. Spectrum Analizyer Setting(Peak Detector): RBW=1MHz, VBW=1MHZ, Span=100MHz.
- 3. AVG Emission=Peak Emission + Duty Cycle(Log Scale).
- 4. Measurement = Reading + Correction Factor (Could have ±0.01 tolerance due to computer automatically round off calculation).
- 5. Correction Factor= Antenna Factor + Cable Loss Amplifier Factor
- 6. Margin Value=Emission level-Limit value.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection. If the average value is measured, peak measurement should also be supplied.
- 8. The Duty Cycle is refer to section 5.
- 9 If Duty Cycle is smaller than -20dB, based on FCC part15 the duty cycle correction factor is -20dB for calculating average emission.

4. BAND EDGE


4.1 TEST EQUIPMENT

ltem	Instrument	Manufacturer	Model	Serial No.	Last Cal.
1	Test Receiver	Rohde & Schwarz	ESVS30	829007/014	01/19/06
2	Spectrum Analyzer	Rohde & Schwarz	FSP40	100061	04/03/06
3	Spectrum Analyzer	HP	E4407B	39240339	07/26/06
4	Power Meter	Rohde & Schwarz	NRVS	100666	04/07/06
5	Peak Power Sensor	Rohde & Schwarz	NRV-Z32	8360191058	04/07/06
6	Pre-Amplifier	HP	8449B	3008A01263	04/06/06
7	BILOG ANTENNA	SCHAFFNER	CBL6112B	2620	11/26/05
8	Horn Antenna	Schwarzbeck	BBHA 9120	D243	12/21/05
9	RF Cable	GesTek	N/A	GTK-E-A152-01	12/20/05
10	Open Site	GesTek	N/A	B1	11/22/05
11	Test Program Software	GesTek	N/A	GTK-E-S001-01	N/A

Note: All measurement critical items of test instrumentation were within their calibration period of 1 year.

4.2 BLOCK DIAGRAM OF TEST SETUP

RF Radiated Measurement:

4.3 BAND EDGE LIMIT

In any 100KHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 50dB below that in the 100KHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

4.4 EUT CONFIGURATION

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters. The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.4:2000 on radiated measurement.

The bandwidth below 1GHz setting on the field strength meter is 120KHz, above 1GHz are 1MHz.

4.5 OPERATING CONDITION OF EUT

Same as section 2.7.

4.6 TEST RELULT

Date of Test	Augsut 22, 2006	Temperature	25 deg/C
EUT	Power Presenter	Humidity	40 %RH
Working Cond.	Tx Mode		
Antenna distance	3m at Horizontal	Test Band	Lower

Radiation Emission of Fundamental

Peak

Frequency	Reading Level	Correction Factor	Emission Level
[MHz]	[dB(uV)]	[dB/m]	[dB(uV/m)]
2420.2	57.52	31.45	88.79

Remark:

1. All Readings below 1GHz are Quasi-Peak and above 1GHz are peak or average.

2. Spectrum Analizyer Setting(Peak Detector): RBW=1MHz, VBW=1MHZ.

3. Emission Level= Reading + Correction Factor (Could have ±0.01 tolerance due to computer automatically round off calculation).

4. Correction Factor= Antenna Factor + Cable Loss - Amplifier Factor

TEST Result

The band edge emission plot on next page are Peak and Average. The polt for peak is appear (45.05)dB delta between carry power and maximum emission in restrict band <u>2347</u> MHz.

The above tables are list of fundamental emission test result.

Therefore, peak field strength of <u>2347</u> MHz is <u>88.79</u> dBuV/m – <u>40.05</u> dB = <u>48.74</u> dBuV/m which is under 74dBuV/m.

Average filed strength = Peak filed strength × Duty Cycle

(20logAVG = 20logPeak + 20logDuty Cycle)

20logDuty Cycle = (-38.41)dB

Average field strength of (2347)MHz is

(48.74) dBuV/m + (-20)dB = (28.74)dBuV/m which is under 54dBuV/m.

Remark:

If Duty Cycle is smaller than -20dB, based on FCC part15 the duty cycle correction factor is -20dB for calculating average emission.

Date of Test	August 22, 2006	Temperature	25 deg/C
EUT	Power Presenter	Humidity	40 %RH
Working Cond.	Tx Mode		
Antenna distance	3m at Vertical	Test Band	Lower

Radiation Emission of Fundamental

Peak

Frequency	Reading Level	Correction Factor	Emission Level
[MHz]	[dB(uV)]	[dB/m]	[dB(uV/m)]
2402.2	51.42	24.3	75.72

Remark:

 All Readings below 1GHz are Quasi-Peak and above 1GHz are peak or average.
 Spectrum Analizyer Setting(Peak Detector): RBW=1MHz, VBW=1MHZ.
 Emission Level= Reading + Correction Factor (Could have ±0.01 tolerance due to computer automatically round off calculation)

4. Correction Factor= Antenna Factor + Cable Loss - Amplifier Factor

TEST Result

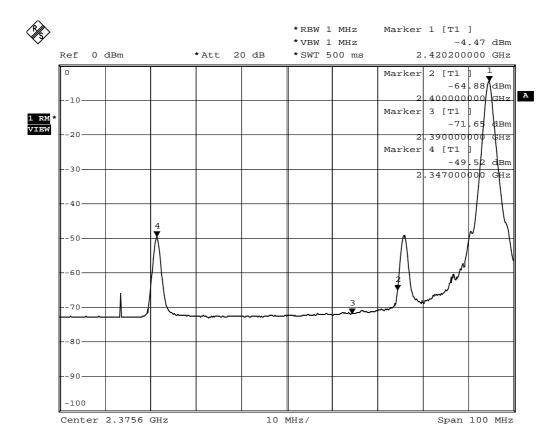
The band edge emission plot on next page are Peak and Average. The polt for peak is appear (45.05)dB delta between carry power and maximum emission in restrict band 2347 MHz.

The above tables are list of fundamental emission test result.

Therefore, peak field strength of 2347 MHz is 75.72 dBuV/m - 45.05 dB = 30.67 dBuV/m which is under 74dBuV/m.

Average filed strength = Peak filed strength × Duty Cycle

(20logAVG = 20logPeak + 20logDuty Cycle)


20logDuty Cycle = (-38.41)dB

Average field strength of (2347)MHz is

(30.67) dBuV/m + (-20)dB = (10.67)dBuV/m which is under 54dBuV/m.

Remark:

If Duty Cycle is smaller than -20dB, based on FCC part15 the duty cycle correction factor is -20dB for calculating average emission.

Date: 22.AUG.2006 15:27:03

Date of Test	August 22, 2006	Temperature	25 deg/C
EUT	Power Presenter	Humidity	40 %RH
Working Cond.	Tx Mode		
Antenna distance	3m at Horizontal	Test Band	Higher

Radiation Emission of Fundamental

Peak

Frequency	Reading Level	Correction Factor	Emission Level
[MHz]	[dB(uV)]	[dB/m]	[dB(uV/m)]
2420	57.42	31.45	88.79

Remark:

1. All Readings below 1GHz are Quasi-Peak and above 1GHz are peak or average.

2. Spectrum Änalizyer Setting(Peak Detector): RBW=1MHz, VBW=1MHZ.

3. Emission Level= Reading + Correction Factor (Could have ±0.01 tolerance due to computer automatically round off calculation).

4. Correction Factor= Antenna Factor + Cable Loss - Amplifier Factor

TEST Result

The band edge emission plot on next page are Peak and Average. The polt for peak is appear (67.81)dB delta between carry power and maximum emission in restrict band 2483.5 MHz.

The above tables are list of fundamental emission test result.

Therefore, peak field strength of <u>2483.5</u> MHz is <u>88.79</u> dBuV/m – <u>67.81</u> dB = <u>20.98</u> dBuV/m which is under 74dBuV/m.

Average filed strength = Peak filed strength × Duty Cycle

(20logAVG = 20logPeak + 20logDuty Cycle)

20logDuty Cycle = (-38.41)dB

Average field strength of (2483.5)MHz is

(20.98) dBuV/m + (-20)dB = (0.98)dBuV/m which is under 54dBuV/m.

Remark:

If Duty Cycle is smaller than -20dB, based on FCC part15 the duty cycle correction factor is -20dB for calculating average emission.

Date of Test	August 22, 2006	Temperature	25 deg/C
EUT	Power Presenter	Humidity	40 %RH
Working Cond.	Tx Mode		
Antenna distance	3m at Vertical	Test Band	Higher

Radiation Emission of Fundamental

Peak

Free	quency	Reading Level	Correction Factor	Emission Level	
[MHz]	[dB(uV)]	[dB/m]	[dB(uV/m)]	
24	420.2	51.42	24.3	75.72	

Remark:

1. All Readings below 1GHz are Quasi-Peak and above 1GHz are peak or average.

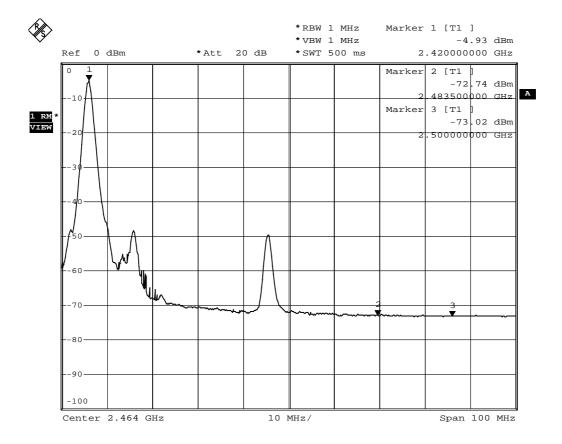
2. Spectrum Analizyer Setting(Peak Detector): RBW=1MHz, VBW=1MHZ.

3. Emission Level= Reading + Correction Factor (Could have ±0.01 tolerance due to computer automatically round off calculation).

4. Correction Factor= Antenna Factor + Cable Loss – Amplifier Factor

TEST Result

The band edge emission plot on next page are Peak and Average. The polt for peak is appear (67.81)dB delta between carry power and maximum emission in restrict band <u>2483.5</u> MHz.


The above tables are list of fundamental emission test result.

Therefore, peak field strength of <u>2483.5</u> MHz is <u>75.72</u> dBuV/m – <u>67.81</u> dB = <u>7.91</u> dBuV/m which is under 74dBuV/m.

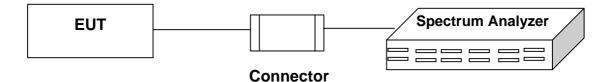
Remark:

If Duty Cycle is smaller than -20dB, based on FCC part15 the duty cycle correction factor is -20dB for calculating average emission.

The average measurement was not performed when the peak measured data under the limit of average detection. If the average value is measured, peak measurement should also be supplied.

Date: 22.AUG.2006 15:36:40

5. DUTY CYCLE


5.1 TEST EQUIPMENT

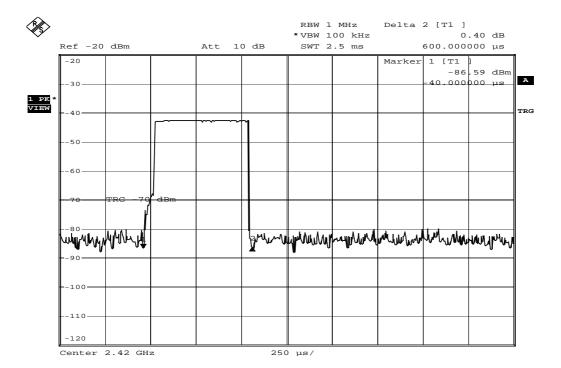
The following test equipments are used during the radiated emission tests:

ltem	Instrument	Manufacturer	Model	Serial No.	Last Cal.
1	Spectrum Analyzer	Rohde & Schwarz	FSP40	100061	04/03/06
2	Spectrum Analyzer	HP	E4407B	39240339	07/26/06

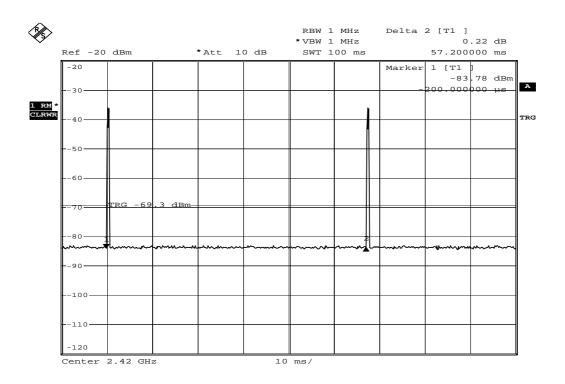
Note: All measurement critical items of test instrumentation were within their calibration period of 1 year.

5.2 BLOCK DIAGRAM OF TEST SETUP

5.3 TEST RESULT


Date of Test	August 23, 2006	Temperature	25 deg/C
EUT	Power Presenter	Humidity	40 %RH
Working Cond.	Channel 1		

Duty Cycle = Time on of 100ms / 100ms


Frequency <u>2420</u> MHz Time on of one slot length = <u>600</u> (μ s) = <u>0.6</u> (msec) Totally time of one period = <u>57.2</u> (msec) Time on of of 100ms = <u>1.2</u> (msec) Duty Cycle = <u>1.2</u> / <u>100</u> = <u>0.012</u> <u>20 log 0.012</u> = <u>-38.41</u> dB

Remark:

If Duty Cycle is smaller than -20dB, based on FCC part15 the duty cycle correction factor is -20dB for calculating average emission.

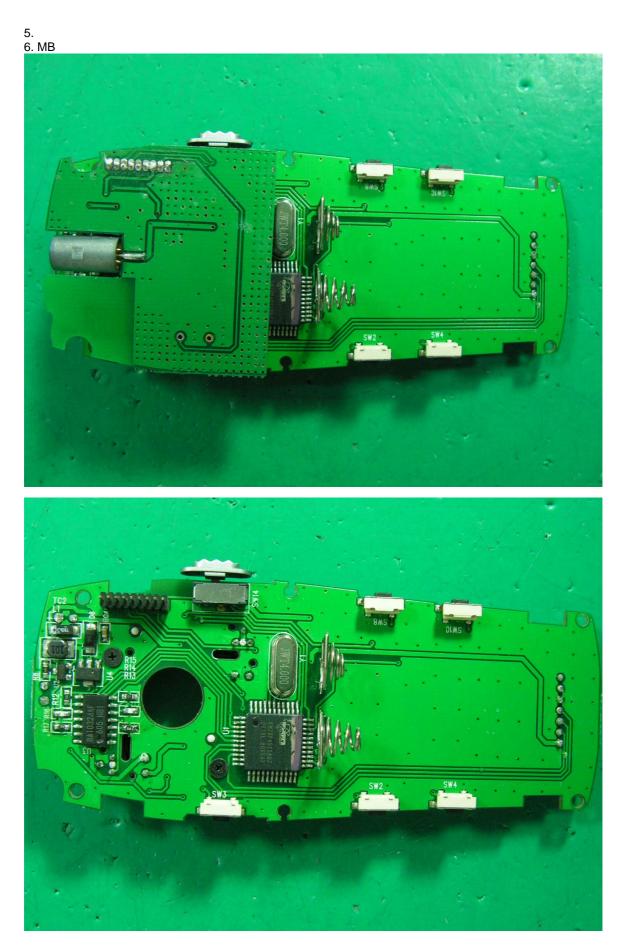
Date: 23.AUG.2006 10:03:03

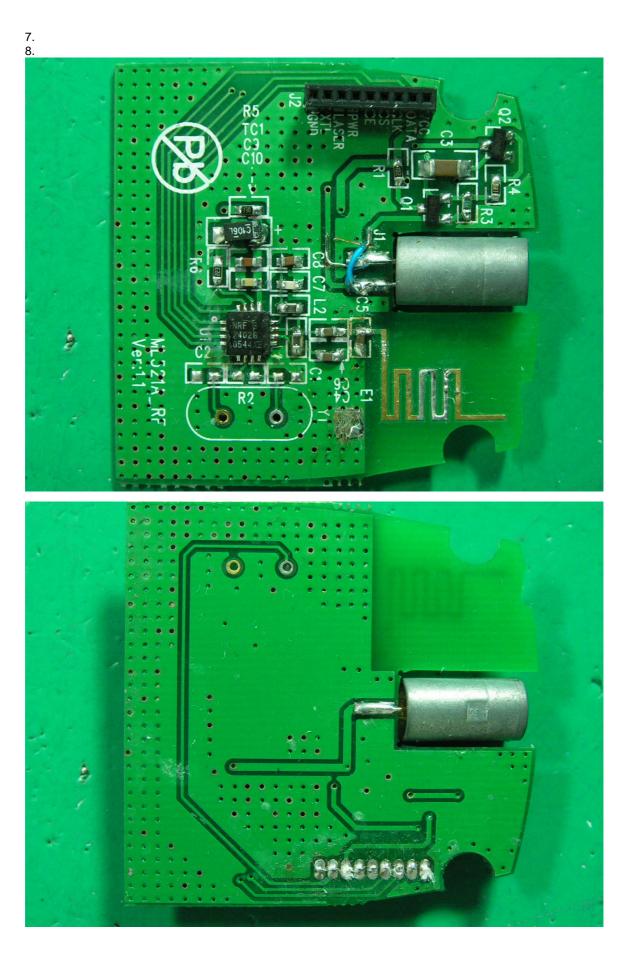
Date: 22.AUG.2006 13:46:47

6. PHOTOGRAPHS FOR TEST

6.1 TEST PHOTOGRAPHS FOR RADIATION

30-1000MHz





7. PHOTOGRAPHS FOR PRODUCT

- 9. Label Here

8. EMI REDUCTION METHOD DURING COMPLIANCE TESTING

No modification was made during testing.

Appendix A Circuit (Block) Diagram

(Shall be added by Applicant)

Appendix B

User Manual

(Shall be added by Applicant)