

TEST REPORT

Report No.: SHATBL2402001W05

HAMATON AUTOMOTIVE TECHNOLOGY CO., LTD Applicant

Product Name Vehicle Communication Interface

Brand Name Hamaton

RXT003 Model Name

FCC ID 2AFH7RXT003

Test Standard 47 CFR 15.247

Date of Test 2024.02.08-2024.02.21

Report Prepared by

Report Approved by

Jack Sm (Jack Suo)

Authorized Signatory

(Terry Yang)

(Ghost Li)

Ghost Li.

"Shanghai ATBL Technology Co., Ltd." hereby certifies that according to actual testing conditions. The test results or observations are provided in accordance with measured value, without taking risks caused by uncertainty into account. Without explicit stipulation in special agreements, standards, or regulations, ATBL shall not assume any responsibility. The test results or observations are applicable only to tested sample. Client shall be responsible for representativeness of the sample and authenticity of the material. This report will be void without authorized signature or special seal for testing report. Do not copied without authorization. Tel:+86(0)21-51298625

Report No.:SHATBL2402001W05

TABLE OF CONTENTS

REVISION HISTORY	
DECLARATION OF REPORT	
SUMMARY OF TEST RESULT	
1. GENERAL DESCRIPTION	
1.1. Applicant	
1.2. Manufacturer	
1.3. Factory	
1.4. General Information of EUT	7
1.5. Equipment Specification	
1.6. Modification of EUT	
1.7. Laboratory Information	
1.8. Applicable Standards	
2. TEST CONFIGURATION OF EUT	
2.1. Carrier Frequency Channel	
2.2. Test Modes	
2.3. Block Diagram of Test System	
2.4. Description of Support Units	
2.5. Test Software and Power Level	
2.6. EUT Operating Conditions	
2.7. Equipment List	
2.8. Measurement Uncertainty	
3. TEST RESULT	
3.1. Maximum Peak Conducted Output Power	
3.2. Duty Cycle	
3.3. 6dB Bandwidth and 99% Bandwidth	
3.4. Power Spectral Density	
3.5. Conducted Band Edge	
3.6. Conducted Spurious Emission	
3.7. Radiated Spurious Emission and Restricted Band	
3.8. AC Power-Line Conducted Emission	
3.9. Antenna Requirement	
4. Test Setup Photographs	
Appendix A _ Conducted Test Data	
Appendix B _ Radiated Test Data	
Appendix C _ AC Power-Line Conducted Emission Test Data	
Appendix D _ Test Setup	

8

E ST

K35

1-

ş

K31

E Star

5

3ª

35

23N

K31

F.S.

K35

AL BAL

17 Ster

50

K35

A.S.

A Star

K PN

2º

K35

A A

AN CONTRACT

F-35

4 B

A.S.

30

12 B

F31

EL.

F35

Report No.:SHATBL2402001W05

Kat Kat

Kar Kar

Kat Kat

Kat Kat

L'B

25

B

F

F

REVISION HISTORY

F

Y

00 2024.02.23 Initial Release Ghost Li	Rev. Issue Date	Revisions	Revised by
	00 2024.02.23	Initial Release	Ghost Li
	F B	F BY F B	9 3
	S T B	F BY F	O S R
	N T B	F 25	R. S.
	F N F	ON F D	S B S
	A Star	2 8 8 3	1 8 2
	A S	T B	De V
		T B	F B
	3 5	S T B	F al
	F DY	S & F B	F B
	F 23	5 3 5 3	P. P.
	S. F 3	E S F	D' -
	2 . F 3	5 5	F B
	R. F	B S S	F 23
T B A N P B F	Charles Charles Contraction of the Contraction of t	F BY S	5 F 2
		N	2° E
	L'AN LAND	A LAN AND A LAND	F3U F3U F3U

E B

L.L.

E B

ŕ

DECLARATION OF REPORT

1. The device has been tested by ATBL, and the test results show that the equipment under test (EUT) is in compliance with the requirements of 47 CFR 15.247. And it is applicable only to the tested sample identified in the report.

2. This report shall not be reproduced except in full, without the written approval of ATBL, this document only be altered or revised by ATBL, personal only, and shall be noted in the revision of the document.

3. The general information of EUT in this report is provided by the customer or manufacture, ATBL is only responsible for the test data but not for the information provided by the customer or manufacture.

4. The results in this report is only apply to the sample as tested under conditions. The customer or manufacturer is responsible for ensuring that the additional production units of this model have the same electrical and mechanical components.

5. In this report, ' \Box ' indicates that EUT does not support content after ' \Box ', and ' \Box ' indicates that it supports content after ' \Box '

АТЗЫ

3

N

N.

KE

F

2

P

212

24

Sit

RE

P

F

R

P

F

K

R

N.Y.

2ºF

P

F

R

2ºF

F

Report No.:SHATBL2402001W05 🌷

٩.

R

-

١

212

X

K

1

N.V.

Report Section	Standard Section	lest Item		Remark	
3.1	47 CFR 15.247(b)(3)	Maximum Peak Conducted Output Power	PASS	25	
3.2	3 -	Duty Cycle	Report only	£- ,	
	47 CFR 15.247(a)(2)	6dB Bandwidth	PASS	-7-	
3.3	V - 27	99% Bandwidth	Report only	s -	
3.4	47 CFR 15.247(e)	Power Spectral Density	PASS	5	
3.5	47 CFR 15.247(d)	Conducted Band Edge	PASS	P.	
3.6	47 CFR 15.247(d)	Conducted Spurious Emission	PASS	- 7	
3.7	47 CFR 15.247(d)/15.209(a)/15.205(a)	Radiated Spurious Emission and Restricted Band	PASS	S.	
3.8	47 CFR 15.207(a)	AC Power-Line Conducted Emission	PASS		
3.9	47 CFR 15.203	Antenna Requirements	PASS	P	

SUMMARY OF TEST RESULT

ï

P

A

1. GENERAL DESCRIPTION

1.1. Applicant

- Name : HAMATON AUTOMOTIVE TECHNOLOGY CO., LTD
- Address : 12 East Zhenxing Road, Linping, Yuhang, Hangzhou, Zhejiang, China

1.2. Manufacturer

- Name : HAMATON AUTOMOTIVE TECHNOLOGY CO., LTD
- Address : 12 East Zhenxing Road, Linping, Yuhang, Hangzhou, Zhejiang, China

1.3. Factory

Name	:	HAMATON AUTOMOTIVE TECHNOLOGY CO. ,LTD
Address	16	12 East Zhenxing Road, Linping, Yuhang, Hangzhou, Zhejiang, China

1.4. General Information of EUT

General Information			
Vehicle Communication Interface			
Hamaton			
RTX003			
RTX001			
Only the model name is different.			
202312080005003			
N/A			
Model:HYY802050 Rated Voltage: 3.7V Charge Limit Voltage: 4.2±0.03V Capacity:800mAh			
V1.0.4			
0009			
Refer to the remark below.			

Remark:

The above information of EUT was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

3

1.5. Equipment Specification

Equipment Specification					
Frequency Range	2400MHz - 2483.5MHz	S 5 2 -			
Number of Channels	40	R & F B			
Carrier Frequency of Each Channel	2402 + $n*2$ MHz; $n = 0 \sim 3$	39			
Manimum Outant Barran Ta Antonna	☑Bluetooth LE(1Mbps):	3.49dBm (0.002234W)			
Maximum Output Power To Antenna	□Bluetooth LE(2Mbps):	dBm (W)			
Type of Modulation	Bluetooth LE:	GFSK			
Antenna Type	PCB Antenna	B F N			
Antenna Gain	2.3dBi	F B B			

1.6. Modification of EUT

No modifications are made to the EUT during all test items.

1.7. Laboratory Information

Company Name :	Shanghai ATBL Technology Co., Ltd.
Address :	Building 8,No.160 Basheng Road, Waigaoqiao Free Trade Zone, Pudong New Area, Shanghai
Telephone :	+86(0)21-51298625

1.8. Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

47 CFR Part 15 Subpart C §15.247

FCC KDB 558074 D01 15.247 Meas Guidance v05r02

```
ANSI C63.10-2013
```

Remark:

All test items were verified and recorded according to the standards and without any deviation during the test.

2. TEST CONFIGURATION OF EUT

2.1. Carrier Frequency Channel

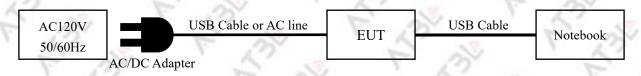
Frequency Band	Channel	Frequency MHz	Channel	Frequency MHz	Channel	Frequency MHz
	00	2402	14	2430	28	2458
	01	2404	15	2432	29	2460
	02	2406	16	2434	30	2462
	03	2408	17	2436	31	2464
	04	2410	18	2438	32	2466
	05	2412	19	2440	33	2468
2400 - 2483.5	06	2414	20	2442	34	2470
MHz	07	2416	21	2444	35	2472
	08	2418	22	2446	36	2474
	09	2420	23	2448	37	2476
	10	2422	24	2450	38	2478
	5 11 V	2424	25	2452	39	2480
	12	2426	26	2454	- 2	V 20
	13	2428	27	2456	2	P

Remark:

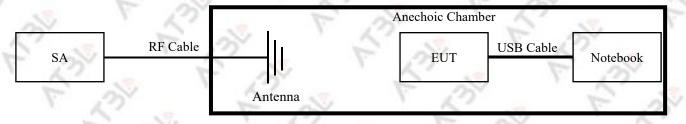
Low Channel: CH 00_2402 MHz; Middle Channel: CH 19_2440 MHz; High Channel: CH 39_2480

MHz.

2.2. Test Modes


The table below is showing all test modes to demonstrate in compliance with the standard.

	Summary Table of Test Modes				
T 4 14	Data R	ate / Modulation			
Test Item	☑Bluetooth LE(1Mbps)	□Bluetooth LE(2Mbps)			
For Conducted and Radiated Test	Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz			
	Mode 2: CH19_2440 MHz	Mode 5: CH19_2440 MHz			
	Mode 3: CH39_2480 MHz	Mode 6: CH39_2480 MHz			
For AC Power-line Conducted Emission	Mode 7: Keep Bluetooth link under the max	imum output power			


Report No.:SHATBL2402001W05

2.3. Block Diagram of Test System

2.3.1. For AC Power-Line Conducted Emission

2.3.2. For Radiated Spurious Emission

2.3.3. For Conducted Test

SA	RF Cable	FUT	USB Cable	Notebook
SA	2	LUI	<i>N</i> .	NOLEBOOK

2.4. Description of Support Units

NO.	Unit	Brand	Model	Description
1	Notebook	Lenovo	DESKTOP-USDE009	N/A
2	USB Cable	N/A	100cm	N/A

2.5. Test Software and Power Level

During the test, the channel and power control software provided by the customer is used to control the operation channel and output power level.

2.6. EUT Operating Conditions

For AC power-line conducted emission, the EUT was connected under the large package sizes transmission.

For radiated spurious emission and conducted test, the engineering test program was provided and make the EUT to continuous transmit/receive.

2.7. Equipment List

2.7.1. For AC Power-Line Conducted Emission

Equipment Name	Manufacturer	Model	Serial No.	Equipment No.	Calibration Date	Calibration Due Date
Test Receiver	R&S	ESPI	101679	SHATBL-E012	2023.05.10	2024.05.09
LISN	R&S	ENV216	100300	SHATBL-E013	2023.05.31	2024.05.30
LISN	R&S	ENV216	100333	SHATBL-E041	2023.05.10	2024.05.09
Thermometer	DeLi	N/A	N/A	SHATBL-E016	2023.09.20	2024.09.19
Test Software	FALA	EZ-EMC	N/A	SHATBL-E046	N/A	N/A

2.7.2. For Radiated Spurious Emission

Equipment Name	Manufacturer	Model	Serial No.	Equipment No.	Calibration Date	Calibration Due Date
Signal analyzer	Agilent	N9020A	MY5020 <mark>0</mark> 811	SHATBL-E017	2023.05.10	2024.05.09
Amplifier	JPT	JPA0118-55-303 A	191000180005 5000	SHATBL-E006	2023.05.10	2024.05.09
Amplifier	JPT	JPA-10M1G32	210101000350 01	SHATBL-E005	2023.05.10	2024.05.09
Antenna/Tur n table Controller	Brilliant	N/A	N/A	SHATBL-E007	N/A	N/A
Loop Antenna	Daze	ZN30900C	20077	SHATBL-E042	2023.05.10	2024.05.09
Bilog Antenna	SCHWARZBEC K	VULB 9168	01174	SHATBL-E008	2023.05.13	2024.05.12
Broad-band Horn Antenna	SCHWARZBEC K	BBHA 9120D	02334	SHATBL-E009	2023.05.13	2024.05.12
Horn Antenna	COM-POWER	AH-1840	10100008	SHATBL-E043	2023.05.10	2024.05.09
Thermometer	DeLi	N/A	N/A	SHATBL-E015	2023.09.20	2024.09.19
Test Software	FALA	EMC-RI	N/A	SHATBL-E046	N/A	N/A

Report No.:SHATBL2402001W05

1

2.7.3. For Conducted Test

Equipment Name	Manufacturer	Model	Serial No.	Equipment No.	Calibration Date	Calibration Due Date
Power meter	Anritsu	ML2496A	1935001	SHATBL-W030	2023.07.10	2024.07.09
Power sensor	Anritsu	MA2411B	1911006	SHATBL-W031	2023.07.10	2024.07.09
Power sensor	DARE	RPR3006W	16I00054SN016	SHATBL-W008	2023.07.10	2024.07.09
Power sensor	DARE	RPR3006W	RPR6W-2001005	SHATBL-W032	2023.07.10	2024.07.09
Power sensor	Rediteq	RPR3006W	RPR6W-2201002	SHATBL-W033	2023.07.10	2024.07.09
Power sensor	Rediteq	RPR3006W	RPR6W-2201003	SHATBL-W034	2023.07.10	2024.07.09
Power sensor	Keysight	U2021XA	MY59120004	SHATBL-W035	2023.07.10	2024.07.09
Adjustable Attenuator	Agilent	8494B	MY42144015	SHATBL-W009	2023.07.10	2024.07.09
Adjustable Attenuator	Agilent	8496B	MY42143776	SHATBL-W010	2023.07.10	2024.07.09
Environmental Test Chamber	KSON	THS-B6C-150	9159K	SHATBL-W019	2024.01.16	2025.01.15
Signal analyzer	Keysight	N9020A	MY50510136	SHATBL-W003	2023.07.10	2024.07.09
Vector signal generator	Keysight	N5182B	MY57300196	SHATBL-W005	2023.07.10	2024.07.09
Vector signal generator	Agilent	N5182A	MY50143555	SHATBL-W037	2023.07.10	2024.07.09
Analog signal generator	Keysight	N5173B	MY60403026	SHATBL-W038	2023.07.10	2024.07.09
Wideband radio communication tester	R&S	CMW500	101331	SHATBL-W007	2023.07.10	2024.07.09
Spectrum analyzer	R&S	FSV40-N	101761	SHATBL-W036	2023.07.10	2024.07.09
Switch Box	N/A	RFSW3003328	RFSW201019	SHATBL-W029	N/A	N/A
Thermometer	DeLi	N/A	N/A	SHATBL-W012	2023.07.10	2024.07.09
Test Software	FALA	LZ-RF	N/A	SHATBL-W020	N/A	N/A

AT3

2.8. Measurement Uncertainty

The reported uncertainty of measurement y \pm U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	RF output power, conducted	0.958dB
2	Conducted spurious emissions	2.988dB
3	All emissions, radiated 30MHz-1GHz	2.50dB
4	All emissions, radiated 1GHz-18GHz	3.51dB
5	Occupied bandwidth	23.20Hz
6	Power spectral density	0.886dB

AT3

3. TEST RESULT

3.1. Maximum Peak Conducted Output Power

3.1.1. Limit

<u>47 CFR 15.247(b)(3)</u>: For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt.

<u>47 CFR 15.247(b)(4)</u>: If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

<u>47 CFR 15.247(c)(1)(i)</u>: Systems operating in the 2400–2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

3.1.2. Test Procedure

<u>ANSI C63.10-2013 clause 11.9.1.3 PKPM1 Peak power meter method</u>: The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast-responding diode detector.

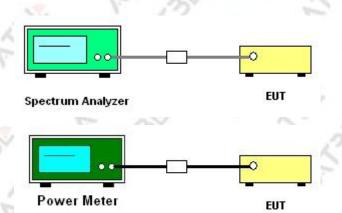
<u>ANSI C63.10-2013 clause 11.9.2.3.1 Method AVGPM</u>: Method AVGPM is a measurement using an RF average power meter, as follows:

1. As an alternative to spectrum analyzer or EMI receiver measurements, measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the conditions listed below are satisfied:

① The EUT is configured to transmit continuously, or to transmit with a constant duty cycle.

2 At all times when the EUT is transmitting, it shall be transmitting at its maximum power control level.

③ The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.


2. If the transmitter does not transmit continuously, measure the duty cycle, D, of the transmitter output signal as described in <u>ANSI C63.10-2013 clause 11.6</u>.

3. Measure the average power of the transmitter. This measurement is an average over both the ON and OFF periods of the transmitter.

4. Adjust the measurement in dBm by adding $[10 \log (1 / D)]$, where D is the duty cycle.

3.1.3. Test Setup

3.1.4. Test Result of Maximum Peak Conducted Output Power

Please refer to the Appendix A.

1

3.2. Duty Cycle

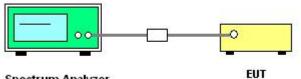
3.2.1. Limit

There is no limit requirement for Duty Cycle.

3.2.2. Test Procedure

<u>ANSI C63.10-2013 clause 11.6</u>: Measurements of duty cycle and transmission duration shall be performed using one of the following techniques:

1. A diode detector and an oscilloscope that together have a sufficiently short response time to permit accurate measurements of the ON and OFF times of the transmitted signal.


2. The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the ON and OFF times of the transmitted signal:

① Set the center frequency of the instrument to the center frequency of the transmission.

- (2) Set $RBW \ge OBW$ if possible; otherwise, set RBW to the largest available value.
- ③ Set VBW \geq RBW. Set detector = peak or average.

(4) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring the duty cycle shall not be used if $T \le 16.7$ µs.)

3.2.3. Test Setup

Spectrum Analyzer

3.2.4. Test Result of Duty Cycle

Please refer to the Appendix A.

3.3. 6dB Bandwidth and 99% Bandwidth

3.3.1. Limit

<u>47 CFR 15.247(a)(2)</u>: Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz. There is no limit requirement for 99% Bandwidth.

3.3.2. Test Procedure

1. The testing of 6dB Bandwidth follows <u>ANSI C63.10-2013 clause 11.8.1</u>: The steps for the first option are as follows:

- (1) Set RBW = 100 kHz.
- (2) Set the VBW \geq [3 × RBW].
- \bigcirc Detector = peak.
- (4) Trace mode = max hold.
- (5) Sweep = auto couple.
- 6 Allow the trace to stabilize.

(7) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

2. The testing of 99% Bandwidth follows <u>ANSI C63.10-2013 clause 6.9.3</u>: The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:

① The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.

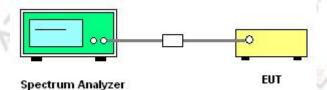
(2) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.

③ Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in <u>ANSI</u> <u>C63.10-2013 clause 4.1.5.2</u>.

(4) Step a) through step c) might require iteration to adjust within the specified range.

(5) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.

(6) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.


(7) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at

the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.

(8) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

3.3.3. Test Setup

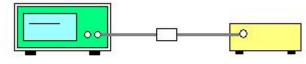
T3

3.3.4. Test Result of 6dB Bandwidth and 99% Bandwidth

Please refer to the Appendix A.

AT3

3.4. Power Spectral Density


3.4.1. Limit

<u>47 CFR 15.247(e)</u>: For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

3.4.2. Test Procedure

<u>ANSI C63.10-2013 clause 11.10.2</u>: The following procedure shall be used if maximum peak conducted output power was used to determine compliance, and it is optional if the maximum conducted (average) output power was used to determine compliance:

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to 3 kHz.
- 4. Set the VBW \geq [3 × RBW].
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 3.4.3. Test Setup

Spectrum Analyzer

EUT

3.4.4. Test Result of Power Spectral Density

Please refer to the Appendix A.

AT 3L

3.5. Conducted Band Edge

3.5.1. Limit

47 CFR 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

3.5.2. Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 11.13.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.


3. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Conducted Band Edge measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the 100 kHz bandwidth within the band that contains the highest level of the desired power when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

4. Measure and record the results in the test report.

Spectrum Analyzer

5. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.5.3. Test Setup

3.5.4. Test Result of Conducted Band Edge Please refer to the Appendix A.

AT3

3.6. Conducted Spurious Emission

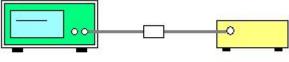
3.6.1. Limit

<u>47 CFR 15.247(d)</u>: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

3.6.2. Test Procedure

1. The testing follows <u>ANSI C63.10-2013 clause 7.8.8</u>.

2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.


3. Set to the maximum power setting and enable the EUT transmit continuously.

4. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.

5. Measure and record the results in the test report.

6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.6.3. Test Setup

Spectrum Analyzer

EUT

3.6.4. Test Result of Conducted Spurious Emission

Please refer to the Appendix A.

3.7. Radiated Spurious Emission and Restricted Band

3.7.1. Limit

<u>47 CFR 15.247(d)</u>: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

<u>47 CFR 15.205(a)</u>: Only spurious emissions are permitted in any of the frequency bands listed below:

Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)
0.090-0.110	12.29-12.293	149.9-150.05	1660-1710	8.025-8.5
0.495-0.505	12.51975-12.52025	156.52475-156.52525	1718.8-1722.2	9.0-9.2
2.1735-2.1905	12.57675-12.57725	156.7-156.9	2200-2300	9.3-9.5
4.125-4.128	13.36-13.41	162.0125-167.17	2310-2390	10.6-12.7
4.17725-4.17775	16.42-16.423	167.72-173.2	2483.5-2500	13.25-13.4
4.20725-4.20775	16.69475-16.69525	240-285	2690-2900	14.47-14.5
6.215-6.218	16.80425-16.80475	322-335.4	3260-3267	15.35-16.2
6.26775-6.26825	25.5-25.67	399.9-410	3332-3339	17.7-21.4
6.31175-6.31225	37.5-38.25	608-614	3345.8-3358	22.01-23.12
8.291-8.294	73-74.6	960-1240	3600-4400	23.6-24.0
8.362-8.366	74.8-75.2	1300-1427	4500-5150	31.2-31.8
8.37625-8.38675	108-121.94	1435-1626.5	5350-5460	36.43-36.5
8.41425-8.41475	123-138	1645.5-1646.5	7250-7750	Above 38.6

<u>47 CFR 15.209(a)</u>: The emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

AT3

3.7.2. Test Procedure

1. The testing follows ANSI C63.10-2013 clause 11.11 & 11.12.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.

3. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

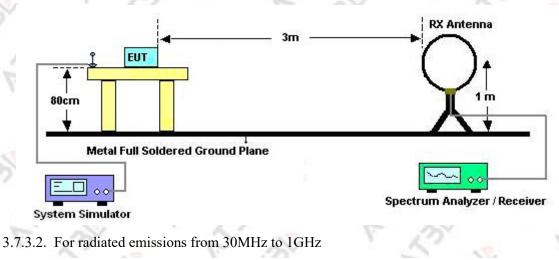
5. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Pre-amp Factor = Level.

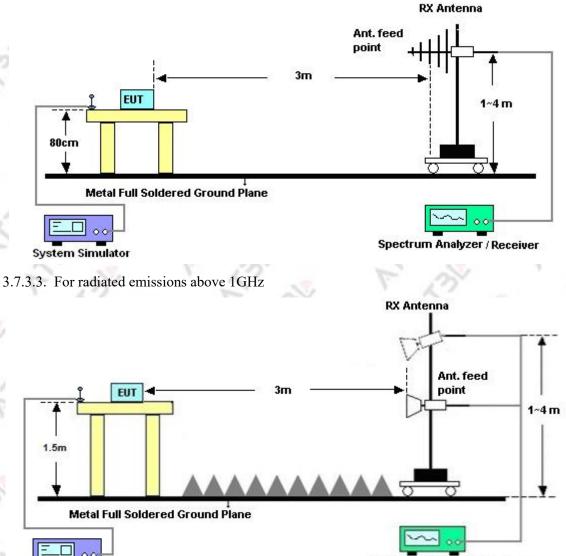
6. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.

7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than peak limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

8. Use the following spectrum analyzer settings:

- ① Span shall wide enough to fully capture the emission being measured;
- ② When frequency < 1 GHz:
- Set RBW=100 kHz; VBW \geq RBW; Sweep = auto; Detector function = peak; Trace = max hold;
- (3) When frequency ≥ 1 GHz:
 - Set RBW = 1 MHz; VBW = 3 MHz for peak measurement;


• Set RBW = 1 MHz; VBW = 10 Hz, when duty cycle is no less than 98 percent or VBW \geq 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.



3.7.3. Test Setup

System Simulator

3.7.3.1. For radiated emissions below 30MHz

Spectrum Analyzer / Receiver

- 3.7.4. Test Result of Radiated Spurious Emission
 - 3.7.4.1. For 9 kHz ~ 30 MHz Please refer to the Appendix B.

AT3L

- 3.7.4.2. For 30 MHz ~ 1 GHz Please refer to the Appendix B.
- 3.7.4.3. For 1 GHz ~ 18GHz Please refer to the Appendix B.
- 3.7.4.4. For above 18GHz Please refer to the Appendix B.

Please refer to the Appendix B.

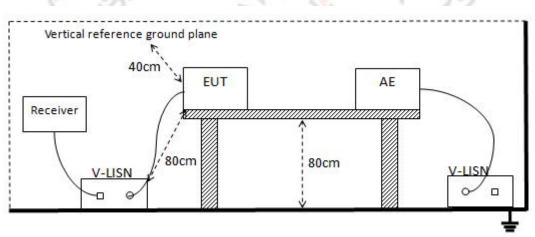
3.8. AC Power-Line Conducted Emission

3.8.1. Limit

<u>47 CFR 15.207(a)</u>: For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table:

Encourage of amission (MIIT)	Conducted limit (dBµV)				
Frequency of emission (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

*Decreases with the logarithm of the frequency.


3.8.2. Test Procedure

1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.

- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.

8. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9 kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.8.3. Test Setup

R

R. F.

RE

F.S.

EL P

F3N

N

The state

ESS.

17.

S

S.L.

K31

N

135

R. Bar

S.F.

K SS

F3F

S.L.

Kaji

F3N

PF

131

E.S.

F35

135

E B

EL.

N.F.

C.S.

E.F.

E.S.

E Star

K.F.

K3N

E.S.

2 P

K3N

E.S.

E35

E35

E B

L'SS

K35

E BY

E B

E B

E B

F35

K35

K35

T. B

R. Br

Far

E B

4

1

4

B

E Star

E B

E.S.

E 35

131

F3V

E B

E BE

K3N

÷

A.S.

EL B

P

224

ź

3.8.4. Test Result of AC Power-Line Conducted Emission Please refer to the Appendix C. P

RE

131

R. P.

17 B

F31

L'ST

131

131

E B

12 P

K3N

B

F.35

E BE

K3V

E

K35

E.S.

2 P

S.F.

12 miles

K 35

K35

E35

E B

K31

K. But

K 35

35

F

E.S.

L'B

E Star

23 P

EL.

E Star

K31

E.F.

P

1

E SS

AT3

3.9. Antenna Requirement

3.9.1. Standard Requirement

According to <u>47 CFR 15.203</u>, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

3.9.2. EUT Antenna

The antenna used for the EUT is PCB antenna, which meets the antenna requirements.

P

S. S.

135

F35

Kal

F3N

2

Kal

F3N

RE

135

13h

4 mil

F35

AN CAL

3

S.L.

K31

R?

K35

R. Bar

S.F.

K35

F.Sh

Report No.:SHATBL2402001W05

B

E BE

R. S.

ESS -

K35

K35

E B

E B

R.S.

K35

K3V

535

E B

E.S.

Far

E B

4

1

4

B

F35

÷

L.S.

EL.

P

24

ź

4. Test Setup Photographs

F.SV

F35

25th

E B

2 P

Kr.

E.S.

E.S.

F.S.

E.F.

E.S.

E B

K3N

E.S.

Please refer to the Appendix D. F.

P

* * * * * END OF THE REPORT * * * *

F. Sh

K3V

E

K31

ESS .

2 P

F. Sh

135

F350

E B

K3

E.S.

K35

Fall

F.SN

E BY

12 P

K3N

P

RE

R. P.

E B

A31

F. B

E?

E Star

E B

K35

E St

FBE

RE

E.F.

E.S.

K31

FBU

E.S.

E BE

K3N

ESS.

E BE

E31

1

F.Sh

Report No.:SHATBL2402001W05

Appendix A _ Conducted Test Data

A_3.1.4. Test Result of Maximum Peak Conducted Output Power

Temperature:	23.4 °C	Relative Humidity:	55%RH
Test Voltage:	DC 3.3V	Test Mode:	TX Mode1/2/3
V B	Par S	× 12	E F 4

Test Channel	Frequency	Average Conducted Output Power	Peak Conducted Output Power	LIMIT
	(MHz)	(dBm)	(dBm)	dBm
Mode1 CH00	2402	0.93	1.04	30
Mode2 CH19	2440	1.05	1.13	30
Mode3 CH39	2480	1.11	1.19	30

5	2 5	EIRP Power		E al	
Test Channel	Frequency	Peak Conducted Output Power	Antenna Gain	EIRP Power	LIMIT
	(MHz)	(dBm)	(dBi)	(dBm)	dBm
Mode1 CH00	2402	1.04	2.30	3.04	36
Mode2 CH19	2440	1.13	2.30	3.43	36
Mode3 CH39	2480	1.19	2.30	3.49	36

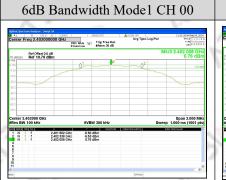
Note: Our power sensor test AVG power has no duty cycle display. The power sensor measures AVG power is Burst power. The software has considered the factor of the duty cycle factor, so it is unnecessary to add it again.

3.2.4. Test Result of Duty Cycle

	Temperature:	23.4 °C	Relative Humidity:	55%RH
4	Test Voltage:	DC 3.3V	Test Mode:	TX Mode 2

Aelle	nt So	ectrum	Anti	yzer - Swept	54							-
			RF.	20 R	AG	PNO: F	151 -+- 1	E 241 Frig: Free Run Atten: 22 dB	Avg Avg	Type: Log-Pwr Hold: 1/1	19	IAM Feb 04, 2024
10 d	iB/di		Ref (offset 11 d 22.00 dB	B							264.0 µs 251 dBm
120 120 200			_	¢'-		9	241			F		
-18.0			_									
-49.0		400	4.0	and the second second			hephots	R		Visition		-
Cer Res	nter BV	1.0	MH	0000 GH	z		#VBW 1				p 2.000 ms	Span 0 Hz (1001 pts)
123456789	Ν Δ1 Δ1		t	۵) ۵)	284.0 µs 410.0 µs 624.0 µs		0.251 dB 4.060 d -4.398 d	m B	FUNCTER CONST	in	UNCONVELIE	
9 10 11												

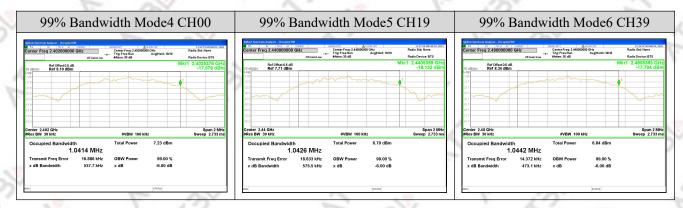
Report No.:SHATBL2402001W05


A_3.3.4. Test Result of 6dB Bandwidth and 99% Bandwidth

Temperature:	23.4°C	Relative Humidity:	55%RH
Test Voltage:	DC 3.3V	Test Mode:	TX Mode1/2/3

8

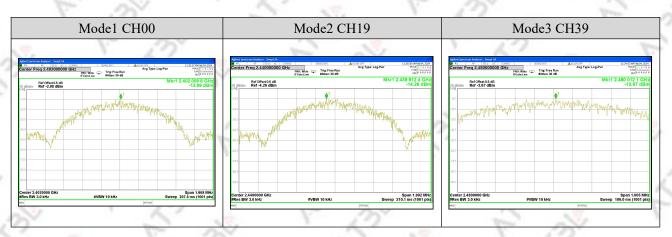
Frequency		6dB Bandwidth (kHz)	99% Bandwidth (MHz)	6dB Bandwidth Limit(kHz)	Result
D	2402 MHz	656	1.0414	≥500kHz	PASS
1Mbps	2440 MHz	664	1.0426	≥ <mark>500kHz</mark>	PASS
1	2480 MHz	670	1.0442	≥500kHz	PASS


6dB Bandwidth

	1					-		
1		00000000 GHz	SENSE SVIT	ee Run	ALDOV OFF Avg Type: Lo	g-Par	112721AM Feb 0 79402 1 2 TYPE STW Det P. P	3450
div	Ref Offse Ref 10.3					Mkr3	2.440 008	
			01	4 3	02			
			y		- V		-	6.71 alba
				_		-		
				_		~		
	-				_			_
				-				-
	_							-
				-				_
	140000 G 100 kHz	Hz	#VBW 300 kH	Hz		Sweep 1.	Span 2.000 200 ms (100	
		2.439 674 GHz	-5.99 dBm	UNITIAN	NUTRINUM	RUNCED I	STREET.	<u>~</u>
	ł	2,440 338 GHz	-6.13 dBm					
1	1	2.440 008 GHz	0.22 dBm					_
								=

	m Andron - S		-		-		_	
RL	RF 50	000000 GHz	0: Wide 🗣	NSE.NT Trig: Free Run #Atten: 30 dB	Avg *	fype: Log-Pwr	194	REPERT
dBldiv	Ref Offset 0					M	r3 2.480 (0.	016 GH 58 dBr
			A1	3	-	A2		
12	-		~			× _		5.42.0
4	-						<hr/>	
		-					-	
1								
4	_							
4	-							
	80000 GH: 100 kHz	z	#VBW	/ 300 kHz		Sweep	Span 2 1.000 ms	2.000 MH (1001 pt
1 MOOR 111		×	Ÿ		TUNITON MOR		NOTION VALUE	
N N	ł	2.479 678 GHz 2.480 348 GHz	-6.65 d -6.65 d	Bm				
N 1	1	2.490 016 GHz	0.58 d	Bm				

99% Bandwidth



Report No.:SHATBL2402001W05

A_3.4.4. Test Result of Power Spectral Density

Temperature:	23.4 °C	Relative Humidity:	55%RH
Test Voltage:	DC 3.3V	Test Mode:	TX Mode1/2/3
	No. 1 17		

	Frequency		\mathbf{L} :: \mathbf{L} (2) \mathbf{L} (\mathbf{J} (\mathbf{D})	Develt
Frequency			Limit (3kHz/dBm)	Result
N F	2402 MHz	-12.99	≤8	PASS
1M bps	2440 MHz	-14.26	≤8	PASS
T 23	2480 MHz	-13.67	≤8	PASS

A_3.5.4. Test Result of Conducted Band Edge

Temperature:	23.4 °C	Relative Humidity:	55%RH
Test Voltage:	DC 3.3V	Test Mode:	TX Mode 1/2/3

Mode1 CH00	Mode3 CH39
Spectrum Analyzer Swept SA 16 50 60 50/262 1139/1144/Feb/04, 2024 16 50 50 62 1139/1144/Feb/04, 2024 enter Freg 2.375000000 GHz PH00, Fast Trip Free Run Avg Type: Log-Pwr PM04/113/8 35 PH00, Fast Trip Free Run Avg Type: Log-Pwr PM04/119/119/119/119/119/119/119/119/119/11	Aglent Spectrum Analyzer Swegt SA W RL 69 190 at CONRC SPECENT Aug Type: Log-Pwr 11:25:20 AM P6:04, 2 Center Freq 2.505000000 GHz PR0; Fee Trig: Fee Padit
Ref Orbet 0.5 dB Ref Orbet 0.5 dB Antern 36 dB Carper Per Per Carper Control of Carp	MAtten: 30 dB Mkr2 2.520 00 G 10 4B/div Ref Offset 0.5 dB 10 4B/div Ref 10.79 dBm -55.65 dB -55.65 dB
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	070
20 20 20 20 21 22 23 23 23 23 24 20 24 25 24 25 24 25 24 25 24 25 24 25 24 25 24 25 24 25 24 25 24 25 25 24 25 25 25 24 25 25 25 25 25 25 25 25 25 25	22 732 352 Start 2,43000 GHz Start 2,43000 GHz Stop 2,58000 G #Res BW 100 kHz Sweep 14,40 ms (1001 p
21 (0005) REG (52) (54) (56) (56) (56) (56) (56) (56) (56) (56	Institution Filterion Filterion
	6 6 6 7 8
G STATUS	MSG STATUS

A_3.6.4. Test Result of Conducted Spurious Emission

Temperature:	23.4 °C	Relative Humidity:	55%RH
Test Voltage:	DC 3.3V	Test Mode:	TX Mode 1/2/3

Mode1 CH00	Mode2 CH19	Mode3 CH39
Alter Spectra Augur Swy D	Xing two holding log(b) All	Na ka hanna ka hang ba Mara - an -
2 AL 17 200 AC COMEC 2000 CMI ALSO AND A STORE Log-Per THEXE 10.3.55 Center Freq 12.515000000 CMI PBCT Trig Free Rus Arg Type: Log-Per THEXE 10.3.55 Trig Free Rus Attack 16 dB arg PP PP PP P	Center Freq 12.515000000 GHz Avg Type: Log-Par Trig: Free Run III Centsow Atten: 12 dB certPPPPP	Center Freq 12.515000000 GHz Avg Type: Log-Pwr PMC [2:34 PMC [2:34] If Gals.Jaw Atten: 14 dB Gals.Jaw Gal PPPP
MM/2 2 40/2 2 04/2 2 04/2 2 04/2 04/2 4 0/2 2 04/2 04/	Archnets 6 MM/2 2,439 6 cH, Vietaux 42.00 dH	Berofine 25 as MMr 22 4880 2 GH 0 additive. # 72 additive. -1.12 dBH 2 additive. -1.12 dBH
Start 30 MHz Stop 25.00 GHz IRes BW 100 kHz #VBW 300 kHz Sweep 2.387 s (32001 pts)	Start 30 MHz Stop 25.00 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 2.387 s (32001 pts)	Start 30 MHz Stop 25.00 C #Res BW 100 kHz #VBW 300 kHz Sweep 2.387 s (32001
	Exercise Control Contro Control <thcontrol< th=""> <th< td=""><td>Image: Control base of the state o</td></th<></thcontrol<>	Image: Control base of the state o

* * * * * END OF APPENDIX A * * * *

Appendix B _ Radiated Test Data

B_3.7.4. Test Result of Radiated Spurious Emission

3.7.4.1. For 9 kHz ~ 30 MHz

(9kHz -30MHz)

Temperature:	23.4°C	Relative Humidity	55%RH
Test Voltage:	DC 3.3V	Polarization:	TX Mode
Test Mode:	TX Mode	5 2	F B

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

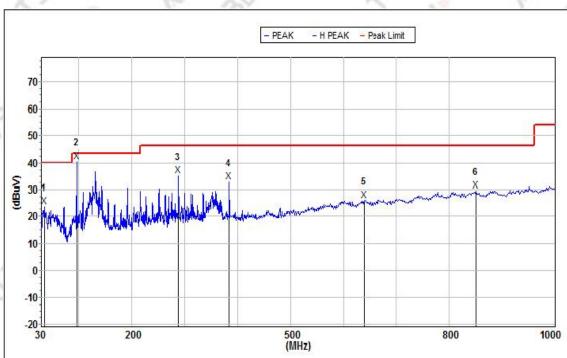
Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits($dB\mu V$) + distance extrapolation factor.

Report No.:SHATBL2402001W05

3.7.4.2. For 30 MHz ~ 1 GHz

(30MHz -1000MHz)


Ì	Temperature:	23.4°C	Relative Humidity:	55%RH
	Test Voltage:	DC 3.3V	Phase:	н ГД
	Test Mode:	TX Mode 1	S	S F

Remark:

1. Margin = Result (Result = Reading + Factor)-Limit

2. Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain

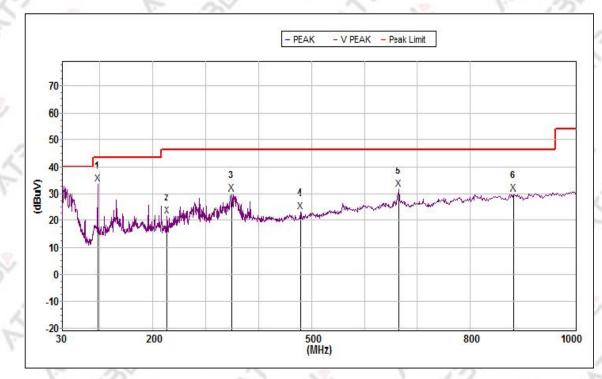
2

Mode 1 Horizontal

200		~~	1.5	V	12	¥.		2 3	34	
Mk.	Freq.	Level	Limit	Margin	Deg.	Hi.	Ant.F/G.	Amp.G.	Cbl.L.	Pol.
IVIK.	(MHz)	(dBuV)	(dBuV)	(dB)	(deg.)	(cm)	(dB)	(dB)	(dB)	F01.
Peak:										
1	36.190557	23.6	40.0	16.4	322	400	17.7	32.0	0.5	Н
2	95.930246	40.4	43.5	3.1	0	216	14.4	32.0	1.0	Н
3	287.990423	35.4	46.0	10.6	212	100	18.1	32.1	2.1	Н
4	383.931815	32.9	46.0	13.1	174	100	20.8	32.3	2.4	Н
5	638.368606	26.1	46.0	19.9	305	200	25.9	31.1	3.2	Н
6	849.544511	29.8	46.0	16.2	290	100	28.3	31.6	3.6	Н

Report No.:SHATBL2402001W05

(30MHz -1000MHz)


()			- A -	
	Temperature:	23.4°C	Relative Humidity:	55%RH
	Test Voltage:	DC 3.3V	Phase:	V
	Test Mode:	TX Mode 1	5 3	V V D

Remark:

1. Margin = Result (Result = Reading + Factor)–Limit

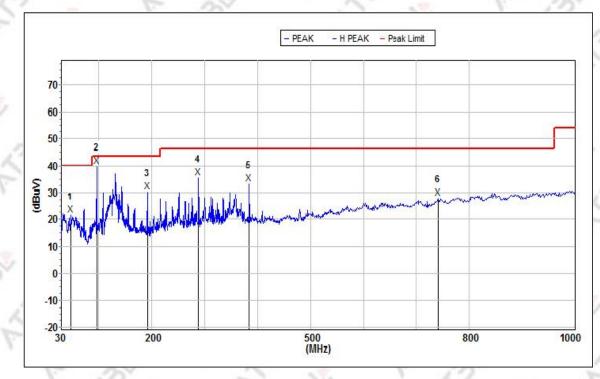
2. Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain

Mode 1 Vertical

					N	· /) ·					
	Mk.	Freq.	Level	Limit	Margin	Deg.	Hi.	Ant.F/G.	Amp.G.	Cbl.L.	D-1
		(MHz)	(dBuV)	(dBuV)	(dB)	(deg.)	(cm)	(dB)	(dB)	(dB)	Pol.
÷	Peak:										
	1	95.930246	33.7	43.5	9.8	282	300	14.7	32.0	1.0	V
	2	227.690636	21.9	46.0	24.1	290	201	17.9	32.0	1.8	V
1	3	350.476784	30.1	46.0	15.9	8	201	20.3	32.2	2.3	V
	4	479.685845	23.4	46.0	22.6	284	101	22.8	31.4	2.6	V
2	5	665.803487	31.7	46.0	14.3	352	101	26.4	31.2	3.2	V
	6	881.406736	30.1	46.0	15.9	20	400	28.9	31.8	3.7	V
	1. 1							and the second se			

Report No.:SHATBL2402001W05

(30MHz -1000MHz)


5	JUILE 100010112)		1/2 ·	
	Temperature:	23.4°C	Relative Humidity:	55%RH
2	Test Voltage:	DC 3.3V	Phase:	Horizontal
Y	Test Mode:	TX Mode 3	5 3	1 5 3

Remark:

1. Margin = Result (Result = Reading + Factor)–Limit

2. Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain

Mode 3 Horizontal

			1 N		N	2					
	Mk.	Freq.	Level	Limit	Margin	Deg.	Hi.	Ant.F/G.	Amp.G.	Cbl.L.	Pol.
	IVIK.	(MHz)	(dBuV)	(dBuV)	(dB)	(deg.)	(cm)	(dB)	(dB)	(dB)	POI.
÷	Peak:										
	1	47.909933	21.6	40.0	18.4	0	400	18.1	31.9	0.6	Н
	2	95.930246	40.0	43.5	3.5	0	200	14.4	32.0	1.0	Н
	3	191.745028	30.3	43.5	13.2	216	200	15.4	31.9	1.6	Н
3	4	287.990423	35.5	46.0	10.5	225	101	18.1	32.1	2.1	Н
2	5	383.931815	33.2	46.0	12.8	183	101	20.8	32.3	2.4	Н
	6	740.958471	28.1	46.0	17.9	68	101	27.0	31.2	3.4	Н
	1. 1		100 million (1990)						S		

Report No.:SHATBL2402001W05

(30MHz -1000MHz)

50			23 h	
	Temperature:	23.4°C	Relative Humidity:	55%RH
2	Test Voltage:	DC 3.3V	Phase:	Vertical
Y	Test Mode:	TX Mode 3	5	V F D

Remark:

1. Margin = Result (Result = Reading + Factor)–Limit

2. Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain

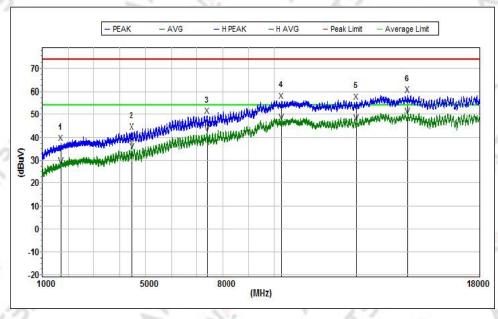
- PEAK - V PEAK - Peak Limit 70-60 50 5 40 6 Х (dBuV) 2 Х 30 20 10 0 -10--20-1 30 500 (MHz) 1000 200 800

			25			100		10			2
	Mk.	Freq.	Level	Limit	Margin	Deg.	Hi.	Ant.F/G.	Amp.G.	Cbl.L.	Pol.
	IVIK.	(MHz)	(dBuV)	(dBuV)	(dB)	(deg.)	(cm)	(dB)	(dB)	(dB)	POI.
	Peak:										
١	1	95.930246	34.0	43.5	9.5	264	200	14.7	32.0	1.0	V
	2	215.645574	25.3	43.5	18.2	264	200	18.2	31.9	1.7	V
	3	355.427290	31.3	46.0	14.7	169	200	20.5	32.2	2.3	V
	4	496.804694	23.7	46.0	22.3	359	143	23.0	31.2	2.7	V
2	5	663.472897	34.5	46.0	11.5	0	100	26.4	31.2	3.2	V
2	6	922.515749	30.5	46.0	15.5	350	400	29.3	31.9	3.8	V
									1 miles		

Mode 3 Vertical

Report No.:SHATBL2402001W05

3.7.4.3. For 1 GHz ~ 18GHz


(1000MHz-18000MHz)

Temperature:	22.3°C	Relative Humidity:	51%RH
Test Voltage:	DC 3.3V	Phase:	Horizontal
Test Mode:	TX Mode 1	V K	T S

Remark:

1. Margin = Result (Result = Reading + Factor)–Limit

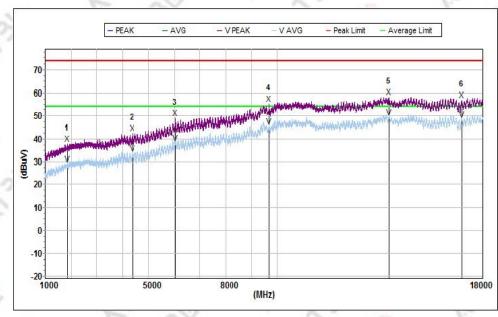
2. Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain

Mode 1 Horizontal

Mk.	Freq.(MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Deg. (deg.)	Hi. (cm)	Ant.F/G. (dB/m)	Amp.G. (dB)	Cbl.L. (dB)	Pol.
Peak:	N.	12	-	1	2		1	S	9.	
1	1728.450000	37.4	74.0	36.6	360	300	25.2	57.2	2.6	Н
2	4491.800000	42.6	74.0	31.4	360	300	31.2	57.3	3.5	Н
3	7396.250000	49.5	74.0	24.5	360	300	36.3	57.0	4.6	Н
4	10304.950000	56.0	74.0	18.0	360	300	38.4	56.6	5.5	Н
5	13195.800000	55.5	74.0	18.5	360	300	39.9	56.5	6.2	Н
6	15190.750000	58.6	74.0	15.4	360	300	38.8	55.9	6.3	Н
Avg	V	13		2	~		N.	12	-	
10	1728.450000	27.6	54.0	26.4	360	300	25.2	57.2	2.6	Н
2	4491.800000	34.0	54.0	20.0	360	300	31.2	57.3	3.5	Н
3	7396.250000	41.9	54.0	12.1	360	300	36.3	57.0	4.6	Н
4	10304.950000	46.6	54.0	7.4	360	300	38.4	56.6	5.5	Н
5	13195.800000	46.3	54.0	7.7	360	300	39.9	56.5	6.2	Н
6	15190.750000	49.5	54.0	4.5	360	300	38.8	55.9	6.3	Н

Report No.:SHATBL2402001W05

(1000MHz-18000MHz)


(-	••••••••••••••••••••••••••••••••••••••		- C	the second se
	Temperature:	22.3°C	Relative Humidity:	51%RH
	Test Voltage:	DC 3.3V	Phase:	Vertical
	Test Mode:	TX Mode 1	S	S 7 2

Remark:

1. Margin = Result (Result = Reading + Factor)-Limit

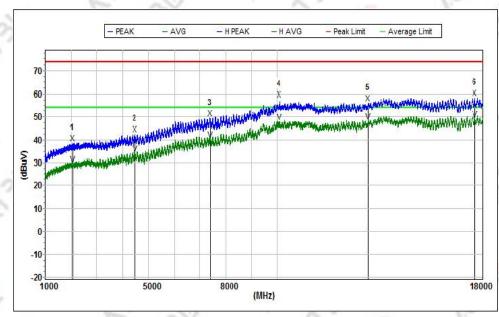
Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain

Mode 1 Vertical

Mk.	Freq.(MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Deg. (deg.)	Hi. (cm)	Ant.F/G. (dB/m)	Amp.G. (dB)	Cbl.L. (dB)	Pol.
Peak:	1 12		10	125			2	1	1	
1	1852.550000	37.9	74.0	36.1	360	200	25.1	56.7	2.6	V
2	4383.850000	42.5	74.0	31.5	360	200	30.8	57.3	3.5	V
3	6043.050000	49.2	74.0	24.8	360	200	33.9	57.0	4.1	V
4	9689.550000	55.3	74.0	18.7	360	200	38.0	56.7	5.4	V
5	14351.800000	58.3	74.0	15.7	360	200	39.5	55.9	6.2	V
6	17170.400000	56.8	74.0	17.2	360	200	38.7	56.2	6.9	V
Avg	N 19	-	1	2	1		12			5
1	1852.550000	29.1	54.0	24.9	360	200	25.1	56.7	2.6	V
2	4383.850000	33.7	54.0	20.3	360	200	30.8	57.3	3.5	V
3	6043.050000	38.3	54.0	15.7	360	200	33.9	57.0	4.1	V
4	9689.550000	45.3	54.0	8.7	360	200	38.0	56.7	5.4	V
5	14351.800000	49.3	54.0	4.7	360	200	39.5	55.9	6.2	V
6	17170.400000	48.5	54.0	5.5	360	200	38.7	56.2	6.9	V

Report No.:SHATBL2402001W05

(1000MHz -18000MHz)


(-			1.12	
	Temperature:	22.3°C	Relative Humidity:	51%RH
	Test Voltage:	DC 3.3V	Phase:	Horizontal
	Test Mode:	TX Mode 3	S	S 7 2

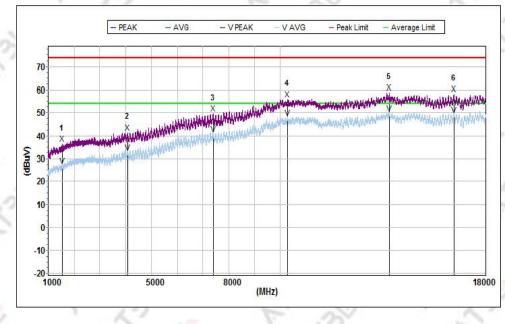
Remark:

1. Margin = Result (Result = Reading + Factor)–Limit

2. Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain

Mode 3 Horizontal

Mk.	Freq.(MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Deg. (deg.)	Hi. (cm)	Ant.F/G. (dB/m)	Amp.G. (dB)	Cbl.L. (dB)	Pol.
Peak:	1 12		1	13			2	1	1	
1	2053.150000	38.7	74.0	35.3	360	101	25.5	56.4	2.7	Н
2	4490.100000	42.4	74.0	31.6	360	101	31.2	57.3	3.5	Н
3	7403.050000	49.4	74.0	24.6	360	101	36.3	57.0	4.6	Н
4	10089.900000	57.5	74.0	16.5	360	101	38.3	56.5	5.4	Н
5	13541.750000	56.0	74.0	18.0	360	101	39.9	56.2	6.2	Н
6	17691.450000	58.3	74.0	15.7	360	101	40.8	56.1	7.0	Н
Avg	N 12	-	E.	2	0		15			1
1	2053.150000	29.3	54.0	24.7	360	101	25.5	56.4	2.7	Н
2	4490.100000	33.8	54.0	20.2	360	101	31.2	57.3	3.5	Н
3	7403.050000	40.3	54.0	13.7	360	101	36.3	57.0	4.6	Н
4	10089.900000	47.8	54.0	6.2	360	101	38.3	56.5	5.4	Н
5	13541.750000	48.1	54.0	5.9	360	101	39.9	56.2	6.2	Н
6	17691.450000	49.2	54.0	4.8	360	101	40.8	56.1	7.0	Н



Report No.:SHATBL2402001W05

Temperature:	22.3°C	Relative Humidity:	51%RH
Test Voltage:	DC 3.3V	Phase:	Vertical
Test Mode:	TX Mode 3	E S	1 22

Remark:

- 1. Margin = Result (Result = Reading + Factor)-Limit
- 2. Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain

Mode 3	Vertical
--------	----------

Mk.	Freq.(MHz)	Level	Limit	Margin	Deg.	Hi.	Ant.F/G.	Amp.G.	Cbl.L.	Pol
IVIK.	rieq.(wiiiz)	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	(deg.)	(cm)	(dB/m)	(dB)	(dB)	1 01.
Peak:	· K	120	1	15			2	1	1	
1	1535.500000	36.6	74.0	37.4	360	200	24.6	58.0	2.5	V
2	4062.550000	41.6	74.0	32.4	360	200	30.6	57.2	3.3	V
3	7406.450000	49.6	74.0	24.4	360	200	36.1	57.0	4.6	V
4	10296.450000	55.9	74.0	18.1	360	200	38.3	56.6	5.5	V
5	14248.950000	58.8	74.0	15.2	360	200	39.6	55.9	6.2	V
6	16754.750000	58.3	74.0	15.7	360	200	37.9	56.2	6.8	V
Avg	N 13	_	1	2	1		12	. 10	50	1
1	1535.500000	27.1	54.0	26.9	360	200	24.6	58.0	2.5	V
2	4062.550000	32.5	54.0	21.5	360	200	30.6	57.2	3.3	V
3	7406.450000	40.7	54.0	13.3	360	200	36.1	57.0	4.6	V
4	10296.450000	47.6	54.0	6.4	360	200	38.3	56.6	5.5	V
5	14248.950000	49.8	54.0	4.2	360	200	39.6	55.9	6.2	V
6	16754.750000	49.1	54.0	4.9	360	200	37.9	56.2	6.8	V

Note:

All TX Mode, the worst case is mode1&3, only show the worst case.

9

Report No.:SHATBL2402001W05

R

-

12h

R

175

R.

4 Sh

1º

E.F.

F

4

Ì

2ª

١

3.7.4.4. For above 18GHz

2º

R

P

K

R

2F

22 F

(above 18GHz)

(a	bove 180112)		1.1	Star Only
ł	Temperature:	22.3°C	Relative Humidity:	51%
	Test Voltage:	DC 3.3V	Test Mode:	TX Mode

v

52

Note:

3

Z

RE

N.F.

N.F.

24

SE

1. Other 18G-25G Emission detected are more than 20dB below the limit.

R

E.

Ŷ

A.

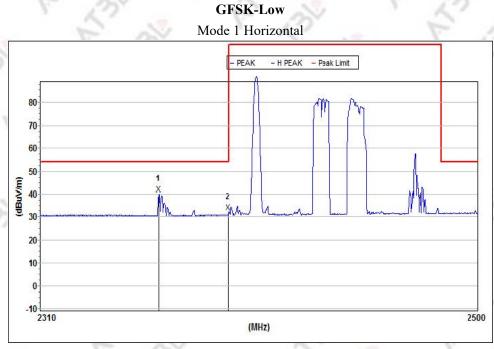
R

L'SN

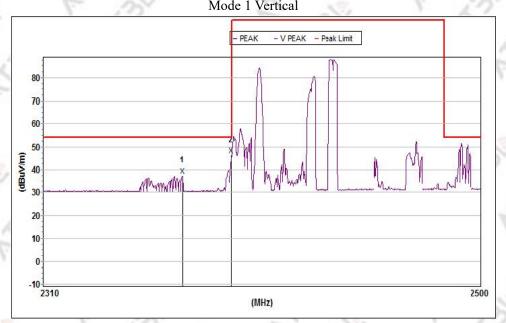
K B

K Shi

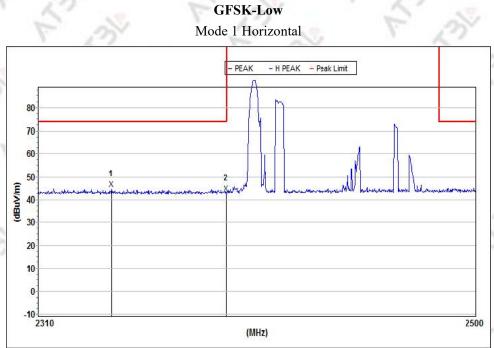
R.F.


B

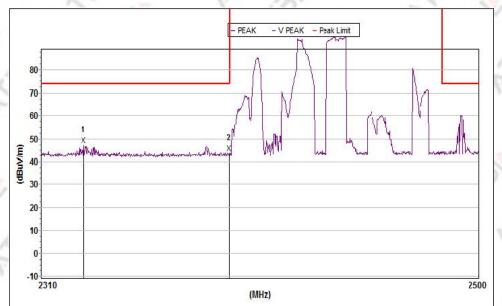
F35


K31

B_3.7.5 Test Result of Restricted Band

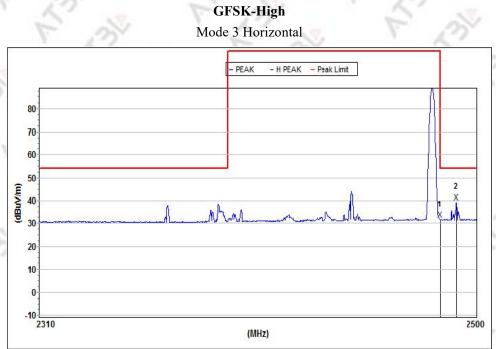


			1 July 1					· / · · · · · · · · · · · · · · · · · ·
Mk.	Frequency	Level	Limit	Margin	Ant.F/G.	Amp.G.	Cbl.L.	D-1
	(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB/m)	(dB)	(dB)	Pol.
Avg	5 3		2	N.	N K	2		-
1	2360.015611	40.1	54.0	13.9	27.0	56.9	6.3	Н
2	2390.000000	32.1	54.0	21.9	27.1	56.9	6.4	Н
1		E AN	Mada	1 Vortical	1. arts-	1-	251	

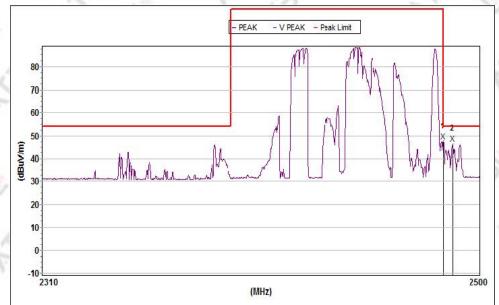

Mk.	Frequency	Level	Limit	Margin	Ant.F/G.	Amp.G.	Cbl.L.	Pol.
	(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB/m)	(dB)	(dB)	F 01.
Avg	12		F S	1	1	100	1	1
_ 1	2368.986692	37.3	54.0	16.7	26.8	56.9	6.3	V
2	2390.000000	46.1	54.0	7.9	26.9	56.9	6.4	V

Report No.:SHATBL2402001W05

Mk.	Frequency	Level	Limit	Margin	Ant.F/G.	Amp.G.	Cbl.L.	Pol.
	(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB/m)	(dB)	(dB)	
Peak:	12	1	- 20V	100	1		1	12
1	2340.694640	44.5	74.0	29.5	26.9	56.8	6.3	Н
2	2390.000000	42.7	74.0	31.3	27.1	56.9	6.4	Н
10000								

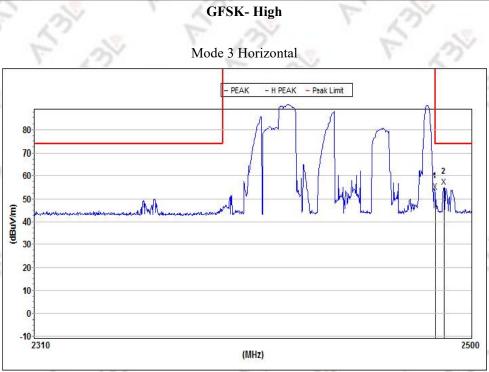

Mode 1 Vertical

Mk.	Frequency	Level		Margin	Ant.F/G.	Amp.G.	Cbl.L.	Pol.
Peak:	(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB/m)	(dB)	(dB)	2°
1	2327.779283	47.2	74.0	26.8	26.6	56.8	6.3	V
2	2390.000000	43.6	74.0	30.4	26.9	56.9	6.3	V

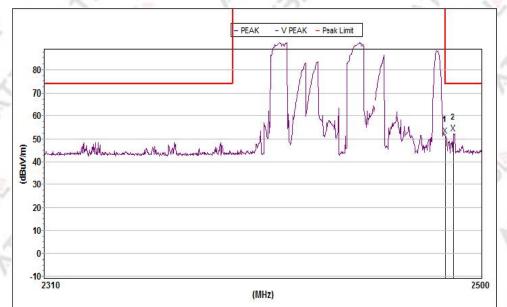

ATBL

Report No.:SHATBL2402001W05

Mk.	Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Ant.F/G. (dB/m)	Amp.G. (dB)	Cbl.L. (dB)	Pol.
Avg	12				K.		N.	12
1	2483.501000	31.7	54.0	22.3	27.5	57.1	6.5	Н
2	2490.729654	39.3	54.0	14.7	27.6	57.1	6.5	Н


Mode 3 Vertical

Mk.	Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Ant.F/G. (dB/m)	Amp.G. (dB)	Cbl.L. (dB)	Pol.
Avg	N 32	1	3		2 1		V 2	2
1	2483.501000	47.6	54.0	6.4	27.3	57.1	6.5	V
2	2487.778275	46.5	54.0	7.5	27.3	57.1	6.5	V


ATBL

Report No.:SHATBL2402001W05

Mk.	Frequency	Level	Limit	Margin	Ant.F/G.	Amp.G.	Cbl.L.	Pol.
	(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB/m)	(dB)	(dB)	
Peak:	15	1	2	- C.	12		1	B
1	2483.501000	53.3	74.0	20.7	27.5	57.1	6.5	Н
2	2487.385022	55.0	74.0	19.0	27.5	57.1	6.5	Н
A COMPANY OF A COMPANY								1. Sec

Mode 3 Vertical

Mk.	Frequency	Level	Limit	Margin	Ant.F/G.	Amp.G.	Cbl.L.	Pol.
	(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB/m)	(dB)	(dB)	1 01.
Peak:	5	F	2		2 2		N X	2
1	2483.501000	51.6	74.0	22.4	27.3	57.1	6.5	V
2	2487.188419	52.4	74.0	21.6	27.3	57.1	6.5	V

Note: All TX Mode, the worst case is mode1&3, only show the worst case.

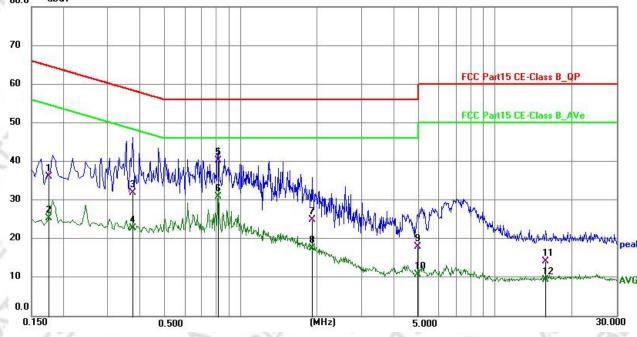
* * * * * END OF APPENDIX B * * * *

Appendix C _ AC Power-Line Conducted Emission Test Data

C_3.8.4. Test Result of AC Power-Line Conducted Emission	5
--	---

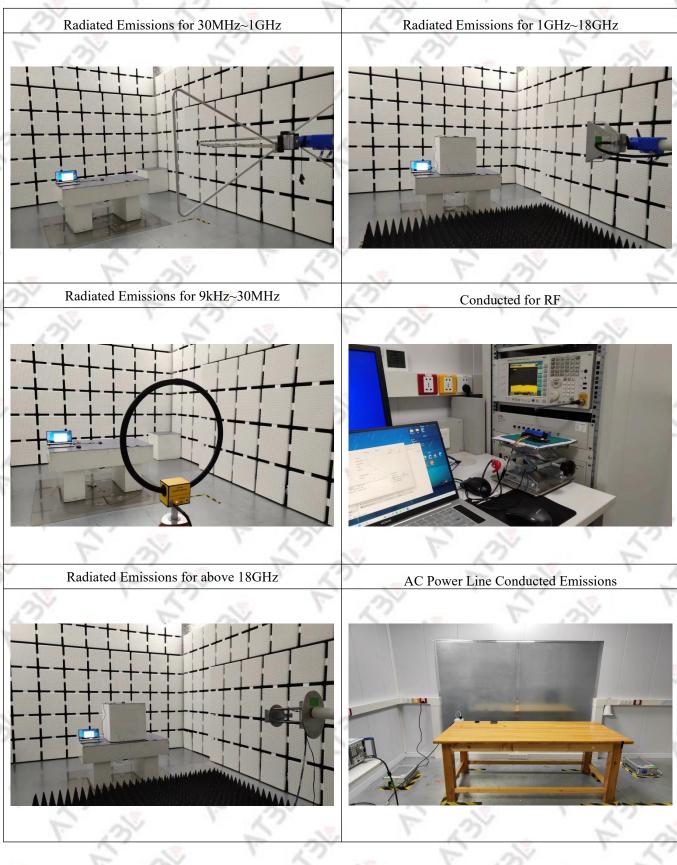
Temperature:	23.4°C	Relat	tive Humidity:	55%RH
Test Voltage:	AC 120V/60Hz	Phase	e:	L
Test Mode:	Mode 7	F as	1 33	7 2
mark:	- 13	2 3	1	2
All readings ar	e Quasi-Peak and Averag	ge values.		E al
Margin = Resu	lt (Result =Reading + Fa	ector)–Limit.	201	1 1
Factor=LISN f	actor+Cable loss+Limite	er (10dB)	5	5 3
) dBu¥				6. T
			FCC P	art15 CE-Class B_QP
			FCC P	at15 CE-Class B_AVe
1- NALANA	As the a deal of the left of the	hit has a second		
A A A A A A A A A A A A A A A A A A A	(V) WWW MANY WWWWW			
Am	mon war where and the star		MANA PAR 3 MA	the state of the s
	and antimution of addimination of	WWW. Washington war		WWWWWWWWWWWWWWWWWWW
		A REAL PROPERTY AND A REAL		11 *
			strate the back and work	A company and the second and and the second and the
o I				

2	T B		F B		T B S		F
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1923	29.97	10.87	40.84	63.94	-23.10	QP
2	0.1923	14.45	10.87	25.32	53.94	-28.62	AVG
3	0.4956	24.49	11.02	35.51	56.07	-20.56	QP
4	0.4956	15.18	11.02	26.20	46.07	-19.87	AVG
5	1.1103	19.39	11.27	30.66	56.00	-25.34	QP
6	1.1103	10.45	11.27	21.72	46.00	-24.28	AVG
7	2.5025	11.34	11.05	22.39	56.00	-33.61	QP
8	2.5025	3.78	11.05	14.83	46.00	-31.17	AVG
9	7.0663	11.52	10.90	22.42	60.00	-37.58	QP
10	7.0663	1.89	10.90	12.79	50.00	-37.21	AVG
11	17.8262	2.70	11.51	14.21	60.00	-45.79	QP
12	17.8262	-2.25	11.51	9.26	50.00	-40.74	AVG


Report No.:SHATBL2402001W05

_	5 201		17 12	2
Te	mperature:	23.4°C	Relative Humidity:	55%RH
Te	st Voltage:	AC 120V/60Hz	Phase:	N
Te	st Mode:	Mode 7	F 3	5 3

Remark:


- 1. All readings are Quasi-Peak and Average values.
- 2. Margin = Result (Result = Reading + Factor)–Limit.
- 3. Factor=LISN factor+Cable loss+Limiter (10dB)

80.0 dBuV

No.	Frequency (MHz)	Reading (dBuV)	Correct (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Remark
2	0.1758	14.61	10.80	25.41	54.68	-29.27	AVG
3	0.3755	21.00	10.87	31.87	58.38	-26.51	QP
4	0.3755	11.97	10.87	22.84	48.38	-25.54	AVG
5	0.8170	29.25	11.13	40.38	56.00	-15.62	QP
6	0.8170	19.85	11.13	30.98	46.00	-15.02	AVG
7	1.9182	14.05	10.83	24.88	56.00	-31.12	QP
8	1.9182	6.74	10.83	17.57	46.00	-28.43	AVG
9	4.9762	6.81	11.19	18.00	56.00	-38.00	QP
10	4.9762	-0.41	11.19	10.78	46.00	-35.22	AVG
11	15.8031	2.52	11.69	14.21	60.00	-45.79	QP
12	15.8031	-2.30	11.69	9.39	50.00	-40.61	AVG

Appendix D _ Test Setup

* * * * * END OF APPENDIX D * * * *