

Shenzhen Huatongwei International Inspection Co., Ltd. 1/F,Bldg 3,Hongfa Hi-tech Industrial Park,Genyu Road,Tianliao,Gongming,Shenzhen,China Phone:86-755-26748019 Fax:86-755-26748089 http://www.szhtw.com.cn

TEST REPORT

Report Reference No:	CHTEW19100158	Report verifica	tion:	
Project No	SHT1909043101EW			
FCC ID:	ZSW-10-026		Reportive Contraction	
Applicant's name:	b mobile HK Limited			
Address	Flat 18; 14/F Block 1; Golden In Street; Kwai Chung; New Territ		0,	
Manufacturer	b mobile HK Limited			
Address:	Flat 18; 14/F Block 1; Golden I Street; Kwai Chung; New Territ			
Test item description:	Mobile Phone			
Trade Mark	Bmobile			
Model/Type reference:	W120			
Listed Model(s)				
Standard:	FCC CFR Title 47 Part 15 Sub	opart C Section	n 15.247	
Date of receipt of test sample:	Sep 17, 2019			
Date of testing	Sep 18, 2019- Oct 28, 2019			
Date of issue	Oct 29, 2019			
Result:	PASS			
Compiled by (Position+Printed name+Signature) :	File administrators Silvia Li	5	Silvia Li Fron.Fang	
Supervised by		Ao	ron Fana	
(Position+Printed name+Signature):	Project Engineer Aaron Fang			
Approved by (Position+Printed name+Signature) :	RF Manager Hans Hu	ł	tomsty	
Testing Laboratory Name :	Shenzhen Huatongwei Intern	ational Inspec	tion Co., Ltd.	
Address:	1/F, Bldg 3, Hongfa Hi-tech Ind Tianliao, Gongming, Shenzhen		enyu Road,	

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely correspond to the test sample.

Contents

<u>1.</u>	TEST STANDARDS AND REPORT VERSION	3
1.1.	Test Standards	3
1.2.	Report version	3
<u>2.</u>	TEST DESCRIPTION	4
<u>3.</u>	SUMMARY	5
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	Operation state	6
3.4.	EUT configuration	6
3.5.	Modifications	6
<u>4.</u>	TEST ENVIRONMENT	7
4.1.	Address of the test laboratory	7
4.2.	Test Facility	7
4.3.	Environmental conditions	8
4.4.	Statement of the measurement uncertainty	8
4.5.	Equipments Used during the Test	9
<u>5.</u>	TEST CONDITIONS AND RESULTS	11
5.1.	Antenna Requirement	11
5.2.	Conducted Emissions (AC Main)	12
5.3.	Conducted Peak Output Power	15
5.4.	Power Spectral Density	16
5.5.	6dB bandwidth	18
5.6.	Restricted band	20
5.7.	Band edge and Spurious Emissions (conducted)	22
5.8.	Spurious Emissions (radiated)	27
<u>6.</u>	TEST SETUP PHOTOS	32
<u>7.</u>	EXTERANAL AND INTERNAL PHOTOS	33

1. TEST STANDARDS AND REPORT VERSION

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

ANSI C63.10:2013: American National Standard for Testing Unlicensed Wireless Devices

<u>KDB 558074 D01 15.247 Meas Guidance v05r02:</u> Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating under Section 15.247 of The FCC Rules

1.2. Report version

Revision No.	Date of issue	Description
N/A	2019-10-29	Original

2. TEST DESCRIPTION

Test Item	FCC Rule	Result	Test Engineer
Antenna requirement	15.203/15.247(c)	PASS	Kang Yang
Line Conducted Emissions (AC Main)	15.207	PASS	Kang Yang
Conducted Peak Output Power	15.247(b)(3)	PASS	Bruce Wong
Power Spectral Density	15.247(e)	PASS	Bruce Wong
6dB Bandwidth	15.247(a)(2)	PASS	Bruce Wong
Restricted band	15.247(d)/15.205	PASS	Barry Chang
Spurious Emissions	15.247(d)/15.209	PASS	Barry Chang

Note: The measurement uncertainty is not included in the test result.

3. <u>SUMMARY</u>

3.1. Client Information

Applicant:	b mobile HK Limited
Address:	Flat 18; 14/F Block 1; Golden Industrial Building;16-26 Kwai Tak Street; Kwai Chung; New Territories; Hong Kong.
Manufacturer:	b mobile HK Limited
Address:	Flat 18; 14/F Block 1; Golden Industrial Building;16-26 Kwai Tak Street; Kwai Chung; New Territories; Hong Kong

3.2. Product Description

Name of EUT:	Mobile Phone
Trade Mark:	Bmobile
Model No.:	W120
Listed Model(s):	-
IMEI Code:	Conducted: 351727110000117 Radiated: 351727110000075
Power supply:	DC 3.7V
Adapter information:	Input:100-240Va.c., 50/60Hz, 0.15A Output:5.0Vd.c., 650mA
Hardware version:	Bmobile_W120_HW_V001
Software version:	Bmobile_W120_TEM_MX_V001
Bluetooth	
Version:	Supported BT4.0+BLE
Modulation:	GFSK
Operation frequency:	2402MHz~2480MHz
Channel number:	40
Channel separation:	2MHz
Antenna type:	PIFA Antenna
Antenna gain:	0dBi

3.3. Operation state

Test frequency list

According to section 15.31(m), regards to the operating frequency range over 10 MHz, must select three channel which were tested. the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, please see the above gray bottom.

Channel	Frequency (MHz)
00	2402
01	2404
:	:
19	2440
:	:
38	2478
39	2480

Test mode

For RF test items

The engineering test program was provided and enabled to make EUT continuous transmit (duty cycle>98%).

For AC power line conducted emissions:

The EUT was set to connect with the Bluetooth instrument under large package sizes transmission.

For Radiated suprious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit(duty cycle>98%). The EUT in each of three orthogonal axis emissions had been tested ,but only the worst case (X axis) data Recorded in the report.

3.4. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- supplied by the lab

	Manufacturer:	/
7	Model No.:	/
1	Manufacturer:	/
7	Model No.:	/

3.5. Modifications

No modifications were implemented to meet testing criteria.

4. TEST ENVIRONMENT

4.1. Address of the test laboratory

Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd. Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China

4.2. Test Facility

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 762235

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files.

IC-Registration No.:5377A

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No.: 5377A.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

4.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C
Relative Humidity:	30~60 %
Air Pressure:	950~1050mba

4.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors in calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report according to TR-100028-01 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement characteristics; Part 2" and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd. quality system according to ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Here after the best measurement capability for Shenzhen Huatongwei International Inspection Co., Ltd. is reported:

Test Items	Measurement Uncertainty	Notes
Transmitter power conducted	0.51 dB	(1)
Conducted spurious emissions 9kHz~40GHz	0.51 dB	(1)
Conducted Disturbance 150kHz~30MHz	3.02 dB	(1)
Radiated Emissions below 1GHz	4.90 dB	(1)
Radiated Emissions above 1GHz	4.96 dB	(1)
Occupied Bandwidth	70 Hz	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

4.5. Equipments Used during the Test

•	Conducted Emission								
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)		
•	Shielded Room	Albatross projects	HTWE0114	N/A	N/A	2018/09/28	2023/09/27		
•	EMI Test Receiver	R&S	HTWE0111	ESCI	101247	2019/10/26	2020/10/25		
•	Artificial Mains	SCHWARZBECK	HTWE0113	NNLK 8121	573	2019/10/23	2020/10/22		
•	Pulse Limiter	R&S	HTWE0033	ESH3-Z2	100499	2019/10/23	2020/10/22		
•	RF Connection Cable	HUBER+SUHNE R	HTWE0113-02	ENVIROFLE X_142	EF-NM- BNCM-2M	2019/10/23	2020/10/22		
•	Test Software	R&S	N/A	ES-K1	N/A	N/A	N/A		

•	Radiated Emission-6th test site							
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)	
•	Semi-Anechoic Chamber	Albatross projects	HTWE0127	SAC-3m-02	C11121	2018/09/30	2021/09/29	
•	EMI Test Receiver	R&S	HTWE0099	ESCI	100900	2019/10/26	2020/10/25	
•	Ultra-Broadband Antenna	SCHWARZBECK	HTWE0119	VULB9163	546	2017/04/05	2020/04/04	
•	Pre-Amplifer	SCHWARZBECK	HTWE0295	BBV 9742	N/A	2018/11/14	2019/11/13	
•	RF Connection Cable	HUBER+SUHNER	HTWE0062-01	N/A	N/A	2019/8/21	2020/8/20	
•	RF Connection Cable	HUBER+SUHNER	HTWE0062-02	SUCOFLEX104	501184/4	2019/5/27	2020/5/26	
•	Test Software	R&S	N/A	ES-K1	N/A	N/A	N/A	

• Radiated emission-7th test site

Used	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Semi-Anechoic Chamber	Albatross projects	SAC-3m-01	N/A	2018/09/30	2021/09/29
•	Spectrum Analyzer	R&S	FSP40	100597	2019/10/26	2020/10/25
•	Horn Antenna	SCHWARZBECK	9120D	1011	2017/03/27	2020/03/26
•	Pre-amplifier	BONN	BLWA0160-2M	1811887	2018/11/14	2019/11/13
•	Pre-amplifier	CD	PAP-0102	12004	2018/11/14	2019/11/13
•	Broadband Pre- amplifier	SCHWARZBECK	BBV 9718	9718-248	2019/04/26	2020/04/25
•	RF Connection Cable	HUBER+SUHNER	RE-7-FH	N/A	2018/11/15	2019/11/14
•	RF Connection Cable	HUBER+SUHNER	RE-7-FL	N/A	2018/11/15	2019/11/14
•	Test Software	Audix	E3	N/A	N/A	N/A
•	Turntable	Maturo Germany	TT2.0-1T	N/A	N/A	N/A
•	Antenna Mast	Maturo Germany	CAM-4.0-P-12	N/A	N/A	N/A

•	RF Conducted Method								
Used	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)			
•	Signal and spectrum Analyzer	R&S	FSV40	100048	2018/10/28	2019/10/27			
•	Spectrum Analyzer	Agilent	N9020A	MY50510187	2018/10/8	2020/10/7			
•	Radio communication tester	R&S	CMW500	137688-Lv	2019/10/26	2020/10/25			
•	OSP	R&S	OSP120	101317	N/A	N/A			
•	Test software	Tonscend	JS1120	N/A	N/A	N/A			

5. TEST CONDITIONS AND RESULTS

5.1. Antenna Requirement

<u>Requirement</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responseble party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

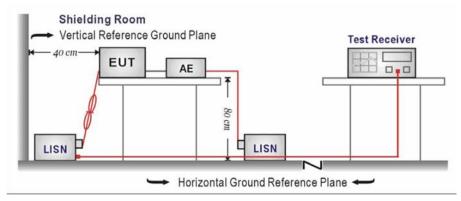
(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

TEST RESULTS

☑ Passed □ Not Applicable

The directional gain of the antenna less than 6 dBi, please refer to the below antenna photo.

5.2. Conducted Emissions (AC Main)


<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.207

	Limit (dBuV)		
Frequency range (MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

* Decreases with the logarithm of the frequency.

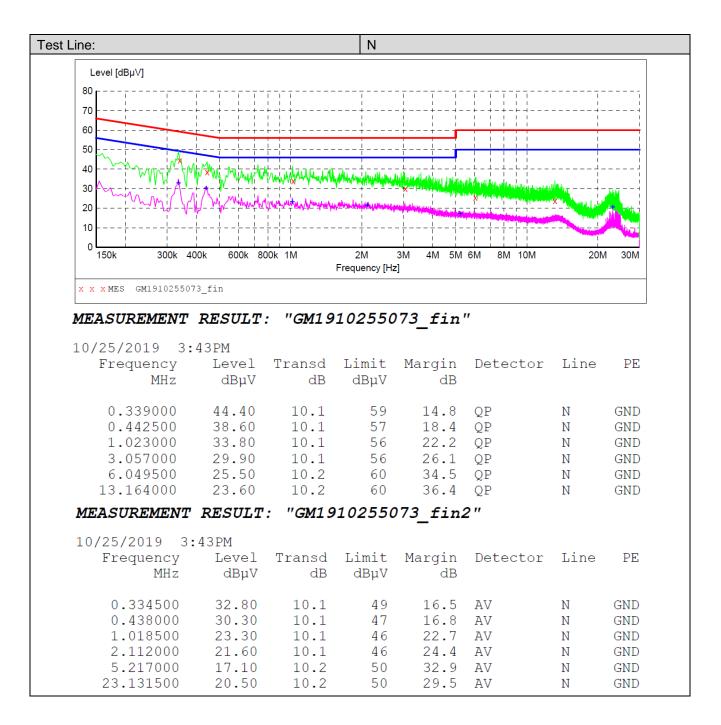
TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment.
- 4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 7. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.

TEST MODE:

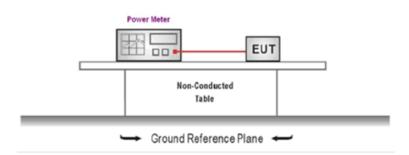

Please refer to the clause 3.3


TEST RESULTS

☑ Passed □ Not Applicable

Note:

- 1) Transd = Cable lose + Pulse Limiter Factor + Artificial Mains Factor
- 2) Margin = Limit Level



5.3. Conducted Peak Output Power

<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (b)(3): 30 dBm

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was tested according to ANSI C63.10: 2013 and KDB 558074 D01 for compliance to FCC 47 CFR 15.247 requirements.
- 2. The maximum peak conducted output power may be measured using a broadband peak RF power meter.
- 3. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.
- 4. Record the measurement data.

TEST MODE:

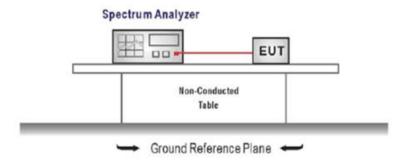
Please refer to the clause 3.3

TEST RESULTS

🛛 Passed

Not Applicable

Туре	Channel	Output power (dBm)	Limit (dBm)	Result
	00	-3.38		
BT-BLE	19	-3.13	≤30.00	Pass
	39	-3.49		


5.4. Power Spectral Density

<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (e):

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST CONFIGURATION

TEST PROCEDURE

1. Connect the antenna port(s) to the spectrum analyzer input,

 Configure the spectrum analyzer as shown below: Center frequency=DTS channel center frequency Span =1.5 times the DTS bandwidth RBW = 3 kHz ≤ RBW ≤ 100 kHz, VBW ≥ 3 × RBW Sweep time = auto couple Detector = peak Trace mode = max hold

- 3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter wave form on the spectrum analyzer.
- 4. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 5. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST MODE:

Please refer to the clause 3.3

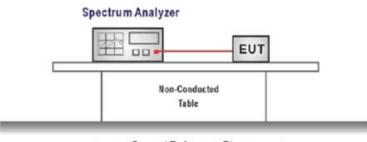
TEST RESULTS

☑ Passed □ Not Applicable

Туре	Channel	Power Spectral Density(dBm/3KHz)	Limit (dBm/3KHz)	Result
	00	-18.96		
BT-BLE	19	-18.66	≤8.00	Pass
	39	-19.07		

Test plot as follows:

Spectrum Image: Constraint of the section of the s
● Att 20 dB SWT 632.3 µs ● VBW 10 kHz Mode Auto FFT Count 100/100
●1Pk Max
0 dBm
-10 dBm
-20 dem
-20 dam
-40 dBm
-50 dBm
-60 dBm
-70 dBm
-80 dBm
CF 2.402 GHz 691 pts Span 1.0 MHz
Date: 24 SEP 2019 14/32 18
Spectrum III
RefLevel 10.50 dBm Offset 1.00 dB RBW 3 kHz
● Att 20 dB SWT 632.3 µs ● VBW 10 kHz Mode Auto FFT Count 100/100 ● FFK Max
0 d8m
-10 dBm
-20 dBm
19 Mar
340 dbm-
-50 dBm-
-60 dBm-
-70 dBm-
-80 dBm
CF 2.44 GHz 691 pts Span 1.0 MHz
Date: 24.SEP.2019 14/34:00
Spectrum 🕎
Ref Level 10.50 dBm Offset 1.00 dB RBW 3 kHz ● Att 20 dB SWT 632.3 µs ● VBW 10 kHz
Count 100/100 ●1Pk Max
0 d8m
-10 dBm
-20 dBm
-10 dBm -20 dB
40 dBm
-50 dBm-
-50 dBm
70.48%
-70 dBm
-70 dBm
_


5.5. 6dB bandwidth

<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(2):

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

TEST CONFIGURATION

Ground Reference Plane

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- Configure the spectrum analyzer as shown below (enter all losses between the transmitter output and the spectrum analyzer).

Center Frequency =DTS channel center frequency Span=2 x DTS bandwidth RBW = 100 kHz, VBW ≥ 3 × RBW Sweep time= auto couple Detector = Peak Trace mode = max hold

- 3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.
- 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission, and record the pertinent measurements.

TEST MODE:

Please refer to the clause 3.3

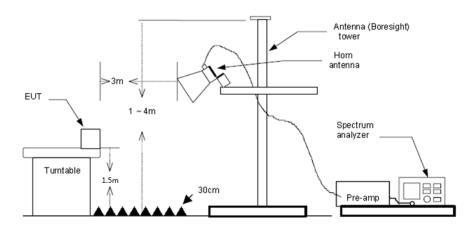
TEST RESULTS

☑ Passed □ Not Applicable

Туре	Channel	6dB Bandwidth(MHz)	Limit (kHz)	Result
	00	0.69		
BT-BLE	19	0.69	≥500	Pass
	39	0.69		

Test plot as follows:

	Spectrum 🕎
	RefLevel 10.50 dBm Offset 1.00 dB ● RBW 100 kHz ● Att 20 dB SWT 19.1 µs ● VBW 300 kHz Mode Auto FFT
	Count 500/500 P IPk View
	M1[1] -10.16 dBm
	0 dBm 2.40165600 GHz M2[1] -4.11 dBm
	-10 dBm 01 -10.113 dBm 93 2.40199400 GHz
	-20 dBm
	-30 dBm
	-40 dBm
CH00	-50 dBm
CHUU	
	-60 dBm
	-70 dBm
	-80 dBm
	CF 2.402 CHz 1001 pts Span 2.0 MHz
	Marker Type Ref Trc X-value Y-value Function Function Result
	Mi 1 2.401556 GHz -10.16 Bm M2 1 2.401994 GHz -4.11 dBm
	M2 1 2.401999 GHZ -4.11 dem D3 M1 1 690.0 kHz 0.02 dB
	Measuring- 🗰 Lineau
	Date: 24 SEP.2019 1431:54
	Spectrum 🕎
	Ref Level 10.50 dBm Offset 1.00 dB 👄 RBW 100 kHz
	● Att 20 dB SWT 19.1 µs ● VBW 300 kHz Mode Auto FFT Count 500/500
	●1Pk View M1[1] -9.85 dBm
	2.43965400 GHz
	→10 dBm 01 -9.841 dBm 1 -3.84 dBm 2.43999600 GHz
	-20 dam-
	-30 dBm
	-40 dBm
CH19	-50 dBm
	-60 dBm
	-70 dBm
	-80 d8m
	CF 2.44 GHz 1001 pts Span 2.0 MHz
	Marker
	Type Ref Trc X-value Y-value Function Function Result M1 1 2.439654 GHz -9.85 dBm -9.85 dBm -9.85 dBm
	M2 1 2.439996 GHz -3.84 dBm D3 M1 1 692.0 KHz -0.01 dB
	Date: 24 SEP-2019 14:33:36
	Spectrum RefLevel 10.50 dBm Offset 1.00 dB ● RBW 100 kHz
	Att 20 dB SWT 19.1 µs VBW 300 kHz Mode Auto FFT
	Count 500/500 • 1Pk View
	M1[1] -10.25 dBm 2.47965600 GHz
	0 dBm M2[1] -4.22 dBm
	-10-dBm - D1 -10.222 dBm
	-20 dBm
	-30 dBm
	-40 d8m
CH39	-50 dBm
01103	
	-60 dBm-
	-70 dBm
	-80 dBm
	CF 2.48 GHz 1001 pts Span 2.0 MHz
	Marker Type Ref Trc X-value Y-value Function Function Result
	M1 1 2.479656 GHz -10.25 dBm
	M2 1 2.479994 GHz -4.22 dBm
	D3 M1 1 692.0 kHz 0.02 dB
	D3 M1 1 692.0 kHz 0.02 dB


5.6. Restricted band

<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, Radiated Emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the Radiated Emissions limits specified in §15.209(a) (see §15.205(c)).

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was setup and tested according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find themaximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- The receiver set as follow: RBW=1MHz, VBW=3MHz Peak detector for Peak value. RBW=1MHz, VBW=3MHz RMS detector for Average value.

TEST MODE:

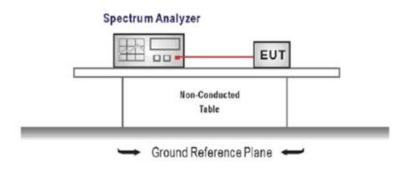
Please refer to the clause 3.3

TEST RESULTS

☑ Passed □ Not Applicable

Note:

- 1) Final level= Read level + Factor
- 2) The peak level is lower than average limit(54 dBuV/m), this data is the too weak instrument of signal is unable to test.


Test channe	9			CH00			
Freq.	Reading	Factor	Level	Limit	Margin	Polarity	Detector
[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	rolanty	Detector
2310.000	34.09	-2.34	31.75	74.00	42.25	Horizontal	PK
2390.000	32.98	-2.41	30.57	74.00	43.43	Horizontal	PK
Freq.	Reading	Factor	Level	Limit	Margin	Polarity	Detector
[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	Tolanty	Detector
2310.000	22.29	-2.34	19.95	54.00	34.05	Horizontal	AV
2390.000	23.54	-2.41	21.13	54.00	32.87	Horizontal	AV
Freq.	Reading	Factor	Level	Limit	Margin	Polarity	Detector
[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	Tolanty	Detector
2310.000	33.93	-2.34	31.59	74.00	42.41	Vertical	PK
2390.000	34.00	-2.41	31.59	74.00	42.41	Vertical	PK
Freq.	Reading	Factor	Level	Limit	Margin	Delevitu	Detector
[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	Polarity	Deleciol
2310.000	22.66	-2.34	20.32	54.00	33.68	Vertical	AV
2390.000	22.55	-2.41	20.14	54.00	33.86	Vertical	AV
Test channe	9			CH39			-
Freq.	Reading	Factor	Level	Limit	Margin	Polarity	Detector
[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	Polanty	Delector
2483.500	47.57	-2.15	45.42	54.00	08.58	Horizontal	AV
2500.000	21.63	-2.10	19.53	54.00	34.47	Horizontal	AV
Freq.	Reading	Factor	Level	Limit	Margin	Polarity	Detector
[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	Folding	Delector
2483.500	51.02	-2.15	48.87	74.00	25.13	Horizontal	PK
2500.000	31.24	-2.10	29.14	74.00	44.86	Horizontal	PK
Freq.	Reading	Factor	Level	Limit	Margin	Delority	Detector
[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	Polarity	Detector
2483.500	43.82	-2.15	41.67	54.00	12.33	Vertical	AV
2500.000	22.38	-2.10	20.28	54.00	13.72	Vertical	AV
Freq.	Reading	Factor	Level	Limit	Margin	Delevity	Detector
[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]	Polarity	Detector
2483.500	46.83	-2.15	44.68	74.00	29.32	Vertical	PK
2500.000	33.33	-2.10	31.23	74.00	42.77	Vertical	PK

5.7. Band edge and Spurious Emissions (conducted)

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section15.247 (d):In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

TEST CONFIGURATION

TEST PROCEDURE

2

- 1. Connect the antenna port(s) to the spectrum analyzer input.
 - Establish a reference level by using the following procedure Center frequency=DTS channel center frequency The span = 1.5 times the DTS bandwidth. RBW = 100 kHz, VBW ≥ 3 x RBW Detector = peak, Sweep time = auto couple, Trace mode = max hold Allow trace to fully stabilize Use the peak marker function to determine the maximum PSD level

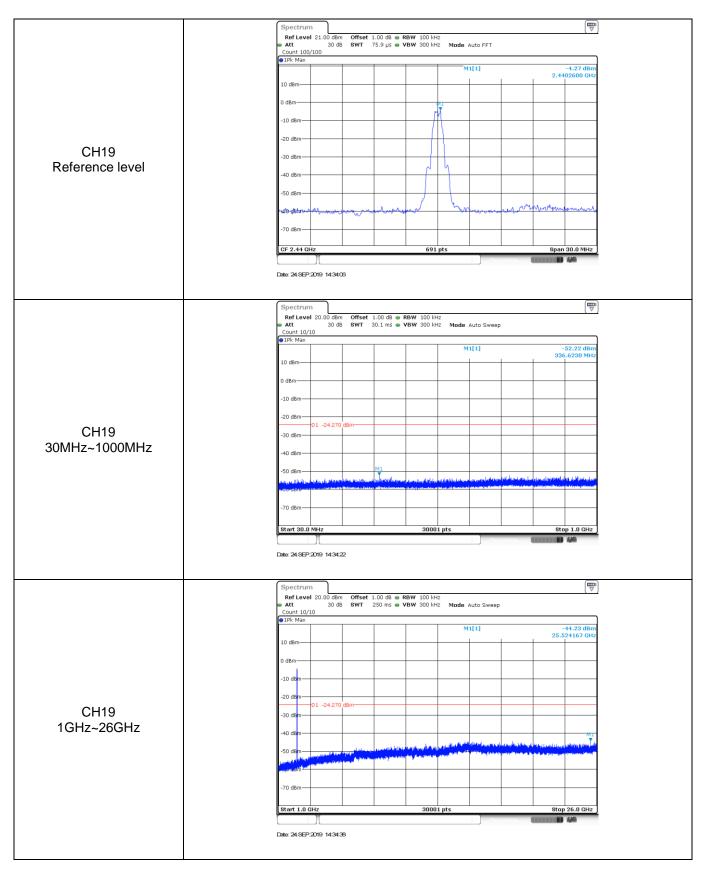
Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

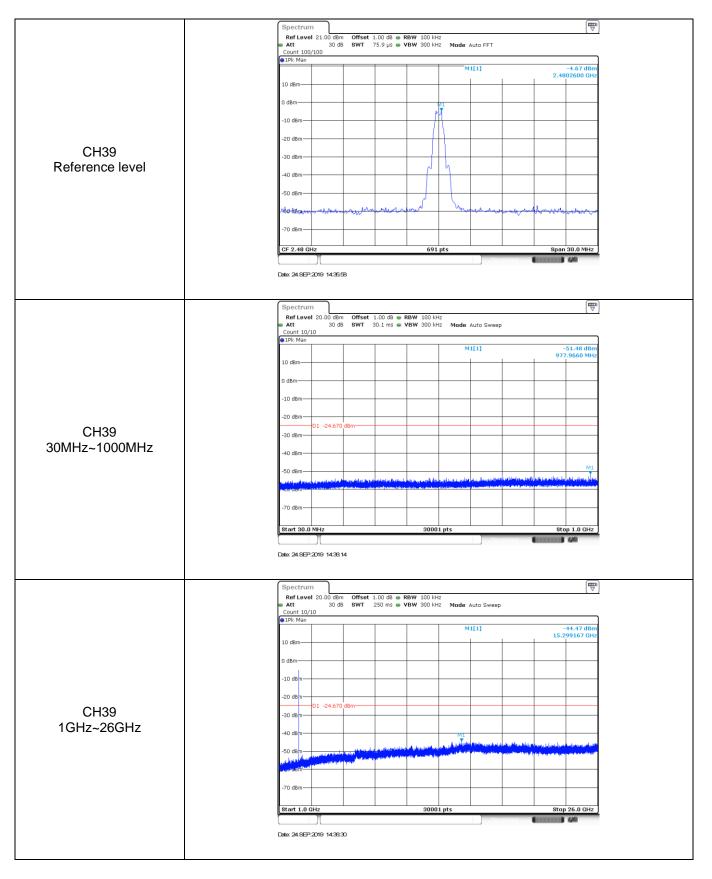
3. Emission level measurement Set the center frequency and span to encompass frequency range to be measured RBW = 100 kHz, VBW ≥ 3 x RBW Detector = peak, Sweep time = auto couple, Trace mode = max hold Allow trace to fully stabilize Use the peak marker function to determine the maximum amplitude level.

- 4. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.
- Ensure that the amplitude of all unwanted emission outside of the authorized frequency band excluding restricted frequency bands) are attenuated by at least the minimum requirements specified (at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz). Report the three highest emission relative to the limit.

TEST MODE:

Please refer to the clause 3.3


TEST RESULTS

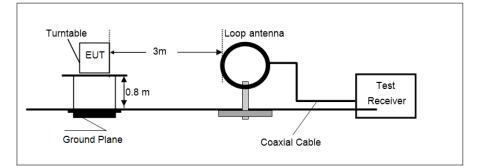

Passed

Not Applicable

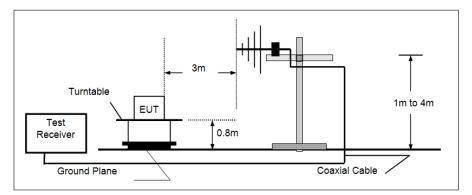
Test Item:	Band edge
	Spectrum Image: Constraint of the section
	0 dBm M1[1] -4.09 dBm 2.402040,691z 10 dBm M2[1] -61.86 dBm
	-10 dBm 2.480000 dHz -20 dBm 01 -24.090 dBm 1
	-30 dBm
CH00	r60 dBm- http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www -70 dBm-
	-80 dBm
	Type Ref Trc X-value Y-value Function Function Result M1 1 2.40204 GHz -4.09 dBm
	MS 1 2.399906 GHz -61.51 dBm Month and American
	Spectrum (100) Ref Level 10.50 dBm Offset 1.00 dB ● RBW 100 kHz Att 20 dB SWT 55.9 µs ● VBW 300 kHz
	Count 100/100 PIPk Max M1[1] 2-4-2.7 dbm 170000 0H
	-10 dBm
	-30 dBm
CH39	-50 dBm
	-70 dBm
	Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.47999 GHz -4.27 dBm MI I 2.4835 GHz -65.47 dBm Image: Comparison of the second secon
	M3 1 2.5 GHz -67.52 dBm M4 1 2.4940261 GHz -63.85 dBm
	Date: 24 SEP-2019 14:35:52

Test Item:	SE	
	Spectrum Ref Level 21.00 dBm Offset 1.00 dB RBW 100 kHz Att 30 dB SWT 75.9 µs VBW 300 kHz Count 100/000 XMT 75.9 µs VBW 300 kHz	
	●1Pk Max M1[1] -4.5 2.402260	53 dBm i00 GHz
	10 dBm	00 0112
	0 dBm	
	-10 dBm-	
CH00	-20 dBm-	
Reference level	-30 dBm	
	-40 dBm	
	-50 dBm	
	60.88 m house of the second the second that the second second second second second second second second second	مىكىمى
	-70 dBm	
	CF 2.402 GHz 691 pts 8pan 30.0	
	Date: 24.SEP.2019 14:32:36	
	Spectrum	
	RefLevel 20.00 dB Offset 1.00 dB ⊕ RBW 100 kHz ● Att 30 dB SWT 30.1 ms ● VBW 300 kHz Mode Auto Sweep Count 10/10	
	● 1Pk Max M1[1] -52.6	61 dBm
	10 dBm 873.177	70 MHz
	0 dBm	
	-10 dBm-	
	-20 dBm-	
CH00	-30 dBm	
30MHz~1000MHz	-40 dBm	
	-50 dBm	disc for the
	-70 dBm-	
	Start 30.0 MHz 30001 pts Stop 1.0	.0 GHz
	Date: 24 SEP:2019 14:32:51	
	Spectrum Ref Level 20.00 dBm Offset 1.00 dB ● RBW 100 HHz Att 30 dB SWT 250 ms ● VBW 300 HHz Mode Auto Sweep	
	Count 10/10 P1Pk Max	
	10 dBm	96 dBm .67 GHz
	-10 dgm-	
	-20 dgm	
CH00	-30 dgm	
1GHz~26GHz	-40 dgm	
		n an a tr
	-70 dBm-	
	Start 1.0 GHz 30001 pts Stop 26.0	
	Date: 24 SEP-2019 14/33/07	

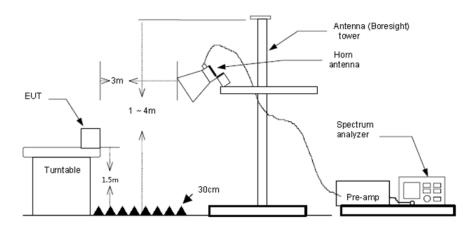
5.8. Spurious Emissions (radiated)


<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.209


Frequency	Limit (dBuV/m @3m)	Value
30MHz~88MHz	40.00	Quasi-peak
88MHz~216MHz	43.50	Quasi-peak
216MHz~960MHz	46.00	Quasi-peak
960MHz~1GHz	54.00	Quasi-peak
Above 1GHz	54.00	Average
Above IGHZ	74.00	Peak

TEST CONFIGURATION


➢ 9 kHz ~ 30 MHz

> 30 MHz ~ 1 GHz

> Above 1 GHz

TEST PROCEDURE

- 1. The EUT was setup and tested according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements.
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

 (3) From 1 GHz to 10th harmonic: RBW=1MHz, VBW=3MHz Peak detector for Peak value. RBW=1MHz, VBW=3MHz RMS detector for Average value.

TEST MODE:

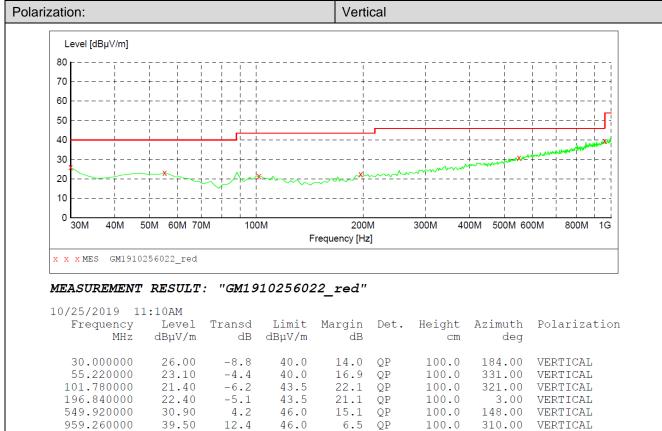
Please refer to the clause 3.3

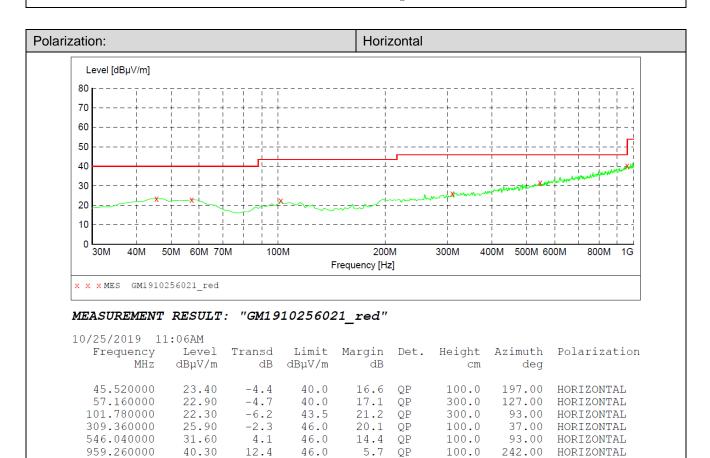
TEST RESULTS

☑ Passed □ Not Applicable

Note:

- 1) Above 1GHz Final Level =Receiver Read level + Factor
- 2) The emission levels of other frequencies are very lower than the limit and not show in test report.


➢ 9 kHz ~ 30 MHz


The EUT was pre-scanned the frequency band (9 kHz ~ 30 MHz), found the radiated level lower than the limit, so don't show on the report.

➢ 30 MHz ~ 1000 MHz

Have pre-scan all modulation mode, found the BT-BLE mode CH39 which it was worst case, so only the worst case's data on the test report.

40.30

12.4

46.0

959.260000

HORIZONTAL

242.00

100.0

> 1 GHz ~ 25 GHz

Fest channe				CH00			
Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity	Detector
1229.125	36.27	-5.75	30.52	74.00	43.48	Horizontal	PK
2191.156	34.19	-3.06	31.13	74.00	42.87	Horizontal	PK
3560.031	33.66	1.29	34.95	74.00	39.05	Horizontal	PK
4198.937	31.98	3.81	35.79	74.00	38.21	Horizontal	PK
5191.812	31.91	8.97	40.88	74.00	33.12	Horizontal	PK
8042.656	30.23	18.25	48.48	74.00	25.52	Horizontal	PK
Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity	Detector
1223.250	35.78	-5.77	30.01	74.00	43.99	Vertical	PK
1774.031	34.73	-5.88	28.85	74.00	45.15	Vertical	PK
3047.437	34.66	0.09	34.75	74.00	39.25	Vertical	PK
4865.750	31.21	7.14	38.35	74.00	35.65	Vertical	PK
7026.281	30.01	15.24	45.25	74.00	28.75	Vertical	PK
8054.406	30.88	18.27	49.15	74.00	24.85	Vertical	PK
Fest channe			1	CH19			
Freq.	Reading	Factor	Level	Limit	Margin	Polarity	Detector
[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dBµV/m]	[dB]		
1230.593	35.03	-5.75	29.28	74.00	44.72	Horizontal	PK
2148.562	33.24	-3.50	29.74	74.00	44.26	Horizontal	PK
3163.468	34.31	0.65	34.96	74.00	39.04	Horizontal	PK
4435.406	31.02	5.07	36.09	74.00	37.91	Horizontal	PK
5767.562	30.95	9.31	40.26	74.00	33.74	Horizontal	PK
8000.062	31.08	18.19	49.27	74.00	24.73	Horizontal	PK
Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity	Detector
1143.937	36.72	-6.42	30.30	74.00	43.70	Vertical	PK
2269.000	33.40	-2.53	30.87	74.00	43.13	Vertical	PK
3200.187	34.20	0.84	35.04	74.00	38.96	Vertical	PK
4351.687	32.52	4.36	36.88	74.00	37.12	Vertical	PK
5243.218	31.77	8.75	40.52	74.00	33.48	Vertical	PK
8044.125	31.23	18.26	49.49	74.00	24.51	Vertical	PK

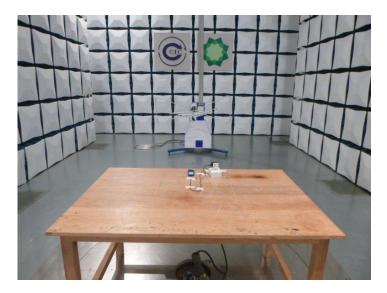
Test channe)			СН39				
Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity	Detector	
1359.843	35.01	-5.58	29.43	74.00	44. <mark>5</mark> 7	Horizontal	PK	
1879.781	33.42	-5.82	27.60	74.00	46.40	Horizontal	PK	
3040.093	34.82	0.06	34.88	74.00	39.12	Horizontal	PK	
4479.468	31.50	5.26	36.76	74.00	37.24	Horizontal	PK	
5160.968	31.28	8.91	40.19	74.00	33.81	Horizontal	PK	
7477.187	30.81	16.40	47.21	74.00	26.79	Horizontal	PK	
Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity	Detector	
1217.375	35.70	-5.78	29.92	74.00	44.08	Vertical	PK	
1483.218	34.37	-5.62	28.75	74.00	45.25	Vertical	PK	
3188.437	34.87	0.78	35.65	74.00	38.35	Vertical	PK	
3809.718	33.57	2.06	35.63	74.00	38.37	Vertical	PK	
5200.625	31.39	8.98	40.37	74.00	33.63	Vertical	PK	
7130.562	30.91	15.60	46.51	74.00	27.49	Vertical	PK	

Remark:

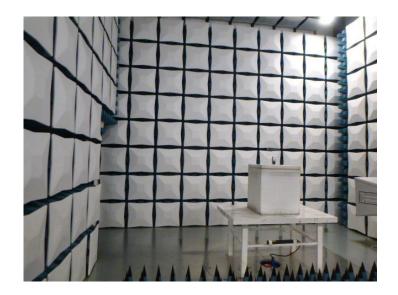
1. Final Level =Receiver Read level + Factor

2. The peak level is lower than average limit(54dBuV/m), this data is the too weak instrument of signal is unable to test.

3. The emission levels of other frequencies are very lower than the limit and not show in test report.


6. TEST SETUP PHOTOS

Conducted Emissions (AC Mains)



Radiated Emissions

Shenzhen Huatongwei International Inspection Co., Ltd.

7. EXTERANAL AND INTERNAL PHOTOS

Reference to the test report No. CHTEW19100155

-----End of Report------