	RF TEST REPORT
	For
	AFH Industries Inc
Produc	ct Name: AX4 WIRELESS SPEAKER Test Model(s).: WL15011
Report Reference No.	: POCE231116019RL001
FCC ID	: 2ATOM-WL15011
Applicant's Name	: AFH Industries Inc
Address	: 7FL, 110 West 34th Street, New York, NY 10001
Testing Laboratory	: Shenzhen POCE Technology Co., Ltd.
Address	. 101-102 Building H5 & 1/F., Building H, Hongfa Science & Technol Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, Ch
Test Specification Standard	: 47 CFR Part 15.247
PUC	
Date of Receipt Date of Test	 November 16, 2023 November 16, 2023 to November 24, 2023
Data of Issue	: November 24, 2023
Result	: Pass
Technology Co., Ltd. This docu	eproduced except in full, without the written approval of Shenzhen POCE ument may be altered or revised by Shenzhen POCE Technology Co., Lto oted in the revision section of the document. The test results in the report

Revision History Of Report

Version	Description	REPORT No.	Issue Date
V1.0	Original	POCE231116019RL001	November 24, 2023

NOTE1:

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

Compiled by: Keren Huang Keren Huang / Test Engineer

Supervised by:

Stone Yin / Project Engineer

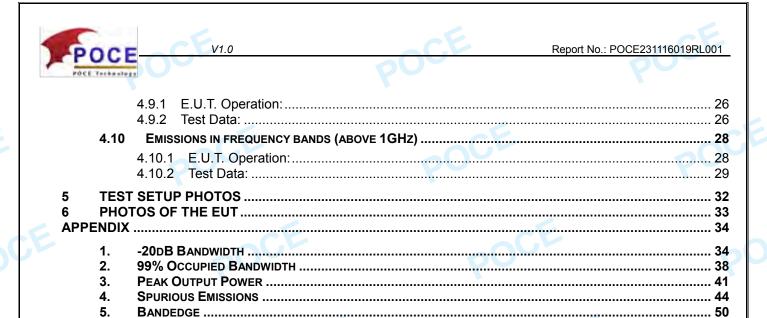
Approved by:

Tomchen Tom Chen / Manager

 101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China

 Web:http://www.poce-cert.com
 Tel: 86-755-29113252

 E-mail: service@poce-cert.com
 Page 2 of 64



CONTENTS

V1.0

PO

1	TEST	SUMMARY	5
	1.1	TEST STANDARDS	
	1.2	SUMMARY OF TEST RESULT	
2	GEN	ERAL INFORMATION	6
	2.1	CLIENT INFORMATION	
	2.2	DESCRIPTION OF DEVICE (EUT)	6
	2.3	DESCRIPTION OF TEST MODES.	
	2.4 2.5	DESCRIPTION OF SUPPORT UNITS EQUIPMENTS USED DURING THE TEST	
	2.6	STATEMENT OF THE MEASUREMENT UNCERTAINTY	8
	2.7	AUTHORIZATIONS	
	2.8	ANNOUNCEMENT	
3	EVAL	LUATION RESULTS (EVALUATION)	
	3.1	ANTENNA REQUIREMENT	
		3.1.1 Conclusion:	
4	RAD	O SPECTRUM MATTER TEST RESULTS (RF)	
	4.1	CONDUCTED EMISSION AT AC POWER LINE	11
		4.1.1 E.U.T. Operation:	
		4.1.2 Test Setup Diagram:	
	4.0	4.1.3 Test Data: Occupied Bandwidth	
	4.2	4.2.1 E.U.T. Operation:	
		4.2.1 E.O.1. Operation	
		4.2.3 Test Data:	
	4.3	MAXIMUM CONDUCTED OUTPUT POWER	
		4.3.1 E.U.T. Operation:	16
		4.3.2 Test Setup Diagram:4.3.3 Test Data:	16
	4.4	Channel Separation	
	7.7	4.4.1 E.U.T. Operation:	
		4.4.2 Test Setup Diagram:	
		4.4.3 Test Data:	
	4.5	NUMBER OF HOPPING FREQUENCIES	
		4.5.1 E.U.T. Operation:	
		4.5.2 Test Setup Diagram: 4.5.3 Test Data:	
	4.6	Dwell Time	
		4.6.1 E.U.T. Operation:	
		4.6.2 Test Setup Diagram:	
		4.6.3 Test Data:	
	4.7	EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS	
		4.7.1 E.U.T. Operation:	21
		4.7.2 Test Setup Diagram:4.7.3 Test Data:	
	4.8	BAND EDGE EMISSIONS (RADIATED)	
		4.8.1 E.U.T. Operation:	
		4.8.2 Test Setup Diagram:	22
		4.8.3 Test Data:	
	4.9	EMISSIONS IN FREQUENCY BANDS (BELOW 1GHZ)	25
101-1	02 Buildi	ng H5 & 1/F Building H Honofa Science & Technology Park Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, Ch	nina

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China

E-mail: service@poce-cert.com

Page 4 of 64

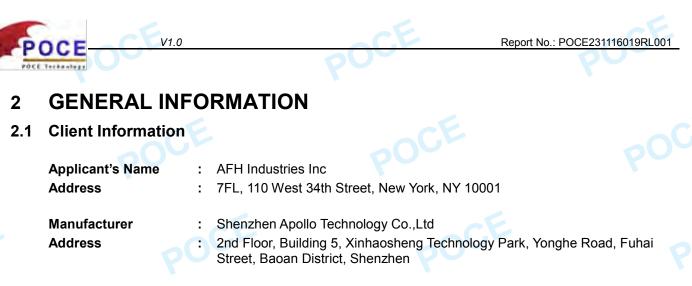
Tel: 86-755-29113252

6. 7.

8.

Web:http://www.poce-cert.com

DWELL TIME (HOPPING)


TEST SUMMARY 1

Test Standards 1.1

The tests were performed according to following standards:

47 CFR Part 15.247: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

Item	Standard	Method	Requirement	Result
Antenna requirement	47 CFR Part 15.247		47 CFR 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15.247	ANSI C63.10-2013 section 6.2	47 CFR 15.207(a)	Pass
Occupied Bandwidth	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.7	47 CFR 15.215(c)	Pass
Maximum Conducted Output Power	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.5	47 CFR 15.247(b)(1)	Pass
Channel Separation	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.2	47 CFR 15.247(a)(1)	Pass
Number of Hopping Frequencies	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.3	47 CFR 15.247(a)(1)(iii)	Pass
Dwell Time	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.4	47 CFR 15.247(a)(1)(iii)	Pass
Emissions in non-restricted frequency bands	47 CFR Part 15.247	ANSI C63.10-2013 section 7.8.8	47 CFR 15.247(d), 15.209, 15.205	Pass
Band edge emissions (Radiated)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.10	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (below 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (above 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4	47 CFR 15.247(d), 15.209, 15.205	Pass
Note: 1.N/A -this device(EUT) 2. RF-conducted test re	is not applicable to this te sults including cable loss.		P	00

2.2 Description of Device (EUT)

•					
Product Name:	AX4 WIRELESS SPEAKER	CE.			
sample number:	231116003-1				
Model/Type reference:	WL15011				
Trade Mark:	AIRBUDS				
Operation Frequency:	2402MHz to 2480MHz				
Number of Channels:	79	CE			
Modulation Type:	GFSK, π/4 DQPSK	2005			
Antenna Type:	PCB ANT	P.C			
Antenna Gain:	-0.58dBi				
Hardware Version:	V1.0				
Software Version:	V1.0.2.2	CE			
Description of Test	Modes	POUL			

2.3 Description of Test Modes

No	Title	Description				
TM1	TX-GFSK (Non-	Keep the EUT in continuously transmitting mode (non-hopping) with				
Hopping)		GFSK modulation.				
TM2 TX-Pi/4DQPSK (Non- Keep the EUT in continuously transmitting mode (non-hoppin		Keep the EUT in continuously transmitting mode (non-hopping) with				
	Hopping)	Pi/4DQPSK modulation.				
тмз	TX-GFSK (Hopping)	Keep the EUT in continuously transmitting mode (hopping) with				
		GFSK modulation,.				
TM4	TX-Pi/4DQPSK	Keep the EUT in continuously transmitting mode (hopping) with				
1 1014	(Hopping)	Pi/4DQPSK modulation.				
Descri	Description					
Special software is used.						
Through engineering command into the engineering mode.						
engineering command: *#*#3646633#*#*						
Othe	Other method:					
Specia	Special software:					

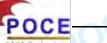
移動(E) 第01设置		
串 □ [0001 (通信端口) ▼		
波特率 数据位 8 *		
教開版 8 *		
Waxiby Bone 停止位 1 ・		
wurtu i i i i i i i i i i i i i i i i i i i		
初 31 10 10 10 10 10 10 10 10 10 10 10 10 10		
	BOCE	
BR/EDR BLE		
MODE X *		
Channel 0		
Transmit_Fover 0 • Facket_Type 1-DH1 •		
Hopping OFF		
Data_Types Pn9 *		
Send configuration		
	POCE	

2.4 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Description	Manufacturer	Model No.	Remark	Certification
10	ADAPTER	PHOTON	ATXC-069AC65B	Provide by lab	SDOC

2.5 Equipments Used During The Test


Conducted Emissio	Conducted Emission at AC power line						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal. Due Date		
Shielding room	CY	8*4*3	20160102	2023/1/26	2025/1/25		
Pulse Limiter	Schwarzbeck	VTSD 9561	561-G071	2023/2/27	2024/2/26		
Cable	Schwarzbeck	/		2023/2/27	2024/2/26		
Test Receiver	Rohde & Schwarz	ESPI	1164.6607K03- 102109-MH	2023/6/13	2024/6/12		
L.I.S.N	R&S	ESH3-Z5	831.5518.52	2022/12/29	2023/12/28		
L.I.S.N	Schwarzbeck	NSLK 8126	NSLK 8126	2023/8/8	2024/8/7		
 50ΩCoaxial Switch 	Anritsu	MP59B	M20531	1	/		
EMI Testsoftware	Farad	EZ -EMC	V1.1.42	/	/		

missions in restricted frequency bands and RF					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Test Receiver	R&S	ESCI	102109	2023/6/13	2024/6/12
Spectrum Analyzer	R&S	FSP30	1321.3008K40- 101729-jR	2023/6/14	2024/6/13
966 Chamber	CY	9*6*6	20160101	2023/1/26	2025/1/25
Bore-sighting	PBB	1308503	16033		

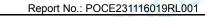
 101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China

 Web:http://www.poce-cert.com
 Tel: 86-755-29113252

 E-mail: service@poce-cert.com
 Page 7 of 64

V1.0

Report No.: POCE231116019RL001


-					
Antenna rack					
Loop antenna	ZHINAN	ZN30900C	ZN30900C	2021/7/5	2024/7/4
Broadband Antenna	Sunol Sciences	JB6 Antenna	A090414	2023/5-21	2025/5-20
Horn Antenna	Sunol Sciences	DRH-118	A091114	2023/5/13	2025/5/12
Horn antenna	COM-POWER	AH-1840(40G)	10100008	2023/4/5	2025/4/4
Power APM(LF)	Schwarzbeck	BBV9743	9743-151	2023/6/13	2024/6/12
Power APM(HF)	Schwarzbeck	BBV9718	9718-282	2023/6/13	2024/6/12
Cable(LF)#2	Schwarzbeck	/		2023/2/27	2024/2/26
Cable(LF)#1	Schwarzbeck	/	1	2023/2/27	2024/2/26
Cable(HF)#2	Schwarzbeck	AK9515E	96250	2023/2/28	2024/2/27
Cable(HF)#1	Schwarzbeck	SYV-50-3-1	/	2023/2/27	2024/2/26
Power divider	MIDEWEST	PWD-2533	SMA-79	2023/5/11	2026/5/10
signal generator	Keysight	N5181A	MY48180415	2022/12/10	2023/12/9
signal generator	Keysight	N5182A	MY50143455	2022/12/29	2023/12/28
Spectrum Analyzer	Keysight	N9020A	MY53420323	2022/12/29	2023/12/28
RF Sensor Unit	TACHOY	TR1029-2	000001	1	1
RF Control Unit	TACHOY	TR1029-1	000001		1
Position Controller	MF	MF-7802	/	Ι	/
EMI Testsoftware	Farad	EZ -EMC	V1.1.42	/	/
RF TestSoftware	TACHOY	RTS-01	V2.0.0.0	/	1
2.6 Statement	Of The Measure	ment Uncertain	ty	P	OCE
Test Item	Test Item Measurement Uncertainty				

2.6 Statement Of The Measurement Uncertainty

Test Item	Measurement Uncertainty			
Conducted Disturbance (0.15~30MHz)	±3.41dB			
Occupied Bandwidth	±3.63%			
RF conducted power	±0.733dB			
Duty cycle	±3.1%			
Conducted Spurious emissions	±1.98dB			
Radiated Emission (Above 1GHz)	±5.46dB			
Radiated Emission (Below 1GHz)	±5.79dB			
Note: (1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.				

Authorizations 2.7

Company Name:	Shenzhen POCE Technology Co., Ltd.
Address:	101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China
Phone Number:	+86-13267178997
Fax Number:	86-755-29113252
Identification of the Responsible	e Testing Location
Company Name:	Shenzhen POCE Technology Co., Ltd.
Address:	101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China
Phone Number:	+86-13267178997
101-102 Building H5 & 1/F., Building H Web:http://www.poce-cert.com	,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 8 of 64

Fax Number:	86-755-29113252
FCC Registration Number:	0032847402
Designation Number:	CN1342
Test Firm Registration No.:	778666
A2LA Certificate Number:	6270.01

2.8 Announcement

(1) The test report reference to the report template version v0.

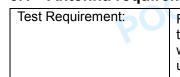
V1 0

(2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.

(3) The test report is invalid if there is any evidence and/or falsification.

(4) This document may not be altered or revised in any way unless done so by POCE and all revisions are duly noted in the revisions section.

(5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.


(6) We hereby declare that the laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant. the laboratory is not responsible for the accuracy of the information provided by the client. When the information provided by the customer may affect the effectiveness of the results, the responsibility lies with the customer, and the laboratory does not assume any responsibility.

3 Evaluation Results (Evaluation)


V1 0

3.1 Antenna requirement

Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.1.1 Conclusion:

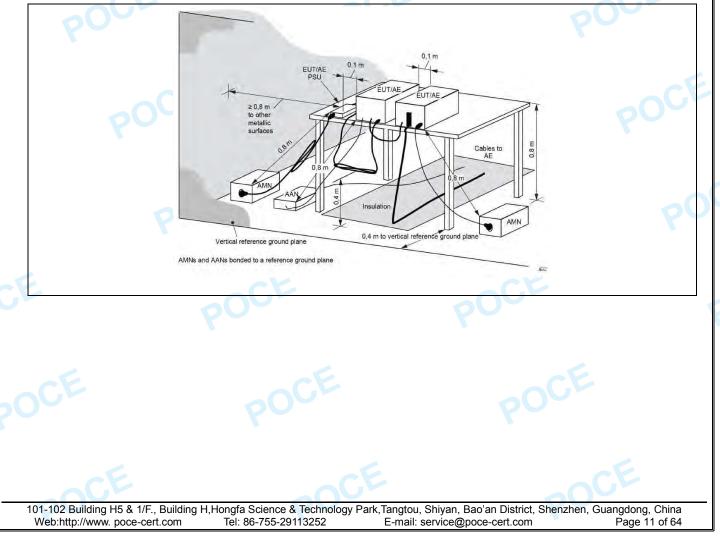
 101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China

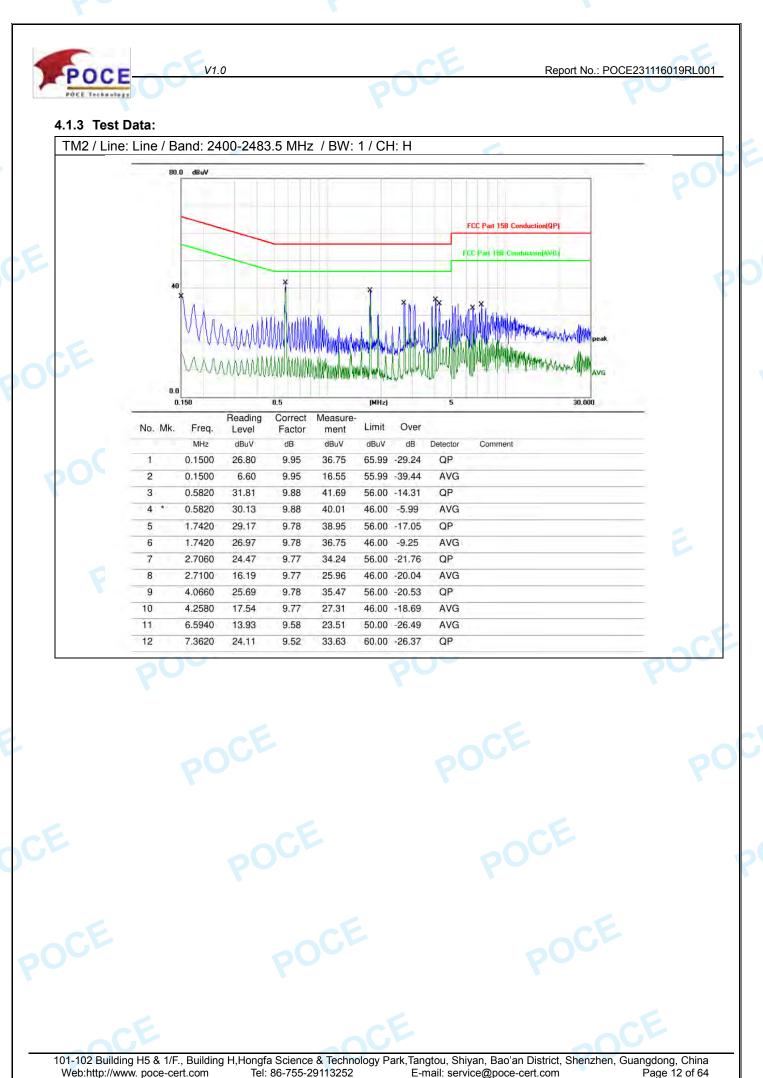
 Web:http://www.poce-cert.com
 Tel: 86-755-29113252

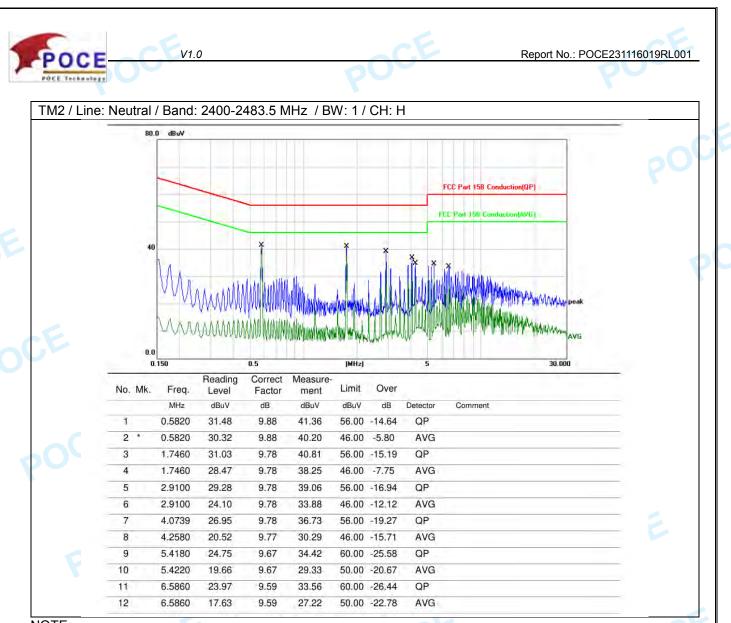
 E-mail: service@poce-cert.com
 Page 10 of 64

4.1 Conducted Emission at AC power line

V1.0


Test Requirement:	Refer to 47 CFR 15.207(a), Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).						
Test Limit:	Frequency of emission (MHz) Conducted limit (dBµV)						
		Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	*Decreases with the logarithm of the frequency.						
Test Method:	ANSI C63.10-2013 section 6.2						
Procedure:	Refer to ANSI C63.10-2013 section conducted emissions from unlicense		for ac power-line				

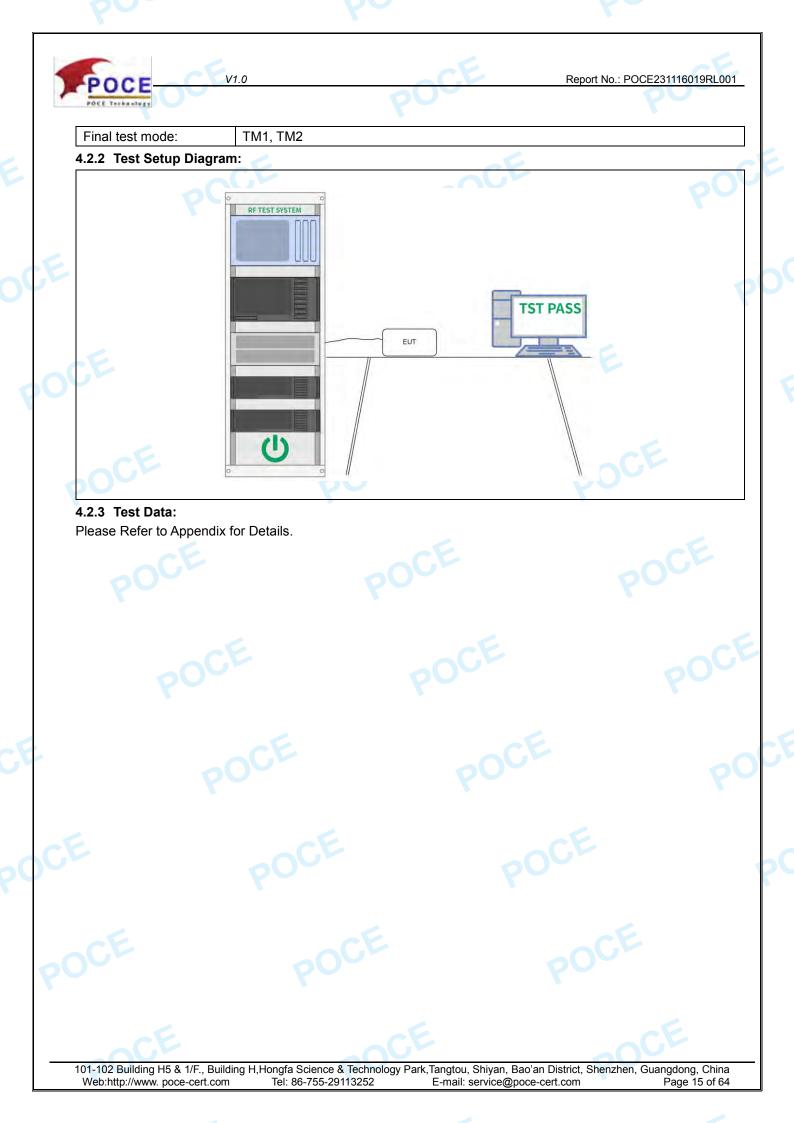

4.1.1 E.U.T. Operation:


POCE

Temperature: 23	3.6 °C	Humidity:	51.4 %	Atmospheric Pressure:	102 kPa	
Pre test mode:	TM1,	TM2				
Final test mode:	TM2	worse case)				

4.1.2 Test Setup Diagram:

NOTE:


- 1.An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3.Mesurement Level = Reading level + Correct Factor, Over=Limit- Mesurement
- 4. The test results only show the worst mode or worst channel.

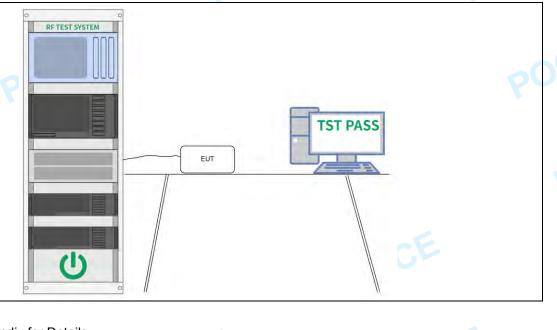
V1.0

4.2 Occupied Bandwidth

Test Requirement:	47 CFR 15.215(c)	
Test Limit:	Refer to 47 CFR 15.215(c), intentional radiators operating un provisions to the general emission limits, as contained in §§ and in subpart E of this part, must be designed to ensure that of the emission, or whatever bandwidth may otherwise be sp rule section under which the equipment operates, is contained band designated in the rule section under which the equipment the equipment operates.	15.217 through 15.257 t the 20 dB bandwidth ecified in the specific d within the frequency
Test Method:	ANSI C63.10-2013, section 7.8.7, For occupied bandwidth m procedure in 6.9.2.	easurements, use the
Procedure:	 a) The spectrum analyzer center frequency is set to the nom center frequency. The span range for the EMI receiver or specified between two times and five times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the the OBW and video bandwidth (VBW) shall be approximately unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keep exceeding the maximum input mixer level for linear operation of the spectral envelope shall be more than [10 log (OBW/RE reference level. Specific guidance is given in 4.1.5.2. 	ectrum analyzer shall range of 1% to 5% of three times RBW, ing the signal from h. In general, the peak
POCE	 d) Steps a) through c) might require iteration to adjust within tolerances. e) The dynamic range of the instrument at the selected RBW dB below the target "-xx dB down" requirement; that is, if the measuring the -20 dB OBW, the instrument noise floor at the be at least 30 dB below the reference value. f) Set detection mode to peak and trace mode to max hold. 	shall be more than 10 requirement calls for
POCE	 g) Determine the reference value: Set the EUT to transmit ar or modulated signal, as applicable. Allow the trace to stabilize analyzer marker to the highest level of the displayed trace (th value). h) Determine the "-xx dB down amplitude" using [(reference Alternatively, this calculation may be made by using the mark instrument. i) If the reference value is determined by an unmodulated can 	e. Set the spectrum his is the reference value) – xx]. ker-delta function of the rrier, then turn the EUT
P	modulation ON, and either clear the existing trace or start a r spectrum analyzer and allow the new trace to stabilize. Other step g) shall be used for step j). j) Place two markers, one at the lowest frequency and the oth frequency of the envelope of the spectral display, such that e slightly below the "-xx dB down amplitude" determined in step below this "-xx dB down amplitude" value, then it shall be as this value. The occupied bandwidth is the frequency difference markers. Alternatively, set a marker at the lowest frequency of	rwise, the trace from her at the highest ach marker is at or p h). If a marker is close as possible to ce between the two of the envelope of the
CE	spectral display, such that the marker is at or slightly below th amplitude" determined in step h). Reset the marker-delta fun marker to the other side of the emission until the delta marker same level as the reference marker amplitude. The marker-delta at this point is the specified emission bandwidth. k) The occupied bandwidth shall be reported by providing plot instrument display; the plot axes and the scale units per divisi- labeled. Tabular data may be reported in addition to the plot(state)	ction and move the er amplitude is at the lelta frequency reading ot(s) of the measuring ion shall be clearly
.2.1 E.U.T. Operation:	<u> </u>	
Operating Environment:		
Temperature: 23.6 °C	Humidity: 51.4 % 🥒 Atmospheric Pressure:	102 kPa 🥢
Pre test mode:	TM1, TM2	

 101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www. poce-cert.com
 Tel: 86-755-29113252
 E-mail: service@poce-cert.com
 Page 14 of 64

V1.0


4.3 Maximum Conducted Output Power

Test Requirement:	47 CFR 15.247(b)(1)
Test Limit:	Refer to 47 CFR 15.247(b)(1), For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
Test Method:	ANSI C63.10-2013, section 7.8.5
Procedure:	This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test: a) Use the following spectrum analyzer settings:
CE	 Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel. RBW > 20 dB bandwidth of the emission being measured. VBW >= RBW. Sweep: Auto. Detector function: Peak. Trace: Max hold.
POCE	 b) Allow trace to stabilize. c) Use the marker-to-peak function to set the marker to the peak of the emission. d) The indicated level is the peak output power, after any corrections for external attenuators and cables. e) A plot of the test results and setup description shall be included in the test report. NOTE—A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.

4.3.1 E.U.T. Operation:

Operating Envir	onment:						
Temperature:	23.6 °C		Humidity:	51.4 %	Atmospheric Pressure:	102 kPa	
Pre test mode:		TM1,	TM2		- C		
Final test mode:		TM1,	TM2				

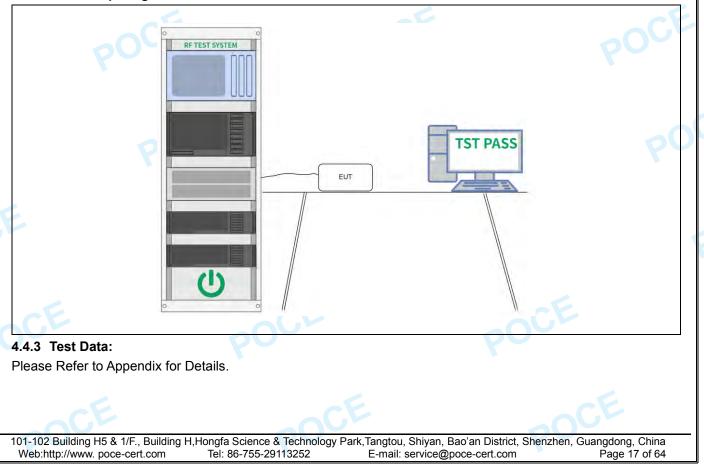
4.3.2 Test Setup Diagram:

4.3.3 Test Data:

Please Refer to Appendix for Details.

 101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com
 Tel: 86-755-29113252
 E-mail: service@poce-cert.com
 Page 16 of 64

4.4 Channel Separation


V1.0

Test Requirement:	47 CFR 15.247(a)(1)
Test Limit:	Refer to 47 CFR 15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Test Method:	ANSI C63.10-2013, section 7.8.2
Procedure:	 The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Wide enough to capture the peaks of two adjacent channels. b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel. c) Video (or average) bandwidth (VBW) ≥ RBW. d) Sweep: Auto. e) Detector function: Peak.
POCE	 f) Trace: Max hold. g) Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.

4.4.1 E.U.T. Operation:

Operating Enviro	onment:							
Temperature:	23.6 °C		Humidity:	51.4 %	CA	Atmospheric Pressure:	102 kPa	
Pre test mode:		ТМЗ,	TM4	DU			pU	
Final test mode:		ΤМЗ,	TM4					

4.4.2 Test Setup Diagram:

POCE

4.5 Number of Hopping Frequencies

V1.0

MHz band shall use at least 15 channels. The average time of occupancy on an channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used. Test Method: ANSI C63.10-2013, section 7.8.3 Procedure: The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: The frequency band of operation. Depending on the number of channel the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels, set the RBW to less than 30% the channel spacing or the 20 dB bandwidth, whichever is smaller. c) VBW ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. 	Test Requirement:	47 CFR 15.247(a)(1)(iii)
Procedure: The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: The frequency band of operation. Depending on the number of channel the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen. b) RBW: To identify clearly the individual channels, set the RBW to less than 30% the channel spacing or the 20 dB bandwidth, whichever is smaller. c) VBW ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. It might prove necessary to break the span up into subranges to show clearly all	PO	multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
 analyzer settings: a) Span: The frequency band of operation. Depending on the number of channel the device supports, it may be necessary to divide the frequency range of operations multiple spans, to allow the individual channels to be clearly seen. b) RBW: To identify clearly the individual channels, set the RBW to less than 309 the channel spacing or the 20 dB bandwidth, whichever is smaller. c) VBW ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. It might prove necessary to break the span up into subranges to show clearly all 	Test Method:	ANSI C63.10-2013, section 7.8.3
limit shall be determined for the number of hopping channels. A plot of the data shall be included in the test report.	Procedure:	 analyzer settings: a) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen. b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. c) VBW ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. It might prove necessary to break the span up into subranges to show clearly all of the hopping frequencies. Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of hopping channels. A plot of the data

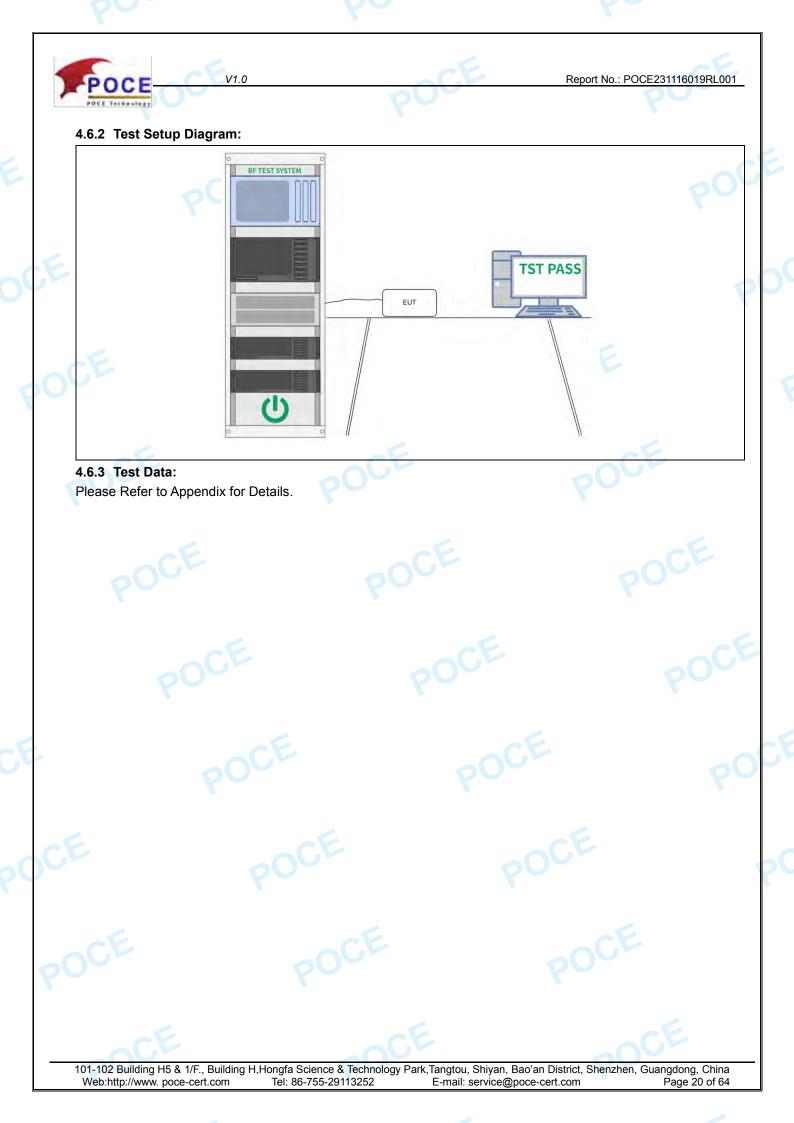
4.5.1 E.U.T. Operation:

Operating Enviro	onment:				U.		0	
Temperature:	23.6 °C		Humidity:	51.4 %		Atmospheric Pressure:	102 kPa	
Pre test mode:		ΤМЗ,	TM4					
Final test mode:		ТМЗ,	TM4					

4.5.2 Test Setup Diagram:

4.5.2 Test Setup Diagram:		
	EUT EUT	PO
4.5.3 Test Data:		
Please Refer to Appendix for Details.		
OCE	DOCE DOCE	
101-102 Building H5 & 1/F., Building H,Hongfa Scient Web:http://www.poce-cert.com Tel: 86-755	ace & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, 5-29113252 E-mail: service@poce-cert.com Page 18	China 3 of 64

4.6 Dwell Time


V1.0

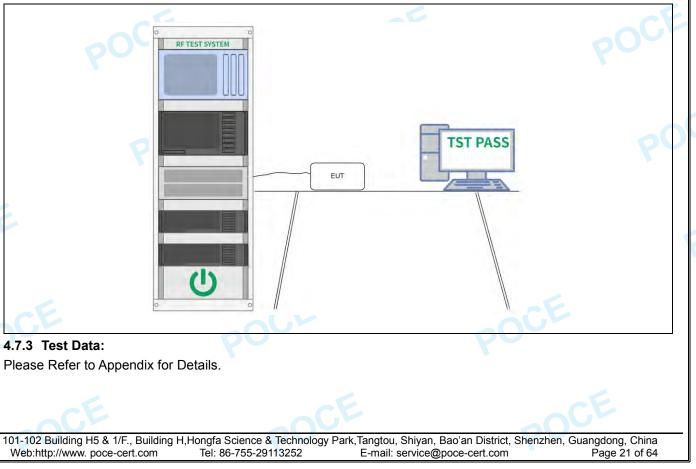
 47 CFR 15.247(a)(1)(iii), Fequency hopping systems in the 2400-2483.5 d shall use at least 15 channels. The average time of occupancy on any shall not be greater than 0.4 seconds within a period of 0.4 seconds by the number of hopping channels employed. Frequency hopping may avoid or suppress transmissions on a particular hopping frequency that a minimum of 15 channels are used. 3.10-2013, section 7.8.4 shall have its hopping function enabled. Use the following spectrum settings: Zero span, centered on a hopping channel. shall be <= channel spacing and where possible RBW should be set >> 1 / T is the expected dwell time per channel. : As necessary to capture the entire dwell time per hopping channel; ssible use a video trigger and trigger delay so that the transmitted signal
shall have its hopping function enabled. Use the following spectrum settings: Zero span, centered on a hopping channel. shall be <= channel spacing and where possible RBW should be set >> 1 / T is the expected dwell time per channel. : As necessary to capture the entire dwell time per hopping channel;
settings: Zero span, centered on a hopping channel. shall be <= channel spacing and where possible RBW should be set >> 1 / T is the expected dwell time per channel. : As necessary to capture the entire dwell time per hopping channel;
ttle to the right of the start of the plot. The trigger level might need slight
nt to prevent triggering when the system hops on an adjacent channel; a lot might be needed with a longer sweep time to show two successive a channel. or function: Peak. Max hold. narker-delta function to determine the transmit time per hop. If this value h different modes of operation (data rate, modulation format, number of
channels, etc.), then repeat this test variation in transmit time. The measurement using a longer sweep time to determine the number of r the period specified in the requirements. The sweep time shall be equal to than, the period specified in the ents. Determine the number of hops over the sweep time and calculate the ber of hops in the period specified in the requirements, using the following
of hops in the period specified in the requirements) = of hops on spectrum analyzer) × (period specified in the requirements / sweep time) age time of occupancy is calculated from the transmit time per hop by the number of hops in the period specified in the requirements. If the of hops in a specific time varies with different modes of operation (data fullation format, number of hopping channels, etc.), then repeat this test for

4.6.1 E.U.T. Operation:

Operating Enviro	onment:					
Temperature:	23.6 °C		Humidity:	51.4 %	Atmospheric Pressure:	102 kPa
Pre test mode:		TM3,	TM4		PU	
Final test mode:		ТМЗ,	TM4			

 101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www. poce-cert.com
 Tel: 86-755-29113252
 E-mail: service@poce-cert.com
 Page 19 of 64

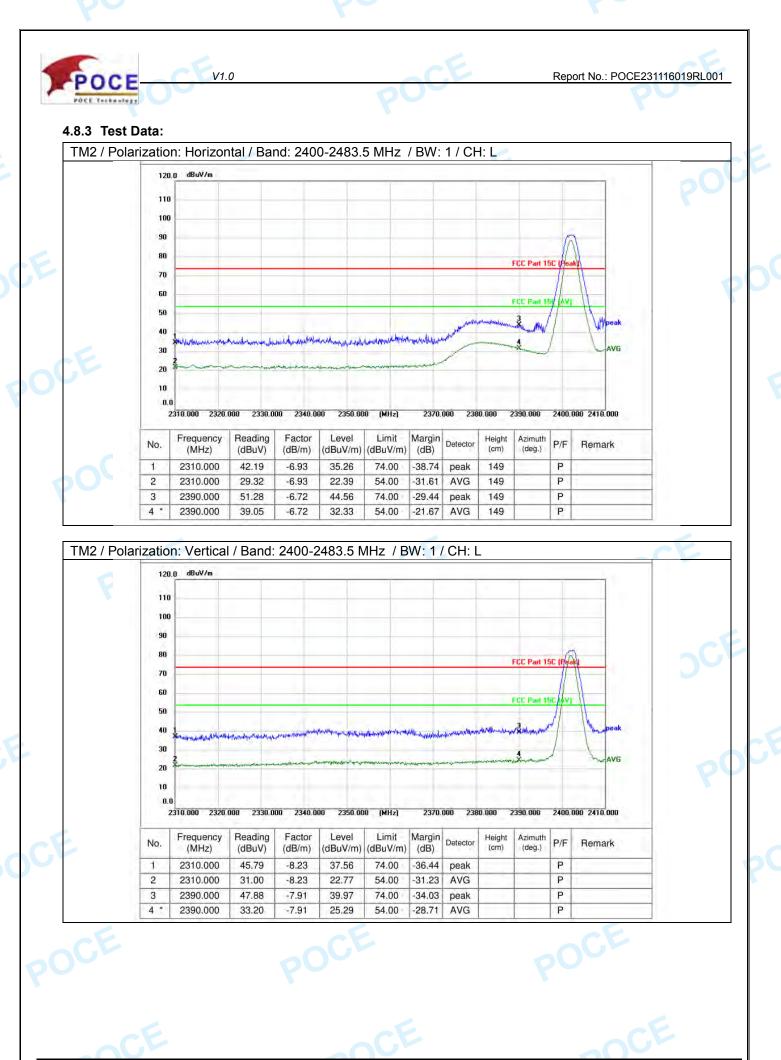
4.7 Emissions in non-restricted frequency bands


V1.0

Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2013 section 7.8.8
Procedure:	Conducted spurious emissions shall be measured for the transmit frequency, per 5.5 and 5.6, and at the maximum transmit powers. Connect the primary antenna port through an attenuator to the spectrum analyzer input; in the results, account for all losses between the unlicensed wireless device output and the spectrum analyzer. The instrument shall span 30 MHz to 10 times the operating frequency in GHz, with a resolution bandwidth of 100 kHz, video bandwidth of 300 kHz, and a coupled sweep time with a peak detector. The band 30 MHz to the highest frequency may be split into smaller spans, as long as the entire spectrum is covered.

4.7.1 E.U.T. Operation:

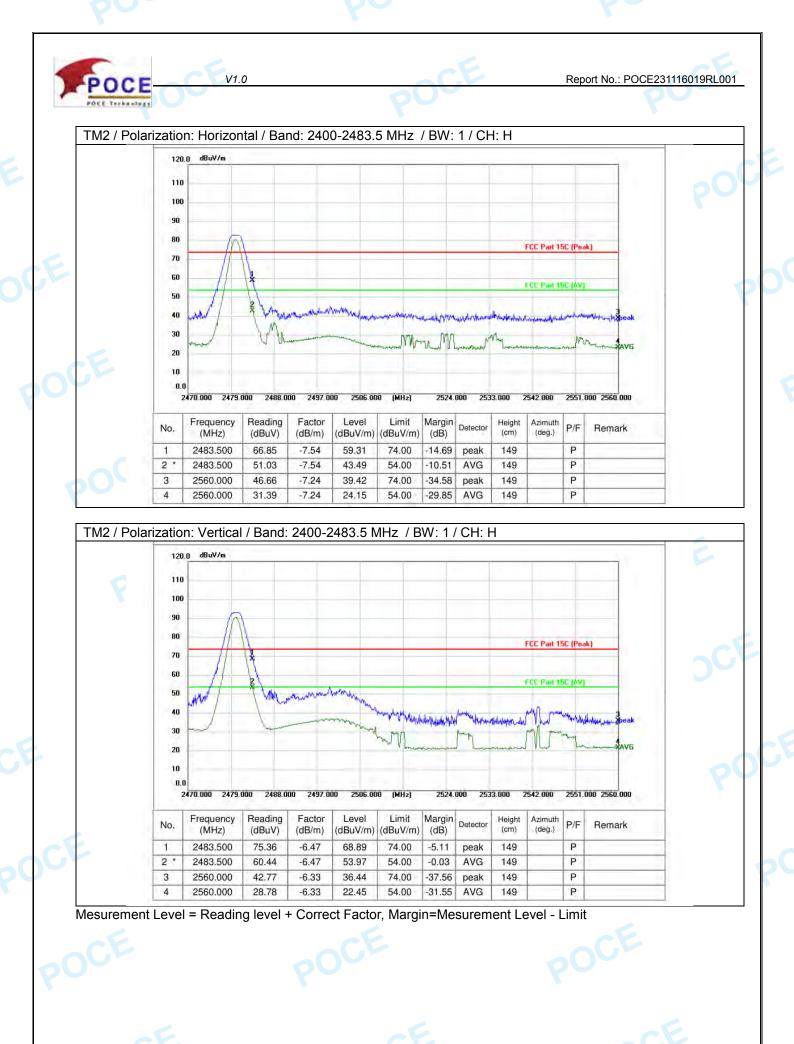
Operating Enviro	onment:				
Temperature:	23.6 °C	Humidity:	51.4 %	Atmospheric Pressure:	102 kPa
Pre test mode:		TM1, TM2	DU		00
Final test mode:		TM1, TM2			



POCE

4.8 Band edge emissions (Radiated)

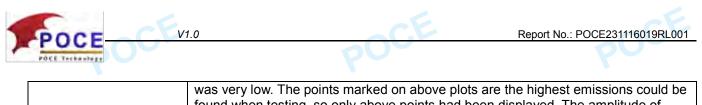
V1.0


Test Requirement:		7(d), In addition, radiated emissions	
20		fined in § 15.205(a), must also comp d in § 15.209(a)(see § 15.205(c)).`	ly with the radiated
Test Limit:	Frequency (MHz)	Field strength	Measurement
		(microvolts/meter)	distance
	0.009-0.490	2400/E(kH=)	(meters) 300
	0.490-1.705	2400/F(kHz) 24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
E	Above 960	500	3
CE.		n paragraph (g), fundamental emissio	
		ler this section shall not be located in	
		z, 174-216 MHz or 470-806 MHz. Hor is permitted under other sections of	
	and 15.241.	is permitted under other sections of	this part, e.g., <u>88</u> 15.231
		bove, the tighter limit applies at the b	and edges.
		own in the above table are based on	
		asi-peak detector except for the frequencies	
Y		e 1000 MHz. Radiated emission limit	
		ments employing an average detecto	or.
Test Method:	ANSI C63.10-2013 sec	tion 6.10	
Procedure:	ANSI C63.10-2013 sec	tion 6.10.5.2	CE
4.8.1 E.U.T. Operation:	6	000	000
Operating Environment:			
Temperature: 23.6 °C	Humidity: 51.4	4 % Atmospheric Pressure:	102 kPa
Pre test mode:	TM1, TM2		
Final test mode:	TM2 (worse case)		
4.8.2 Test Setup Diagram	n:	pOU	pu
P	EUT Turntable Gound Reference Plan	3m Antenna Tower Hern Antenna 150m	PC
	Test Rec	ceiver	
		I	-6
			<u>C</u>
		ology Park,Tangtou, Shiyan, Bao'an District, S	

 101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China

 Web:http://www.poce-cert.com
 Tel: 86-755-29113252

 E-mail: service@poce-cert.com
 Page 23 of 64


101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 24 of 64

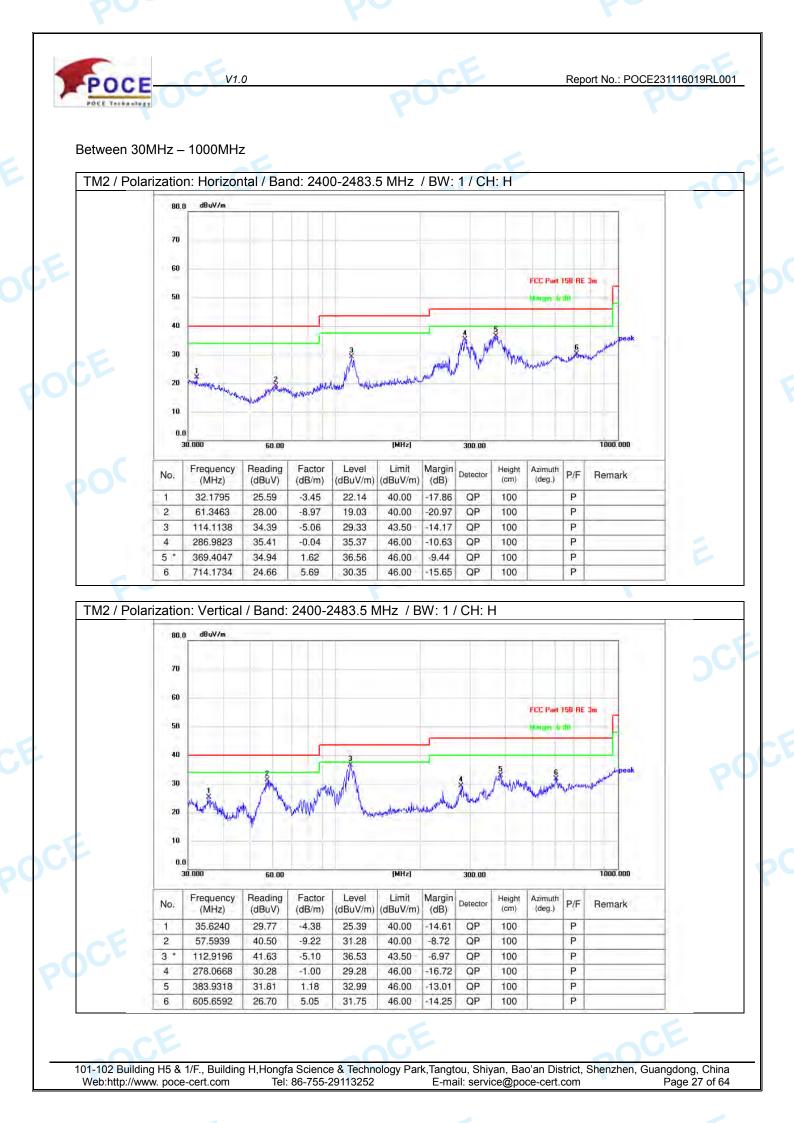
POCE

4.9 Emissions in frequency bands (below 1GHz)

V1.0

lest Requirement:		(d), In addition, radiated em	
			so comply with the radiated
	emission limits specified	in § 15.209(a)(see § 15.20)5(c)).`
Test Limit:	Frequency (MHz)	Field strength	Measurement distance
		(microvolts/meter)	(meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	radiators operating unde 54-72 MHz, 76-88 MHz, these frequency bands is	r this section shall not be lo 174-216 MHz or 470-806 N	al emissions from intentional ocated in the frequency bands MHz. However, operation within ctions of this part, e.g., §§ 15.2
	and 15.241.		
		ove, the tighter limit applies	
		vn in the above table are ba	
			the frequency bands 9-90 kH
			sion limits in these three band
		ents employing an average	e detector.
est Method:	ANSI C63.10-2013 secti	on 6.6.4	
Procedure:	a For below 1GHz the l	-UT was placed on the top	of a rotating table 0.8 meters
	 b. For above 1GHz, the above the ground at a 3 degrees to determine the c. The EUT was set 3 or which was mounted on t d. The antenna height is determine the maximum polarizations of the antere e. For each suspected e the antenna was tuned to below 30MHz, the anten was turned from 0 degree f. The test-receiver system Bandwidth with Maximur 	meter fully-anechoic cham e position of the highest rac 10 meters away from the in he top of a variable-height varied from one meter to for value of the field strength. nna are set to make the me mission, the EUT was arran to heights from 1 meter to 4 na was tuned to heights 1 m es to 360 degrees to find th em was set to Peak Detect n Hold Mode.	o of a rotating table 1.5 meters ber. The table was rotated 360 diation. Interference-receiving antenna antenna tower. our meters above the ground to Both horizontal and vertical easurement. Inged to its worst case and ther meters (for the test frequency meter) and the rotatable table ne maximum reading. Function and Specified
	specified, then testing correported. Otherwise the	ould be stopped and the pe emissions that did not have peak, quasi-peak or average	as 10dB lower than the limit ak values of the EUT would be a 10dB margin would be re- ge method as specified and the
	h. Test the EUT in the log i. The radiation measure Transmitting mode, and	west channel, the middle cl ments are performed in X,	g which it is the worst case.
	channel. Only the worst 2) The field strength is ca Preamplifier. The basic e Final Test Level =Receiv	case is recorded in the rep	enna Factor, Cable Factor & culation is as follows:
	Preamplifier Factor	Oll- the disturbance share	e 12.75GHz and below 30MHz

found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. Fundamental frequency is blocked by filter, and only spurious emission is shown.


4.9.1 E.U.T. Operation:

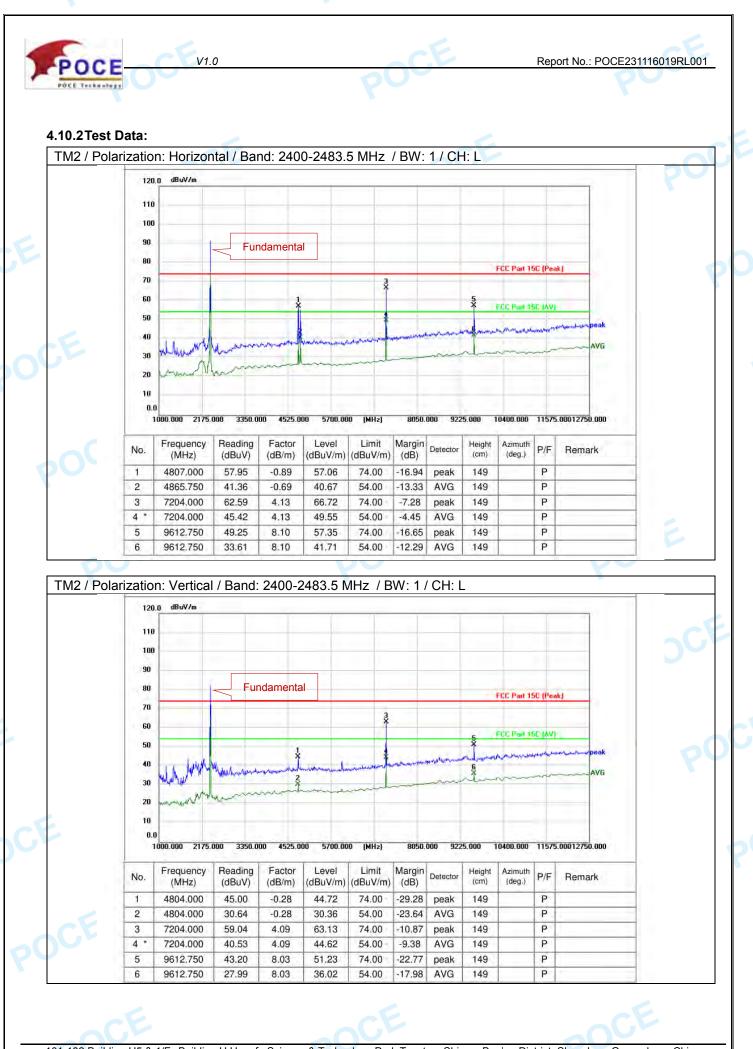
Operating Enviro	onment:					
Temperature:	23.6 °C		Humidity:	51.4 %	Atmospheric Pressure:	102 kPa
Pre test mode:		TM1,	TM2			
Final test mode:		TM2	(worse case)		70	

4.9.2 Test Data:

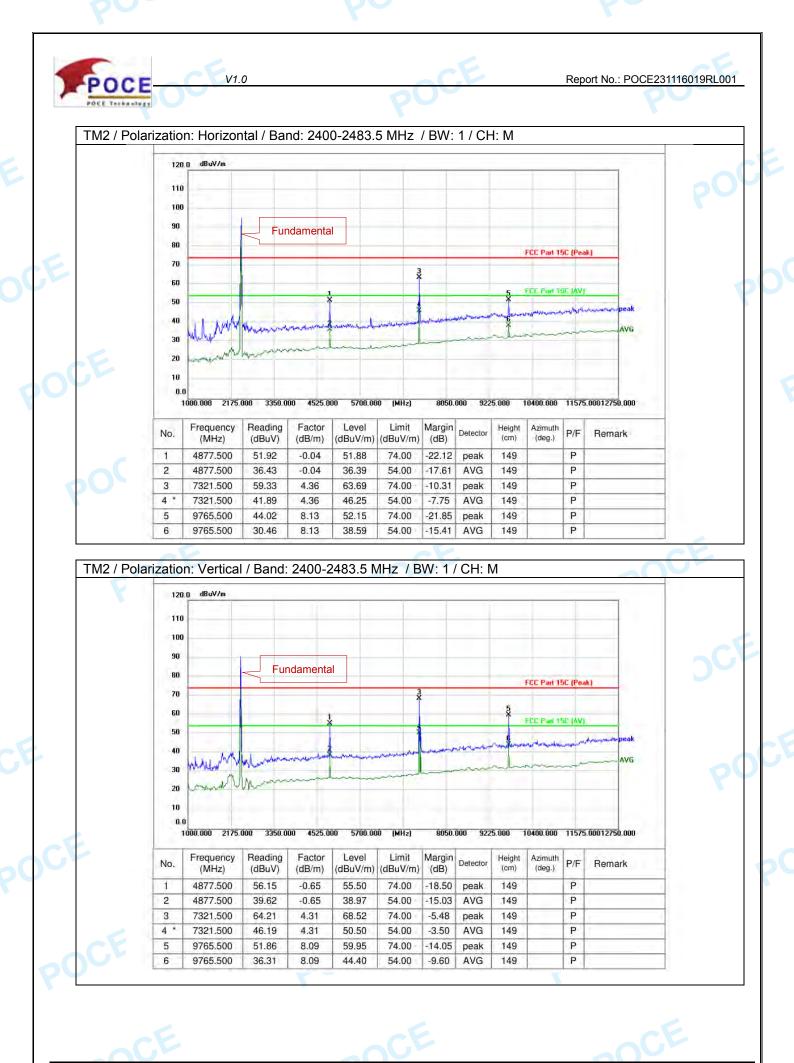
Between 9KHz - 30MHz

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.

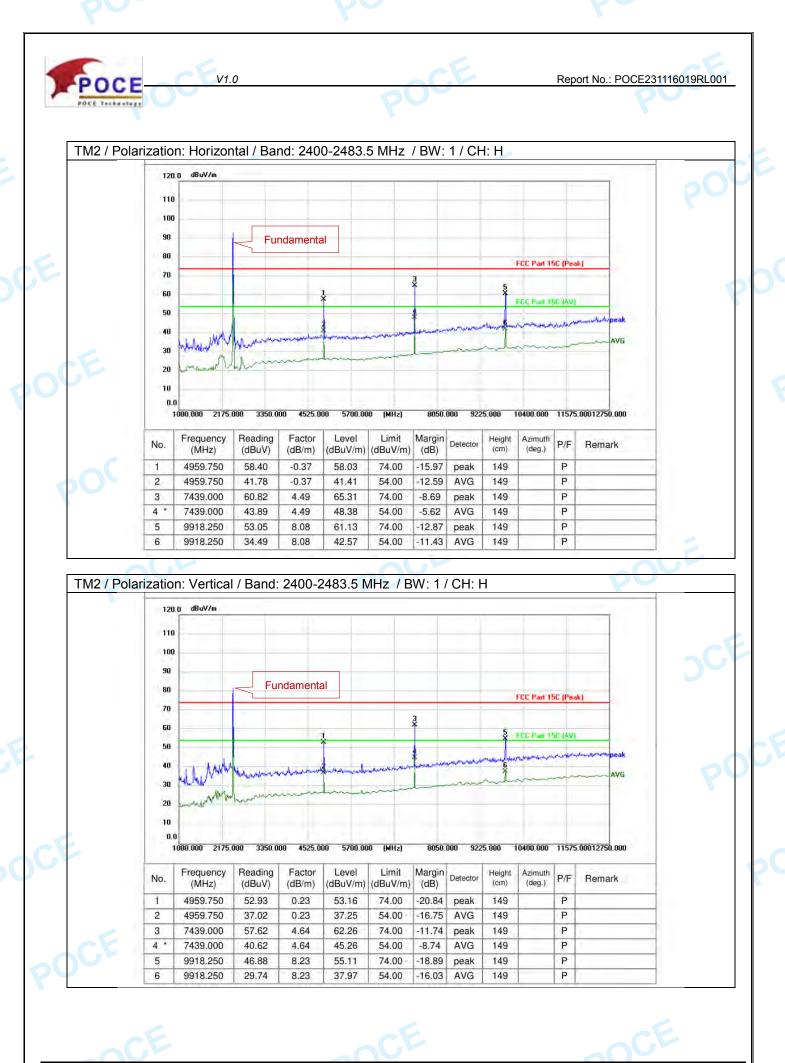
V1.0


POCE Technology

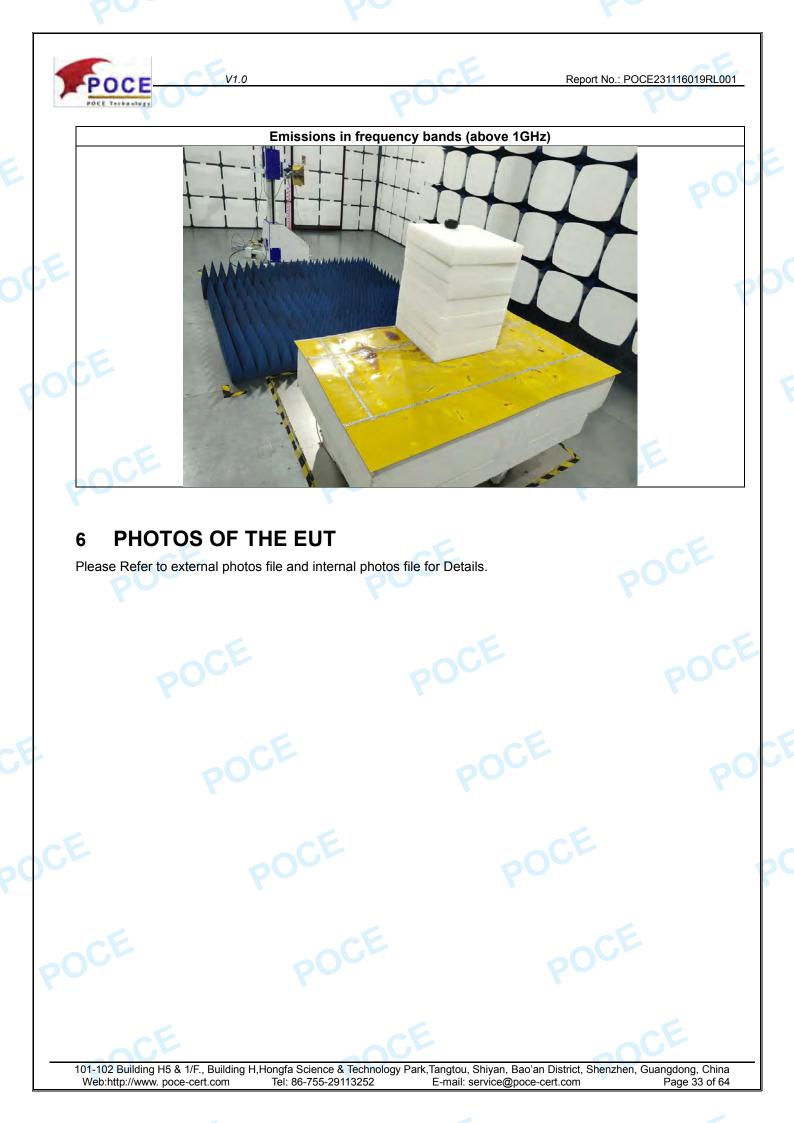
4.10 Emissions in frequency bands (above 1GHz)


Test Requirement:		ns which fall in the restricted band with the radiated emission limits	
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960 🧹	500	3
POCE	radiators operating under this 54-72 MHz, 76-88 MHz, 174 these frequency bands is per and 15.241. In the emission table above, The emission limits shown in employing a CISPR quasi-per 110–490 kHz and above 100 are based on measurements	agraph (g), fundamental emissions s section shall not be located in th -216 MHz or 470-806 MHz. Howe rmitted under other sections of thi the tighter limit applies at the ban the above table are based on me eak detector except for the freque 0 MHz. Radiated emission limits is employing an average detector.	the frequency bands ever, operation within s part, e.g., §§ 15.231 d edges. easurements ncy bands 9–90 kHz,
Test Method:	ANSI C63.10-2013 section 6	.6.4	
Procedure:	channel. Only the worst case 2) The field strength is calcul Preamplifier. The basic equa Final Test Level =Receiver R Preamplifier Factor 3) Scan from 9kHz to 25GHz was very low. The points ma found when testing, so only a spurious emissions from the	, through pre-scan found the wors is recorded in the report. ated by adding the Antenna Factor tion with a sample calculation is a reading + Antenna Factor + Cable c, the disturbance above 12.75GH rked on above plots are the highe above points had been displayed. radiator which are attenuated mo d. Fundamental frequency is block	or, Cable Factor & as follows: Factor "C Iz and below 30MHz st emissions could be The amplitude of re than 20dB below

4.10.1 E.U.T. Operation:

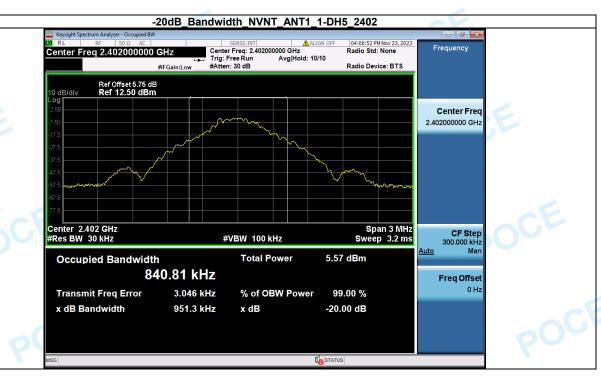

· · ·						
Operating Envir	onment:				2005	
Temperature:	23.6 °C		Humidity:	51.4 %	Atmospheric Pressure:	102 kPa
Pre test mode:		TM1,	TM2			
Final test mode		TM2	(worse case)			

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 29 of 64



101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 30 of 64

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 31 of 64

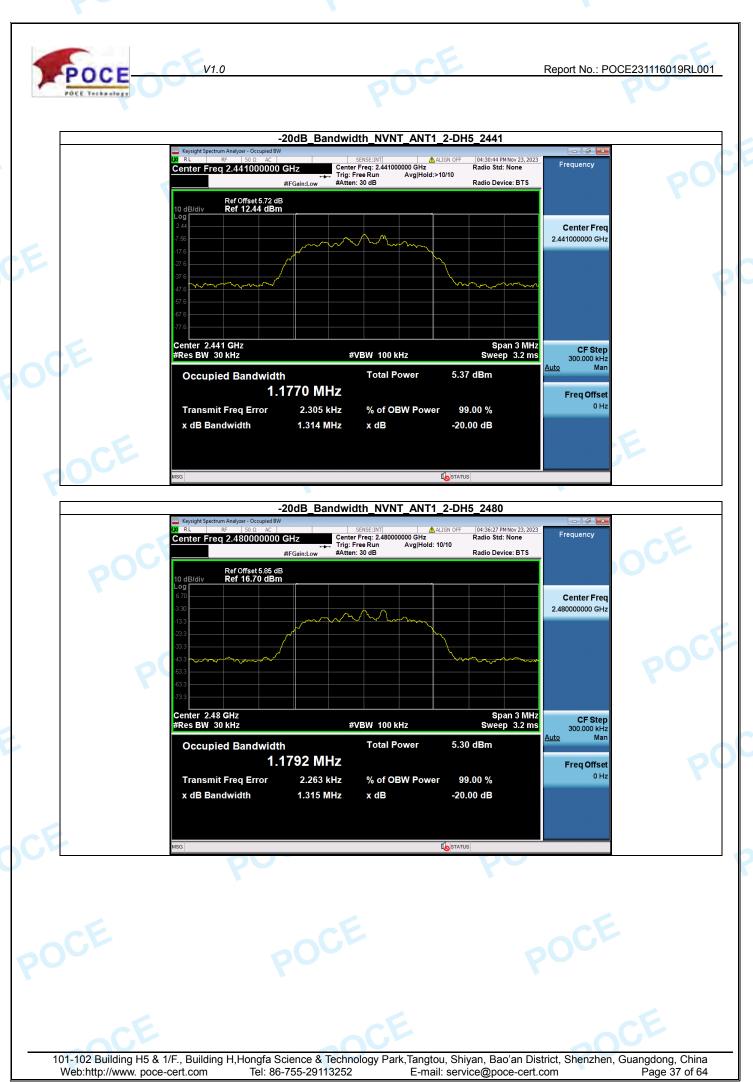


Appendix

1. -20dB Bandwidth

V1.0

Condition	Antenna	Modulation	Frequency (MHz)	-20dB BW(MHz)	if larger than CFS
NVNT	ANT1	1-DH5	2402.00	0.951	No
NVNT	ANT1	1-DH5	2441.00	0.953	No
NVNT	ANT1	1-DH5	2480.00	0.953	No
NVNT	ANT1	2-DH5	2402.00	1.313	Yes
NVNT	ANT1	2-DH5	2441.00	1.314	Yes
NVNT	ANT1	2-DH5	2480.00	1.315	Yes



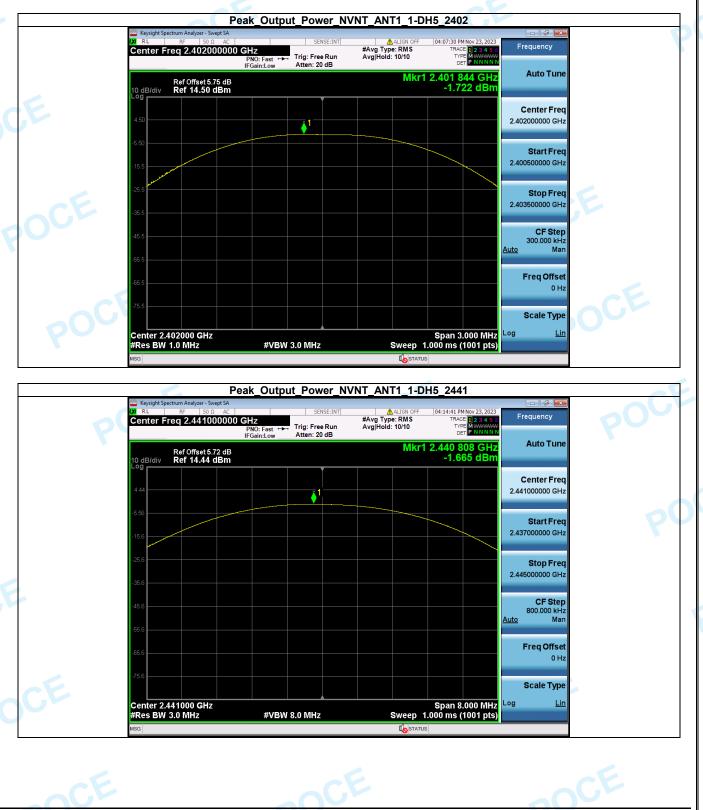
-20dB_Bandwidth_NVNT_ANT1_1-DH5_2441

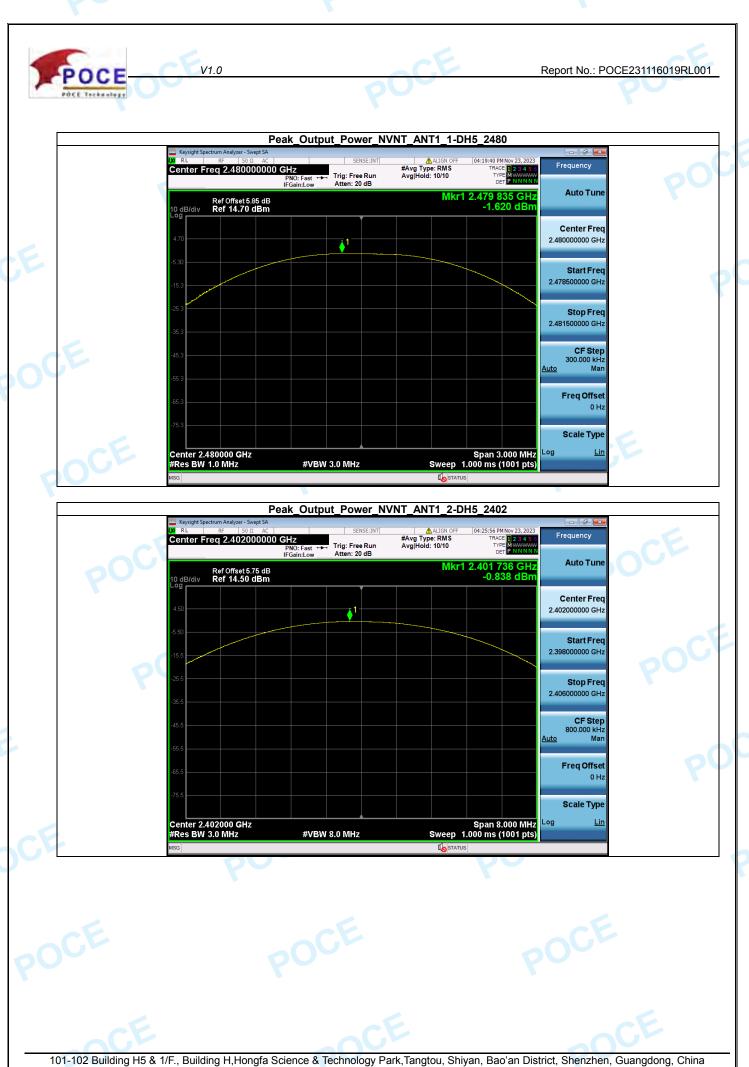
101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China
Web:http://www.poce-cert.comTel: 86-755-29113252E-mail: service@poce-cert.comPage 34 of 64

POCE Technology	V1.0	POLL	Report No.: I	POCE231116019RL0
	RL RF 50.Q. AC Center Freq 2.402000000 GHz #IFGain:Low Ref Offset 5.75 dB	SENSE:UNT ALGONO GHZ Center Freq: 2.40200000 GHZ Trig: Free Run Avg Hold: 10/10 #Atten: 30 dB	Id4:25:18 PM Nov 23, 2023 Radio Std: None Radio Device: BTS	
	10 dB/div Ref 16.50 dBm		Center Fre 2.402000000 GH	
	23 5			
	53 5 63 5 63 5 73 573 5 73 573			
	Center 2.402 GHz #Res BW 30 kHz Occupied Bandwidth		Span 3 MHz Sweep 3.2 ms 19 dBm	z
	1.1768 NTransmit Freq Error2.694x dB Bandwidth1.313	kHz % of OBW Power	99.00 % ^{0 ⊢} 0.00 dB	
6	ISG	U osta	ne	E
POCE I			PO	

2. 99% Occupied Bandwidth

Condition	Antenna	Modulation	Frequency (MHz)	99%%BW(MHz)
NVNT	ANT1	1-DH5	2402.00	0.838
NVNT 🥏	ANT1	1-DH5	2441.00	0.839
NVNT	ANT1	1-DH5	2480.00	0.840
NVNT	ANT1	2-DH5 🔪	2402.00	1.175
NVNT	ANT1	2-DH5	2441.00	1.175
NVNT	ANT1	2-DH5	2480.00	1.178

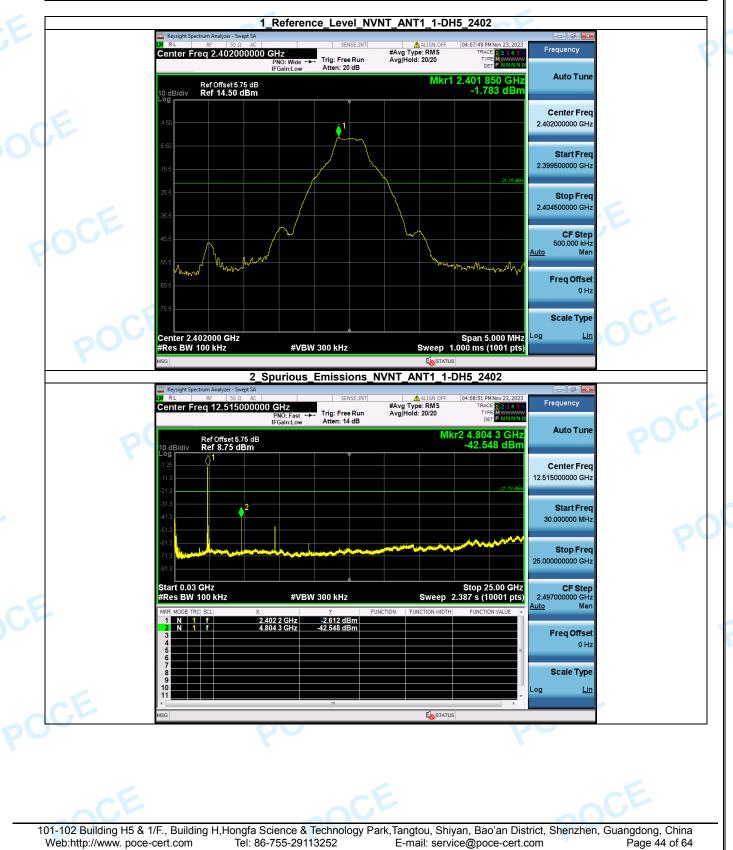


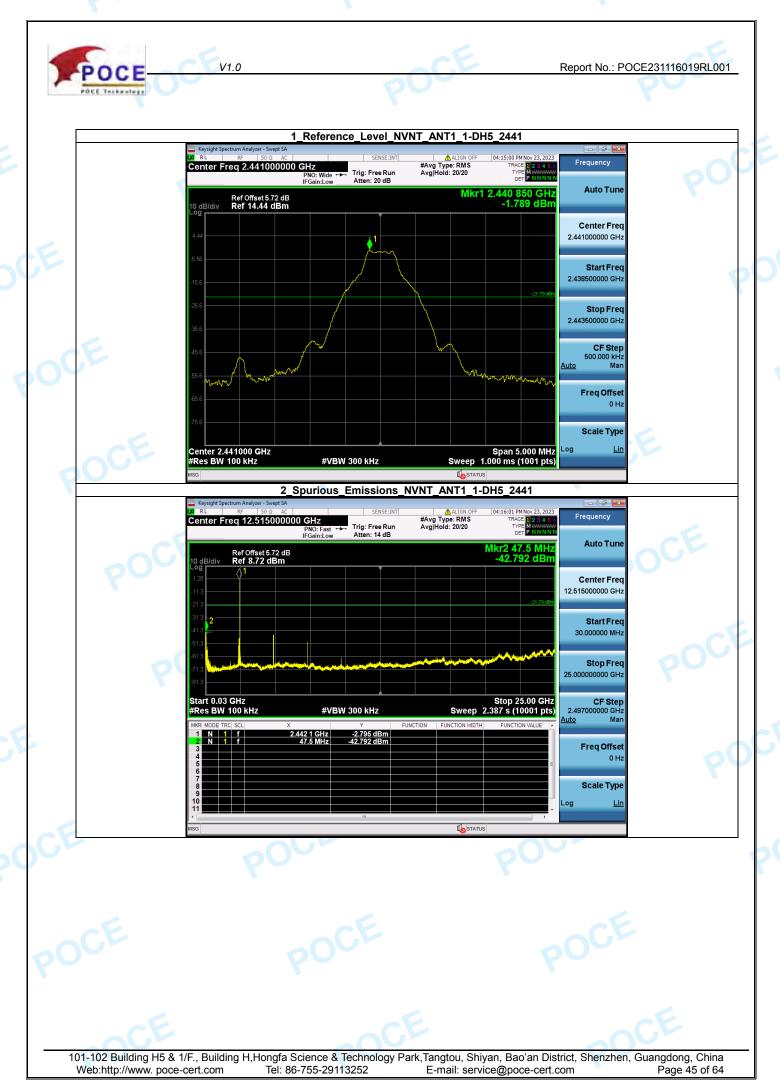

3. Peak Output Power

V1.0

Condition	Antenna	Modulation	Frequency (MHz)	Max. Conducted Power(dBm)	Max. Conducted Power(mW)	Limit(mW)	Result
NVNT	ANT1 🧹	1-DH5	2402.00	-1.72	0.67	125	Pass
NVNT	ANT1	1-DH5	2441.00	-1.67	0.68	125	Pass
NVNT	ANT1	1-DH5	2480.00	-1.62	0.69	125	Pass
NVNT	ANT1	2-DH5	2402.00	-0.84	0.82	125	Pass
NVNT	ANT1	2-DH5	2441.00	-0.84	0.82	125	Pass
NVNT	ANT1	2-DH5	2480.00	-0.80	0.83	125	Pass

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China
Web:http://www.poce-cert.comGuangdong, China
Page 41 of 64

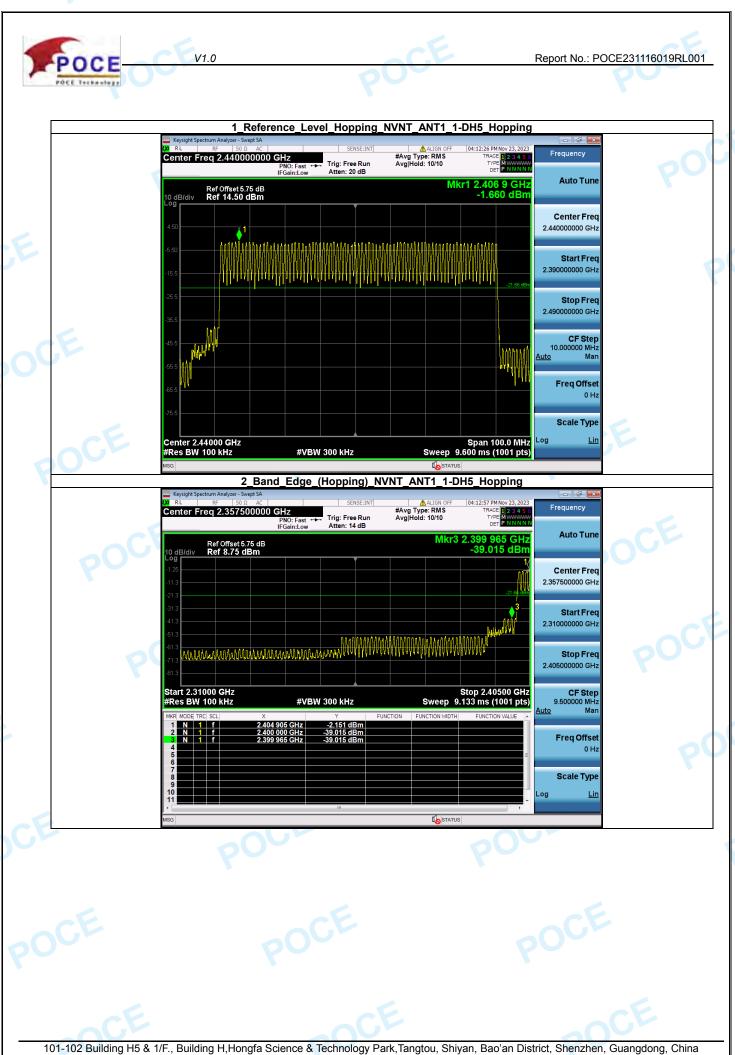

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, ChinaWeb:http://www.poce-cert.comTel: 86-755-29113252E-mail: service@poce-cert.comPage 43 of 64



4. Spurious Emissions

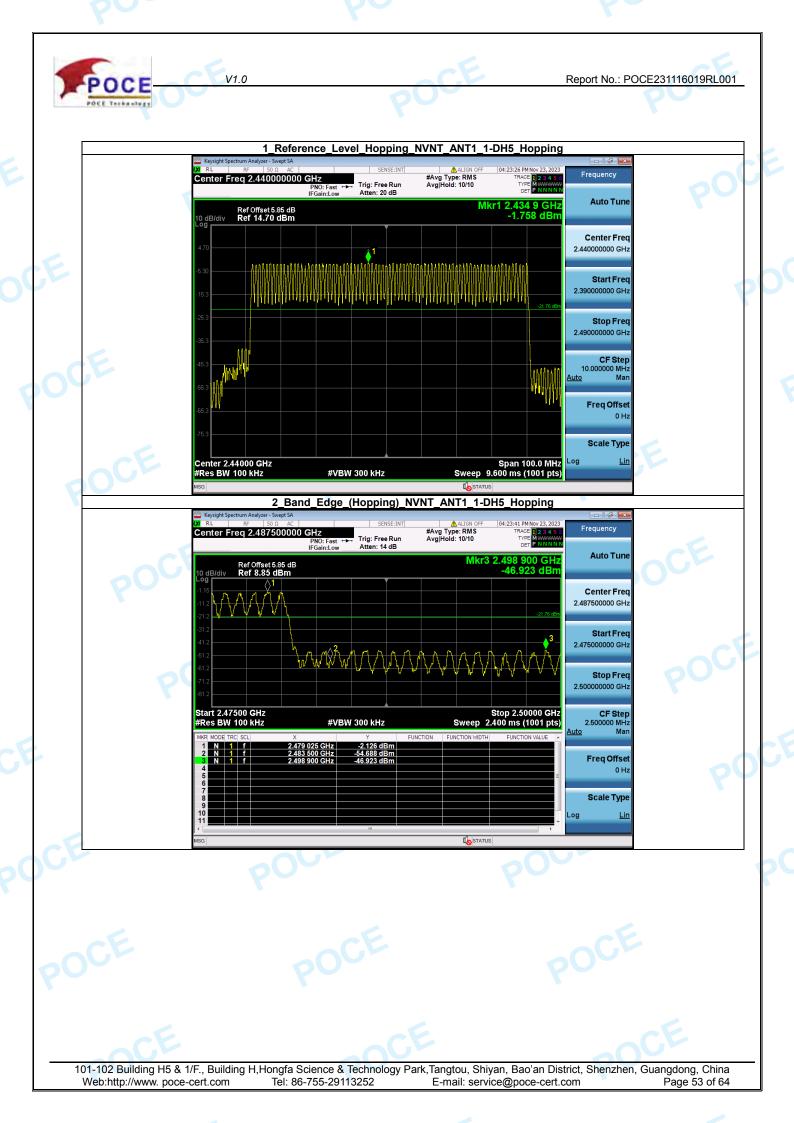
V1.0

Condition	Antenna	Modulation	TX Mode	Spurious MAX.Value(dBm)	Limit	Result
NVNT	ANT1	1-DH5	2402.00	-42.548	-21.783	Pass
NVNT	ANT1	1-DH5	2441.00	-42.792	-21.789	Pass
NVNT	ANT1	1-DH5	2480.00	-42.234	-21.831	Pass
NVNT	ANT1	2-DH5	2402.00	-42.856	-21.869	Pass
NVNT	ANT1	2-DH5	2441.00	-42.553	-21.851	Pass
NVNT	ANT1	2-DH5	2480.00	-42.397	-21.801	Pass



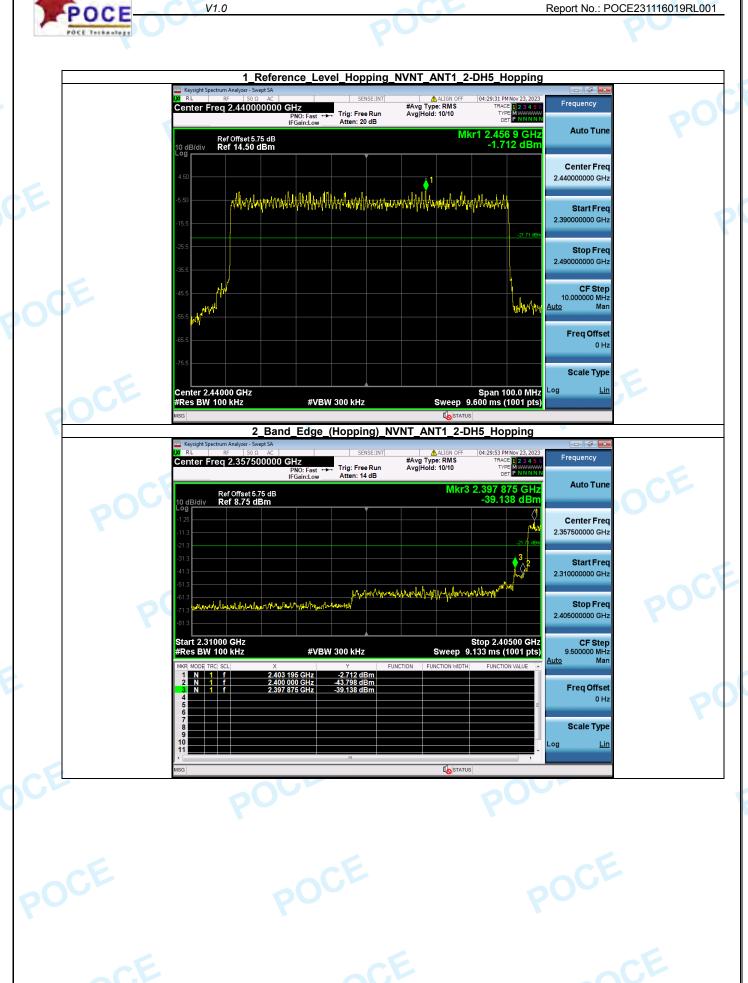
5. Bandedge

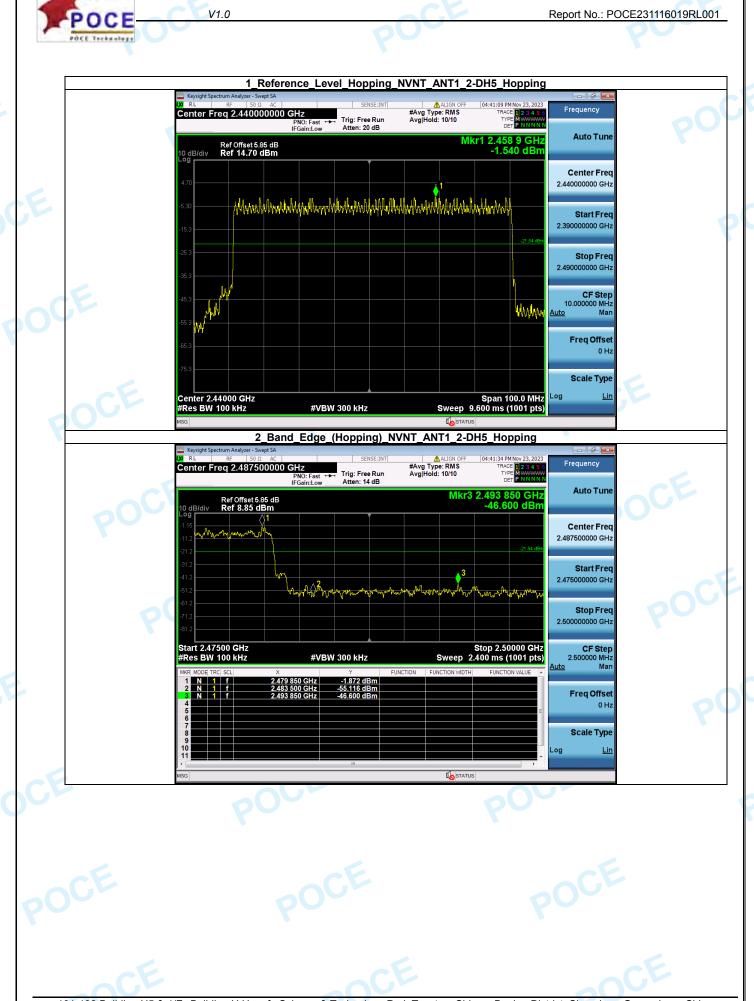
Condition	Antenna	Modulation	TX Mode	Bandedge MAX.Value	Limit	Result
NVNT	ANT1	1-DH5	2402.00	-38.428	-21.783	Pass
NVNT	ANT1	1-DH5	Hopping_LCH	-39.015	-21.660	Pass
NVNT	ANT1	1-DH5	2480.00 🕥	-52.301	-21.831	Pass
NVNT	ANT1	1-DH5	Hopping_HCH 「	-46.923	-21.758	Pass
NVNT	ANT1	2-DH5	2402.00	-38.887	-21.869	Pass
NVNT	ANT1	2-DH5	Hopping_LCH	-39.138	-21.712	Pass
NVNT	ANT1	2-DH5	2480.00	-53.068	-21.801	Pass
NVNT	ANT1	2-DH5	Hopping_HCH	-46.600	-21.540	Pass



 01-102 Building H5 & 1/F., Building H, Hongta Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China

 Web:http://www. poce-cert.com
 Tel: 86-755-29113252


 E-mail: service@poce-cert.com
 Page 51 of 64



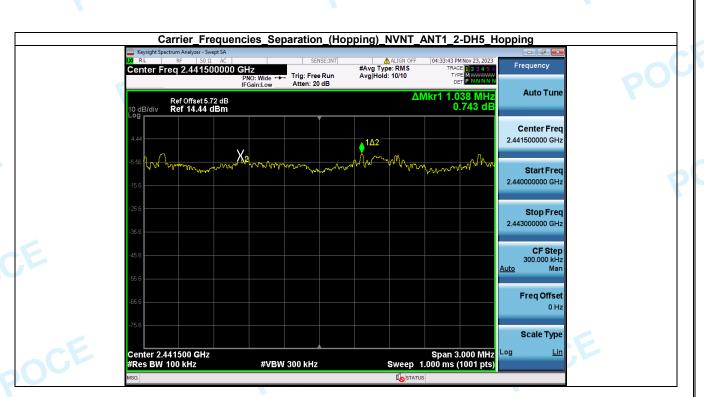
101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 55 of 64

 101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China

 Web:http://www.poce-cert.com
 Tel: 86-755-29113252

 E-mail: service@poce-cert.com
 Page 57 of 64

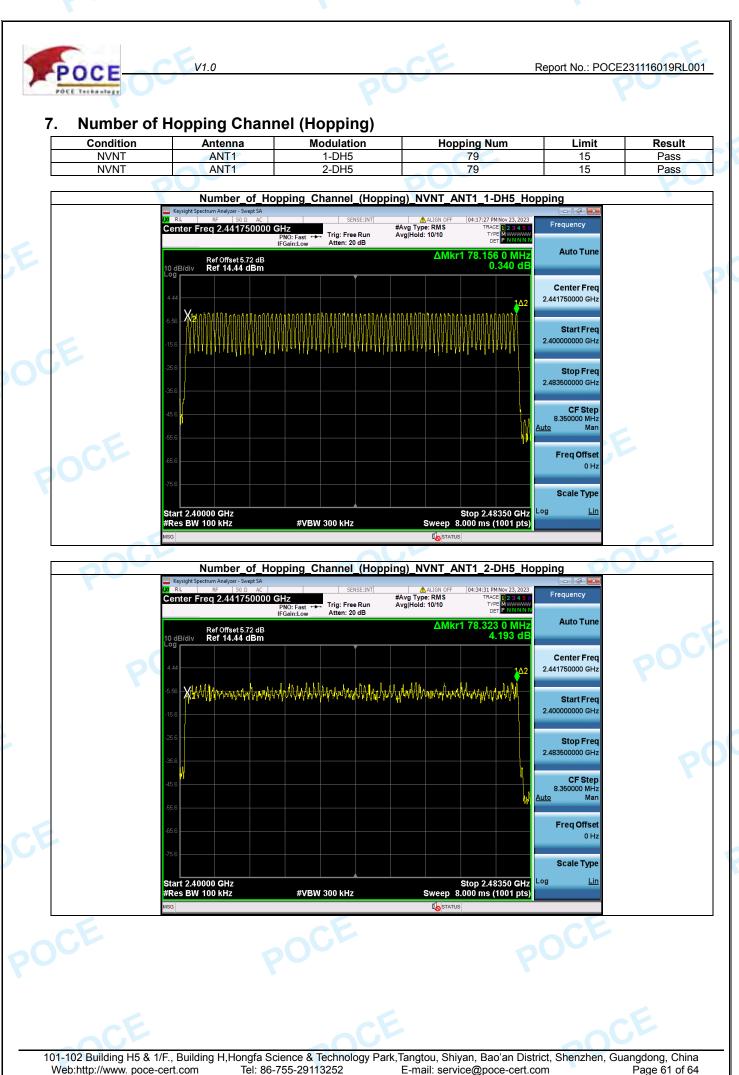
6. Carrier Frequencies Separation (Hopping)


V1.0

Condition	Antenna	Modulation	Frequency(MHz)	Hopping NO.0 (MHz)	Hopping NO.1 (MHz)	Carrier Frequencies Separation(MHz)	Limit(MHz)	Result
NVNT	ANT1	1-DH5	2402.00	2401.849	2403.166	1.32	0.634	Pass
NVNT	ANT1	1-DH5	2441.00	2440.972	2441.944	0.97	0.635	Pass
NVNT	ANT1	1-DH5	2480.00	2479.074	2479.869	0.80	0.635	Pass
NVNT	ANT1	2-DH5	2402.00	2401.873	2403.016	1.14	0.875	Pass
NVNT	ANT1	2-DH5	2441.00	2440.825	2441.863	1.04	0.876	Pass
NVNT	ANT1	2-DH5	2480.00	2478.960	2479.869	0.91	0.877	Pass



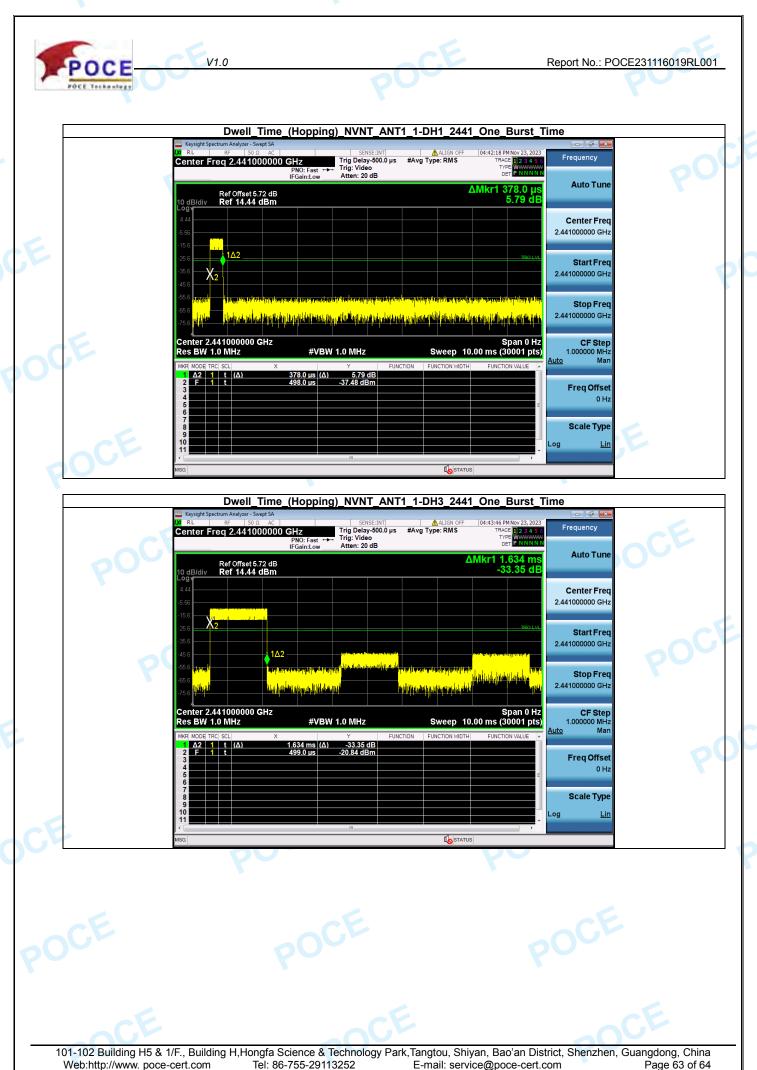
101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 59 of 64


V1.0

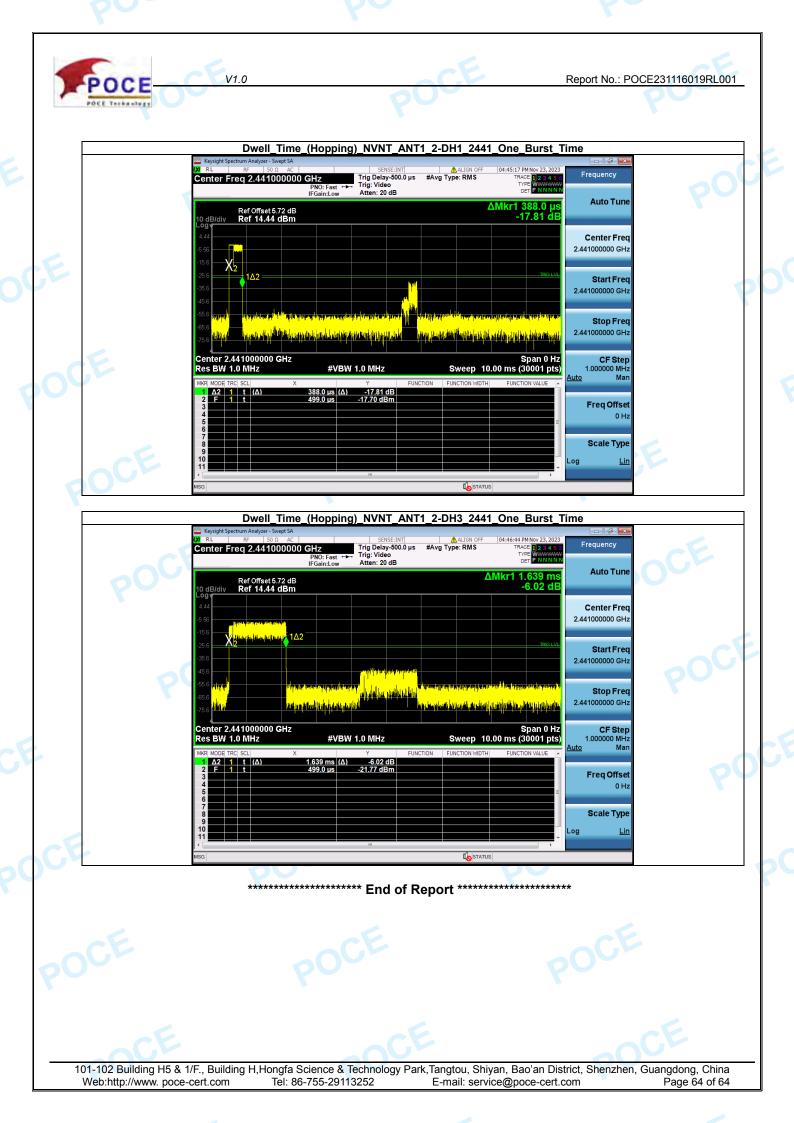
 101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China

 Web:http://www.poce-cert.com
 Tel: 86-755-29113252

 E-mail: service@poce-cert.com
 Page 60 of 64



8. Dwell Time (Hopping)


V1.0

Condition	Antenna	Packet Type	Pulse Time(ms)	Limit(s)	Result
NVNT	ANT1 🥏	1-DH5	2.882	0.40	Pass
NVNT	ANT1	2-DH5	2.888	0.40	Pass
NVNT	ANT1	1-DH1	0.378	0.40	Pass
NVNT	ANT1	1-DH3	1.634	0.40	Pass
NVNT	ANT1	2-DH1	0.388	0.40	Pass
NVNT	ANT1	2-DH3	1.639	0.40	Pass

Tel: 86-755-29113252

