

SAR EVALUATION REPORT

For

Neuracle Technology (Changzhou) Co., Ltd.

6-B602 R&D HUB Changzhou Science and Education Town No.18 Changwu RD, Wujin District, Changzhou City, Jiangsu Province, China

FCC ID: 2BGXN-NRW03							
Report Type:		Product Nam	e:				
Original Report		Mindful hub					
Report Number:	RSHA240717001-	20B					
Report Date:	2025-04-02						
Reviewed By:	Bard Liu		ford lin				
Approved By:	Oscar Ye EMC Manager		Oscar Yo				
Prepared By:	Bay Area Complia No.248, Chenghu Suzhou, Jiangsu, C Tel: +86-512-8617 Fax: +86-512-889 www.baclcorp.com	ance Laboratories Road, Developme China 75000 34268 <u>n.cn</u>	Corp. (Kunshan) nt Zone, Yushan, Kunshan,				

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Kunshan). This report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, or any agency of the U.S.Government. This report contains data not covered by NVLAP certification

TABLE OF CONTENTS

REFERENCE, STANDARDS, AND GUIDELINES	6
SAR LIMITS	6
FACILITIES	7
DESCRIPTION OF TEST SYSTEM	8
EQUIPMENT LIST AND CALIBRATION	
EQUIPMENTS LIST & CALIBRATION INFORMATION	
SAR MEASUREMENT SYSTEM VERIFICATION	19
LIQUID VERIFICATION	19
SYSTEM ACCURACY VERIFICATION	21
SYSTEM ACCURACY CHECK RESULTS	
SAR SYSTEM VALIDATION DATA	
EUT TEST STRATEGY AND METHODOLOGY	25
TEST POSITIONS FOR BODY-WORN AND OTHER CONFIGURATIONS	25
TEST DISTANCE FOR SAR EVALUATION	
SAR EVALUATION PROCEDURE	
CONDUCTED OUTPUT POWER MEASUREMENT	27
TEST PROCEDURE	27
MAXIMUM TARGET OUTPUT POWER	
TEST RESULTS:	
STANDALONE SAR TEST EXCLUSION CONSIDERATIONS	
STANDALONE SAR TEST EXCLUSION CONSIDERATIONS	
SAR TEST EXCLUSION FOR THE EUT EDGE CONSIDERATIONS RESULT	
SAR MEASUREMENT RESULTS	
SAR TEST DATA	
APPENDIX A SAR PLOTS OF SAR MEASUREMENT	
APPENDIX B MEASUREMENT UNCERTAINTY	41
APPENDIX C EUT TEST POSITION PHOTOS	43
APPENDIX D CALIBRATION CERTIFICATES	46

REPORT REVISION HISTORY

Number of Revisions	Report No.	Version	Issue Date	Description
0	RSHA240717001-20B	R1V1	2025-04-02	Initial Release

EUT Information							
Applicant:	Neuracle Technology (Changzhou) Co., Ltd.						
Exposure Category:	Population / Uncontrolled						
Body-Worn Accessories	None						
Product Type:	Portable						
Operation Mode :	WLAN5G						
Power Supply:	DC 3.7V from battery						
Normal Operation:	Body Supported						
	RLAN (5.2G): 5150 -5250 MHz (TX&RX)						
Fraguanay Dandi	RLAN (5.3G): 5250-5350MHz(TX&RX)						
Frequency Band:	RLAN (5.6G): 5470-5725 MHz(TX&RX)						
	RLAN (5.8G): 5725 -5850 MHz (TX&RX)						
Product Name:	Mindful hub						
Tested Model Name:	MHub1 (HVIN: NRW4004)						
HVIN :	NRW4003, NRW4002, NRW4001, NRW4004						
HVIN Difference:	EEG cap, A/D Connector, Auxiliary sensor						
Serial Number:	RSHA240717001-4						
Test Date:	2024-10-08~2024-10-09						
MODE	Max. SAR Level(s) Reported(W/kg)	Limit					
5.2GHz RLAN	0.458W/kg 1g Body SAR						
5.3GHz RLAN	0.438W/kg 1g Body SAR	1.6(W/kg)					
5.6GHz RLAN	0.663W/kg 1g Body SAR	1.0(W/Kg)					
5.8GHz RLAN	0.688W/kg 1g Body SAR						

Note: Four HVIN models, the radio part are the same

Applicable Standards

▲ FCC 47 CFR part 2.1093

Radiofrequency radiation exposure evaluation: portable devices

▲ RF Exposure Procedures: TCB Workshop April 2019

IEEE 1528:2013

IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques

▲ KDB procedures

KDB 447498 D01 General RF Exposure Guidance v06 KDB 248227 D01 802.11 Wi-Fi SAR v02r02 KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 KDB 865664 D02 RF Exposure Reporting v01r02

Note: This wireless device has been shown to be capable of compliance for localized specific absorption rate (SAR) for General Population/Uncontrolled Exposure limits specified in FCC 47 CFR part 2.1093 and has been tested in accordance with the measurement procedures specified in IEEE 1528-2013 and RF exposure KDB procedures. The results and statements contained in this report pertain only to the device(s) evaluated.

All measurement and test data in this report was gathered from production sample serial number: RSHA240717001-1 (Assigned by BACL (Kunshan). The EUT supplied by the applicant was received on 2024-07-17.)

REFERENCE, STANDARDS, AND GUIDELINES

FCC:

The Report and Order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mW/g as recommended by the ANSI/IEEE standard C95.1-1992 [6] for an uncontrolled environment (Paragraph 65). According to the Supplement C of OET Bulletin 65 "Evaluating Compliance with FCC Guide-lines for Human Exposure to Radio frequency Electromagnetic Fields", released on Jun 29, 2001 by the FCC, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.

This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits. SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) – to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in North America is 1.6 mW/g average over 1 gram of tissue mass.

SAR Limits

	SAR (W/kg)				
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)			
Spatial Average (averaged over the whole body)	0.08	0.4			
Spatial Peak (averaged over any 1 g of tissue)	1.60	8.0			
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0			

FCC Limit

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

General Population/Uncontrolled environments Spatial Peak limit 1.6W/kg for 1g Body SAR applied to the EUT.

FACILITIES

The test site used by Bay Area Compliance Laboratories Corp. (Kunshan) to collect test data is located on the No.248 Chenghu Road, Kunshan, Jiangsu province, China.

Bay Area Compliance Laboratories Corp. (Kunshan) is accredited in accordance with ISO/IEC 17025:2017 by NVLAP (Lab code: 600338-0), and the lab has been recognized as the FCC accredited lab under the KDB 974614 D01, the FCC Designation No. : CN5055.

DESCRIPTION OF TEST SYSTEM

These measurements were performed with the automated near-field scanning system DASY6 from Schmid & Partner Engineering AG (SPEAG) which is the Fifth generation of the system shown in the figure hereinafter:

DASY6 System Description

The DASY6 system for performing compliance tests consists of the following items:

• A standard high precision 6-axis robot (Staubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).

• An isotropic field probe optimized and calibrated for the targeted measurement.

• A data acquisition electronics (DAE) which performs the signal application, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

• The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.

• The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.

- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running Win7 professional operating system and the DASY52 software.

• Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.

• The phantom, the device holder and other accessories according to the targeted measurement.

DASY6 Measurement Server

The DASY6 measurement server is based on a PC/104 CPU board with a 400 MHz Intel ULV Celeron, 128 MB chip-disk and 128 MB RAM. The necessary circuits for communication with the DAE4 (or DAE3) electronics box, as well as the 16-bit AD converter system for optical detection and digital I/O interface are contained on the DASY6 I/O board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all real-time data evaluations of field measurements and surface detection, controls robot movements, and handles safety operations. The PC operating system cannot interfere with these time-critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program- controlled robot movements. Furthermore, the measurement server is equipped with an expansion port, which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by

SPEAG can be connected. Connection of devices from any other supplier could seriously damage the measurement server.

Data Acquisition Electronics

The data acquisition electronics (DAE4) consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of both the DAE4 as well as of the DAE3 box is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

Frequency	10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	± 0.3 dB in TSL (rotation around probe axis) ± 0.5 dB in TSL (rotation normal to probe axis)
Dynamic Range	10 μ W/g to > 100 mW/g Linearity: ±0.2 dB (noise: typically < 1 μ W/g)
Dimensions	Overall length: 337 mm (Tip: 9 mm) Tip diameter: 2.5 mm (Body: 10 mm) Typical distance from probe tip to dipole centers: 1 mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields); the only probe that enables compliance testing for frequencies up to 6 GHz with precision of better 30%.
Compatibility	DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

EX3DV4 E-Field Probes

SAM Twin Phantom

The SAM Twin Phantom (shown in front of DASY6) is a fiberglass shell phantom with shell thickness 2 mm, except in the ear region where the thickness is increased to 6 mm. The phantom has three measurement areas: 1) Left Head, 2) Right Head, and 3) Flat Section. For larger devices, the use of the ELI-Phantom (shown behind DASY6) is required. For devices such as glasses with a wireless link, the Face Down Phantom is the most suitable (between the SAM Twin and ELI phantoms).

When the phantom is mounted inside allocated slot of the DASY6 platform, phantom reference points can be taught directly in the DASY5 V5.2 software. When the DASY6 platform is used to mount the Phantom, some of the phantom teaching points cannot be reached by the robot in DASY5 V5.2. A special tool called P1a-P2aX-Former is provided to transform two of the three points, P1 and P2, to reachable locations. To use these new teaching points, a revised phantom configuration file is required.

In addition to our standard broadband liquids, the phantom can be used with the following tissue simulating liquids:

Sugar-water-based liquids can be left permanently in the phantom. Always cover the liquid when the system is not in use to prevent changes in liquid parameters due to water evaporation.

DGBE-based liquids should be used with care. As DGBE is a softener for most plastics, the liquid should be taken out of the phantom, and the phantom should be dried when the system is not in use (desirable at least once a week).

Do not use other organic solvents without previously testing the solvent resistivity of the phantom. Approximately 25 liters of liquid is required to fill the SAM Twin phantom.

ELI Phantom

The ELI phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30MHz to 6 GHz. ELI is fully compatible with the latest draft of the standard IEEE 1528:2013 and the use of all known tissue simulating liquids. ELI has been optimized for performance and can be integrated into a SPEAG standard phantom table. A cover is provided to prevent evaporation of water and changes in liquid parameters. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points.

The phantom can be used with the following tissue simulating liquids:

- Sugar-water-based liquids can be left permanently in the phantom. Always cover the liquid when the system is not in use to prevent changes in liquid parameters due to water evaporation.
- DGBE-based liquids should be used with care. As DGBE is a softener for most plastics, the liquid should be taken out of the phantom, and the phantom should be dried when the system is not in use (desirable at least once a week).
- Do not use other organic solvents without previously testing the solvent resistivity of the phantom.

Robots

The DASY6 system uses the high-precision industrial robots TX60L, TX90XL, and RX160L from St• aubli SA (France). The TX robot family - the successor of the well-known RX robot family - continues to offer the features important for DASY6 applications:

- High precision (repeatability 0.02mm)
- High reliability (industrial design)
- Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- Jerk-free straight movements (brushless synchrony motors; no stepper motors)
- Low ELF interference (motor control fields shielded via the closed metallic construction shields)

The robots are controlled by the Staubli CS8c robot controllers. All information regarding the use and maintenance of the robot arm and the robot controller is provided

Area Scans

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 15mm 2 step integral, with 1.5mm interpolation used to locate the peak SAR area used for zoom scan assessments.

Where the system identifies multiple SAR peaks (which are within 25% of peak value) the system will provide the user with the option of assessing each peak location individually for zoom scan averaging.

Zoom Scan (Cube Scan Averaging)

The averaging zoom scan volume utilized in the DASY5 software is in the shape of a cube and the side dimension of a 1 g or 10 g mass is dependent on the density of the liquid representing the simulated tissue. A density of 1000 kg/m^3 is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1g cube is 10mm, with the side length of the 10g cube is 21.5mm.

When the cube intersects with the surface of the phantom, it is oriented so that 3 vertices touch the surface of the shell or the center of a face is tangent to the surface. The face of the cube closest to the surface is modified in order to conform to the tangent surface.

The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications (including FCC) utilize a physical step of 7 x7 x 7 (5mmx5mmx5mm) providing a volume of 30 mm in the X & Y & Z axis.

Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE 1528:2013

39,8

39.2

39,0

38,5

37.9

37,4

36,8

Recommended Tissue Dielectric Parameters for Head liquid

Real part of the Penetration depth complex relative Frequency Conductivity, σ (E-field), δ permittivity, ε'_r MHz S/m mm 4 55,0 0.75 293,0 13 55,0 0,75 165,5 30 55,0 0,75 112,8 150 52,3 0,76 62.0 300 45,3 0,87 46,1 450 43,5 0,87 43,0 750 41,9 0,89 39,8 835 41,5 0,90 39,0 900 41,5 0,97 36,2 40,5 1 450 1,20 28,6 1 800 40,0 1,40 24,3 1 900 40,0 1,40 24,3 1 950 40,0 1,40 24,3 2 000 40,0 1,40 24,3

1,49

1,80

1,96

2,40

2,91

3,43

3.94

Table 2 - Dielectric properties of the tissue-equivalent medium

2 100

2 4 5 0

2 600

3 000

3 500

4 000

4 500

22,8

18,7

17,2

14,0

11,4

10,0

9,7

Bay Area Compliance Laboratories Corp. (Kunshan)

Report No.: RSHA240717001-20B

· 1	1 \	*	
5 000	36,2	4,45	1,5
5 200	36,0	4,66	8,4
5 400	35,8	4,86	8,1
5 600	35,5	5,07	7,5
5 800	35,3	5,27	7,3
6 000	35,1	5,48	7,0
6 500	34,5	6,07	6,7
7 000	33,9	6,65	6,4
7 500	33,3	7,24	6,1
8 000	32,7	7,84	5,9
8 500	32,1	8,46	5,3
9 000	31,6	9,08	4,8
9 500	31,0	9,71	4,4
10 000	30,4	10,40	4,0

NOTE For convenience, permittivity and conductivity values are linearly interpolated for frequencies that are not a part of the original data from Drossos et al. [2]. They are shown in italics in Table 2. The italicized values are linearly interpolated (below 5800 MHz) or extrapolated (above 5800 MHz) from the non-italicized values that are immediately above and below these values.

Note:

- 1, Effective February 19, 2019, FCC has permitted the use of single head-tissue simulating liquid specified in IEEE 1528:2013 for all SAR tests.
- 2, Mix and Match of traditional FCC SAR TSLs and IEEE 1528:2013 TSL in a single application is not permitted TSL can be changed in a Permissive Change.
- 3, If SAR increases and original SAR > 1.2 W/kg, additional SAR measurements will be required IEEE 1528:2013 TSL is an alternative, not mandatory at this time.
- 4, If FCC parameters are used, $\pm 5\%$ tolerance. If IEC parameters, $\pm 10\%$.

5, In this case, IEC parameters applied.

Bay Area Compliance Laboratories Corp. (Kunshan) EQUIPMENT LIST AND CALIBRATION

Equipments List & Calibration Information

Equipment	Model	S/N	Calibration Date	Calibration Due Date
DASY5 Test Software	DASY52 52.10.1	N/A	N/A	N/A
DASY6 Measurement Server	DASY6 6.0.31	N/A	N/A	N/A
Data Acquisition Electronics	DAE4	527	2024/03/26	2025/03/25
E-Field Probe	EX3DV4	7557	2024/03/26	2025/03/25
Mounting Device	MD4HHTV5	SD 000 H01 KA	N/A	N/A
ELI V8.0 Phantom	QD OVA 004 Ax	2095	N/A	N/A
Dipole,5GHz	D5GHzV2	1296	2022/08/17	2025/08/16
Simulated Tissue LiquidHead	HBBL600-6000V6	180611-3	Each	Time
Network Analyzer	E5071B	SG42400155	2024/04/23	2025/04/22
Dielectric Assessment Kit	DAK-3.5	SM DAK 300AB	N/A	N/A
Signal Generator	SMBV100A	261558	2024/04/25	2025/04/24
Power Amplifier	ZVE-8G+	558401902	N/A	N/A
Directional Coupler	4242-10	3307	N/A	N/A
Attenuator	3dB	5402	N/A	N/A
Attenuator	10dB	AU 3842	N/A	N/A
Hygrothermograph	HTC-1	N/A	2024/04/20	2025/04/19
Thermometer	UL-IL01	N/A	2024/04/20	2025/04/19
Power Meter	E4419B	MY41291878	2024/04/23	2025/04/22
Power Meter	E4419B	GB43312421	2024/04/23	2025/04/22

SAR MEASUREMENT SYSTEM VERIFICATION

Liquid Verification

Liquid Verification Setup Block Diagram

Liquid Verification Results

Frequency	Liquid	Liquid Pa	Liquid Parameter		Target Value		a(%)	Tolerance
(MHz)	Туре	O' (S/m)	٤ _r	O' (S/m)	٤ _r	ΔΟ	$\Delta \epsilon_r$	(%)
5250	Simulated Tissue Liquid Head	4.838	37.125	4.710	35.900	2.72	3.41	±5
5200	Simulated Tissue Liquid Head	4.785	37.197	4.640	36.020	3.13	3.27	±5
5180	Simulated Tissue Liquid Head	4.765	37.233	4.660	36.000	2.25	3.42	±5
5240	Simulated Tissue Liquid Head	4.829	37.134	4.701	35.960	2.72	3.26	±5
5280	Simulated Tissue Liquid Head	4.870	37.078	4.740	35.920	2.74	3.22	±5
5260	Simulated Tissue Liquid Head	4.848	37.105	4.721	35.940	2.69	3.24	±5
5320	Simulated Tissue Liquid Head	4.909	37.020	4.780	35.880	2.70	3.18	±5

Liquid Verification above was performed on 2024-10-08

Bay Area Compliance Laboratories Corp. (Kunshan)

Report No.: RSHA240717001-20B

Frequency	Liquid	Liquid Parameter		Target Value		Delta(%)		Tolerance
(MHz)	Туре	0' (S/m)	ε _r	O (S/m)	ε _r	ΔΟ	$\Delta \epsilon_r$	(%)
5600	Simulated Tissue Liquid Head	5.203	36.594	5.070	35.500	2.62	3.08	±5
5580	Simulated Tissue Liquid Head	5.180	36.629	5.049	35.523	2.59	3.11	±5
5500	Simulated Tissue Liquid Head	5.094	36.746	4.965	35.650	2.60	3.07	±5
5700	Simulated Tissue Liquid Head	5.312	36.442	5.170	35.400	2.75	2.94	±5

Liquid Verification above was performed on 2024-10-09

Frequency	Liquid	Liquid Parameter		Target Value		Delt	Tolerance	
(MHz)	Туре	O' (S/m)	٤r	O' (S/m)	٤ _r	ΔΟ	$\Delta \epsilon_r$	(%)
5750	Simulated Tissue Liquid Head	5.367	36.378	5.220	35.400	2.82	2.76	±5
5785	Simulated Tissue Liquid Head	5.403	36.328	5.255	35.315	2.82	2.87	±5
5745	Simulated Tissue Liquid Head	5.361	36.384	5.215	35.355	2.80	2.91	±5
5825	Simulated Tissue Liquid Head	5.448	36.269	5.296	35.275	2.87	2.82	±5

Liquid Verification above was performed on 2024-10-09

System Accuracy Verification

Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of $\pm 10\%$. The validation results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files.

The spacing distances in the System Verification Setup Block Diagram is given by the following:

- a) $s = 15 \text{ mm} \pm 0.2 \text{ mm}$ for 300 MHz $\leq f \leq 1$ 000 MHz;
- b) $s=10~mm\pm0.2~mm$ for 1 000 MHz $\leq f \leq 3$ 000 MHz;
- c) $s=10~mm\pm0.2~mm$ for 3 000 MHz $< f \le 6$ 000 MHz.

System Verification Setup Block Diagram

System Accuracy Check Results

Date	Frequency Band	Liquid Type	Input Power (mW)	Measured SAR(W/kg)		Normalized to 1W (W/kg)	Target Value (W/kg)	Delta (%)	Tolerance (%)
2024/10/08	5250	Head	100	1g	7.97	79.7	79.40	0.38	±10
2024/10/09	5600	Head	100	1g	8.82	88.2	81.50	8.22	±10
2024/10/09	5750	Head	100	1g	8.06	80.6	79.00	2.03	±10

The SAR values above are normalized to 1 Watt forward power

SAR SYSTEM VALIDATION DATA

System Check_Head_5250MHz DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1296

Communication System: UID 0, CW (0); Frequency: 5250 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5250 MHz; σ = 4.838 S/m; ϵ_r = 37.125; ρ = 1000 kg/m³

DASY5 Configuration:

- Probe: EX3DV4 SN7557; ConvF(5.25, 5.25, 5.25); Calibrated: 3/26/2024;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn527; Calibrated: 3/26/2024
- Phantom: ELI V8.0; Type: QD OVA 004 Ax; Serial: 2095
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7437)

Pin=100mW/Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 20.0 W/kg

Pin=100mW/Zoom Scan (7x7x17)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.10 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 33.3 W/kg

SAR(1 g) = 7.97 W/kg; SAR(10 g) = 2.28 W/kg

Maximum value of SAR (measured) = 20.0 W/kg

0 dB = 20.0 W/kg = 13.01 dBW/kg

System Check_Head_5600MHz

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1296

Communication System: UID 0, CW (0); Frequency: 5600 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5600 MHz; $\sigma = 5.203$ S/m; $\epsilon_r = 36.594$; $\rho = 1000$ kg/m³

DASY5 Configuration:

- Probe: EX3DV4 SN7557; ConvF(4.63, 4.63, 4.63); Calibrated: 3/26/2024;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn527; Calibrated: 3/26/2024
- Phantom: ELI V8.0; Type: QD OVA 004 Ax; Serial: 2095
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7437)

Pin=100mW/Area Scan (8x8x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 15.3 W/kg

Pin=100mW/Zoom Scan (8x8x17)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.40 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 38.7 W/kg

SAR(1 g) = 8.82 W/kg; SAR(10 g) = 2.56 W/kg Maximum value of SAR (measured) = 21.6 W/kg

0 dB = 21.6 W/kg = 13.34 dBW/kg

System Check_Head_5750MHz

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1296

Communication System: UID 0, CW (0); Frequency: 5750 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5750 MHz; $\sigma = 5.367$ S/m; $\epsilon_r = 36.378$; $\rho = 1000$ kg/m³

DASY5 Configuration:

- Probe: EX3DV4 SN7557; ConvF(4.78, 4.78, 4.78); Calibrated: 3/26/2024;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn527; Calibrated: 3/26/2024
- Phantom: ELI V8.0; Type: QD OVA 004 Ax; Serial: 2095
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7437)

Pin=100mW/Area Scan (8x8x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 17.2 W/kg

Pin=100mW/Zoom Scan (7x7x17)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.61 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 36.8 W/kg

SAR(1 g) = 8.06 W/kg; SAR(10 g) = 2.26 W/kg Maximum value of SAR (measured) = 20.4 W/kg

0 dB = 20.4 W/kg = 13.10 dBW/kg

EUT TEST STRATEGY AND METHODOLOGY

Test positions for body-worn and other configurations

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations. Devices with a headset output should be tested with a headset connected to the device. When multiple accessories that do not contain metallic components are supplied with the device, the device may be tested with only the accessory that dictates the closest spacing to the body. When multiple accessories that contain metallic components are supplied with the device, the device must be tested with each accessory that contains a unique metallic component. If multiple accessories share an identical metallic component (e.g., the same metallic belt-clip used with different holsters with no other metallic components), only the accessory that dictates the closest spacing to the body must be tested.

Body-worn accessories may not always be supplied or available as options for some devices that are intended to be authorized for body-worn use. A separation distance of 1.5 cm between the back of the device and a flat phantom is recommended for testing body-worn SAR compliance under such circumstances. Other separation distances may be used, but they should not exceed 2.5 cm. In these cases, the device may use body-worn accessories that provide a separation distance greater than that tested for the device provided however that the accessory contains no metallic components.

Figure 5 – Test positions for body-worn devices

Test Distance for SAR Evaluation

In this case the EUT (Equipment under Test) is set against from the phantom, the test distance is 0mm(Body supported).

SAR Evaluation Procedure

The evaluation was performed with the following procedure:

Step 1: Measurement of the SAR value at a fixed location above the ear point or central position was used as a reference value for assessing the power drop. The SAR at this point is measured at the start of the test and then again at the end of the testing.

Step 2: The SAR distribution at the exposed side of the head was measured at a distance of 4 mm from the inner surface of the shell. The area covered the entire dimension of the head or radiating structures of the EUT, the horizontal grid spacing was 15 mm x 15 mm, and the SAR distribution was determined by integrated grid of 1.5mm x 1.5mm. Based on these data, the area of the maximum absorption was determined by spline interpolation. The first Area Scan covers the entire dimension of the EUT to ensure that the hotspot was correctly identified.

Step 3: Around this point, a volume of 30 mm x 30 mm x 30 mm was assessed by measuring 7x 7 x 7 points. On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure:

1) The data at the surface were extrapolated, since the center of the dipoles is 1.2 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.

2) The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one dimensional splines with the "Not a knot"-condition (in x, y and z-directions). The volume was integrated with the trapezoidal-algorithm. One thousand points ($10 \times 10 \times 10$) were interpolated to calculate the averages.

All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

Step 4: Re-measurement of the SAR value at the same location as in Step 1. If the value changed by more than 5%, the evaluation was repeated.

CONDUCTED OUTPUT POWER MEASUREMENT

Test Procedure

The RF output of the transmitter was connected to the input of the Power Meter through Connector.

Maximum Target Output Power

Full Power Target power

	Max Target Power(dBm)									
Modo/Pond	Channel									
Wioue/Danu	Low	Middle	High							
5.2G WLAN (802.11a)	12	12	12							
5.2G WLAN (802.11n 20)	10	11	11							
5.2G WLAN (802.11n 40)	9	/	9							
5.3G WLAN (802.11a)	12	12	12							
5.3G WLAN (802.11n 20)	11	11.5	11							
5.3G WLAN (802.11n 40)	11	/	8							
5.6G WLAN(802.11a)	9	7	9							
5.6G WLAN(802.11n20)	10	7	10							
5.6G WLAN(802.11n40)	6	9	8							
5.8G WLAN (802.11a)	11	9	9							
5.8G WLAN (802.11n 20)	10.5	9	9							
5.8G WLAN (802.11n 40)	10.5	/	9							

Note:

Channels without Max Target Power are represented by /.

Test Results:

	Mada	Channel frequency	Data Data	Average Power
	Mode	(MHz)	Data kate	(dBm)
		5180		11.05
5 ACH DI AN	802.11a	5200	6Mbps	10.73
		5240		10.45
5.2GHZ KLAN		5180		8.99
	802.11n-HT20	5200	MCS0	10.9
		5240		10.53
	802 11m UT40	5190	MCSO	8.53
	802.11II-п140	5230	MCSU	7.95

Note:

5.2G wifi 802.11a mode duty cycle is 87.68%. Other modes are detailed in report RSHA240717001-00B

	Mode	Data Rate	Average Power (dBm)			
		5260		10.68		
	802.11a	5280	6Mbps	11.21		
			10.97			
J.JUHZ KLAN		5260		10.54		
	802.11n-HT20	5280	MCS0	11.1		
		5320		(dBm) 10.68 11.21 10.97 10.54 11.1 10.07 10.9 6.96		
	202 11 m UT 40	5270	MCSO	10.9		
	<u>802.1111-П140</u>	5310	WIC30	6.96		

Note:

5.3G wifi 802.11a mode duty cycle is 88.61%. Other modes are detailed in report RSHA240717001-00B

Bay Area Compliance Laboratories Corp. (Kunshan)

Report No.: RSHA240717001-20B

	Mada	Channel frequency	Data Pata	Average Power	
	Mode	(MHz)	Data Kate	(dBm)	
		5500		8.58	
5.6GHz RLAN	802.11a	5580	6Mbps	6.61	
		5700		8.62	
		5500		8.69	
	802.11n-HT20	5580	MCS0	6.64	
		5700		8.87	
		5510		5.56	
	802.11n-HT40	5550	MCS0	8.13	
		5670		7.61	

Note:

5.6G wifi 802.11n-HT20 mode duty cycle is 87.96%. Other modes are detailed in report RSHA240717001-00B

	Mode	Data Rate	Average Power	
				(uDIII)
		5745		10.32
COLUMN AN	802.11a	5785	6Mbps	8.82
		5825		8.13
J.OUTIZ KLAN		5745		10.35
	802.11n-HT20	5785	MCS0	8.79
		5825		8.18
	802 11 n HT40	5755	MCSO	10.13
	002.1111-П140	5795	WIC30	8.64

Note:

5.8G wifi 802.11a mode duty cycle is 88.12%. Other modes are detailed in report RSHA240717001-00B

Standalone SAR test exclusion considerations

Antennas Location:

MHub1 HVIN: NRW4004

Antenna Distance To Edge

		Antenna Distance To Edge(mm)								
Antenna	Back	Back Front Left Right Top Bottom								
WIFI	<5	<5	7	50	108	<5				

Standalone SAR Test Exclusion Considerations

Mode	Frequency (MHz)	Output Power (dBm)	Output Power (mW)	Distance (mm) Calculate value		Threshold (1-g)	SAR Test Exclusion
WLAN 5.2G	5240	12	15.85	0	7.26	3	No
WLAN 5.3G	5320	12	15.85	0	7.31	3	No
WLAN 5.6G	5700	10	10	0	4.77	3	No
WLAN 5.8G	5825	11	12.59	0	6.08	3	No

NOTE:

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]

 $[\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

1. f(GHz) is the RF channel transmit frequency in GHz.

2. Power and distance are rounded to the nearest mW and mm before calculation.

3. The result is rounded to one decimal place for comparison.

4. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion.

Mode	Frequency (MHz)	Pavg (dBm)	Pavg (mW)	Test Exclusion Distance(mm)
WLAN 5.2G Antenna	5240	12	15.85	12.09
WLAN 5.3G Antenna	5320	12	15.85	12.19
WLAN 5.6G Antenna	5700	10	10	7.96
WLAN 5.8G Antenna	5825	11	12.59	10.13

Standalone SAR test exclusion considerations

SAR test exclusion for the EUT edge considerations Result

Mode	Back	Front	Left	Right	Тор	Bottom
WLAN 5.2G Antenna	Required	Required	Required	Exclusion	Exclusion	Required
WLAN 5.3G Antenna	Required	Required	Required	Exclusion	Exclusion	Required
WLAN 5.6G Antenna	Required	Required	Required	Exclusion	Exclusion	Required
WLAN 5.8G Antenna	Required	Required	Required	Exclusion	Exclusion	Required

Distance< 50mm(To Edges)

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] ·

 $[\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

1. f(GHz) is the RF channel transmit frequency in GHz.

2. Power and distance are rounded to the nearest mW and mm before calculation.

3. The result is rounded to one decimal place for comparison.

4. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion.

5. The Time based average Power is used for calculation

Distance> 50mm(To Edges)

At 100 MHz to 6 GHz and for *test separation distances* > 50 mm, the SAR test exclusion threshold is determined according to the following:

a) [Power allowed at numeric threshold for 50 mm in step 1) + (test separation distance - 50 mm) (f(MHz)/150)]

mW, at 100 MHz to 1500 MHz

b) [Power allowed at numeric threshold for 50 mm in step 1) + (test separation distance - 50 mm) \cdot 10] mW at > 1500 MHz and \leq 6 GHz.

SAR MEASUREMENT RESULTS

This page summarizes the results of the performed dosimetric evaluation.

SAR Test Data

Environmental Conditions

Temperature:	22.4-23.6℃	22.1-23.3℃
Relative Humidity:	51%	53%
Test Date:	2024/10/08	2024/10/09

Testing was performed by Jason and Allen

5.2GHz RLAN:

Band	EUT Position	Freq. (MHz)	Test Mode	Max. Meas. Power (dBm)	Max. Rated Power (dBm)	Scaled Factor	Duct cycle Factor	Meas. (W/Kg)	Scaled SAR (W/Kg)	Limit (W/Kg)	Plot
WLAN5.2G	Front(0mm)	5200	802.11a 6Mbps	10.73	12	1.340	1.141	0.244	0.373	1.6	/
WLAN5.2G	Front(0mm)	5180	802.11a 6Mbps	11.05	12	1.245	1.141	0.258	0.366	1.6	/
WLAN5.2G	Front(0mm)	5240	802.11a 6Mbps	10.45	12	1.429	1.141	0.281	0.458	1.6	1#
WLAN5.2G	Back(0mm)	5200	802.11a 6Mbps	10.73	12	1.340	1.141	0.010	0.016	1.6	/
WLAN5.2G	Left Side(0mm)	5200	802.11a 6Mbps	10.73	12	1.340	1.141	0.037	0.057	1.6	/
WLAN5.2G	Right Side(0mm)	5200	802.11a 6Mbps	/	/	/	/	/	/	1.6	/
WLAN5.2G	Top Side(0mm)	5200	802.11a 6Mbps	/	/	/	/	/	/	1.6	/
WLAN5.2G	Bottom Side(0mm)	5200	802.11a 6Mbps	10.73	12	1.340	1.141	0.051	0.078	1.6	/

Note:

1. For 802.11a 6Mbps mode power is the largest mode of 802.11a/n, 802.11a 6Mbps mode is selected to test.

5.3GHz RLAN:

Band	EUT Position	Freq. (MHz)	Test Mode	Max. Meas. Power (dBm)	Max. Rated Power (dBm)	Scaled Factor	Duct cycle Factor	Meas. (W/Kg)	Scaled SAR (W/Kg)	Limit (W/Kg)	Plot
WLAN5.3G	Front(0mm)	5280	802.11a 6Mbps	11.21	12.00	1.199	1.129	0.305	0.413	1.6	/
WLAN5.3G	Front(0mm)	5260	802.11a 6Mbps	10.68	12.00	1.355	1.129	0.277	0.424	1.6	/
WLAN5.3G	Front(0mm)	5320	802.11a 6Mbps	10.97	12.00	1.268	1.129	0.306	0.438	1.6	2#
WLAN5.3G	Back(0mm)	5280	802.11a 6Mbps	11.21	12.00	1.199	1.129	0.015	0.021	1.6	/
WLAN5.3G	Left Side(0mm)	5280	802.11a 6Mbps	11.21	12.00	1.199	1.129	0.029	0.039	1.6	/
WLAN5.3G	Right Side(0mm)	5280	802.11a 6Mbps	/	/	/	/	/	/	1.6	/
WLAN5.3G	Top Side(0mm)	5280	802.11a 6Mbps	/	/	/	/	/	/	1.6	/
WLAN5.3G	Bottom Side(0mm)	5280	802.11a 6Mbps	11.21	12.00	1.199	1.129	0.068	0.092	1.6	/

Note:

1. For 802.11a 6Mbps mode power is the largest mode of 802.11a/n, 802.11a 6Mbps mode is selected to test.

5.6GHz RLAN:

Band	EUT Position	Freq. (MHz)	Test Mode	Max. Meas. Power (dBm)	Max. Rated Power (dBm)	Scaled Factor	Duct cycle Factor	Meas. (W/Kg)	Scaled SAR (W/Kg)	Limit (W/Kg)	Plot
WLAN5.6G	Front(0mm)	5580	802.11n HT20	6.64	7.00	1.086	1.137	0.381	0.471	1.6	/
WLAN5.6G	Front(0mm)	5500	802.11n HT20	8.69	10.00	1.352	1.137	0.431	0.663	1.6	3#
WLAN5.6G	Front(0mm)	5700	802.11n HT20	8.87	10.00	1.297	1.137	0.356	0.525	1.6	/
WLAN5.6G	Back(0mm)	5580	802.11n HT20	6.64	7.00	1.086	1.137	0.010	0.012	1.6	/
WLAN5.6G	Left Side(0mm)	5580	802.11n HT20	6.64	7.00	1.086	1.137	0.034	0.042	1.6	/
WLAN5.6G	Right Side(0mm)	5580	802.11n HT20	/	/	/	/	/	/	1.6	/
WLAN5.6G	Top Side(0mm)	5580	802.11n HT20	/	/	/	/	/	/	1.6	/
WLAN5.6G	Bottom Side(0mm)	5580	802.11n HT20	6.64	7.00	1.086	1.137	0.077	0.095	1.6	/

Note:

1. For 802.11n-HT20 mode power is the largest mode of 802.11a/n, 802.11n-HT20 mode is selected to test.

Band	EUT Position	Freq. (MHz)	Test Mode	Max. Meas. Power (dBm)	Max. Rated Power (dBm)	Scaled Factor	Duct cycle Factor	Meas. (W/Kg)	Scaled SAR (W/Kg)	Limit (W/Kg)	Plot
WLAN5.8G	Front(0mm)	5785	802.11a 6Mbps	8.82	9	1.042	1.135	0.479	0.567	1.6	/
WLAN5.8G	Front(0mm)	5745	802.11a 6Mbps	10.32	11	1.169	1.135	0.428	0.568	1.6	/
WLAN5.8G	Front(0mm)	5825	802.11a 6Mbps	8.13	9	1.222	1.135	0.496	0.688	1.6	4#
WLAN5.8G	Back(0mm)	5785	802.11a 6Mbps	8.82	9	1.042	1.135	0.026	0.031	1.6	/
WLAN5.8G	Left Side(0mm)	5785	802.11a 6Mbps	8.82	9	1.042	1.135	0.065	0.077	1.6	/
WLAN5.8G	Right Side(0mm)	5785	802.11a 6Mbps	/	/	/	/	/	/	1.6	/
WLAN5.8G	Top Side(0mm)	5785	802.11a 6Mbps	/	/	/	/	/	/	1.6	/
WLAN5.8G	Bottom Side(0mm)	5785	802.11a 6Mbps	8.82	9	1.042	1.135	0.095	0.112	1.6	/

5.8GHz RLAN:

Note:

1. When the SAR Value is less than half of the limit, testing for other channels are optional.

2. When SAR or MPE is not measured at the maximum power level allowed for production units, the results

must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance.

3. When the maximum output power variation across the required test channels is $> \frac{1}{2}$ dB, instead of the middle channel, the highest output power channel must be used.

4.According to IEEE 1528:2013, If the correction Δ SAR is within \pm 5%, the measured SAR results should not be corrected.

5. For 802.11a 6Mbps mode power is the largest mode of 802.11a/n, 802.11a 6Mbps mode is selected to test.

SAR SIMULTANEOUS TRANSMISSION DESCRIPTION

Note:

This device is not suitable and does not support simultaneous transmission

APPENDIX A SAR PLOTS OF SAR MEASUREMENT

1#_WLAN 5.2GHz_802.11a 6Mbps_Front_0mm_Ch48

Communication System: UID 0, WIFI 5G (0); Frequency: 5240 MHz;Duty Cycle: 1: 1.141 Medium parameters used: f = 5240 MHz; $\sigma = 4.829$ S/m; $\epsilon_r = 37.134$; $\rho = 1000$ kg/m³

DASY5 Configuration:

- Probe: EX3DV4 SN7557; ConvF(5.25, 5.25, 5.25); Calibrated: 3/26/2024;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn527; Calibrated: 3/26/2024
- Phantom: ELI V8.0; Type: QD OVA 004 Ax; Serial: 2095
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7437)

Area Scan (12x12x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.386 W/kg

Zoom Scan (8x8x17)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 0 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.48 W/kg

SAR(1 g) = 0.281 W/kg; SAR(10 g) = 0.091 W/kg

Maximum value of SAR (measured) = 0.458 W/kg

0 dB = 0.458 W/kg = -3.39 dBW/kg

2#_WLAN 5.3GHz_802.11a 6Mbps_Front_0mm_Ch64

Communication System: UID 0, WIFI 5G (0); Frequency: 5320 MHz;Duty Cycle: 1: 1.129 Medium parameters used: f = 5320 MHz; $\sigma = 4.909$ S/m; $\epsilon_r = 37.02$; $\rho = 1000$ kg/m³

DASY5 Configuration:

- Probe: EX3DV4 SN7557; ConvF(5.25, 5.25, 5.25); Calibrated: 3/26/2024;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn527; Calibrated: 3/26/2024
- Phantom: ELI V8.0; Type: QD OVA 004 Ax; Serial: 2095
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7437)

Area Scan (12x12x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.493 W/kg

Zoom Scan (9x9x17)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 0 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 0.523 W/kgSAR(1 g) = 0.306 W/kg; SAR(10 g) = 0.097 W/kgMaximum value of SAR (measured) = 0.494 W/kg

0 dB = 0.494 W/kg = -3.06 dBW/kg

3#_WLAN 5.6GHz_802.11n HT20_Front_0mm_Ch100

Communication System: UID 0, WIFI 5G (0); Frequency: 5500 MHz;Duty Cycle: 1: 1.137 Medium parameters used: f = 5500 MHz; $\sigma = 5.094$ S/m; $\epsilon_r = 36.746$; $\rho = 1000$ kg/m³

DASY5 Configuration:

- Probe: EX3DV4 SN7557; ConvF(4.63, 4.63, 4.63); Calibrated: 3/26/2024;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn527; Calibrated: 3/26/2024
- Phantom: ELI V8.0; Type: QD OVA 004 Ax; Serial: 2095
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7437)

Area Scan (12x12x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.58 W/kg

Zoom Scan (9x9x17)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 0.7680 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 0.79 W/kg

SAR(1 g) = 0.431 W/kg; SAR(10 g) = 0.131 W/kg

Maximum value of SAR (measured) = 0.693 W/kg

0 dB = 0.693 W/kg = -1.59 dBW/kg

4#_WLAN 5.8GHz_802.11a 6Mbps_Front_0mm_Ch165

Communication System: UID 0, WIFI 5G (0); Frequency: 5825 MHz; Duty Cycle: 1: 1.135 Medium parameters used: f = 5825 MHz; $\sigma = 5.448$ S/m; $\epsilon_r = 36.269$; $\rho = 1000$ kg/m³

DASY5 Configuration:

- Probe: EX3DV4 SN7557; ConvF(4.78, 4.78, 4.78); Calibrated: 3/26/2024;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn527; Calibrated: 3/26/2024
- Phantom: ELI V8.0; Type: QD OVA 004 Ax; Serial: 2095
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7437)

Area Scan (12x12x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.61 W/kg

Zoom Scan (9x9x17)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 0 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 0.77 W/kgSAR(1 g) = 0.496 W/kg; SAR(10 g) = 0.142 W/kg Maximum value of SAR (measured) = 0.73 W/kg

Zoom Scan (9x9x17)/Cube 1: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 0 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.67 W/kg

SAR(1 g) = 0.374 W/kg; SAR(10 g) = 0.118 W/kg

Maximum value of SAR (measured) = 0.59 W/kg

0 dB = 0.73 W/kg = -1.37 dBW/kg

SAR Evaluation Report

APPENDIX B MEASUREMENT UNCERTAINTY

The uncertainty budget has been determined for the measurement system and is given in the following Table.

Tolerance/ Standard Standard Probability ci Source of ci uncertainty Divisor uncertainty uncertainty uncertainty distribution (1 g) (10 g) ±% ± %, (1 g) ± %, (10 g) Measurement system Probe calibration 6.55 Ν 1 1 6.6 6.6 1 √3 Axial Isotropy 4.7 R 1 1 2.7 2.7 √3 Hemispherical Isotropy 9.6 R 0 0 0.0 0.0 Boundary effect 1.0 R √3 1 1 0.6 0.6 4.7 R √3 2.7 Linearity 1 2.7 1 **Detection limits** 1.0 R √3 1 1 0.6 0.6 Readout electronics 0.3 Ν 0.3 0.3 1 1 1 Response time 0.0 R √3 1 1 0.0 0.0 Integration time 0.0 R √3 1 1 0.0 0.0 RF ambient conditions -√3 1.0 R 1 1 0.6 0.6 noise **RF** ambient √3 1.0 R 1 1 0.6 0.6 conditions-reflections Probe positioner mech. 0.8 R √3 1 1 0.5 0.5 Restrictions Probe positioning with R √3 1 1 6.7 3.9 3.9 respect to phantom shell R √3 Post-processing 2.0 1 1 1.2 1.2 Test sample related Test sample positioning 2.8 Ν 1 1 1 2.8 2.8 Device holder uncertainty 6.3 Ν 1 1 1 6.3 6.3 √3 2.9 Drift of output power 5.0 R 1 1 2.9 Phantom and set-up Phantom uncertainty (shape 4.0 R √3 1 2.3 2.3 1 and thickness tolerances) √3 Liquid conductivity target) 5.0 R 0.64 0.43 1.8 1.2 Liquid conductivity meas.) 2.5 Ν 1 0.64 0.43 1.6 1.1 Liquid permittivity target) 5.0 R √3 0.6 0.49 1.7 1.4 2.5 0.49 1.5 Liquid permittivity meas.) Ν 1 0.6 1.2 Combined standard RSS 12.2 12.0 uncertainty Expanded uncertainty 95 % 24.3 23.9 confidence interval)

Measurement uncertainty evaluation for IEEE 1528:2013 SAR test

Source of uncertainty	Tolerance/ uncertainty ± %	Probability distribution	Divisor	ci (1 g)	ci (10 g)	Standard uncertainty ± %, (1 g)	Standard uncertainty ± %, (10 g)
	L	Measuremer	nt system			I	
Probe calibration	6.55	Ν	1	1	1	6.6	6.6
Axial Isotropy	4.7	R	√3	1	1	2.7	2.7
Hemispherical Isotropy	9.6	R	√3	0	0	0.0	0.0
Linearity	4.7	R	√3	1	1	2.7	2.7
Modulation Response	0.0	R	√3	1	1	0.0	0.0
Detection limits	1.0	R	√3	1	1	0.6	0.6
Boundary effect	1.0	R	√3	1	1	0.6	0.6
Readout electronics	0.3	Ν	1	1	1	0.3	0.3
Response time	0.0	R	√3	1	1	0.0	0.0
Integration time	0.0	R	√3	1	1	0.0	0.0
RF ambient conditions – noise	1.0	R	√3	1	1	0.6	0.6
RF ambient conditions-reflections	1.0	R	√3	1	1	0.6	0.6
Probe positioner mech. Restrictions	0.8	R	√3	1	1	0.5	0.5
Probe positioning with respect to phantom shell	6.7	R	√3	1	1	3.9	3.9
Post-processing	2.0	R	√3	1	1	1.2	1.2
		Test sample	e related				
Device holder Uncertainty	6.3	Ν	1	1	1	6.3	6.3
Test sample positioning	2.8	Ν	1	1	1	2.8	2.8
Power scaling	4.5	R	√3	1	1	2.6	2.6
Drift of output power	5.0	R	√3	1	1	2.9	2.9
		Phantom an	d set-up				
Phantom uncertainty (shape and thickness tolerances)	4.0	R	√3	1	1	2.3	2.3
Algorithm for correcting SAR for deviations in permittivity and conductivity	1.9	Ν	1	1	0.84	1.1	0.9
Liquid conductivity (meas.)	2.5	Ν	1	0.64	0.43	1.6	1.1
Liquid permittivity (meas.)	2.5	Ν	1	0.6	0.49	1.5	1.2
Temp. unc Conductivity	1.7	R	√3	0.78	0.71	0.8	0.7
Temp. unc Permittivity	0.3	R	√3	0.23	0.26	0.0	0.0
Combined standard uncertainty		RSS				12.2	12.1
Expanded uncertainty 95 % confidence interval)						24.5	24.2

Measurement uncertainty evaluation for IEC 62209-2:2010 SAR test

APPENDIX C EUT TEST POSITION PHOTOS

$Liquid \ depth \geq 15 cm$

WLAN- Front

WLAN- Back

WLAN-Left

WLAN-Bottom

APPENDIX D CALIBRATION CERTIFICATES

Please Refer to the Attachment.

Declarations

1. The laboratory is not responsible for the authenticity of any information provided by the applicant. Information from the applicant that may affect test results is marked with " \star ".

2. The test data was only valid for the test sample(s).

3. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

4. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

5. The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor k=2 with the 95.45% confidence interval.

6. This report may contain standards and test items that are not covered by the accreditation scope and shall be marked with an asterisk " \blacktriangle ".

***** END OF REPORT *****