Report No.: HA850813-03B # HEARING AID COMPATIBILITY T-COIL TEST REPORT FCC ID : ZL5S48C **Equipment**: Rugged Smart Phone Brand Name : CAT Model Name : S48c T-Rating : T3 Applicant : Bullitt Group One Valpy, Valpy Street, Reading, Berkshire, **England RG1 1AR** Standard : FCC 47 CFR §20.19 ANSI C63.19-2011 The product was received on Jun. 23 2018 and testing was started from Jul. 05, 2018 and completed on Jul. 06, 2018. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government. The test results in this variant report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERTIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full. Approved by: Jones Tsai / Manager SPORTON INTERTIONAL INC. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: 886-3-327-3456 Page: 1 of 25 FAX: 886-3-328-4978 Issued Date: Jul. 10, 2018 # **Table of Contents** Report No.: HA850813-03B Page: 2 of 25 Issued Date: Jul. 10, 2018 | 1. | Attestation of Test Results | | | | | | | |----------|---|------------------------------------|----|--|--|--|--| | 2. | General Information 5 Testing Location 6 Applied Standards 6 Air Interface and Operating Mode 7 Measurement standards for T-Coil 8 6.1 Frequency Response 8 6.2 T-Coil Signal Quality Categories 8 T-Coil Test Procedure 9 7.1 Test Flow Chart 10 7.2 Test Setup Diagram 11 7.3 Description of EUT Test Position 13 Test Equipment List 14 T-Coil testing for CMRS Voice 15 9.1 GSM Tests Results 15 9.2 UMTS Tests Results 15 9.3 CDMA Tests Results 16 T-Coil testing for CMRS IP Voice 17 10.1 VoLTE Tests Results 17 10.2 VoWiFi Tests Results 17 | | | | | | | | 3.
4. | | _ | 6.2 | T-Coil Signal Quality Categories | 8 | | | | | | 7. | T-Coil | I Test Procedure | ç | | | | | | | 7.1 | Test Flow Chart | 10 | | | | | | | 7.2 | | | | | | | | | | | | | | | | | 8. | Test E | Equipment List | 14 | | | | | | 9. | T-Coil | I testing for CMRS Voice | 15 | | | | | | | 9.1 | GSM Tests Results | 15 | | | | | | | 9.2 | UMTS Tests Results | 15 | | | | | | | | | - | | | | | | 10. | T-Coil | I testing for CMRS IP Voice | 17 | | | | | | | 10.1 | VoLTE Tests Results | 17 | | | | | | | | | | | | | | | 11. | T-Coil | I testing for OTT VoIP Application | 21 | | | | | | 12. | Uncer | rtainty Assessment | 24 | | | | | | 13. | Refere | ences | 25 | | | | | Appendix A. Plots of T-Coil Measurement Appendix B. DASY Calibration Certificate Appendix C. Test Setup Photos # History of this test report Report No.: HA850813-03B | Report No. | Version | Description | Issued Date | |--------------|---------|-------------------------|---------------| | HA850813-03B | Rev. 01 | Initial issue of report | Jul. 10, 2018 | | | | | | | | | | | TEL: 886-3-327-3456 Page: 3 of 25 FAX: 886-3-328-4978 Issued Date: Jul. 10, 2018 # 1. Attestation of Test Results | Air Interface | Band MHz | T-Rating | Frequency | Magnetic | |-----------------|-------------|----------|-----------|---| | | Bana IIII 2 | 1 ramig | Response | Intensity | | OOM OMBO Valar | GSM850 | T3 | Pass | Pass | | GSM CMRS Voice | GSM1900 | T3 | Pass | Pass | | OTT | EDGE850 | T3 | Pass | Pass | | OTT over EDGE | EDGE1900 | T3 | Pass | Pass | | | Band 2 | T4 | Pass | Pass | | UMTS CMRS Voice | Band 4 | T4 | Pass | Pass | | | Band 5 | T4 | Pass | Pass | | | Band 2 | T3 | Pass | Pass | | OTT over UMTS | Band 4 | T3 | Pass | Pass | | | Band 5 | T3 | Pass | Pass | | | BC0 | T4 | Pass | Pass | | CDMA CMRS Voice | BC1 | T4 | Pass | Pass | | | BC10 | T4 | Pass | Pass | | | BC0 | T3 | Pass | Pass | | OTT over CDMA | BC1 | T3 | Pass | Intensity Pass | | | BC10 | T3 | Pass | Pass | | | Band 2 | T3 | Pass | Pass | | | Band 4 | T3 | Pass | Pass | | | Band 5 | T3 | Pass | Pass | | | Band 7 | T3 | Pass | Pass | | | Band 12 | T3 | Pass | Pass | | VoLTE | Band 13 | T3 | Pass | Pass | | | Band 14 | T3 | Pass | Pass | | | Band 25 | T3 | Pass | Pass | | | Band 26 | T3 | Pass | Pass | | | Band 66 | T3 | Pass | Pass | | | Band 41 | T3 | Pass | Pass | | OTT over LTF | Band 25 | T3 | Pass | Pass | | OTT over LTE | Band 41 | T3 | Pass | Intensity Pass Pass Pass Pass Pass Pass Pass Pas | | | 2450 | T4 | Pass | Pass | | | 5200 | T4 | Pass | Pass | | VoWiFI | 5300 | T4 | Pass | Pass | | | 5500 | T4 | Pass | Pass | | | 5800 | T4 | Pass | Pass | | OTT over WiFi | 2450 | T3 | Pass | Pass | | OTT over WiFi | 5300 | T3 | Pass | | Report No.: HA850813-03B The device is compliance with HAC limits specified in guidelines FCC 47CFR §20.19 and ANSI Standard ANSI C63.19. Reviewed by: <u>Eric Huang</u> Report Producer: <u>Wan Liu</u> TEL: 886-3-327-3456 Page: 4 of 25 FAX: 886-3-328-4978 Issued Date: Jul. 10, 2018 # 2. General Information | | Product Feature & Specification | |-----------------------|--| | Applicant Name | Bullitt Group | | Equipment Name | Rugged Smart Phone | | Brand Name | CAT | | Model Name | S48c | | FCC ID | ZL5S48C | | S/N | 1L6880180524000587 | | EUT Stage | Identical Prototype | | Date Tested | 2018/7/5 ~ 2018/7/6 | | Frequency Band | GSM850: 824.2 MHz ~ 848.8 MHz GSM1900: 1850.2 MHz ~ 1909.8 MHz WCDMA Band II: 1852.4 MHz ~ 1907.6 MHz WCDMA Band IV: 1712.4 MHz ~ 1752.6 MHz WCDMA Band IV: 1712.4 MHz ~ 1752.6 MHz WCDMA Band V: 826.4 MHz ~ 846.6 MHz CDMA2000 BC0: 824.7 MHz ~ 848.31 MHz CDMA 2000 BC1: 1851.25 MHz ~ 1908.75 MHz CDMA 2000 BC10: 817.9 MHz ~ 823.1 MHz LTE Band 2: 1850.7 MHz ~ 1909.3 MHz LTE Band 4: 1710.7 MHz ~ 1754.3 MHz LTE Band 5: 824.7 MHz ~ 848.3 MHz LTE Band 7: 2502.5 MHz ~ 2567.5 MHz LTE Band 12: 699.7 MHz ~ 715.3 MHz LTE Band 13: 779.5 MHz ~ 784.5 MHz LTE Band 14: 790.5 MHz ~ 784.5 MHz LTE Band 25: 1850.7 MHz ~ 1914.3 MHz LTE Band 26: 814.7 MHz ~ 848.3 MHz LTE Band 66: 1710.7 MHz ~ 1914.3 MHz LTE Band 66: 8710.7 MHz ~ 2687.5 MHz LTE Band 67: 2498.5 MHz ~ 2687.5 MHz LTE Band 67: 2412 MHz ~ 2462 MHz WLAN 2.4GHz Band: 5180 MHz ~ 5240 MHz WLAN 5.3GHz Band: 5500 MHz ~ 5720 MHz WLAN 5.3GHz Band: 5745 MHz ~ 5825 MHz Bluetooth: 2402 MHz ~ 2480 MHz NFC: 13.56 MHz | | Mode | GSM/GPRS/EGPRS RMC/AMR 12.2Kbps HSDPA HSUPA DC-HSDPA HSPA+ CDMA2000: 1xRTT/1xEv-Do(Rev.0)/1xEv-Do(Rev.A) LTE: QPSK, 16QAM, 64QAM WLAN 2.4GHz 802.11b/g/n HT20/HT40 WLAN 5GHz 802.11a/n/ac HT20/HT40/VHT20/VHT80 Bluetooth BR/EDR/LE NFC | Report No.: HA850813-03B TEL: 886-3-327-3456 Page: 5 of 25 FAX: 886-3-328-4978 Issued Date: Jul. 10, 2018 # 3. Testing Location Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 1190) and the FCC designation No. TW1190 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC test. Report No.: HA850813-03B | Testing Laboratory | | | | | | |--------------------------------------|---|--|--|--|--| | Test Site SPORTON INTERNATIONAL INC. | | | | | | | Test Site Location | No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)
TEL: +886-3-327-3456
FAX: +886-3-328-4978 | | | | | | Test Site No. | Sporton Site No.:
SAR04-HY | | | | | # 4. Applied Standards - FCC CFR47 Part 20.19 - ANSI C63.19 2011-version - FCC KDB 285076 D01 HAC Guidance v05 - FCC KDB 285076 D02 T Coil testing v03 - FCC KDB 285076 D03 HAC FAQ v01 TEL: 886-3-327-3456 Page: 6 of 25 FAX: 886-3-328-4978 Issued Date: Jul. 10, 2018 # 5. Air Interface and Operating Mode | Air
Interface | Band MHz | Туре | C63.19
Tested | Simultaneous
Transmitter | Name of Voice
Service | Power
Reduction | |------------------|----------|------|------------------|-----------------------------|---|--------------------| | | GSM850 | 1/0 | ., |
WLAN, BT | OMBON : | No | | | GSM1900 | VO | Yes | WLAN, BT | - CMRS Voice | No | | GSM | EDGE850 | \/D | V | VALL AND DIT | SIP calling ^(1,2) , | Nie | | | EDGE1900 | VD | Yes | WLAN, BT | Google Duo ⁽¹⁾ | No | | | 850 | | | WLAN, BT | | No | | | 1750 | VO | Yes | WLAN, BT | CMRS Voice | No | | UMTS | 1900 | | | WLAN, BT | Service Rec CMRS Voice SIP calling ^(1,2) , Google Duo ⁽¹⁾ | No | | | HSPA | VD | Yes | WLAN, BT | SIP calling ^(1,2) ,
Google Duo ⁽¹⁾ | No | | | 850 | VO | Yes | WLAN, BT | CMPS Voice | No | | CDMA | 1900 | VO | res | WLAN, BT | | No | | 02 | EVDO | VD | Yes | WLAN, BT | SIP calling ^(1,2) ,
Google Duo ⁽¹⁾ | No | | | Band 2 | | | WLAN, BT | | No | | | Band 4 | | | WLAN, BT | | No | | | Band 5 | | | WLAN, BT | | No | | | Band 7 | | | WLAN, BT | VoLTE, | No | | LTE | Band 12 | VD | Yes | WLAN, BT | | No | | (FDD) | Band 13 | VD | 165 | WLAN, BT | Google Duo ⁽¹⁾ | No | | | Band 14 | | WLAN, BT | | No | | | | Band 25 | | | WLAN, BT | | No | | | Band 26 | | | WLAN, BT | | No | | | Band 66 | | | WLAN, BT | | No | | LTE
(TDD) | Band 41 | VD | Yes | WLAN, BT | VoLTE,
SIP calling ^(1,2) ,
Google Duo ⁽¹⁾ | No | | | 2450 | | | | | No | | | 5200 | | | | VoWiFi. | No | | Wi-Fi | 5300 | VD | Yes | GSM,WCDMA,CDMA,LTE | SIP calling ^(1,2) , | No | | | 5500 | | | | Google Duo ⁽¹⁾ | No | | | 5800 | | | | | No | | BT | 2450 | DT | No | GSM,WCDMA,CDMA,LTE | NA | No | Report No.: HA850813-03B #### **Type Transport:** VO= Voice only DT= Digital Transport only (no voice) VD= CMRS and IP Voice Service over Digital Transport - 1. For protocols not listed in Table 7.1 of ANSI C63.19-2011 or the ANSI C63.19-2011 VoLTE interpretation, the average speech level of -20 dBm0 should be used. The SIP calling is android internal auxiliary functions under the dialing program. - The device have similar frequency in some LTE bands: 5/26, 4/66, 2/25, since the supported frequency spans for the smaller LTE bands are completely cover by the larger LTE bands, therefore, only larger LTE bands were required to be tested for hearing-aid compliance. TEL: 886-3-327-3456 Page: 7 of 25 FAX: 886-3-328-4978 Issued Date: Jul. 10, 2018 # 6. Measurement standards for T-Coil ### 6.1 Frequency Response The frequency response of the perpendicular component of the magnetic field, measured in 1/3 octave bands, shall follow the response curve specified in this sub-clause, over the frequency range 300 Hz to 3000 Hz. Figure 1.1 and Figure 1.2 provide the boundaries as a function of frequency. These response curves are for true field-strength measurements of the T-Coil signal. Thus, the 6 dB/octave probe response has been corrected from the raw readings. Report No.: HA850813-03B NOTE-The frequency response is between 300 Hz and 3000 Hz. Fig. 1.1 Magnetic field frequency response for WDs with field strength≤-15dB at 1 KHz NOTE—The frequency response is between 300 Hz and 3000 Hz. Fig. 1.2 Magnetic field frequency response for WDs with a field that exceeds -15 dB(A/m) at 1 kHz #### 6.2 T-Coil Signal Quality Categories This section provides the signal quality requirement for the intended T-Coil signal from a WD. Only the RF immunity of the hearing aid is measured in T-Coil mode. It is assumed that a hearing aid can have no immunity to an interference signal in the audio band, which is the intended reception band for this mode. A device is assessed beginning by determining the category of the RF environment in the area of the T-Coil source. The RF measurements made for the T-Coil evaluation are used to assign the category T1 through T4. The limitation is given in Table 1. This establishes the RF environment presented by the WD to a hearing aid. | Category | Telephone parameters WD signal quality ((signal + noise) to noise ratio in dB) | |-------------|--| | Category T1 | 0 to 10 dB | | Category T2 | 10 to 20 dB | | Category T3 | 20 to 30 dB | | Category T4 | > 30 dB | **Table 1 T-Coil Signal Quality Categories** TEL: 886-3-327-3456 Page: 8 of 25 FAX: 886-3-328-4978 Issued Date: Jul. 10, 2018 # 7. T-Coil Test Procedure Referenced to ANSI C63.19-2011, Section 7.4, This section describes the procedures used to measure the ABM (T-Coil) performance of the WD. In addition to measuring the absolute signal levels, the A-weighted magnitude of the unintended signal shall also be determined. To assure that the required signal quality is measured, the measurement of the intended signal and the measurement of the unintended signal must be made at the same location for each measurement position. In addition, the RF field strength at each measurement location must be at or below that required for the assigned category. Report No.: HA850813-03B Measurements shall not include undesired properties from the WD's RF field; therefore, use of a coaxial connection to a base station simulator or non-radiating load, there might still be RF leakage from the WD, which can interfere with the desired measurement. Pre-measurement checks should be made to avoid this possibility. All measurements shall be performed with the WD operating on battery power with an appropriate normal speech audio signal input level given in ANSI C63.19-2011 Table 7.1. If the device display can be turned off during a phone call, then that may be done during the measurement as well, Measurement shall be performed at two locations specified in ANSI C63.19-2011 A.3, with the correct probe orientation for a particular location, in a multistage sequence by first measuring the field intensity of the desired T-Coil signal the same location as the desired ABM or T-Coil signal (ABM1), and the ratio of desired to undesired magnetic components (ABM2) must be measured at the same location as the desired ABM or T-Coil signal (ABM1), and the ratio of desired to undesired ABM signals must be calculated. For the perpendicular field location, only the ABM1 frequency response shall be determined in a third measurement stage. The following steps summarize the basic test flow for determining ABM1 and ABM2. These steps assume that a sine wave or narrowband 1/3 octave signal can be used for the measurement of ABM1. - a. A validation of the test setup and instrumentation may be performed using a TMFS or Helmholtz coil Measure the emissions and confirm that they are within the specified tolerance. - b. Position the WD in the test setup and connect the WD RF connector to a base station simulator or a non-radiating load. Confirm that equipment that requires calibration has been calibrated, and that the noise level meets the requirements given in ANSI C63.19-2011 clause 7.3.1. - c. The drive level to the WD ise set such that the reference input level specified in ANSI C63.19-2011 Table 7.1 is input to the base station simulator (or manufacturer's test mode equivalent) in 1 kHz, 1/3 octave band. This drive level shall be used for the T-Coil signal test (ABM1) at f = 1 kHz. Either a sine wave at 1025 Hz or a voice-like signal, band-limited to the 1 kHz 1/3 octave, as defined in ANSI C63.19-2011 clause 7.4.2, shall be used for the reference audio signal. If interference is found at 1025 Hz an alternative nearby reference audio signal frequency may be used. The same drive level shall be used for the ABM1 frequency response measurements at each 1/3 octave band center frequency. The WD volume control may be set at any level up to maximum, provided that a signal at any frequency at maximum modulation would not result in clipping or signal overload. - d. Determine the magnetic measurement locations for the WD device (A.3), if not already specified by the manufacturer, as described in ANSI C63.19-2011 clause 7.4.4.1.1 and 7.4.4.2. - e. At each measurement location, measure and record the desired T-Coil magnetic signals (ABM1 at fi) as described in ANSI C63.19-2011 clause 7.4.4.2 in each individual ISO 266-1975 R10 standard 1/3 octave band. The desired audio band input frequency (fi) shall be centered in each 1/3 octave band maintaining the same drive level as determined in item c) and the reading taken for that band. - f. Equivalent methods of determining the frequency response may also be employed, such as fast Fourier transform (FFT) analysis using noise excitation or input-output comparison using simulated speech. The full-band integrated probe output, as specified in D.9, may be used, as long as the appropriate calibration curve is applied to the measured result, so as to yield an accurate measurement of the field magnitude. (The resulting measurement shall be an accurate measurement in dB A/m.) - g. All Measurements of the desired signal shall be shown to be of the desired signal and not of an undesired signal. This may be shown by turning the desired signal ON and OFF with the probe measuring the same location. If the scanning method is used the scans shall show that all measurement points selected for the ABM1 measurement meet the ambient and test system noise criteria in ANSI C63.19-2011 clause 7.3.1. - h. At the measurement location for each orientation, measure and record the undesired broadband audio magnetic signal (ABM2) as specified in ANSI C63.19-2011 clause 7.4.4.4 with no audio signal applied (or digital zero applied, if appropriate) using A-weighting and the half-band integrator. Calculate the ratio of the desired to undesired signal strength (i,e., signal quality). - i. Obtain the data from the postprocessor, SEMCAD, and determine the category that properly classifies the signal quality based on ANSI C63.19-2011 Table 8.5. TEL: 886-3-327-3456 Page: 9 of 25 FAX: 886-3-328-4978 Issued Date: Jul. 10, 2018 # 7.1 Test Flow Chart Report No.: HA850813-03B Fig. 2 T-Coil Signal Test flowchart TEL: 886-3-327-3456 Page: 10 of 25 FAX: 886-3-328-4978 Issued Date: Jul. 10, 2018 ## 7.2 Test Setup Diagram Report No.: HA850813-03B #### **General Note:** - 1. Define the all applicable input audio level as below according to C63 and KDB 285076
D02v03: - GSM input level: -16dBm0 - UMTS input level: -16dBm0 - CDMA input level: -18dBm0 - VoLTE input level: -16dBm0 - VoWiFi input level: -20dBm0 - OTT VoIP input Level: -20dBm0 - 2. For GSM / UMTS / CDMA test setup and input level, the correct input level definition is via a communication tester CMU200's "Decoder Cal" and "Codec Cal" with audio option B52 and B85 to set the correct audio input levels. - 3. CMU200 is able to output 1kHz audio signal equivalent to 3.14dBm0 at "Decoder Cal." confuguration, the signal reference is used to adjust the AMMI gain setting to reach -16dBm0 for GSM/UMTS and -18dBm0 for CDMA. CMW500 input is calibrated and the relation between the analog input voltage and the internal level in dBm0 can be determined - 4. The test setup used for VoLTE over IMS and VoWiFi over IMS is via the callbox of CMW500 for T-coil measurement, The data application unit of the CMW500 was used to simulate the IP multimedia subsystem server. The CMW500 can be manually configured to ensure and control the speech input level result is -16dBm0 for VoLTE, -20dBm0 for VoWiFi when the device during the IMS connection. - 5. The test setup used for Google DUO VoIP call is via the data application unit on CMW500 connection to the Internet, also connection to the other auxiliary VoIP unit which is used to configure the audio codec and bit rate and also monitor the audio input level of -20dBm0. - 6. The test setup used for SIP Calling is via the data application unit on CMW500 connection to the Internet, also connection to the other auxiliary VoIP unit which is used to configure the audio codec and bit rate and can be determined the audio input level of -20dBm0. TEL: 886-3-327-3456 Page: 11 of 25 FAX: 886-3-328-4978 Issued Date: Jul. 10, 2018 # SPORTON LAB. HAC T-COIL TEST REPORT The Required gain factor for the specific signal shall typically be multiplied by this factor to achieve approx. the same level as for the 1kHz sine signal Report No.: HA850813-03B 2. The below calculation formula is an example and showing how to determine the input level for the device. The predefined signal types have the following differences / factors compared to the 1kHz sine signal: | Signal
[file name] | Duration
[s] | Peak-to-
RMS [dB] | RMS
[dB] | Required gain factor *) | Gain setting | |-------------------------------|-----------------|----------------------|-------------|-------------------------|--------------| | 1kHz sine | | 3.0 | 0.0 | 1.00 | | | 48k_1.025kHz_10s.wav | 10 | 3.0 | 0.0 | 1.00 | | | 48k_1kHz_3.15kHz_10s.wav | 10 | 6.0 | -3.0 | 1.42 | | | 48k_315Hz_1kHz_10s.wav | 10 | 6.0 | -2.9 | 1.40 | | | 48k_csek_8k_441_white_10s.wav | 10 | 13.8 | -10.5 | 3.34 | | | 48k_multisine_50-5000_10s.wav | 10 | 11.1 | -7.9 | 2.49 | | | 48k_voice_1kHz_1s.wav | 1 | 16.2 | -12.7 | 4.33 | | | 48k_voice_300-3000_2s.wav | 2 | 21.6 | -18.6 | 8.48 | | (*) The gain for the specific signal shall typically be multiplied by this factor to acheive approx. the same level as for the 1kHz sine signal. Insert the gain applicable for your setup in the last column of the table. #### Calculation formula: - Audio Level at -16dBm0 = ((-16dBm0) (3.14dBm0)) + X dBv - Calculated Gain at -16dBm0 = 10((audio level at -16dBm0 Y dBm0) / 20) * 10 Gatting setting at -16dBm0 = required gain factor * calculated gain | Gain Value | 20* log(gain) | AMCC Coil In | Level | |------------|---------------|--------------|--------| | (linear) | dB | (dBv RMS) | dBm0 | | | | -2.47 | 3.14 | | 10 | 20 | -19.85 | -14.24 | | 8.17 | 18.24 | -21.61 | -16 | | Signal Type | Duration
(s) | Peak to RMS
(dB) | RMS
(dB) | Required Gain Factor | Calculated
Gain Setting | |------------------------|-----------------|---------------------|-------------|----------------------|----------------------------| | 1kHz sine | - | 3 | 0 | 1 | 8.17 | | 48k_voice_1kHz | 1 | 16.2 | -12.7 | 4.33 | 35.36 | | 48k_voice_300Hz ~ 3kHz | 2 | 21.6 | -18.6 | 8.48 | 69.25 | TEL: 886-3-327-3456 Page: 12 of 25 FAX: 886-3-328-4978 Issued Date: Jul. 10, 2018 ## 7.3 Description of EUT Test Position Fig.3 illustrate the references and reference plane that shall be used in a typical EUT emissions measurement. The principle of this section is applied to EUT with similar geometry. Please refer to Appendix C for the setup photographs. Report No.: HA850813-03B - ♦ The area is 5 cm by 5 cm. - ♦ The area is centered on the audio frequency output transducer of the EUT. - ◆ The area is in a reference plane, which is defined as the planar area that contains the highest point in the area of the phone that normally rests against the user's ear. It is parallel to the centerline of the receiver area of the phone and is defined by the points of the receiver-end of the EUT handset, which, in normal handset use, rest against the ear. - ◆ The measurement plane is parallel to, and 10 mm in front of, the reference plane. Fig.3 A typical EUT reference and plane for T-Coil measurements TEL: 886-3-327-3456 Page: 13 of 25 FAX: 886-3-328-4978 Issued Date: Jul. 10, 2018 # 8. Test Equipment List | Manufacturer | Name of Equipment | Type/Madel | Serial Number | Calib | oration | | |--------------|---------------------------------|------------|---------------|---------------|---------------|--| | Manuracturer | Name of Equipment | Type/Model | Seriai Number | Last Cal. | Due Date | | | SPEAG | Audio Magnetic 1D Field Probe | AM1DV3 | 3130 | Nov. 21, 2017 | Nov. 20, 2018 | | | SPEAG | Data Acquisition Electronics | DAE4 | 1424 | Jan. 18, 2018 | Jan. 17, 2019 | | | SPEAG | Audio Magnetic Calibration Coil | AMCC | 1049 | NCR | NCR | | | SPEAG | Audio Measuring Instrument | AMMI | 1041 | NCR | NCR | | | WonDer | Thermometer | WD-5016 | TM132-1 | Mar. 16, 2018 | Mar. 15, 2019 | | | SPEAG | Test Arch Phantom | N/A | N/A | NCR | NCR | | | SPEAG | Phone Positioner | N/A | N/A | NCR | NCR | | | R&S | Base Station | CMW500 | 115793 | May. 24, 2018 | May. 23, 2019 | | | R&S | Base Station | CMU200 | 116457 | May. 30, 2018 | May. 29, 2019 | | Report No.: HA850813-03B Note: TEL: 886-3-327-3456 Page: 14 of 25 FAX: 886-3-328-4978 Issued Date: Jul. 10, 2018 ^{1.} NCR: "No-Calibration Required" # 9. T-Coil testing for CMRS Voice #### **General Note:** - Codec Investigation: For a voice service/air interface, investigate the variations of codec configurations (WB, NB bit rate) and document the parameters (ABM1, ABM2, S+N/N, frequency response) for that voice service. It is only necessary to document this for one channel/band, the following worst investigation codec would be remarked to be used for the testing for the handset. - 2. Air Interface Investigation: - a. Use the worst-case codec test and document a limited set of bands/channel/bandwidths. Observe the effect of changing the band and bandwidth to ensure that there are no unexpected variations. Using the knowledge of the observed variations, it is necessary to report only a set band/channel/bandwidth for each orientation for a voice service/air interface. Report No.: HA850813-03B b. According to the ANSI C63.19 2011 section 7.3.2, test middle channel of each frequency band for HAC testing for each orientation to determine worst HAC T-Coil rating. # 9.1 GSM Tests Results #### <Codec Investigation> | Codec | FR_V1 | HR_V1 | Orientation | Band / Channel | | |---------------------|--------|--------|-------------|----------------|--| | ABM 1 (dBA/m) | 0.64 | -0.37 | | | | | ABM 2 (dBA/m) | -23.63 | -24.93 | Axial | GSM850 / 189 | | | Signal Quality (dB) | 24.27 | 24.56 | Axidi | G3M630 / 169 | | | Freq. Response | PASS | PASS | | | | Remark: According to codec investigation, the worst codec is FR_V1 #### <Air Interface Investigation> | Plot
No. | Air Interface | Mode | Channel | Probe
Position | ABM1
dB (A/m) | ABM2
dB (A/m) | Signal
Quality
dB | T
Rating | Ambient
Noise
dB (A/m) | | Frequency
Response | |-------------|---------------|--------|---------|-------------------|------------------|------------------|-------------------------|-------------|------------------------------|------|-----------------------| | | GSM850 | ED 1/4 | 189 | Axial (Z) | 0.64 | -23.63 | 24.27 | Т3 | -50.26 | 0.77 | PASS | | ' | GSIVI65U | FR_V1 | 109 | Transversal (Y) | -0.40 | -24.88 | 24.48 | Т3 | -50.31 | 0.77 | PASS | | | 00144000 | ED 1/4 | 004 | Axial (Z) | -9.58 | -33.75 | 24.17 | Т3 | -50.28 | 4.00 | DAGG | | 2 | GSM1900 | FR_V1 | 661 | Transversal (Y) | -3.67 | -28.19 | 24.52 | Т3 | -50.22 | 1.26 | PASS | #### 9.2 UMTS Tests Results #### <Codec Investigation> | Codec | AMR 4.75Kbps | AMR 7.95Kbps | AMR 12.2Kbps | Orientation | Band / Channel | |---------------------|--------------|--------------|--------------|-------------|----------------| | ABM 1 (dBA/m) | 14.77 | 14.22 | 14.77 | | | | ABM 2 (dBA/m) | -38.8 | -39.17 | -38.05 | Axial | Band 2 / 9400 | | Signal Quality (dB) | 53.57 | 53.39 | 52.82 | Axiai | Band 2 / 9400 | | Freq. Response | PASS | PASS | PASS | | | Remark: According to codec investigation, the worst codec is AMR 12.2Kbps TEL: 886-3-327-3456 Page: 15 of 25 FAX: 886-3-328-4978 Issued Date: Jul. 10, 2018 # <Air Interface Investigation> | Plot
No. | Air Interface | Mode | Channel | Probe
Position | ABM1
dB (A/m) | ABM2
dB (A/m) | Signal
Quality
dB | T
Rating | Ambient
Noise
dB (A/m) | | Frequency
Response | |-------------|---------------|----------------|---------|-------------------|------------------|------------------|-------------------------|-------------|------------------------------|---|-----------------------| | 3 | WCMDA II | AMT 12.2Kbps | 9400 | Axial (Z) | 14.77 | -38.05 | 52.82 | T4 | -50.26 | 2 | PASS | | 3 | WCIVIDA II | AIVIT 12.2KDps | 9400 | Transversal (Y) | 10.73 | -41.48 | 52.21 | T4 | -50.22 | 2 | PASS | | | MCMDA IV | AMT 12 OKhna | 4.440 | Axial (Z) | 12.60 | -40.23 | 52.83 | T4 | -50.29 | 0 | PASS | | 4 | WCMDA IV | AMT 12.2Kbps | 1413 | Transversal (Y) | 11.13 | -41.44 | 52.57 | T4 | -50.26 |
2 | PASS | | _ | MOMPAN | ANT 40 OKb | 4400 | Axial (Z) | 14.61 | -38.24 | 52.85 | T4 | -50.31 | | DAGG | | 5 | WCMDA V | AMT 12.2Kbps | 4182 | Transversal (Y) | 11.40 | -40.93 | 52.33 | T4 | -50.29 | 2 | PASS | Report No.: HA850813-03B # 9.3 CDMA Tests Results ### <Codec Investigation> | Codec | RC1 SO68 | RC3 SO68 | RC4 SO68 | Orientation | Band / Channel | |---------------------|----------|----------|----------|-------------|----------------| | ABM 1 (dBA/m) | 4.98 | 4.7 | 4.77 | | | | ABM 2 (dBA/m) | -47.86 | -47.52 | -47.47 | Axial | DC0 / 204 | | Signal Quality (dB) | 52.84 | 52.22 | 52.24 | Axiai | BC0 / 384 | | Freq. Response | PASS | PASS | PASS | | | Remark: According to codec investigation, the worst codec is RC3 SO68 ### <Air Interface Investigation> | Plot
No. | Air Interface | Mode | Channel | Probe
Position | ABM1
dB (A/m) | ABM2
dB (A/m) | Signal
Quality
dB | T
Rating | Ambient
Noise
dB (A/m) | | Frequency
Response | |-------------|---------------|----------|---------|-------------------|------------------|------------------|-------------------------|-------------|------------------------------|------|-----------------------| | 6 | CDMA BC0 | RC3 SO68 | 384 | Axial (Z) | 4.70 | -47.52 | 52.22 | T4 | -50.26 | 1.76 | PASS | | 6 | CDIVIA BCU | KC3 3000 | 304 | Transversal (Y) | 1.99 | -47.70 | 49.69 | T4 | -50.24 | 1.76 | PASS | | 7 | CDMA BC1 | RC3 SO68 | 600 | Axial (Z) | 5.13 | -50.25 | 55.38 | T4 | -50.35 | 1.76 | PASS | | , | CDIVIA BC I | RC3 5066 | 600 | Transversal (Y) | 2.27 | -49.99 | 52.26 | T4 | -50.21 | 1.76 | PASS | | | CDMA DC40 | DC2 CO69 | F90 | Axial (Z) | 5.16 | -49.97 | 55.13 | T4 | -50.33 | 4.60 | DACC | | 8 | CDMA BC10 | RC3 SO68 | 580 | Transversal (Y) | 2.11 | -50.08 | 52.19 | T4 | -50.18 | 1.62 | PASS | TEL: 886-3-327-3456 Page: 16 of 25 FAX: 886-3-328-4978 Issued Date: Jul. 10, 2018 # 10. T-Coil testing for CMRS IP Voice ### 10.1 VoLTE Tests Results #### **General Note:** Codec Investigation: For a voice service/air interface, investigate the variations of codec configurations (WB, NB bit rate) and document the parameters (ABM1, ABM2, S+N/N, frequency response) for that voice service. It is only necessary to document this for one channel / band, the following worst investigation codec would be remarked to be used for the testing for the handset. #### 2. Air Interface Investigation: a. Use the worst-case codec test and document a limited set of bands / channel / bandwidths. Observe the effect of changing the band and bandwidth to ensure that there are no unexpected variations. Using the knowledge of the observed variations, it is necessary to report only a set band/channel/bandwidth for each orientation for a voice service/air interface and the following worst configure would be remarked to be used for the testing for the handset. Report No.: HA850813-03B - b. Select LTE FDD / TDD one frequency band to do measurement at the worst SNR position was additionally performed with varying the BWs/Modulations/RB size to verify the variation to find out worst configuration. - c. The TDD LTE power class 3 supports uplink-downlink configuration 0 and 6 and power class 2 supports uplink-downlink configuration1 to 5 for this device, an investigation was performed to determine the worst-case uplink-downlink configuration to be used for the testing for the handset. - According to the ANSI C63.19 2011 section 7.3.2, test middle channel of each frequency band for HAC testing for each orientation to determine worst HAC T-Coil rating. #### <Codec Investigation> #### LTE FDD | Codec | NB AMR
4.75Kbps | WB AMR
6.60Kbps | NB AMR
12.2Kbps | WB AMR
23.85Kbps | EVS SWB
9.6Kbps | EVS SWB
128Kbps | EVS WB
5.9Kbps | EVS WB
128Kbps | EVS NB
5.9Kbps | EVS NB
24.4Kbps | Orientation | Band / BW / Channel | |---------------------------|--------------------|--------------------|--------------------|---------------------|--------------------|--------------------|-------------------|-------------------|-------------------|--------------------|-------------|---------------------| | ABM 1
(dBA/m) | 4.1 | -7.69 | -2.03 | -10.18 | -9.96 | -1.06 | -9.2 | -2.01 | -1.84 | -10.66 | | | | ABM 2
(dBA/m) | -20.33 | -31.8 | -28.06 | -33.62 | -33.34 | -24.48 | -32.56 | -25.54 | -25.39 | -34.43 | | B25 / 20M / | | Signal
Quality
(dB) | 24.43 | 24.11 | 26.03 | 23.44 | 23.38 | 23.42 | 23.36 | 23.53 | 23.55 | 23.77 | Axial | 26340 | | Freq.
Response | PASS | | Remark: According to codec investigation, the worst codec is EVS WB 5.9Kbps #### LTE TDD | Codec | NB AMR
4.75Kbps | WB AMR
6.60Kbps | NB AMR
12.2Kbps | WB AMR
23.85Kbps | EVS SWB
9.6Kbps | EVS SWB
128Kbps | EVS WB
5.9Kbps | EVS WB
128Kbps | EVS NB
5.9Kbps | EVS NB
24.4Kbps | Orientation | Band / BW /
Channel | |------------------------|--------------------|--------------------|--------------------|---------------------|--------------------|--------------------|-------------------|-------------------|-------------------|--------------------|-------------|------------------------| | ABM 1
(dBA/m) | 1.14 | 1.09 | 1.17 | 1.2 | 1.03 | 1.19 | 1.1 | 1.22 | 1.29 | 1.03 | | | | ABM 2
(dBA/m) | -22.96 | -23.02 | -23.01 | -22.97 | -23.13 | -22.91 | -22.98 | -22.91 | -22.8 | -23.1 | Audel | B41 / 20M / | | Signal
Quality (dB) | 24.1 | 24.11 | 24.18 | 24.17 | 24.16 | 24.1 | 24.18 | 24.13 | 24.19 | 24.13 | Axial | 40620 | | Freq.
Response | Pass | | Remark: According to codec investigation, the worst codec is NB AMR 4.75Kbps TEL: 886-3-327-3456 Page: 17 of 25 FAX: 886-3-328-4978 Issued Date: Jul. 10, 2018 # SPORTON LAB. HAC T-COIL TEST REPORT # <Air Interface Investigation> | Plot
No. | Air Interface | BW
(MHz) | Modulation
/ Mode | RB
Size | RB
offset | Channel | UL-DL
Configuration | Probe
Position | ABM1
dB (A/m) | ABM2
dB (A/m) | Signal
Quality
dB | |-------------|---------------|-------------|----------------------|------------|--------------|---------|------------------------|-------------------|------------------|------------------|-------------------------| | | LTE B25 | 20 | QPSK | 1 | 0 | 26340 | | Axial (Z) | -9.00 | -32.04 | 23.04 | | | LTE B25 | 20 | QPSK | 50 | 0 | 26340 | | Axial (Z) | -8.95 | -32.11 | 23.16 | | | LTE B25 | 20 | QPSK | 100 | 0 | 26340 | | Axial (Z) | -9.02 | -32.16 | 23.14 | | | LTE B25 | 20 | 16QAM | 1 | 0 | 26340 | | Axial (Z) | -9.05 | -32.16 | 23.11 | | FDD | LTE B25 | 20 | 64QAM | 1 | 0 | 26340 | | Axial (Z) | -8.98 | -32.15 | 23.17 | | FDD | LTE B25 | 15 | QPSK | 1 | 0 | 26340 | | Axial (Z) | -9.03 | -32.09 | 23.06 | | | LTE B25 | 10 | QPSK | 1 | 0 | 26340 | | Axial (Z) | -9.05 | -32.13 | 23.08 | | | LTE B25 | 5 | QPSK | 1 | 0 | 26340 | | Axial (Z) | -8.98 | -32.11 | 23.13 | | | LTE B25 | 3 | QPSK | 1 | 0 | 26340 | | Axial (Z) | -9.05 | -32.15 | 23.10 | | | LTE B25 | 1.4 | QPSK | 1 | 0 | 26340 | | Axial (Z) | -9.02 | -32.15 | 23.13 | | | LTE B41_PC3 | 20 | QPSK | 1 | 0 | 40620 | 0 | Axial (Z) | 1.20 | -22.50 | 23.70 | | | LTE B41_PC3 | 20 | QPSK | 50 | 0 | 40620 | 0 | Axial (Z) | 1.18 | -22.56 | 23.74 | | | LTE B41_PC3 | 20 | QPSK | 100 | 0 | 40620 | 0 | Axial (Z) | 1.16 | -22.69 | 23.85 | | | LTE B41_PC3 | 20 | 16QAM | 1 | 0 | 40620 | 0 | Axial (Z) | 1.22 | -22.66 | 23.88 | | | LTE B41_PC3 | 20 | 64QAM | 1 | 0 | 40620 | 0 | Axial (Z) | 1.18 | -22.67 | 23.85 | | | LTE B41_PC3 | 15 | QPSK | 1 | 0 | 40620 | 0 | Axial (Z) | 1.20 | -22.66 | 23.86 | | | LTE B41_PC3 | 10 | QPSK | 1 | 0 | 40620 | 0 | Axial (Z) | 1.20 | -22.55 | 23.75 | | TDD | LTE B41_PC3 | 5 | QPSK | 1 | 0 | 40620 | 0 | Axial (Z) | 1.18 | -22.68 | 23.86 | | | LTE B41_PC3 | 20 | QPSK | 1 | 0 | 40620 | 6 | Axial (Z) | 1.18 | -22.63 | 23.81 | | | LTE B41_PC2 | 20 | QPSK | 1 | 0 | 40620 | 1 | Axial (Z) | 1.24 | -22.52 | 23.76 | | | LTE B41_PC2 | 20 | QPSK | 1 | 0 | 40620 | 2 | Axial (Z) | 1.26 | -22.57 | 23.83 | | | LTE B41_PC2 | 20 | QPSK | 1 | 0 | 40620 | 3 | Axial (Z) | 1.25 | -22.71 | 23.96 | | | LTE B41_PC2 | 20 | QPSK | 1 | 0 | 40620 | 4 | Axial (Z) | 1.17 | -22.71 | 23.88 | | | LTE B41_PC2 | 20 | QPSK | 1 | 0 | 40620 | 5 | Axial (Z) | 1.19 | -22.75 | 23.94 | | | UL CA B41 | 20 | QPSK | 1 | 0 | 40620 | 0 | Axial (Z) | 1.22 | -22.69 | 23.91 | Report No.: HA850813-03B | Plot
No. | Air Interface | BW
(MHz) | Modulation | RB
Size | RB
offset | Channel | Probe
Position | ABM1
dB
(A/m) | ABM2
dB
(A/m) | Signal
Quality
dB | T
Rating | Ambient
Noise
dB
(A/m) | | Frequency
Response | |-------------|---------------|-------------|------------|------------|--------------|---------|-------------------|---------------------|---------------------|-------------------------|-------------|---------------------------------|---|-----------------------| | 9 | LTE Band 7 | 20 | QPSK | 1 | 0 | 21100 | Axial (Z) | -4.75 | -28.67 | 23.92 | T3 | -50.31 | 2 | PASS | | 9 | LTL Danu 7 | 20 | QFSK | | U | 21100 | Transversal (Y) | -4.25 | -28.58 | 24.33 | T3 | -50.28 | 2 | FAGG | | 10 | LTE Band 12 | 10 | QPSK | 1 | 0 | 23095 | Axial (Z) | -2.00 | -25.98 | 23.98 | T3 | -50.26 | 2 | PASS | | 10 | LIL Danu 12 | 10 | QFSK | | U | 23093 | Transversal (Y) | -1.27 | -25.54 | 24.27 | T3 | -50.24 | 2 | FAGG | | 11 | LTE Band 13 | 10 | QPSK | 1 | 0 | 23230 | Axial (Z) | -9.87 | -33.90 | 24.03 | Т3 | -50.30 | 2 | PASS | | | LIL Danu 13 | 10 | QFSK | | U | 23230 | Transversal (Y) | -9.72 | -34.06 | 24.34 | Т3 | -50.29 | 2 | FAGG | | 12 | LTE Band 14 | 10 | QPSK | 1 | 0 | 23330 | Axial (Z) | -2.36 | -26.41 | 24.05 | T3 | -50.32 | 2 | PASS | | 12 | LIL Dallu 14 | 10 | QFSK | | U | 23330 | Transversal (Y) | -0.90 | -25.27 | 24.37 | Т3 | -50.19 | 2 | FAGG | | 13 | LTE Band 25 | 20 | QPSK | 1 | 0 | 26340 | Axial (Z) | -9.20 | -32.56 | 23.36 | T3 | -50.28 | 2 | PASS | | 13 | LIE Dallu 23 | 20 | QFSK | ' | 0 | 20340 | Transversal (Y) | -9.54 | -33.36 | 23.82 | Т3 | -50.26 | 2 | PASS | | 14 | LTE Band 26 | 15 | QPSK | 1 | 0 |
26865 | Axial (Z) | -12.82 | -36.71 | 23.89 | T3 | -50.30 | 2 | PASS | | 14 | LIE Dallu 20 | 15 | QFSK | ' | 0 | 20000 | Transversal (Y) | -2.19 | -26.34 | 24.15 | Т3 | -50.18 | 2 | PASS | | 15 | LTE Band 66 | 20 | QPSK | 1 | 0 | 132322 | Axial (Z) | -2.96 | -26.63 | 23.67 | T3 | -50.28 | 2 | PASS | | 15 | LIE DANG 66 | 20 | QF5K | ' | 0 | 132322 | Transversal (Y) | -5.05 | -29.32 | 24.27 | T3 | -50.16 | | FA33 | | 16 | LTE Band 41 | 20 | QPSK | 1 | 0 | 40620 | Axial (Z) | 1.10 | -22.98 | 24.08 | Т3 | -50.27 | 2 | PASS | | 16 | LIE Dano 41 | 20 | QF5K | ' | 0 | 40020 | Transversal (Y) | -4.90 | -29.41 | 24.51 | T3 | -50.22 | | FA33 | TEL: 886-3-327-3456 Page: 18 of 25 FAX: 886-3-328-4978 Issued Date: Jul. 10, 2018 #### 10.2 VoWiFi Tests Results #### **General Note:** Codec Investigation: For a voice service/air interface, investigate the variations of codec configurations (WB, NB bit rate) and document the parameters (ABM1, ABM2, S+N/N, frequency response) for that voice service. It is only necessary to document this for one channel/band, the following worst investigation codec would be remarked to be used for the testing for the handset. Report No.: HA850813-03B - 2. Air Interface Investigation: - a. Use the worst-case codec test and document a limited set of bands/channel/bandwidths. Observe the effect of changing the band and bandwidth to ensure that there are no unexpected variations. Using the knowledge of the observed variations, it is necessary to report only a set band/channel/bandwidth for each orientation for a voice service/air interface and the following worst configure would be remarked to be used for the testing for the handset. - b. Select WLAN 2.4GHz and WLAN 5GHz one frequency band to do measurement at the worst SNR position was additionally performed with varying the BWs/Modulations/data rate to verify the variation to find out worst configuration. - c. According to the ANSI C63.19 2011 section 7.3.2, test middle channel of each frequency band for HAC testing for each orientation to determine worst HAC T-Coil rating. #### <Codec Investigation> | Codec | NB AMR
4.75Kbps | WB AMR
6.60Kbps | NB AMR
12.2Kbps | WB AMR
23.85Kbps | EVS SWB
9.6Kbps | EVS SWB
128Kbps | EVS WB
5.9Kbps | EVS WB
128Kbps | EVS NB
5.9Kbps | EVS NB
24.4Kbps | Orientation | Band /
Channel | |---------------------------|--------------------|--------------------|--------------------|---------------------|--------------------|--------------------|-------------------|-------------------|-------------------|--------------------|-------------|-------------------| | ABM 1
(dBA/m) | -8.43 | -8.36 | -8.26 | -8.42 | -8.43 | -8.34 | -8.46 | -8.42 | -8.37 | -8.53 | | | | ABM 2
(dBA/m) | -46.71 | -46.66 | -46.6 | -46.79 | -46.73 | -46.71 | -46.79 | -46.74 | -46.71 | -46.96 | | WLAN2.4G | | Signal
Quality
(dB) | 38.28 | 38.3 | 38.34 | 38.37 | 38.3 | 38.37 | 38.33 | 38.32 | 38.34 | 38.43 | Axial | / 6 | | Freq.
Response | PASS | | Remark: According to codec investigation, the worst codec is NB AMR 4.75Kbps TEL: 886-3-327-3456 Page: 19 of 25 FAX: 886-3-328-4978 Issued Date: Jul. 10, 2018 # <Air Interface Investigation> | Frequency Bands | Modulation | Bandwidth | Data Rate | Channel | ABM1
dB (A/m) | ABM2
dB (A/m) | Signal Quality dB | |-----------------|----------------|-----------|-----------|---------|------------------|------------------|-------------------| | | 802.11b | 20 | 1M | 6 | Axial (Z) | -7.62 | -42.88 | | | 802.11b | 20 | 11M | 6 | Axial (Z) | -7.53 | -43.40 | | | 802.11g | 20 | 6M | 6 | Axial (Z) | -7.60 | -43.96 | | WLAN 2.4GHz | 802.11g | 20 | 54M | 6 | Axial (Z) | -7.67 | -44.07 | | WLAN 2.4GHZ | 802.11n-HT20 | 20 | MCS0 | 6 | Axial (Z) | -7.57 | -44.08 | | | 802.11n-HT20 | 20 | MCS7 | 6 | Axial (Z) | -7.52 | -43.27 | | | 802.11n-HT40 | 40 | MCS0 | 6 | Axial (Z) | -7.48 | -43.42 | | | 802.11n-HT40 | 40 | MCS7 | 6 | Axial (Z) | -7.53 | -44.04 | | | 802.11a | 20 | 6M | 40 | Axial (Z) | -7.53 | -47.76 | | | 802.11a | 20 | 54M | 40 | Axial (Z) | -7.63 | -51.06 | | | 802.11an-HT20 | 20 | MCS0 | 40 | Axial (Z) | -7.51 | -47.94 | | | 802.11an-HT20 | 20 | MCS7 | 40 | Axial (Z) | -7.40 | -49.79 | | | 802.11an-HT40 | 40 | MCS0 | 38 | Axial (Z) | -7.58 | -49.78 | | WLAN 5GHz | 802.11an-HT40 | 40 | MCS7 | 38 | Axial (Z) | -7.63 | -48.01 | | WLAN 5GHZ | 802.11ac-VHT20 | 20 | MCS0 | 40 | Axial (Z) | -7.51 | -50.15 | | | 802.11ac-VHT20 | 20 | MCS8 | 40 | Axial (Z) | -7.64 | -48.18 | | | 802.11ac-VHT40 | 40 | MCS0 | 38 | Axial (Z) | -7.51 | -50.20 | | | 802.11ac-VHT40 | 40 | MCS8 | 38 | Axial (Z) | -7.53 | -49.91 | | | 802.11ac-VHT80 | 80 | MCS0 | 50 | Axial (Z) | -7.52 | -47.99 | | | 802.11ac-VHT80 | 80 | MCS8 | 50 | Axial (Z) | -7.47 | -49.48 | Report No.: HA850813-03B | Plot
No. | Air Interface | Modulation | Channel | Probe
Position | ABM1
dB (A/m) | ABM2
dB (A/m) | Signal
Quality
dB | T
Rating | Ambient
Noise
dB (A/m) | Freq.
Response
Variation
dB | Frequency
Response | | | | | |-------------|--------------------------|--------------------|-----------------|-------------------|------------------|------------------|-------------------------|-------------|------------------------------|--------------------------------------|-----------------------|--------|--------|-------|------| | 17 | WLAN2.4GHz | 802.11b 1Mbps | 6 | Axial (Z) | -8.26 | -46.54 | 38.28 | T4 | -50.26 | 2 | PASS | | | | | | 17 | WLANZ.4GHZ | 602.11b 1Mbps | O | Transversal (Y) | -16.25 | -48.20 | 31.95 | T4 | -50.18 | 2 | FASS | | | | | | 18 | WLAN5GHz | 902 11a 6Mbpa | 40 | Axial (Z) | -8.01 | -51.76 | 43.75 | T4 | -50.29 | 2 | PASS | | | | | | 10 | WLANSGHZ | 802.11a 6Mbps | 802.11a 6Mbps | 802.TTA 6Mbps | 40 | Transversal (Y) | -15.80 | -51.14 | 35.34 | T4 | -50.21 | 2 | FASS | | | | 19 | WLAN5GHz | 902 112 6Mbps | 902 110 6Mbps | 802 11a 6Mbps | 802 11a 6Mhns | 802 11a 6Mbps | 60 | Axial (Z) | -8.19 | -49.87 | 41.68 | T4 | -50.24 | 2 | PASS | | 19 | WLANSGHZ | 802.11a 6Mbps | 802.11a 6Mbps | 802.11a 6Mbps | 60 | Transversal (Y) | -16.02 | -49.98 | 33.96 | T4 | -50.17 | 2 | FASS | | | | -00 | WILANIE OLI- | 000.44 01.0 | 000 44 - 000- | 900 11a 6Mbna | 000 44a 6Mhna | 404 | Axial (Z) | -8.22 | -51.28 | 43.06 | T4 | -50.32 | 0 | D4 00 | | | 20 | WLAN5GHz | 5GHz 802.11a 6Mbps | 2.11a 6Mbps 124 | Transversal (Y) | -15.92 | -49.78 | 33.86 | T4 | -50.23 | 2 | PASS | | | | | | 24 | WI ANSCH 2 902 112 6Mbpc | 157 | Axial (Z) | -8.02 | -50.95 | 42.93 | T4 | -50.27 | 2 | DAGG | | | | | | | 21 | 1 WLAN5GHz 802.11a 6Mbps | WLAN5GHz | WLAN5GHz | 802.11a 6Mbps | 157 | Transversal (Y) | -15.91 | -49.35 | 33.44 | T4 | -50.11 | 2 | PASS | | | TEL: 886-3-327-3456 Page: 20 of 25 FAX: 886-3-328-4978 Issued Date: Jul. 10, 2018 # 11. T-Coil testing for OTT VoIP Application #### **General Notes:** According to the ANSI C63.19 2011 section 7.3.2, test middle channel of each frequency band for HAC testing for each orientation to determine worst HAC T-Coil rating. Report No.: HA850813-03B - 2. The google Duo and SIP calling VoIP application are pre-installed on this device. According to KDB 285076 D02, all air interfaces via a data connection with VoIP application need to be considered HAC testing. - 3. The test setup used for OTT VoIP call is the DUT connect to the CMW500 and via the data application unit on CMW500 connection to the Internet, the Auxiliary EUT is connected to the WiFi access point, the channel/Modulation/Frequency bands/data rate is configured on the CMW500 for the DUT unit. For the Auxiliary VoIP unit which is used to configure the audio codec rate and determine the audio input level of -20dBm0 based on the KDB 285076 D02v03 requirement. - 4. <u>Codec Investigation:</u> For a voice service/air interface, investigate the variations of codec configurations (WB, NB bit rate) and document the parameters (ABM1, ABM2, S+N/N, frequency response) for that voice service. It is only necessary to document this for one channel/band, the following tests results which the worst case codec would be remarked to be used for the testing for the handset. - 5. Air Interface Investigation: - a. Use the worst-case codec test and document a limited set of bands/channel/bandwidths. Observe the effect of changing the band and bandwidth to ensure that there are no unexpected variations. Using the knowledge of the observed variations, it is necessary to report only a set band/channel/bandwidth for each orientation for a voice service/air interface. - b. Due to OTT service and CMRS IP service are all be established over the internet protocol for the voice service, and on both services use the identical RF air interface for the WIFI and LTE, therefore according to VoLTE and VoWiFi test results of air interface investigation, the worst configuration and frequency band of air interface was used for OTT T-Coil testing. - -LTE FDD worst configuration and band: LTE Band 25/20MHz/QPSK/1RB Size - -LTE TDD worst configuration and band: LTE Band 41/20MHz/QPSK/1RB Size - -WLAN2.4GHz worst configuration: 802.11b /1Mbps - -WLAN5GHz worst configuration and Band: WLAN 5.8GHz /11a/6Mbps #### <Codec Investigation> #### **EDGE** | ОТТ | VoIP (| Codec(Google | Duo) | | VolP | Codec(SIP Ca | alling) | | | Band /
Channel | |---------------------|------------|----------------|----------------|-----------------------|-----------------|------------------------|-------------------|-------------------|-------------|-------------------| | Codec | Opus 6kbps | Opus
40kbps | Opus
75kbps | AMR NB
12.2 Kbit/s | GSM
13Kbit/s | GSM_EFR
12.2 Kbit/s | PCMA
64 Kbit/s | PCMU
64 Kbit/s | Orientation | | | ABM 1 (dBA/m) | 7.04 | 7.7 | 6.26 | -8.86 | -8.9 | -8.94 | -7.92 | -8.9 | | GSM850 /
189 | | ABM 2 (dBA/m) | -28.92 | -28.41 | -29.4 | -35.62 | -35.72 | -35.56 | -34.31 | -35.65 | Axial | | | Signal Quality (dB) | 35.96 | 36.11 | 35.66 | 26.76 | 26.82 | 26.62 | 26.39 | 26.75 | Axiai | | | Freq. Response | Pass | |
Remark: According to codec investigation, the worst codec bitrate is PCMA 64Kbits #### **HSPA** | ОТТ | VoIP | Codec(Google | Duo) | | VolP | Codec(SIP Ca | ılling) | | | Band /
Channel | |---------------------|------------|----------------|----------------|-----------------------|-----------------|------------------------|-------------------|-------------------|-------------|-------------------| | Codec | Opus 6kbps | Opus
40kbps | Opus
75kbps | AMR NB
12.2 Kbit/s | GSM
13Kbit/s | GSM_EFR
12.2 Kbit/s | PCMA
64 Kbit/s | PCMU
64 Kbit/s | Orientation | | | ABM 1 (dBA/m) | 9.36 | 8.27 | 7.09 | 4.55 | 4.85 | 5.42 | -2.01 | -3.96 | | UMTS B2 /
9400 | | ABM 2 (dBA/m) | -28.63 | -27.33 | -27.96 | -24.05 | -23.06 | -24.17 | -28.69 | -31.03 | Axial | | | Signal Quality (dB) | 37.99 | 35.6 | 35.05 | 28.6 | 27.91 | 29.59 | 26.68 | 27.07 | | | | Freq. Response | Pass | | Remark: According to codec investigation, the worst codec bitrate is PCMA 64Kbits TEL: 886-3-327-3456 Page: 21 of 25 FAX: 886-3-328-4978 Issued Date: Jul. 10, 2018 ### 1XEVDO Rev A | ОТТ | VoIP (| Codec(Google | Duo) | | VolP | Codec(SIP Ca | ılling) | | | Band / | |---------------------|------------|----------------|----------------|-----------------------|-----------------|------------------------|-------------------|-------------------|-------------|-----------| | Codec | Opus 6kbps | Opus
40kbps | Opus
75kbps | AMR NB
12.2 Kbit/s | GSM
13Kbit/s | GSM_EFR
12.2 Kbit/s | PCMA
64 Kbit/s | PCMU
64 Kbit/s | Orientation | Channel | | ABM 1 (dBA/m) | 1.49 | 1.29 | 1.05 | 3.39 | 3.58 | 3.23 | 3.34 | 3.67 | | BC0 / 384 | | ABM 2 (dBA/m) | -30.79 | -31.31 | -31.11 | -22.05 | -21.95 | -22.16 | -22.01 | -21.77 | Axial | | | Signal Quality (dB) | 32.28 | 32.6 | 32.16 | 25.44 | 25.53 | 25.39 | 25.35 | 25.44 | Axiai | | | Freq. Response | Pass | | Report No.: HA850813-03B Remark: According to codec investigation, the worst codec bitrate is PCMA 64Kbits #### LTE FDD | ОТТ | VoIP (| Codec(Google | Duo) | | VolP | Codec(SIP Ca | alling) | | | Band / BW /
Channel | |---------------------|------------|----------------|----------------|-----------------------|-----------------|------------------------|-------------------|-------------------|-------------|------------------------| | Codec | Opus 6kbps | Opus
40kbps | Opus
75kbps | AMR NB
12.2 Kbit/s | GSM
13Kbit/s | GSM_EFR
12.2 Kbit/s | PCMA
64 Kbit/s | PCMU
64 Kbit/s | Orientation | | | ABM 1 (dBA/m) | 7.38 | 9.34 | 9.23 | 1.27 | 1.41 | 1.72 | 0.93 | 1.25 | | B25 / 20M /
26340 | | ABM 2 (dBA/m) | -26.77 | -23.64 | -23.6 | -22.76 | -22.65 | -22.8 | -22.76 | -22.75 | | | | Signal Quality (dB) | 34.15 | 32.98 | 32.83 | 24.03 | 24.06 | 24.52 | 23.69 | 24 | Axial | | | Freq. Response | Pass | | Remark: According to codec investigation, the worst codec bitrate is PCMA 64Kbits #### LTE TDD | ОТТ | VoIP (| Codec(Google | Duo) | | VolP | Codec(SIP Ca | alling) | | 0.000 | Band / BW /
Channel | |---------------------|------------|----------------|----------------|-----------------------|-----------------|------------------------|-------------------|-------------------|-------------|------------------------| | Codec | Opus 6kbps | Opus
40kbps | Opus
75kbps | AMR NB
12.2 Kbit/s | GSM
13Kbit/s | GSM_EFR
12.2 Kbit/s | PCMA
64 Kbit/s | PCMU
64 Kbit/s | Orientation | | | ABM 1 (dBA/m) | 8.49 | 10.12 | 10.1 | -0.63 | -2.82 | -2.01 | -2.99 | -2.29 | | B41 / 20M /
40620 | | ABM 2 (dBA/m) | -24.89 | -22.54 | -22.26 | -28.89 | -28.66 | -28.19 | -27.1 | -27.73 | | | | Signal Quality (dB) | 33.38 | 32.66 | 32.36 | 28.26 | 25.84 | 26.18 | 24.11 | 25.44 | Axial | | | Freq. Response | Pass | | Remark: According to codec investigation, the worst codec bitrate is PCMA 64Kbits #### **WLAN** | OTT | VoIP | Codec(Google | Duo) | | VolP | Codec(SIP Ca | ılling) | | | Band /
Channel | |---------------------|---------------|----------------|----------------|-----------------------|-----------------|------------------------|-------------------|-------------------|-------------|-------------------| | Codec | Opus
6kbps | Opus
40kbps | Opus
75kbps | AMR NB
12.2 Kbit/s | GSM
13Kbit/s | GSM_EFR
12.2 Kbit/s | PCMA
64 Kbit/s | PCMU
64 Kbit/s | Orientation | | | ABM 1 (dBA/m) | 8.2 | 11.2 | 11.61 | -15.56 | -14.53 | -6.26 | -0.85 | -6.42 | | WLAN2.4G /
6 | | ABM 2 (dBA/m) | -27.17 | -22.05 | -21.06 | -42.03 | -41.1 | -35.55 | -26.54 | -34.1 | Audal | | | Signal Quality (dB) | 35.37 | 33.25 | 32.67 | 26.47 | 26.57 | 29.29 | 25.69 | 27.68 | Axial | | | Freq. Response | Pass | | Remark: According to codec investigation, the worst codec bitrate is PCMA 64Kbits TEL: 886-3-327-3456 Page: 22 of 25 FAX: 886-3-328-4978 Issued Date: Jul. 10, 2018 # <Air Interface Investigation> | Plot
No. | Air Interface | Mode | Channel | Probe
Position | ABM1
dB
(A/m) | ABM2
dB
(A/m) | Signal
Quality
dB | T
Rating | Ambient
Noise
dB (A/m) | Freq.
Response
Variation dB | Frequency
Response | | | |-------------|-----------------|-----------------|---------|-------------------|---------------------|---------------------|-------------------------|-------------|------------------------------|-----------------------------------|-----------------------|---|------| | 22 | GSM850 | EDGE 2 Tx slots | 189 | Axial (Z) | -7.92 | -34.31 | 26.39 | Т3 | -50.33 | 2 | PASS | | | | 22 | GSIVIOSO | EDGE 2 1X SIOIS | 109 | Transversal (Y) | 1.46 | -25.54 | 27.00 | Т3 | -50.25 | 2 | PASS | | | | 23 | GSM1900 | EDGE 2 Tx slots | 661 | Axial (Z) | 5.21 | -20.17 | 25.38 | T3 | -50.36 | 2 | PASS | | | | 23 | G3W1900 | LDGL 2 TX SIOIS | 001 | Transversal (Y) | -0.15 | -25.80 | 25.65 | T3 | -50.26 | 2 | FASS | | | | 24 | WCDMA II | HSPA | 9400 | Axial (Z) | -2.01 | -28.69 | 26.68 | Т3 | -50.31 | 2 | PASS | | | | 24 | WCDIVIA II | HOFA | 5400 | Transversal (Y) | -3.24 | -29.16 | 25.92 | Т3 | -50.28 | 2 | FAGG | | | | 25 | WCDMA IV | HSPA | 1413 | Axial (Z) | -2.89 | -28.58 | 25.69 | T3 | -50.26 | 2 | PASS | | | | 25 | WCDIVIA IV | ПОРА | 1413 | Transversal (Y) | 0.07 | -25.48 | 25.55 | Т3 | -50.27 | 2 | | | | | 26 | 26 WCDMA V HSPA | HSPA | ПСПЛ | LICDA | 4182 | Axial (Z) | -3.85 | -29.42 | 25.57 | Т3 | -50.26 | 2 | PASS | | 20 | | | 4102 | Transversal (Y) | 0.10 | -25.81 | 25.91 | Т3 | -50.29 | 2 | PASS | | | | 27 | 27 CDMA BC0 | RTAP 153.6Kbps | 384 | Axial (Z) | 3.34 | -22.01 | 25.35 | T3 | -50.25 | 2 | PASS | | | | 21 | CDIVIA BC0 | KTAF 155.0Kbps | 304 | Transversal (Y) | 1.25 | -25.16 | 26.41 | Т3 | -50.31 | 2 | | | | | 28 | CDMA BC1 | RTAP 153.6Kbps | 600 | Axial (Z) | -2.91 | -27.93 | 25.02 | T3 | -50.25 | 2 | PASS | | | | 20 | CDIVIA BCT | KTAP 155.6KDps | 600 | Transversal (Y) | -8.13 | -32.81 | 24.68 | Т3 | -50.22 | | | | | | 29 | CDMA BC10 | RTAP 153.6Kbps | 580 | Axial (Z) | -1.52 | -28.23 | 26.71 | Т3 | -50.25 | 0 | PASS | | | | 29 | CDIVIA BC10 | KTAP 155.6KDps | 360 | Transversal (Y) | -1.33 | -28.95 | 27.62 | Т3 | -50.23 | 2 | PASS | | | | 30 | LTE Band 25 | 20 QPSK 1 0 | 26340 | Axial (Z) | 0.93 | -22.76 | 23.69 | Т3 | -50.36 | 2 | PASS | | | | 30 | LTE Ballu 25 | 20_QP3K_1_0 | 20340 | Transversal (Y) | -8.21 | -32.28 | 24.07 | T3 | -50.21 | 2 | PASS | | | | 31 | LTE Band 41 | 20 QPSK 1 0 | 40620 | Axial (Z) | -2.99 | -27.10 | 24.11 | Т3 | -50.31 | 2 | PASS | | | | 31 | LTE Ballu 41 | 20_QP3K_1_0 | 40020 | Transversal (Y) | 1.61 | -24.97 | 26.58 | Т3 | -50.21 | 2 | PASS | | | | 32 | WLAN2.4GHz | 000 44h 4Mhna | 6 | Axial (Z) | -0.85 | -26.54 | 25.69 | Т3 | -50.33 | 0 | DACC | | | | 32 | WLANZ.4GHZ | 802.11b 1Mbps | 6 | Transversal (Y) | -10.16 | -38.07 | 27.91 | Т3 | -50.24 | 2 | PASS | | | | 22 | VALLANISCHI- | 902 110 6Mb== | 157 | Axial (Z) | 0.33 | -37.62 | 37.95 | T4 | -50.28 | 4.05 | PASS | | | | 33 | 33 WLAN5GHz | 802.11a 6Mbps | 157 | Transversal (Y) | -7.82 | -36.29 | 28.47 | Т3 | -50.20 | 1.65 | PASS | | | Report No.: HA850813-03B #### Remark: 1. Phone Condition: Mute on; Backlight off; Max Volume 2. The detail frequency response results please refer to appendix A. 3. Test Engineer: Tom Jiang TEL: 886-3-327-3456 Page: 23 of 25 FAX: 886-3-328-4978 Issued Date: Jul. 10, 2018 # 12. <u>Uncertainty Assessment</u> The evaluation of uncertainty by the statistical analysis of a series of observations is termed a Type A evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance. The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances. Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is showed in Table 8.2. Report No.: HA850813-03B | Error Description | Uncertainty
Value
(±%) | Probability
Distribution | Divisor | Ci
(ABM1) | Ci
(ABM2) | Standard
Uncertainty
(ABM1) | Standard
Uncertainty
(ABM2) | |---------------------------------------|------------------------------|-----------------------------|------------|--------------|--------------|-----------------------------------|-----------------------------------| | | | Probe Sen | sitivity
| | | | | | Reference Level | 3.0 | Normal | 1 | 1 | 1 | ± 3.0 % | ± 3.0 % | | AMCC Geometry | 0.4 | Rectangular | √3 | 1 | 1 | ± 0.2 % | ± 0.2 % | | AMCC Current | 1.0 | Rectangular | √3 | 1 | 1 | ± 0.6 % | ± 0.6 % | | Probe Positioning During Calibrate | 0.1 | Rectangular | √3 | 1 | 1 | ± 0.1 % | ± 0.1 % | | Noise Contribution | 0.7 | Rectangular | √3 | 0.0143 | 1 | ± 0.0 % | ± 0.4 % | | Frequency Slope | 5.9 | Rectangular | √3 | 0.1 | 1 | ± 0.3 % | ± 3.5 % | | | | Probe Sy | stem | | | | | | Repeatability / Drift | 1.0 | Rectangular | √3 | 1 | 1 | ± 0.6 % | ± 0.6 % | | Linearity / Dynamic Range | 0.6 | Rectangular | √3 | 1 | 1 | ± 0.4 % | ± 0.4 % | | Acoustic Noise | 1.0 | Rectangular | √3 | 0.1 | 1 | ± 0.1 % | ± 0.6 % | | Probe Angle | 2.3 | Rectangular | √3 | 1 | 1 | ± 1.4 % | ± 1.4 % | | Spectral Processing | 0.9 | Rectangular | √3 | 1 | 1 | ± 0.5 % | ± 0.5 % | | Integration Time | 0.6 | Normal | 1 | 1 | 5 | ± 0.6 % | ± 3.0 % | | Field Disturbation | 0.2 | Rectangular | √3 | 1 | 1 | ± 0.1 % | ± 0.1 % | | | | Test Siç | gnal | | | | | | Reference Signal Spectral
Response | 0.6 | Rectangular | √3 | 0 | 1 | ± 0.0 % | ± 0.4 % | | | | Position | ning | | | | | | Probe Positioning | 1.9 | Rectangular | √3 | 1 | 1 | ± 1.1 % | ± 1.1 % | | Phantom Thickness | 0.9 | Rectangular | √3 | 1 | 1 | ± 0.5 % | ± 0.5 % | | EUT Positioning | 1.9 | Rectangular | √3 | 1 | 1 | ± 1.1 % | ± 1.1 % | | | | External Con | tributions | | | | | | RF Interference | 0.0 | Rectangular | √3 | 1 | 0.3 | ± 0.0 % | ± 0.0 % | | Test Signal Variation | 2.0 | Rectangular | √3 | 1 | 1 | ± 1.2 % | ± 1.2 % | | | Combined Star | ndard Uncertainty | | | | ± 4.1 % | ± 6.1 % | | | | K | = 2 | | | | | | | | ± 8.1 % | ± 12.3 % | | | | | Table 8.2 Uncertainty Budget of audio band magnetic measurement TEL: 886-3-327-3456 Page: 24 of 25 FAX: 886-3-328-4978 Issued Date: Jul. 10, 2018 # 13. References [1] ANSI C63.19-2011, "American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids", 27 May 2011. Report No.: HA850813-03B - [2] FCC KDB 285076 D01v05, "Equipment Authorization Guidance for Hearing Aid Compatibility", Sep 2017 - [3] FCC KDB 285076 D02v03, "Guidance for performing T-Coil tests for air interfaces supporting voice over IP (e.g., LTE and WiFi) to support CMRS based telephone services", Sep 2017 - [4] FCC KDB 285076 D03v01, "Hearing aid compatibility frequently asked questions", Sep 2017 - [5] SPEAG DASY System Handbook TEL: 886-3-327-3456 Page: 25 of 25 FAX: 886-3-328-4978 Issued Date: Jul. 10, 2018