

Full

TEST REPORT

No. I17D00147-RFA01

For

Client :	Audiovision Electronica Audioelec S.A.
Production :	Smartphone
Model Name :	U963
FCC ID:	YOQU963
Hardware Version:	V1.00
Software Version:	L1348.4.01.00.EC00
Issued date:	2017-07-04

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of ECIT Shanghai.

Test Laboratory:

ECIT Shanghai, East China Institute of Telecommunications

Add: 7-8F, G Area, No.668, Beijing East Road, Huangpu District, Shanghai, P. R. China Tel: (+86)-021-63843300, E-Mail: <u>welcome@ecit.org.cn</u>

Revision	Version
----------	---------

Report Number	Revision	Date	Memo
I17D00147-RFA01	00	2017-07-04	Initial creation of test report

CONTENTS

1.	TEST L	ABORATORY	5
1.1.	TESTIN	G LOCATION	5
1.2.	TESTIN	G ENVIRONMENT	5
1.3.	PROJE	CT DATA	5
1.4.	SIGNAT	URE	5
2.	CLIENT	INFORMATION	6
2.1.	APPLIC	ANT INFORMATION	6
2.2.	MANUE	ACTURER INFORMATION	6
3.	EQUIPM	IENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	7
3.1.	ABOUT	EUT	7
3.2.	INTERN	AL IDENTIFICATION OF EUT USED DURING THE TEST	7
3.3.	INTERN	AL IDENTIFICATION OF AE USED DURING THE TEST	7
3.4.		UPPLY OF EUT	7
3.5.	SECON	DARY SUPPLY OF EUT	7
3.6.	STATEM	IENTS	8
4.	REFER	ENCE DOCUMENTS	9
4.1.	REFERI	ENCE DOCUMENTS FOR TESTING	9
5.	SUMMA	RY OF TEST RESULTS	10
6.	TEST E	QUIPMENTS UTILIZED	11
7.	TEST E	NVIRONMENT	13
ANN	EX A.	MEASUREMENT RESULTS	14
ANN	EX A.1.	OUTPUT POWER	14
ANN	EX A.2.	PEAK-TO-AVERAGE POWER RATIO	17
ANN	EX A.3.	OCCUPIED BANDWIDTH	19
ANN	EX A.4.	-26DB EMISSION BANDWIDTH	
East	China Ins	titute of Telecommunications Page Number	: 3 of 106

ANNEX A.5.	BAND EDGE AT ANTENNA TERMINALS	52
ANNEX A.6.	FREQUENCY STABILITY	62
ANNEX A.7.	CONDUCTED SPURIOUS EMISSION	67
ANNEX A.8.	RADIATED	85
ANNEX B.	DEVIATIONS FROM PRESCRIBED TEST METHODS	. 106

1. Test Laboratory

1.1. Testing Location

Company Name:	ECIT Shanghai, East China Institute of Telecommunications			
Address:	7-8F, G Area, No. 668, Beijing East Road, Huangpu District,			
	Shanghai, P. R. China			
Postal Code:	200001			
Telephone:	(+86)-021-63843300			
Fax:	(+86)-021-63843301			
FCC Registration NO.:	489729			

1.2. Testing Environment

Normal Temperature:	15-35°C
Extreme Temperature:	-10/+55℃
Relative Humidity:	25-75%

1.3. Project data

Project Leader:	Xu Yuting
Testing Start Date:	2016-12-21
Testing End Date:	2017-01-18

1.4. Signature

Chen Lei (Prepared this test report)

Ding Li (Reviewed this test report)

Zheng Zhongbin Director of the laboratory (Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name:	Audiovision Electronica Audioelec S.A.
Address:	Km 4 Via Duran Tambo Mz. B2, S. 4
Tel:	(954) 458-6505
Postcode:	NA

2.2. Manufacturer Information

Company Name:	Hisense Communications Co., Ltd.			
Addroso:	218 Qianwangang Road, Economic & Technological Development			
Address.	Zone, Qingdao, Shandong Province, P.R. China			
Tel:	+86-532-55755982			
Postcode:	266510			

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

EUT Description	Smartphone
Model name	U963
FCC ID	YOQU963
Frequency	GSM850/900/1800/1900;
	WCDMA BandII/IV/V
Extreme Temperature	-10/+55℃
Nominal Voltage	3.8V
Extreme High Voltage	4.3V
Extreme Low Voltage	3.6V

Note: Photographs of EUT are shown in ANNEX A of this test report.

3.2. Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version	Date of receipt
N12	N/A	V1.00	L1348.6.01.01.MX0	2016-12-20

*EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE used during the test

AE ID*	Description	SN
AE1	RF cable	
AE2	Dummy Battery	

*AE ID: is used to identify the test sample in the lab internally.

3.4. Main Supply of EUT

Part Name	Model Name	Supplier
LCD	TXDY500DFWPC-174	TONGXINGDA
Flash	KMFNX0012M-B214	Samsung

3.5. Secondary Supply of EUT

AE ID*	Description	SN
LCD	KBF8630-5.0	HOLITECH
Flash	H9TQ64A8GTCCUR-KUM	SK Hynix

3.6. Statements

The product name RU963, supporting GSM/GPRS/EDGE/WCDMA/HSDPA/HSUPA/WLAN/BT, manufactured by Hisense Communications Co., Ltd. is a variant product for testing. According to the variant description, all the test results please refer to I16D00265-RFA_V1 which is the test report for the initial product of Hisense U963.

ECIT has verified that the compliance of the tested device specified in section 5 of this test report is successfully evaluated according to the procedure and test methods as defined in type certification requirement listed in section 5 of this test report.

4. Reference Documents

4.1. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version
FCC Part 27	MISCELLANEOUS WIRELESS COMMUNICATIONS	2014
	SERVICES	
FCC Part 24	PERSONAL COMMUNICATIONS SERVICES	2014
FCC Part 22	PUBLIC MOBILE SERVICES	2014
ANSI-TIA-603-D	Land Mobile FM or PM Communications Equipment	2010
	Measurement and Performance Standards	
ANSI C63.4	Methods of Measurement of Radio-Noise Emissions from	2014
	Low-Voltage Electrical and Electronic Equipment in the	
	Range of 9 kHz to 40 GHz	

5. SUMMARY OF TEST RESULTS

ltem	Test items	FCC rules	result
1	Output Power	2.1046/22.913(a)/24.232(c)/27.50(d)(4)	Pass
2	Peak-to-Average Ratio	24.232(d)/27.50(a)	Pass
3	99%Occupied Bandwidth	2.1049(h)(i)/22.917(b)/2.1049(h)(i)	Pass
4	-26dB Emission Bandwidth	22.917(b)/§24.238(b)/27.53(h)	Pass
5	Band Edge at antenna terminals	22.917(a)/24.238(a)/27.53(h)	Pass
6	Frequency stability	2.1055/24.235/27.54/2.1005	Pass
7	Conducted Spurious mission	2.1053/22.917(a)/24.238(a)/27.53(h)/2.1057	Pass
8	Emission Limit	2.1051/22.917/24.238/22.913/24.232	Pass

6. Test Equipments Utilized

Climate chamber

No.	Equipment	Model	Serial Number	Manufacturer	Calibration Due date
1	Climate chamber	SH-641	92012011	ESPEC	2018-01-07

Radiated emission test system

The test equipments and ancillaries used are as follows.

No.	Equipment	Model	Serial Number	Manufacturer	Calibration Due date
1	Universal Radio Communicati on Tester	CMU200	123101	R&S	2017-05-11
2	Test Receiver	ESU40	100307	R&S	2017-05-11
3	Trilog Antenna	VULB9163	VULB9163- 515	Schwarzbeck	2017-11-04
4	Double Ridged Guide Antenna	ETS-3117	135885	ETS	2017-05-05
5	2-Line V-Network	ENV216	101380	R&S	2017-05-11

Conducted test system

No.	Name	Туре	SN	Manufacture	Cal. Due Date
1	Spectrum Analyzer	FSQ26	101096	R&S	2017-05-11
2	Universal Radio Communication Tester	CMU200	123102	R&S	2017-05-11
3	DC Power Supply	ZUP60-14	LOC-220Z006 -0007	TDL-Lambda	2017-05-11
4	Weinschel power spliter	1870A	10264	Weinschel	2017-05-11

7. Test Environment

Shielding Room1 (6.0 meters×3.0 meters×2.7 meters) did not exceed following limits along the conducted RF performance testing:

Temperature	Min. = 15 ℃, Max. = 35 ℃
Relative humidity	Min. = 25%, Max. = 75 %
Shielding effectiveness	> 110 dB
Ground system resistance	< 0.5 Ω

Control room did not exceed following limits along the EMC testing:

Temperature	Min. = 15 ℃, Max. = 35 ℃
Relative humidity	Min. =25 %, Max. =75 %
Shielding effectiveness	> 110 dB
Electrical insulation	> 10 kΩ
Ground system resistance	< 0.5 Ω

Fully-anechoic chamber1 (6.9 meters×10.9 meters×5.4 meters) did not exceed following limits along the EMC testing:

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 25 %, Max. = 75 %
Shielding effectiveness	> 100 dB
Electrical insulation	> 10 kΩ
Ground system resistance	< 0.5 Ω
VSWR	Between 0 and 6 dB, from 1GHz to 18GHz
Site Attenuation Deviation	Between -4 and 4 dB,30MHz to 1GHz
Uniformity of field strength	Between 0 and 6 dB, from 80MHz to 3000 MHz

ANNEX A. MEASUREMENT RESULTS

ANNEX A.1. OUTPUT POWER

A.1.1. Summary

During the process of testing, the EUT was controlled Rhode & Schwarz Digital Radio. Communication tester (CMU-200) to ensure max power transmission and proper modulation. This result contains peak output power and EIRP measurements for the EUT. In all cases, output power is within the specified limits.

A.1.2. Conducted

A.1.2.1. Method of Measurements

Method of measurements please refer to KDB971168 D01 v02r02 clause 5.

The EUT was set up for the max output power with pseudo random data modulation.

The power was measured with Rhode & Schwarz Spectrum Analyzer FSQ(peak).

These measurements were done at 3 frequencies, 1850.2 MHz, 1880.0MHz and 1909.8MHz for PCS1900 band; 824.2MHz, 836.6MHz and 848.8MHz for GSM850 band. (bottom, middle and top of operational frequency range).

These measurements were done at 3 frequencies, 1852.4 MHz, 1880.0MHz and 1907.6MHz for WCDMA Band II; 826.4MHz, 836.6MHz and 846.6MHz for WCDMA Band V. (bottom, middle and top of operational frequency range).

A.1.2.2 Test procedures:

- 1. The transmitter output port was connected to base station.
- 2. Set the EUT at maximum power through base station.
- 3. Select lowest, middle, and highest channels for each band and different modulation.
- 4. Measure the maximum burst average power for GSM and maximum average power for other modulation signal.

GSM850	Power control level	Nominal Peak output power (dBm)
GSM	5	33
GPRS	3	33
EDGE	6	27

A.1.2.3 GSM Limit:

GSM1900	Power control level	Nominal Peak output power (dBm)
---------	---------------------	------------------------------------

GSM	0	30
GPRS	3	30
EDGE	5	26

A.1.2.4 WCDMA Limit:

22.913(a) Mobile stations are limited to 7watts.

24.232(c) Mobile and portable stations are limited to 2 watts.

A.1.2.5 Test Procedure:

The transmitter output power was connected to calibrated attenuator, the other end of which was connected to signal analyzer. Transmitter output power was read off the power in dBm. The power outputs at the transmitter antenna port was determined by adding the value of attenuator to the signal analyzer reading.

A.1.2.6 GSM Test Condition:

RBW	VBW	Sweep time	Span
1MHz	1MHz	300ms	10MHz

A.1.2.7 WCDMA Test Condition:

RBW	VBW	Sweep time	Span
10MHz	10MHz	800ms	50MHz

A.1.2.8 Measurement results:

GSM 850 (GMSK)			
Channel/fc(MHz)	Peak power (dBm)		
Mid 189/836.4	31.56		
Low 128/824.2	31.68		
High 251/848.8	31.05		
GPRS 850 (0	GMSK 1 Slot)		
Channel/fc(MHz)	Peak power (dBm)		
Mid 189/836.4	31.59		
Low 128/824.2	31.72		
High 251/848.8	31.08		

East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301

EDGE 850 (8PSK 1 Slot)			
Channel/fc(MHz)	Peak power (dBm)		
Mid 189/836.4	25.39		
Low 128/824.2	25.48		
High 251/848.8	24.95		

GSM 1900(GMSK)				
Channel/fc(MHz)	Peak power (dBm)			
Mid 661/1880	28.33			
Low 512/1850.2	27.80			
High 810/1909.8	28.13			
GPRS 1900 (GMSK 1 Slot)				
Channel/fc(MHz)	Peak power (dBm)			
Mid 661/1880	28.34			
Low 512/1850.2	27.82			
High 810/1909.8	28.16			
EDGE 1900	(8PSK 1 Slot)			
Channel/fc(MHz)	Peak power (dBm)			
Mid 661/1880	24.22			
Low 512/1850.2	23.73			
High 810/1909.8	24.10			

WCDMA II			
Channel/fc(MHz)	Peak power (dBm)		
Mid 9400 /1880	22.44		
Low 9262/1852.4	22.34		
High 9538/1907.6 22.20			
Fact Chine Institute of Tale communications	Dama Number 40 of 400		

East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301 Page Number: 16 of 106Report Issued Date: Jul.04, 2017

WCDMA IV				
Channel/fc(MHz)	Peak power (dBm)			
Mid 1413 /1732.6	21.42			
Low 1312/1712.4	21.80			
High 1513/1752.6	21.63			
WCDMA BAND V				
Channel/fc(MHz)	Peak power (dBm)			
Mid 4183/836.6	22.19			
Low 4132/826.4	22.39			
High 4233/846.6	22.73			

Conclusion: PASS

ANNEX A.2. Peak-to-Average Power Ratio

Method of test measurements please refer to KDB971168 D01 v02r02 clause 5.7.

A.2.1 PAPR Limit

The peak-to-average power ratio (PAPR) of the transmission may not exceed 13dB

A.2.2 Test procedures

- 1. The EUT was connected to the spectrum analyzer and system simulator via a power divider.
- 2. For GSM1900/WCDMA Band II:
 - 1) Select the spectrum analyzer CCDF function.
 - 2) Set RBW≥signal's occupied bandwidth.
 - 3) Set the number of counts to a value that stabilizes the measured CCDF cure;
 - 4) Sweep time \geq 1s.
- 3. Record the maximum PAPR level associated with a probability of 0.1%.

A.2.3 Test results:

GSM850			
Modes		GSM850	
Channel	512	661	810
Frequency (MHz)	824.2	836.4	848.8

PAPR(dB)	10.61	10.67	10.67	
	GPRS850			
Modes	GPRS850			
Channel	512	661	810	
Frequency (MHz)	824.2	836.4	848.8	
PAPR(dB)	7.66	10.67	10.64	
EDGE850				
Modes	EDGE850			
Channel	512	661	810	
Frequency (MHz)	824.2	836.4	848.8	
PAPR(dB)	10.64	10.67	10.64	

GSM1900			
Modes	GSM1900		
Channel	512	661	810
Frequency (MHz)	1850.2	1880	1909.8
PAPR(dB)	10.67	8.46	10.67
GPRS1900			
Modes	GPRS1900		
Channel	512	661	810
Frequency (MHz)	1850.2	1880	1909.8
PAPR(dB)	7.63	10.64	10.64
EDGE1900			
Modes	EDGE1900		
Channel	512	661	810
Frequency (MHz)	1850.2	1880	1909.8

PAPR(dB)	10.64	7.63	10.64

WCDMA Band II				
Channel 9262 9400 9538				
Frequency (MHz)	1852.4	1880	1907.6	
PAPR(dB)	3.46	3.40	3.43	

WCDMA Band IV				
Channel 1312 1413 1513				
Frequency (MHz)	1712.4	1732.6	1752.6	
PAPR(dB)	3.37	3.21	3.37	

WCDMA Band V				
Channel 4132 4183 4233				
Frequency (MHz)	826.4	836.4	846.6	
PAPR(dB)	3.46	3.30	3.43	

Conclusion: PASS

ANNEX A.3. Occupied Bandwidth

Method of test please refer to KDB971168 D01 v02r02 clause 4.0.

A.3.1. Occupied Bandwidth

Similar to conducted emissions; occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of GSM850, PCS1900, WCDMA BANDII and WCDMA BANDV.

A.3.2 Test Procedure:

- 1. The EUT output RF connector was connected with a short cable to the signal analyzer.
- 2. RBW was set to about 1% of emission BW, VBW >= 3 times RBW,.
- 3. 99% bandwidth were measured, the occupied bandwidth is delta frequency between the two points where the display line intersects the signal trace.

A.3.3 Test result:

GSM850			
Test channel	Frequency (MHz)	99% Occupied Bandwidth(KHz)	
Mid 189	836.4	250.000	
Low 128	824.2	245.192	
High 251	848.8	245.192	
GPRS850			
Test channel	Frequency (MHz)	99% Occupied Bandwidth(KHz)	
Mid 189	836.4	248.397	
Low 128	824.2	248.397	
High 251	848.8	243.590	
EDGE850			
Test channel	Frequency (MHz)	99% Occupied Bandwidth(KHz)	
Mid 189	836.4	245.192	
Low 128	824.2	243.590	
High 251	848.8	245.192	

Conclusion: PASS

GSM 850

Date: 12.JAN.2017 08:01:06

Date: 12.JAN.2017 08:01:44

Channel 128-Occupied Bandwidth (99%)

Date: 12.JAN.2017 08:02:22

Channel 251-Occupied Bandwidth (99%)

Date: 12.JAN.2017 08:14:26

Channel 189-Occupied Bandwidth (99%)

Date: 12.JAN.2017 08:15:02

Date: 12.JAN.2017 08:15:38

Channel 251-Occupied Bandwidth (99%)

EDGE 850

Date: 12.JAN.2017 08:20:07

Date: 12.JAN.2017 08:20:43

Channel 128-Occupied Bandwidth (99%)

Date: 12.JAN.2017 08:21:19

Channel 251-Occupied Bandwidth (99%)

GSM 1900			
Test channel	Frequency (MHz)	99% Occupied Bandwidth(KHz)	
Mid 661	1880	243.590	
Low 512	1850.2	241.987	
High 810	1909.8	246.795	
GPRS1900			
Test channel	Frequency (MHz)	99% Occupied Bandwidth(KHz)	
Mid 661	1880	243.590	
Low 512	1850.2	254.808	
High 810	1909.8	259.615	
EDGE1900			
Test channel	Frequency (MHz)	99% Occupied Bandwidth(KHz)	
Mid 661	1880	258.013	
Low 512	1850.2	230.769	
High 810	1909.8	248.397	

Conclusion: PASS

GSM 1900

Date: 12.JAN.2017 08:23:48

Date: 12.JAN.2017 08:24:26

Channel512-Occupied Bandwidth

Date: 12.JAN.2017 08:25:04

Channel 810-Occupied Bandwidth

Date: 12.JAN.2017 08:27:37

Date: 12.JAN.2017 08:28:13

Channel 810-Occupied Bandwidth

EDGE 1900

Date: 12.JAN.2017 08:30:15

Date: 12.JAN.2017 08:30:51

Channel512-Occupied Bandwidth

Date: 12.JAN.2017 08:31:27

Channel 810-Occupied Bandwidth

WCDMA BAND II				
Test channel	Frequency (MHz)	99% Occupied Bandwidth(MHz)		
Mid 9400	1880	4.10		
Low 9262	1852.4	4.09		
High 9538	1907.6	4.10		
WCDMA BAND IV				
Test channel	Frequency (MHz)	99% Occupied Bandwidth(MHz)		
Mid 1413	1732.6	4.10		
Low 1312	1712.4	4.07		
High 1513	1752.6	4.10		
	WCDMA BAND V			
Test channel	Frequency (MHz)	99% Occupied Bandwidth(MHz)		
Mid 4183	836.6	4.09		
Low 4132	826.4	4.10		
High 4233	846.6	4.13		

East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301 Page Number: 30 of 106Report Issued Date: Jul.04, 2017

Conclusion: PASS

Date: 12.JAN.2017 09:22:11

Channel9262-Occupied Bandwidth

Date: 12.JAN.2017 09:22:49

Channel 9538-Occupied Bandwidth

Channel 1413-Occupied Bandwidth

Date: 12.JAN.2017 09:24:28

Date: 12.JAN.2017 09:25:06

Channel 1513-Occupied Bandwidth

WCDMA BAND V *RBW 50 kHz *VBW 200 kHz SWT 5 ms Marker 1 [T1] 12.02 dBm 837.225000000 MHz Ì 30 dBm * Att 30 dB Ref 30 Offs [T1 0 .5487: [T1 (49 MH 1 PK MAXH Tem White mp .6512 51 MF -10 thin M Center 836.6 MHz 1 MHz/ Span 10 MHz

Date: 12.JAN.2017 09:26:06

Date: 12.JAN.2017 09:26:45

Channel4132-Occupied Bandwidth

Date: 12.JAN.2017 09:27:23

Channel 4233-Occupied Bandwidth

ANNEX A.4. -26dB Emission Bandwidth

Method of test please refer to KDB971168 D01 v02r02 clause 4.0.

A.4.1. -26dB Emission Bandwidth

Similar to conducted emissions; occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of GSM850, PCS1900, WCDMA BANDII and WCDMA BANDV.

A.4.2 Test Procedure:

- 1. The EUT output RF connector was connected with a short cable to the signal analyzer.
- 2. RBW was set to about 1% of emission BW, VBW >= 3 times RBW,.
- 3. 26dB bandwidth were measured, the occupied bandwidth is delta frequency between the two points where the display line intersects the signal trace.

A.4.3 Measurement methods:

For GSM: signal analyzer setting as: RBW=3KHz;VBW=10KHz;Span=1MHz. For WCDMA: signal analyzer setting as: RBW=50KHZ;VBW=20KHZ;Span=10MHz.

A.4.4 Test results:

GSM850			
Test channel	Frequency (MHz)	–26dBc Emission Bandwidth(KHz)	
Mid 189	836.4	312.500	
Low 128	824.2	309.295	
High 251	848.8	317.308	
GPRS850			
Test channel	Frequency (MHz)	–26dBc Emission Bandwidth(KHz)	
Mid 189	836.4	315.705	
Low 128	824.2	312.500	
High 251	848.8	318.910	
EDGE850			
Test channel	Frequency (MHz)	–26dBc Emission Bandwidth(KHz)	
Mid 189	836.4	318.910	

Low 128	824.2	317.308
High 251	848.8	317.308

Conclusion: PASS

GSM 850

Date: 12.JAN.2017 08:34:17

Channel 128- Emission Bandwidth (-26dBc BW)

Date: 12.JAN.2017 08:34:46

Channel 189- Emission Bandwidth (-26dBc BW)

Date: 12.JAN.2017 08:37:01

Date: 12.JAN.2017 08:37:29

EDGE 850

Date: 12.JAN.2017 08:39:30

Date: 12.JAN.2017 08:39:57

Channel 128- Emission Bandwidth (-26dBc BW)

Date: 12.JAN.2017 08:40:25

Channel 251- Emission Bandwidth (-26dBc BW)

GSM 1900				
Test channel	Frequency (MHz)	–26dBc Emission Bandwidth(KHz)		
Mid 661	1880	317.308		
Low 512	1850.2	304.487		
High 810	1909.8	312.500		
	GPRS1900			
Test channel	Frequency (MHz)	–26dBc Emission Bandwidth(KHz)		
Mid 661	1880	310.897		
Low 512	1850.2	322.115		
High 810	1909.8	315.705		
EDGE1900				
Test channel	Frequency (MHz)	–26dBc Emission Bandwidth(KHz)		
Mid 661	1880	317.308		
Low 512	1850.2	314.103		
High 810	1909.8	318.910		

Date: 12.JAN.2017 08:43:46

Date: 12.JAN.2017 08:44:15

Date: 12.JAN.2017 08:44:43

Date: 12.JAN.2017 08:46:55

Date: 12.JAN.2017 08:47:22

Channel 810- Emission Bandwidth (-26dBc BW)

Date: 12.JAN.2017 08:49:06

Date: 12.JAN.2017 08:49:33

Channel512- Emission Bandwidth (-26dBc BW)

Date: 12.JAN.2017 08:49:59

Channel 810- Emission Bandwidth (-26dBc BW)

WCDMA BAND II			
Test channel	Frequency (MHz)	–26dBc Emission Bandwidth(MHz)	
Mid 9400	1880	4.6	
Low 9262	1852.4	4.6	
High 9538	1907.6	4.6	
WCDMA BAND IV			
Test channel	Frequency (MHz)	–26dBc Emission Bandwidth(MHz)	
Mid 1413	1732.6	4.7	
Low 1312	1712.4	4.6	
High 1513	1752.6	4.6	
WCDMA BAND V			
Test channel	Frequency (MHz)	–26dBc Emission Bandwidth(MHz)	
Mid 4183	836.6	4.6	
Low 4132	826.4	4.6	

High 4233	846.6	4.6
-----------	-------	-----

Conclusion: PASS

WCDMA BAND II

Date: 12.JAN.2017 09:29:53

Date: 12.JAN.2017 09:30:21

Date: 12.JAN.2017 09:31:11

Channel 1413- Emission Bandwidth (-26dBc BW)

Date: 12.JAN.2017 09:31:40

Date: 12.JAN.2017 09:32:08

Channel 1513- Emission Bandwidth (-26dBc BW)

Date: 12.JAN.2017 09:32:59

Date: 12.JAN.2017 09:33:27

Channel4132- Emission Bandwidth (-26dBc BW)

Date: 12.JAN.2017 09:33:55

Channel 4233- Emission Bandwidth (-26dBc BW)

ANNEX A.5. Band Edge at antenna terminals

Method of test measurements please refer to KDB971168 D01 v02r02 clause 3.5

A.5.1 Limit:

The magnitude of each spurious and harmonic emission that can be detected when the equipment is operated under the conditions specification in the instruction manual and/or alignment procedure, shall not be less than 43+10log (Mean power in watts) dBc below the mean power output outside a license's frequency block(-13dBm).

A.5.2 Test procedure:

- 1. The RF output of the transceiver was connected to a signal analyzer through appropriate attenuation.
- 2. In the 1MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.
- 3. The RF fundamental frequency should be excluded against the limit line in the operating frequency band
- The limit line is derived from 43+10log(P) Db below the transmitter power P(Watts) =P(W)-[43+10log(P)](Db)
 [20:10log(D)](dPm) [43:10log(D)](Db)

=[30+10log(P)](dBm)-[43+10log(P)](Db) =-13dBm

GSM 850

Date: 12.JAN.2017 13:49:22

Channel 128- LOW BAND EDGE BLOCK

Date: 12.JAN.2017 13:50:46

Channel 251- HIGH BAND EDGE BLOCK

GPRS 850

Date: 12.JAN.2017 13:54:59

Channel 128- LOW BAND EDGE BLOCK

EDGE 850

RF Test Report

Date: 12.JAN.2017 13:56:20

Channel 251- HIGH BAND EDGE BLOCK

Date: 12.JAN.2017 13:59:28

Channel 128- LOW BAND EDGE BLOCK

Date: 12.JAN.2017 14:00:49

Date: 12.JAN.2017 14:06:30

Channel 810- HIGH BAND EDGE BLOCK

Channel 512- LOW BAND EDGE BLOCK