

1(1)

Author Data

Daoud Attayi

Oct. 31 – Nov. 04, 2003

Test Report No RIM-0073-0311-01

L6ARAO30GN

SAR Compliance Test Report

Testing Lab: Research In Motion Limited **Applicant:** Research In Motion Limited

> 305 Phillip Street 295 Phillip Street Waterloo, Ontario Waterloo, Ontario Canada N2L 3W8 Canada N2L 3W8

Phone: 519-888-7465 Phone: 519-888-7465 519-880-8173 519-888-6906 Fax: Fax: Web site: www.rim.net Web site: www.rim.net

Statement of **Compliance:**

Research In Motion Limited, declares under its sole responsibility that the product to which this declaration relates, is in conformity with the appropriate RF exposure standards, recommendations and guidelines. It also declares that the product was tested in accordance with the appropriate measurement standards, guidelines and

recommended practices. Any deviations from these standards, guidelines and

recommended practices are noted below:

(none)

Device Category: This wireless handheld is a portable device, designed to be used in direct contact with

the user's head, hand and to be carried in approved accessories when carried on the

user's body.

RF exposure environment: This wireless portable device has been shown to be in compliance for

localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in OET Bulletin 65 Supplement C (Edition 01-01), FCC 96-326 and IEEE Std. C95.1-1999 and had been tested in accordance with the measurement procedures specified in OET Bulletin 65 Supplement C (Edition 01-

Paul & Cardinal Danned Attain

01) and ANSI/IEEE Std. C95.3-1991.

Approved by: **Date Signatures**

Paul G. Cardinal, Ph.D.

Manager, Compliance & Certification

Nov. 24, 2003

Tested and documented by:

Daoud Attavi

Compliance Specialist

Nov. 05, 2003

2(2)

Author Data

Daoud Attayi

Oct. 31 – Nov. 04, 2003

Test Report No

RIM-0073-0311-01

L6ARAO30GN

CONTENTS

GENERAL INFORMATION	1
1.0 OPERATING CONFIGURATIONS AND TEST CONDITIONS	4
1.1 PICTURE OF HANDHELD	4
1.2 ANTENNA DESCRIPTION	4
1.3 HANDHELD DESCRIPTION	4
1.4 BODY WORN ACCESSORIES	5
1.5 HEADSETS	6
1.6 PROCEDURE USED TO ESTABLISHING THE TEST SIGNAL	6
2.0 DESCRIPTION OF THE TEST EQUIPMENT	6
2.1 SAR MEASUREMENT SYSTEM	6
2.2 DESCRIPTION OF THE TEST SETUP	8
2.2.1 HANDHELD AND BASE STATION SIMULATOR	8
2.2.2 DASY SETUP	8
3.0 ELECTRIC FIELD PROBE CALIBRATION	8
	<u> </u>
3.1 PROBE SPECIFICATION	9
3.2 PROBE CALIBRATION AND MEASUREMENT ERROR	9
4.0 SAR MEASUREMENT SYSTEM VERIFICATION	9
4.1 SYSTEM ACCURACY VERIFICATION for Head Adjacent Use	9
5.0 PHANTOM DESCRIPTION	10
6.0 TISSUE DIELECTRIC PROPERTY	11
6.1 COMPOSITION OF TISSUE SIMULANT	11
6.1.1 EQUIPMENT	11
6.1.2 PREPARATION PROCEDURE	11
6.2 ELECTRICAL PARAMETERS OF THE TISSUE SIMULATING LIQUID	12
6.2.1 EQUIPMENT	12
6.2.2 TEST CONFIGURATION	13
6.2.3 TEST PROCEDURE	13
7.0 SAR SAFETY LIMITS	16
8.0 DEVICE POSITIONING	17
	17
8.1 DEVICE HOLDER	18
8.2 DESCRIPTION OF TEST POSITION 8.2.1 TEST POSITION OF DEVICE BELATIVE TO HEAD	18
8.2.1 TEST POSITION OF DEVICE RELATIVE TO HEAD 8.2.1.1 DEFINITION OF THE "CHEEK" POSITION	19
	20
8.2.1.2 DEFINITION OF THE "TILTED" POSITION 8.2.2 BODY-WORN TEST CONFIGURATION	20
0.2.2 BODT-WORN TEST CONFIGURATION	

Page 3(3)

Author Data Dates of Test Test Report No FCC

Daoud Attayi Oct. 31 – Nov. 04, 2003 RIM-0073-0311-01 L6ARAO30GN

9.0 HIGH LEVEL EVALUATION	21
9.1 MAXIMUM SEARCH	21
9.2 EXTRAPOLATION	
9.3 BOUNDARY CORRECTION	21
9.4 PEAK SEARCH FOR 1G AND 10G AVERAGED SAR	21
10.0 MEASUREMENT UNCERTAINTIES	22
11.0 SAR TEST RESULTS	23
11.1 BODY-WORN CONFIGURATION USING HOLSTER	23
12.0 REFERENCES	24

APPENDIX A: SAR DISTRIBUTION COMPARISON FOR THE ACCURACY VERIFICATION

APPENDIX B: SAR DISTRIBUTION PLOTS FOR BODY-WORN CONFIGURATION

APPENDIX C: PROBE & DIPOLE CALIBRATION DATA APPENDIX D: SAR TEST SETUP PHOTOGRAPHS

1.0 OPERATING CONFIGURATIONS AND TEST CONDITIONS

1.1 Picture of Handheld

Figure 1. BlackBerry Wireless Handheld

1.2 Antenna description

Type	Internal fixed antenna
Location	Back top centre section
Configuration	Internal fixed antenna

Table 1. Antenna description

1.3 Handheld description

Handheld Model	RAO30GN		
FCC ID	L6ARAO30GN		
Serial Number	404TB-621D6		
Prototype or Production Unit	Pre-production		
Mode(s) of Operation	GSM 850	DCS 1800	PCS 1900
Maximum conducted RF Output			
Power	32.00 dBm	30.00 dBm	30.00 dBm
Tolerance in Power Setting	$31.7 \pm 0.3 \text{ dB}$	$29.7 \pm 0.3 dB$	$29.7 \pm 0.3 dB$
Duty Cycle	1:8	1:8	1:8
Transmitting Frequency Range (s)	824.20-948.80 MHz	1710.20-1784.80 MHz	1850.20-1909.80 MHz

Table 2. Test device description

Note: DCS 1800 band cannot be used in North America, therefore there is no SAR results presented in this report for FCC submission. A separate report is generated for this band.

The test report only demonstrates body-worn SAR compliance with two new foam holsters.

RESEARCH IN MOTION
Author Data

SAR Compliance Test Report for foam holsters with BlackBerry Wireless Handheld Model No. RAO30GN

5(5)

Daoud Attayi

Oct. 31 – Nov. 04, 2003

RIM-0073-0311-01

Test Report No

L6ARAO30GN

1.4 Body worn accessories

Holster

In addition to the holster / leather swivel holster that were tested and submitted under file number RIM-0073-0311-01, the following two new foam holsters are designed to be used with the BlackBerry Wireless Handheld.

The intended usage of the holsters is that the handheld to be slid into the holster with keyboard side facing the user (facing the belt-clip) while in the holster. This positioning has the benefit of protecting the keypad and the large LCD from damage.

Figure 2. Body-worn Vertical Holster HDW-06620-000 and Horizontal Holster HDW-06619-000

The device-to-phantom spacing when the handheld is in the holster is 15 mm.

Headsets

SAR Compliance Test Report for foam holsters with BlackBerry Wireless Handheld Model No. RAO30GN

Test Report No. RAO
RIM-0073-0311-01

L6ARAO30GN

Page

6(6)

Daoud Attayi

1.5

Oct. 31 – Nov. 04, 2003

The RIM Blackberry Wireless handheld was tested with and without headset model number HDW-03458-001

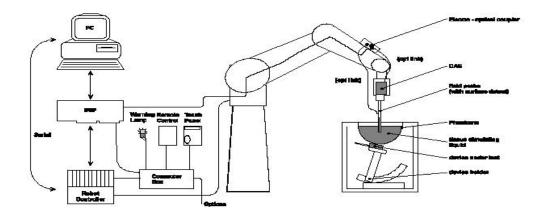
1.6 Procedure used to establish the test signal

The Handheld was put into test mode for the SAR measurements by enabling a call via a Rohde & Schwartz CMU 200 Base Station Simulator test instrument. A SIM card was placed in the Handheld to enable the interaction between the BSS communications test instrument and the Handheld. The CMU 200 communications test instrument then sent out a command for the Handheld to transmit at full power at the specified frequency.

2.0 DESCRIPTION OF THE TEST EQUIPMENT

2.1 SAR measurement system

SAR measurements were performed using a Dosimetric Assessment System (DASY4), an automated SAR measurement system manufactured by Schmid & Partner Engineering AG (SPEAG), of Zurich, Switzerland.


The DASY4 system for performing compliance tests consists of the following items:

- · A standard high precision 6-axis robot (Stäubli RX family) with controller and software.
- · An arm extension for accommodating the data acquisition electronics (DAE).
- · A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- \cdot A DAE module which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the Electro-optical coupler (EOC).
- · A unit to operate the optical surface detector which is connected to the EOC.
- · The EOC performs the conversion from an optical signal into the digital electric signal of the DAE. The EOC is connected to the PC plug-in card.
- \cdot The functions of the PC plug-in card based on a DSP is to perform the time critical tasks such as signal filtering, surveillance of the robot operation fast movement interrupts.
- · A computer operating Windows NT.
- · DASY4 software version 3.1C.
- \cdot Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- \cdot The SAM Twin Phantom enabling testing left-hand and right-hand usage.
- · The device holder for handheld mobile phones.
- · Tissue simulating liquid mixed according to the given recipes (see Application Note).
- · System validation dipoles allowing for the validation of proper functioning of the system.

L6ARAO30GN

7(7)

Oct. 31 - Nov. 04, 2003 RIM-0073-0311-01 Daoud Attayi

Figure 3: System Description

2.1.1 **Equipment List**

Manufacturer	Test Equipment	Model Number	Serial Number	Cal. Due Date
SCHMID & Partner Engineering AG	E-field probe	ET3DV6	1642	28/08/2004
SCHMID & Partner Engineering AG	Data Acquisition Electronics (DAE3)	DAE3 V1	472	19/08/2004
SCHMID & Partner Engineering AG Dipole Validation Kit		D835V2	446	21/08/2005
SCHMID & Partner Engineering AG	Dipole Validation Kit	D1900V2	545	22/08/2005
Agilent Technologies	Signal generator	HP 8648C	4037U03155	01/08/2005
Agilent Technologies	Power meter	E4419B	GB40202821	31/07/2004
Agilent Technologies	Power sensor	8482A	US37295126	07/08/2004
Amplifier Research Amplifier		5S1G4M3	300986	CNR
Agilent Technologies	Network analyzer	8753ES	US39174857	31/07/2004
Amplifier Research	Amplifier	5S1G4M3	300986	CNR

Table 3. Equipment list

Daoud Attayi

SAR Compliance Test Report for foam holsters with BlackBerry Wireless Handheld Model No. RAO30GN

Test Report No

RIM-0073-0311-01

L6ARAO30GN

8(8)

2.2 **Description of the test setup**

Before a SAR test is conducted the Handheld and the DASY equipment are setup as follows:

2.2.1 Handheld and base station simulator setup

• Insert SIM card into the Handheld's SIM card slot and power it up.

Oct. 31 – Nov. 04, 2003

- Turn on the CMU 200 test set and set the carrier frequency and power to the appropriate values.
- Connect an antenna to the RF IN/OUT of the communication test set and place it close to the Handheld.

2.2.2 **DASY** setup

- Turn the computer on and log on to Windows NT.
- Start DASY4 software by clicking on the icon located on the Windows desktop. Once the software loads, click on the Change to Robot toolbar button to open the State and Robot Monitoring Windows.
- Once the DASY State dialog opens you can ignore all errors and click OK to open the Robot Monitoring window.
- Mount the DAE unit and the probe. Turn on the DAE unit.
- Turn the Robot Controller on by turning the main power switch to the horizontal position
- Align the probe and click the align probe in the light beam button to correct the probe offset.
- Open a program and configure it to the proper parameters
- · Establish a connection between the Handheld and the communications test instrument. Place the Handheld on the stand and adjust it under the phantom.
- Start SAR measurements.

3.0 **ELECTRIC FIELD PROBE CALIBRATION**

3.1 **Probe Specification**

SAR measurements were conducted using the dosimetric probe ET3DV6, designed by Schmid & Partner Engineering AG for the measurement of SAR. The probe is constructed using the thin film technique, with printed resistive lines on ceramic substrates. It has a symmetrical design with triangular core, built-in optical fiber for the surface detection system and built-in shielding against static discharge. The probe is sensitive to E-fields and thus incorporates three small dipoles arranged so that the overall response is close to isotropic. The table below summarizes the technical data for the probe.

9(9)

Daoud Attayi

Oct. 31 – Nov. 04, 2003

RIM-0073-0311-01

Test Report No

L6ARAO30GN

Property	Data
Frequency range	30 MHz – 3 GHz
Linearity	±0. 1 dB
Directivity (rotation around probe axis)	= ±0. 2 dB
Directivity (rotation normal to probe axis)	±0. 4 dB
Dynamic Range	5 mW/kg – 100 W/kg
Probe positioning repeatability	±0.2 mm
Spatial resolution	< 0.125 mm ³

Table 4. Probe specification

3.2 Probe calibration and measurement errors

The probe was calibrated on 28/08/2003 with an accuracy better than $\pm 10\%$. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe were tested. The probe calibration parameters are shown on Appendix D.

4.0 SAR MEASUREMENT SYSTEM VERIFICATION

Prior to conducting SAR evaluation, the measurements were validated using the dipole validation kit and a flat phantom. A power level of 1.0 W was applied to the dipole antenna. The verification results are in the table below with a comparison to reference values. Printouts are shown in Appendix A. All the measured parameters are satisfactory.

4.1 System accuracy verification for Head Adjacent use

e (MII-)	T' '/ /3/	SAR (W/kg)	Dielectric Parameters		Liquid Temp
f (MHz)	Limits / Measured	1 g/ 10 g	ϵ_{r}	σ [S/m]	(°C)
	Measured	8.7 / 5.8	42.4	0.90	22.5
835	Recommended Limits	9.6 / 6.2	43.3	0.91	N/A
1000	Measured	43.1 / 22.3	40.5	1.47	22.1
1900	Recommended Limits	43.2 / 22.0	40.0	1.45	N/A

Table 5. System accuracy (Validation for Head Adjacent use)

Document

SAR Compliance Test Report for foam holsters with BlackBerry Wireless Handheld Model No. RAO30GN

10(10)

es of Test
Test Report No

Daoud Attayi Oct. 31 – Nov. 04, 2003

RIM-0073-0311-01

L6ARAO30GN

5.0 PHANTOM DESCRIPTION

The SAM Twin Phantom, manufactured by SPEAG, was used during the SAR measurements. The phantom is made of a fiberglass shell integrated with a wooden table.

The SAM Twin Phantom is a fiberglass shell phantom with 2 mm shell thickness. It has three measurement areas:

Left hand

Right hand

Flat phantom

The phantom table dimensions are: 100x50x85 cm (LxWxH). The table is intended for use with free standing robots.

The bottom shelf contains three pair of bolts for locking the device holder in place. The device holder positions are adjusted to the standard measurement positions in the three sections. Only one device holder is necessary if two phantoms are used (e.g., for different solutions).

A white cover is provided to top the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. Free space scans of devices on the cover are possible; however the optical surface detector does not work properly at the cover surface. Place a sheet of white paper on the cover when using optical surface detection.

Liquid depth of = 15 cm is maintained in the phantom for all the measurement.

Figure 4 SAM Twin Phantom

Daoud Attayi

SAR Compliance Test Report for foam holsters with BlackBerry Wireless Handheld Model No. RAO30GN

Test Report No

Oct. 31 – Nov. 04, 2003 RIM-0073-0311-01 L6ARAO30GN

11(11)

6.0 TISSUE DIELECTRIC PROPERTY

6.1 Composition of tissue simulant

The composition of the brain and muscle simulating liquids for 800-900 MHz and 1800-1900 MHz are shown in the table below.

INGREDIENT	MIXTURE	800-900MHz	MIXTURE 1800–1900MHz		
INGREDIENT	Brain %	Muscle %	Brain %	Muscle %	
Water	51.07	65.45	54.88	69.91	
Sugar	47.31	34.31	0	0	
Salt	1.15	0.62	0.21	0.13	
HEC	0.23	0	0	0	
Bactericide	0.24	0.10	0	0	
DGBE	0	0	44.91	29.96	

Table 6. Tissue simulant recipe

6.1.1 **Equipment**

Manufacturer	Test Equipment	Model Number	Serial Number	Cal. Due Date
Pyrex, England	Graduated Cylinder	N/A	N/A	N/A
Pyrex, USA	Beaker	N/A	N/A	N/A
Acculab	Weight Scale	V1-1200	018WB2003	N/A
Hart Scientific	Digital Thermometer	61161-302	21352860	15/09/2005
IKA Works Inc.	Hot Plate	RC Basic	3.107433	N/A

Table 7. Tissue simulant preparation equipment

6.1.2 **Preparation procedure**

800-900 MHz liquids

- Fill the container with water. Begin heating and stirring.
- Add the Cellulose, the preservative substance and the salt. After several hours, the liquid will become more transparent again. The container must be covered to prevent evaporation.
- Add Sugar. Stir it well until the sugar is sufficiently dissolved.
- Keep the liquid hot but below the boiling point for at least an hour. The container must be covered to prevent evaporation.
- Remove the container from, and turn the hotplate off and allow the liquid to cool off to room temperature prior to performing dielectric measurements.

1800-1900 MHz liquid

• Fill the container with water. Begin heating and stirring.

12(12)

Daoud Attayi Oct. 31 – Nov. 04, 2003 Test Report No RIM-0073-0311-01

L6ARAO30GN

- Add the salt and Glycol. The container must be covered to prevent evaporation.
- Keep the liquid hot but below the boiling point for at least an hour. The container must be covered to prevent evaporation.
- Remove the container from, and turn the hotplate off and allow the liquid to cool off to room temperature prior to performing dielectric measurements.

6.2 Electrical parameters of the tissue simulating liquid

The tissue dielectric parameters shall be measured before a batch can be used for SAR measurements to ensure that the simulated tissue was properly made and will simulate the desired human characteristic. Limits and measured electrical parameters are show in the table below.

Recommended limits are adopted from IEEE P1528/D1.2, April 21, 2003:

"Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", SPEAG dipole calibration certificates and from FCC Tissue Dielectric Properties web page at http://www.fcc.gov/fccbin/dielec.sh

f (MHz) Tissue		Limits / Measured	Dielectric Parameters		Liquid Temp
1 (MITZ)	Type	Limits / Measureu	$\varepsilon_{\rm r}$	σ [S/m]	(°C)
	Head	Measured	42.4	0.90	22.5
	пеац	Recommended Limits	43.3	0.91	N/A
835 Muscle	Measured	53.8	0. 97	22.3	
	Widscie	Recommended Limits	55.2	0.97	N/A
	Head	Measured	40.5	1.47	22.1
	Recommended Limits	40.0	1.45	N/A	
1900		Measured	51.0	1.53	22.3
	Muscle	Recommended Limits	53.3	1.52	N/A

Table 8. Electrical parameters of tissue simulating liquid

6.2.1 **Equipment**

Manufacturer	Test Equipment	Model Number	Serial Number	Cal. Due Date
Agilent Technologies	Network Analyzer	8753ES	US39174857	31/07/2004
Agilent Technologies	Dielectric probe kit	HP 85070C	US9936135	CNR
Dell	PC using GPIB card	GX110	347	N/A
Hart Scientific	Digital Thermometer	61161-302	21352860	15/09/2005

Table 9. Equipment required for electrical parameter measurements

6.2.2 Test Configuration

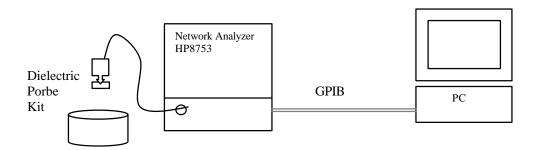


Figure 5: Test configuration

6.2.3 Procedure

- 1. Turn NWA on and allow at least 30 minutes for warm up.
- 2. Mount dielectric probe kit so that interconnecting cable to NWA will not be moved during measurements or calibration.
- 3. Pour de-ionized water and measure water temperature $(\pm 1^{\circ})$.
- 4. Set water temperature in HP-Software (Calibration Setup).
- 5. Perform calibration.
- 6. Validate calibration with dielectric material of known properties (e.g. polished ceramic slab with >8mm thickness $\mathbf{\epsilon}'=10.0$, $\mathbf{\epsilon}''=0.0$). If measured parameters do not fit within tolerance, repeat calibration (± 0.2 for $\mathbf{\epsilon}'$: ± 0.1 for $\mathbf{\epsilon}''$).
- 7. Relative permittivity $\mathbf{\varepsilon}\mathbf{r} = \mathbf{\varepsilon}'$ and conductivity can be calculated from $\mathbf{\varepsilon}''$ $\mathbf{\sigma} = \mathbf{\omega} \, \mathbf{\varepsilon}_0 \, \mathbf{\varepsilon}''$
- 8. Measure liquid shortly after calibration.
- 9. Stir the liquid to be measured. Take a sample (~50ml) with a syringe from the center of the liquid container.
- 10. Pour the liquid into a small glass flask. Hold the syringe at the bottom of the flask to avoid air bubbles.
- 11. Put the dielectric probe in the glass flask. Check that there are no air bubbles in front of the opening in the dielectric probe kit.
- 12. Perform measurements.
- 13. Adjust medium parameters in DASY4 for the frequencies necessary for the measurements ('Setup Config', select medium (e.g. Brain 900 MHz) and press 'Option'-button.
- 14. Select the current medium for the frequency of the validation (e.g. Setup Medium Brain 900 MHz).

Sample calculation for 835 MHz head tissue dielectric parameters using data from Table 10.

Relative permittivity $\mathbf{Er} = \mathbf{E'} = 42.43$ Conductivity $\mathbf{\sigma} = \boldsymbol{\omega} \ \boldsymbol{\epsilon_0} \ \mathbf{E''} = 2 \ x \ 3.1416 \ x \ 835 \ e+6 \ x \ 8.854e-12 \ x \ 19.27 = 0.90 \ S/m$

14(14)

Daoud Attayi

Oct. 31 – Nov. 04, 2003

Test Report No RIM-0073-0311-01

L6ARAO30GN

Title			Title		
SubTitle November 03, 2003 10:24 AM			SubTitle November 03, 2003 10:33 AM		
Frequency	e'	e"	Frequency	e'	e"
800.000000 MHz	42.8144	19.4036	800.000000 MHz	54.4164	21.1036
801.153846 MHz	42.8134	19.3587	802.500000 MHz	54.3866	21.1127
802.307692 MHz	42.7865	19.3973	805.000000 MHz	54.3479	21.0796
803.461538 MHz	42.8133	19.3937	807.500000 MHz	54.3303	21.0732
804.615385 MHz	42.7574	19.3860	810.000000 MHz	54.3129	21.0667
805.769231 MHz	42.7483	19.3706	812.500000 MHz	54.3043	21.0683
806.923077 MHz	42.7313	19.3847	815.000000 MHz	54.2581	21.0273
808.076923 MHz	42.7257	19.4009	817.500000 MHz	54.2244	21.0044
809.230769 MHz	42.7249	19.3563	820.000000 MHz	54.2129	20.9960
810.384615 MHz	42.6994	19.3781	822.500000 MHz	54.1963	20.9727
811.538462 MHz	42.6970	19.3665	825.000000 MHz	54.1459	20.9785
812.692308 MHz	42.6790	19.3376	827.500000 MHz	54.1057	20.9807
813.846154 MHz	42.6765	19.3637	830.000000 MHz	54.1049	20.9685
815.000000 MHz	42.6580	19.3136	832.500000 MHz	54.0848	20.9633
816.153846 MHz	42.6575	19.3660	835.000000 MHz	54.0277	20.9167
817.307692 MHz	42.6129	19.3180	837.500000 MHz	54.0417	20.9432
818.461538 MHz	42.6014	19.3305	840.000000 MHz	54.0187	20.9283
819.615385 MHz	42.5951	19.3040	842.500000 MHz	53.9889	20.8940
820.769231 MHz	42.5829	19.3327	845.000000 MHz	53.9856	20.8720
821.923077 MHz	42.5590	19.3006	847.500000 MHz	53.9739	20.8858
823.076923 MHz	42.5611	19.3412	850.000000 MHz	53.9316	20.8457
824.230769 MHz	42.5704	19.2945	852.500000 MHz	53.9204	20.8593
825.384615 MHz	42.5346	19.3138	855.000000 MHz	53.8762	20.8419
826.538462 MHz	42.5341	19.2700	857.500000 MHz	53.8454	20.8304
827.692308 MHz	42.5167	19.3159	860.000000 MHz	53.8285	20.8408
828.846154 MHz	42.5008	19.2554	862.500000 MHz	53.7858	20.8393
830.000000 MHz	42.4765 42.4901	19.3138	865.000000 MHz	53.8005	20.8322
831.153846 MHz 832.307692 MHz	42.4901	19.2450 19.3131	867.500000 MHz	53.7988	20.8099
833.461538 MHz	42.4726	19.2472	870.000000 MHz	53.7562	20.7925
834.615385 MHz	42.4193	19.3137	872.500000 MHz	53.7362	20.7773
835.769231 MHz	42.4288	19.2674	875.000000 MHz	53.7163	20.7621
836.923077 MHz	42.4133	19.2810	877.500000 MHz	53.6703	20.7889
838.076923 MHz	42.4102	19.2279	880.000000 MHz	53.6716	20.7444
839.230769 MHz	42.3824	19.3079	882.500000 MHz	53.6354	20.7675
840.384615 MHz	42.3435	19.2757	885.000000 MHz	53.6221	20.7394
841.538462 MHz	42.3890	19.2822	887.500000 MHz	53.6012	20.7459
842.692308 MHz	42.3281	19.2460	890.000000 MHz	53.6025	20.7544
843.846154 MHz	42.3764	19.2620	892.500000 MHz	53.6094	20.7501
845.000000 MHz	42.3020	19.2507	895.000000 MHz	53.5713	20.7371
846.153846 MHz	42.3021	19.2806	897.500000 MHz	53.5543	20.7107
847.307692 MHz	42.2692	19.2679	900.000000 MHz	53.5146	20.7194

Table 10. 835 MHz head and muscle tissue dielectric parameters

15(15)

Daoud Attayi

Oct. 31 – Nov. 04, 2003

Test Report No **RIM-0073-0311-01**

L6ARAO30GN

Title			Title		
SubTitle			SubTitle		
October 31, 2003 12:41 PM			October 31, 2003 11:12 AM		
Frequency	e'	e"	Frequency	e'	e"
1.700000000 GHz	41.2576	13.2804	1.700000000 GHz	51.8145	13.8694
1.710000000 GHz	41.2129	13.3064	1.710000000 GHz	51.7728	13.9123
1.720000000 GHz	41.1656	13.3308	1.720000000 GHz	51.7211	13.9308
1.730000000 GHz	41.1458	13.3513	1.730000000 GHz	51.6832	13.9459
1.740000000 GHz	41.0877	13.3637	1.740000000 GHz	51.6569	13.9734
1.750000000 GHz	41.0509	13.3883	1.750000000 GHz	51.6084	13.9974
1.760000000 GHz	41.0050	13.4060	1.760000000 GHz	51.5795	14.0345
1.770000000 GHz	40.9613	13.4351	1.770000000 GHz	51.5561	14.0670
1.780000000 GHz	40.9488	13.4573	1.780000000 GHz	51.5173	14.1088
1.790000000 GHz	40.9184	13.4935	1.790000000 GHz	51.5013	14.1497
1.800000000 GHz	40.8787	13.5325	1.800000000 GHz	51.4647	14.1935
1.810000000 GHz	40.8430	13.5412	1.810000000 GHz	51.4333	14.2153
1.820000000 GHz	40.8132	13.5863	1.820000000 GHz	51.3948	14.2646
1.830000000 GHz	40.7914	13.6324	1.830000000 GHz	51.3625	14.3019
1.840000000 GHz	40.7446	13.6514	1.840000000 GHz	51.3158	14.3408
1.850000000 GHz	40.7183	13.7003	1.850000000 GHz	51.2740	14.3830
1.860000000 GHz	40.6732	13.7368	1.860000000 GHz	51.2394	14.3982
1.870000000 GHz	40.6178	13.7740	1.870000000 GHz	51.2057	14.4412
1.880000000 GHz	40.5833	13.8131	1.880000000 GHz	51.1574	14.4651
1.890000000 GHz	40.5407	13.8423	1.890000000 GHz	51.1134	14.4999
1.900000000 GHz	40.4956	13.8702	1.900000000 GHz	51.0754	14.5192
1.910000000 GHz	40.4709	13.9090	1.910000000 GHz	51.0317	14.5581
1.920000000 GHz	40.4382	13.9472	1.920000000 GHz	51.0084	14.5581
1.930000000 GHz	40.3834	13.9729	1.930000000 GHz	50.9546	14.5855
1.940000000 GHz	40.3352	14.0066	1.940000000 GHz	50.9391	14.6144
1.950000000 GHz	40.2976	14.0273	1.950000000 GHz	50.9083	14.6361
1.960000000 GHz	40.2603	14.0421	1.960000000 GHz	50.8984	14.6673
1.970000000 GHz	40.2185	14.0839	1.970000000 GHz	50.8873	14.7068
1.980000000 GHz	40.1707	14.1151	1.980000000 GHz	50.8608	14.7429
1.990000000 GHz	40.1197	14.1397	1.990000000 GHz	50.8387	14.7856
2.000000000 GHz	40.0793	14.1693	2.000000000 GHz	50.8169	14.8038

Table 11. 1900 MHz head and muscle tissue dielectric parameters

7.0 SAR SAFETY LIMITS

Standards/Guideline	Localized SAR Limit (W/kg) General public (uncontrolled)	Localized SAR Limits (W/kg) Workers (controlled)
ICNIRP (1998) Standard	2.0 (10g)	10.0 (10g)
IEEE C95.1 (1999) Standard	1.6 (1g)	8.0 (1g)

Table 12. SAR safety limits for Controlled / Uncontrolled environment

Human Exposure	Localized SAR Limits (W/kg) 10g, ICNIRP (1998) Standard	Localized SAR Limits (W/kg) 1g, IEEE C95.1 (1999) Standard
Spatial Average (averaged over the whole		
body)	0.08	0.08
Spatial Peak (averaged over any X g of		
tissue)	2.00	1.60
Spatial Peak (hands/wrists/feet/ankles		
averaged over 10 g)	4.00	4.00 (10g)

Table 13. SAR safety limits

Uncontrolled Environments are defined as locations where there is exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

Test Report No

RIM-0073-0311-01

L6ARAO30GN

17(17)

Daoud Attayi

Oct. 31 – Nov. 04, 2003

8.0 **DEVICE POSITIONING**

8.1 **Device holder for SAM Twin Phantom**

The Handheld was positioned for all test configurations using the DASY4 holder. The device holder facilitates the rotation of the mounted transmitter in spherical coordinates whereby the rotation point is the ear opening. The devices can be easily, accurately and with repeatability positioned according to FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Figure 6 **Device Holder**

- 1. Put the phone in the clamp mechanism (1) and hold it straight while tightening. (Curved phones or phones with asymmetrical ear pieces should be positioned so that the ear piece is in the symmetry plane of the clamp).
- 2. Adjust the sliding carriage (2) to 90°. Then adjust the phone holder angle (3) until the reference line of the phone is horizontal (parallel to the flat phantom bottom). The phone reference line is defined as the front tangential line between the ear piece and the center of the device bottom (or the center of the flip hinge). For devices with parallel front and back sides, the phone holder angle (3) is 0° .
- 3. Place the device holder at the desired phantom section and move it securely against the positioning pins (4). The screw in front of the turning plate can be applied for correct positioning (5). (Do not tighten it too strongly).
- 4. Shift the phone clamp (6) so that the ear piece is exactly below the ear marking of the phantom. The phone is now correctly positioned in the holder for all standard phantom measurements, even after changing the phantom or phantom section.

	SAR Compliance Test Report for foam holsters with				
RESEARCH IN MOTION	SAR Compliance Test Report for foam holsters with BlackBerry Wireless Handheld Model No. RAO30GN				
Author Data	Dates of Test	Test Report No	FCC ID:		
Daoud Attayi	Oct. 31 – Nov. 04, 2003	RIM-0073-0311-01	L6ARAO30	GN	

- 5. Adjust the device position angles to the desired measurement position.
- 6. After fixing the device angles, move the phone fixture up until the phone touches the ear marking. (The point of contact depends on the design of the device and the positioning angle).

8.2 Description of the test positioning

8.2.1 Test Positions of Device Relative to Head

The handset was tested in two test positions against the head phantom, the "cheek" position and the "tilted" position, on both left and right sides of the phantom.

The handset was tested in the above positions according to IEEE 1528-Draft 6.1 "Recommended Practice for Determining the Spatial-Peak Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques".

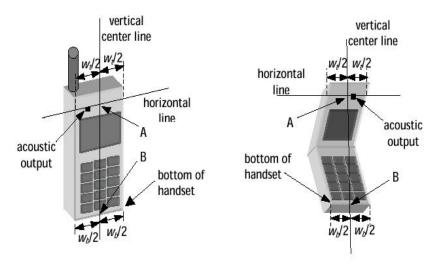


Figure 7a – Handset vertical and horizontal reference lines – fixed case

Figure 7b – Handset vertical and horizontal reference lines – "clam-shell"

RESEARCH IN MOTION Author Data

Daoud Attavi

Oct. 31 – Nov. 04, 2003

SAR Compliance Test Report for foam holsters with BlackBerry Wireless Handheld Model No. RAO30GN

Test Report No

RIM-0073-0311-01

L6ARAO30GN

19(19)

8.2.1.1 Definition of the "cheek" position

1) Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece, open the cover.

- 2) Define two imaginary lines on the handset: the vertical centerline and the horizontal line. The vertical centerline passes through two points on the front side of the handset: the midpoint of the width wt of the handset at the level of the acoustic output (point A on Figures 7a and 7b), and the midpoint of the width wb of the bottom of the handset (point B). The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output (see Figure 7a). The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output. However, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset (see Figure 7b), especially for clamshell handsets, handsets with flip pieces, and other irregularly shaped handsets.
- 3) Position the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 7), such that the plane defined by the vertical center line and the horizontal center line is in a plane approximately parallel to the sagittal plane of the phantom.
- 4) Translate the handset towards the phantom along the line passing through RE and LE until the handset touches the ear.
- 5) While maintaining the handset in this plane, rotate it around the LE-RE line until the vertical centerline is the plane normal to MB ("mouth-back") - NF ("neck-front") including the line MB (reference plane).
- 6) Rotate the phone around the vertical centerline until the phone (horizontal line) is symmetrical with respect to the line NF.
- 7) While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the phone contact with the ear, rotate the handset about the line NF until any point on the handset is in contact with a phantom point below the ear (cheek).

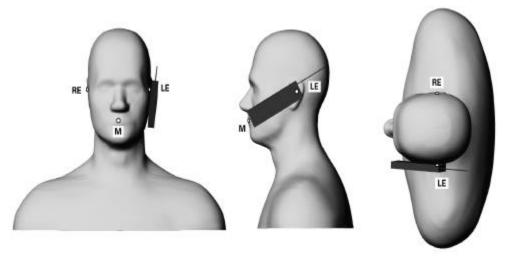


Figure 8 – Phone position 1, "cheek" or "touch" position. The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the reference plane for phone positioning, are indicated. The shoulders are shown for illustration purposes only.

Page 20(20)

RESEARCH IN MOTION

Author Data

Daoud Attayi

Document

SAR Compliance Test Report for foam holsters with

BlackBerry Wireless Handheld Model No. RAO30GN

Test Report No

RIM-0073-0311-01

L6ARAO30GN

8.2.1.2 Definition of the "Tilted" Position

1) Repeat steps 1 to 7 of 5.4.1 (in this report 8.2.1.1) to replace the device in the "cheek position."

2) While maintaining the device in the reference plane (described above) and pivoting against the ear, move the device outward away from the mouth by an angle of 15 degrees, or until the antenna touches the phantom.

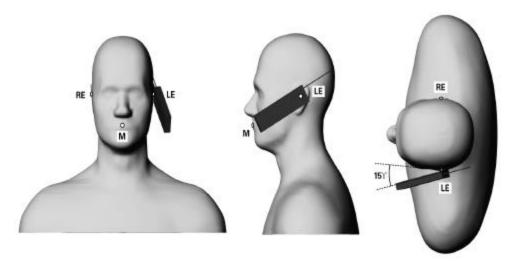


Figure 9 – Phone position 2, "tilted position." The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the reference plane for phone positioning, are indicated. The shoulders are shown for illustration purposes only.

8.2.2 Body Holster Configuration

Body worn holsters, as shown on Figure 2, were tested with the Wireless Handheld for FCC RF exposure compliance. The EUT was positioned in the holster case and the belt clip was placed against the flat section of the phantom. A headset was then connected to the handheld to simulate hands-free operation in a body worn holster configuration.

21(21)

Daoud Attayi

Oct. 31 – Nov. 04, 2003

RIM-0073-0311-01

Test Report No

L6ARAO30GN

9.0 **High Level Evaluation**

9.1 Maximum search

The maximum search is automatically performed after each coarse scan measurement. It is based on splines in two or three dimensions. The procedure can find the maximum for most SAR distributions even with relatively large grid spacing. After the coarse scan measurement, the probe is automatically moved to a position at the interpolated maximum. The following scan can directly use this position for reference, e.g., for a finer resolution grid or the cube evaluations.

9.2 Extrapolation

The extrapolation can be used in z-axis scans with automatic surface detection. The SAR values can be extrapolated to the inner phantom surface. The extrapolation distance is the sum of the probe sensor offset, the surface detection distance and the grid offset. The extrapolation is based on fourth order polynomial functions. The extrapolation is only available for SAR values.

9.3 **Boundary correction**

The correction of the probe boundary effect in the vicinity of the phantom surface is done in the standard (worst case) evaluation; the boundary effect is reduced by different weights for the lowest measured points in the extrapolation routine. The result is a slight overestimation of the extrapolated SAR values (2% to 8%) depending on the SAR distribution and gradient. The advanced evaluation makes a full compensation of the boundary effect before doing the extrapolation. This is only possible for probes with specifications on the boundary effect.

9.4 Peak search for 1g and 10g cube averaged SAR

The 1g and 10g peak evaluations are only available for the predefined cube 5x5x7 scan. The routines are verified and optimized for the grid dimensions used in these cube measurements.

The measure volume of 32x32x35mm mm contains about 35g of tissue. The first procedure is an extrapolation (incl. Boundary correction) to get the points between the lowest measured plane and the surface. The next step uses 3D interpolation to get all points within the measured volume in a 1mm grid (35000 points). In the last step, a 1g cube is placed numerically into the volume and its averaged SAR is calculated. This cube is then moved around until the highest averaged SAR is found. This last procedure is repeated for a 10 g cube. If the highest SAR is found at the edge of the measured volume, the system will issue a warning: higher SAR values might be found outside of the measured volume. In that case the cube measurement can be repeated, using the new interpolated maximum as the center.

22(22)

Daoud Attayi

Oct. 31 - Nov. 04, 2003

Test Report No RIM-0073-0311-01

L6ARAO30GN

10.0 **MEASUREMENT UNCERTAINTIES**

DASY4 Uncertainty Budget According to IEEE P1528 [1]								
	Uncertainty	Prob.	Div.	(c_i)	(c_i)	Std. Unc.	Std. Unc.	(v_i)
Error Description	value	Dist.		1g	10g	(1g)	(10g)	v_{eff}
Measurement System								
Probe Calibration	±4.8%	N	1	1	1	±4.8%	±4.8%	∞
Axial Isotropy	±4.7%	R	$\sqrt{3}$	0.7	0.7	$\pm 1.9\%$	±1.9%	∞
Hemispherical Isotropy	±9.6 %	R	$\sqrt{3}$	0.7	0.7	$\pm 3.9 \%$	±3.9 %	∞
Boundary Effects	±1.0%	R	$\sqrt{3}$	1	1	$\pm 0.6\%$	±0.6%	∞
Linearity	±4.7%	R	$\sqrt{3}$	1	1	±2.7%	±2.7 %	∞
System Detection Limits	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6 %	∞
Readout Electronics	±1.0%	N	1	1	1	±1.0%	±1.0 %	∞
Response Time	±0.8%	R	$\sqrt{3}$	1	1	±0.5%	±0.5 %	∞
Integration Time	±2.6%	R	$\sqrt{3}$	1	1	±1.5%	±1.5 %	∞
RF Ambient Conditions	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
Probe Positioner	±0.4%	R	$\sqrt{3}$	1	1	±0.2 %	±0.2 %	00
Probe Positioning	±2.9 %	R	$\sqrt{3}$	1	1	$\pm 1.7\%$	±1.7%	∞
Max. SAR Eval.	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	∞
Test Sample Related								
Device Positioning	±2.9%	N	1	1	1	±2.9%	$\pm 2.9\%$	145
Device Holder	±3.6 %	N	1	1	1	±3.6%	±3.6%	5
Power Drift	±5.0%	R	$\sqrt{3}$	1	1	±2.9%	$\pm 2.9\%$	∞
Phantom and Setup								
Phantom Uncertainty	±4.0%	R	$\sqrt{3}$	1	1	±2.3 %	±2.3 %	∞
Liquid Conductivity (target)	±5.0%	R	$\sqrt{3}$	0.64	0.43	±1.8%	±1.2 %	∞
Liquid Conductivity (meas.)	±2.5%	N	1	0.64	0.43	±1.6%	±1.1%	∞
Liquid Permittivity (target)	±5.0%	R	$\sqrt{3}$	0.6	0.49	±1.7%	±1.4%	∞
Liquid Permittivity (meas.) ±2.5%		N	1	0.6	0.49	±1.5%	±1.2 %	∞
Combined Std. Uncertainty					$\pm 10.3\%$	±10.0%	330	
Expanded STD Uncertain	Expanded STD Uncertainty $\pm 20.6\%$ $\pm 20.1\%$							

Table 14. Measurement uncertainty

Daoud Attayi

SAR Compliance Test Report for foam holsters with BlackBerry Wireless Handheld Model No. RAO30GN

Test Report No

Oct. 31 – Nov. 04, 2003

RIM-0073-0311-01

L6ARAO30GN

23(23)

TEST RESULTS 11.0

11.1 SAR measurement results at highest power measured against the body using Horizontal and Vertical foam holsters

Mode	f (MHz)	Conducted Output Power (dBm)	Liquid Temp (°C)	SAR, averaged over 1 g (W/kg) Vertical Holster	SAR, averaged over 1 g (W/kg) Horizontal Holster	SAR, averaged over 1 g with headset (W/kg) Holster
	824.20	-	-	-	-	-
GSM	*836.80	32.0	22.2	0.17	0.25	-
850	848.80	-	-	-	-	-
	1850.20	-	-	-	-	-
PCS 1900	*1880.00	30.2	22.1	0.10	0.07	-
	1909.80	-	-	-	-	-

11.2 Table 15. SAR results with Holster and Leather Swivel Holster for body configuration

^{*} Supplement C: Middle channel testing is sufficient only if SAR < 3dB below limit see PN 02-1438

Test Report No

RIM-0073-0311-01

L6ARAO30GN

24(24)

Daoud Attayi

Oct. 31 – Nov. 04, 2003

12.0 **REFERENCES**

- [1] EN 50360: 2001, Product standard to demonstrate the compliance of mobile phones with the basic restrictions related to human exposure to electromagnetic fields (300 MHz - 3 GHz)
- [2] EN 50361: 2001, Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz – 3 GHz)
- [3] ICNIRP, International Commission on Non-Ionizing Radiation Protection (1998), Guidelines for limiting exposure in time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz).
- [4] Council Recommendation 1999/519/EC of July 1999 on the limitation of exposure of the general public to electromagnetic fields (0 Hz to 300 GHz)
- [5] IEEE C95.3-1991, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields – RF and Microwave.
- [6] IEEE C95.1-1999, IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.
- [7] OET Bulletin 65 (Edition 97-01) Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields.
- [8] FCC 96-326, Guidelines for Evaluating the Environmental Effects of Radio-Frequency Radiation.
- [9] DASY 3 DOSIMETRIC ASSESSMENT SYSTEM SOFTWARE MANUAL Schmid & Partner Engineering AG, August 99.
- [10] DASY 4 DOSIMETRIC ASSESSMENT SYSTEM SOFTWARE MANUAL V4.1 Schmid & Partner Engineering AG, April 2003.
- [11] IEEE P1528/D1.2, April 21, 2003: Recommended Practice for Determining the Peak Spatial-Average Specific Aborption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

25(25)

Author Data Daoud Attayi

Oct. 31 - Nov. 04, 2003

Test Report No

RIM-0073-0311-01

L6ARAO30GN